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Abstract—COVID-19 pandemic has brought to the fore epi-

demiological models which, though describing a rich variety

of behaviors, have previously received little attention in the

signal processing literature. During the pandemic, several works

successfully leveraged state-of-the-art signal processing strate-

gies to robustly infer epidemiological indicators despite the

low quality of COVID-19 data. In the present work, a novel

nonstationary autoregressive model is introduced, encompassing,

but not reducing to, one of the most popular models for the

propagation of viral epidemics. Using a variational framework,

penalized likelihood estimators of the parameters of this new

model are designed. In practice, the main bottleneck is that

the estimation accuracy strongly depends on hyperparameters

tuning. Without available ground truth, hyperparameters are

selected by minimizing specifically designed data-driven oracles,

used as proxy for the estimation error. Focusing on the nonsta-

tionary autoregressive Poisson model, the Stein’s Unbiased Risk

Estimate formalism is generalized to construct asymptotically

unbiased risk estimators based on the derivation of an original

autoregressive counterpart of Stein’s lemma. The accuracy of

these oracles and of the resulting estimates are assessed through

intensive Monte Carlo simulations on synthetic data. Then,

elaborating on recent epidemiological models, a novel weekly

scaled Poisson model is proposed, enabling to better account

for intrinsic variability of the contamination while being robust

to reporting errors. Finally, the overall data-driven procedure

is particularized to the estimation of COVID-19 reproduction

number and exemplified on real COVID-19 infection counts

in different countries and at different stages of the pandemic,

demonstrating its ability to yield consistent estimates.

Index Terms—Autoregressive models, hyperparameter selec-

tion, Stein’s Unbiased Risk Estimate, Poisson noise, Variational

estimators, Epidemiology, Reproduction Number, COVID-19.

I. INTRODUCTION

Context. Inverse problems are ubiquitous in signal and image
processing [1–4], with a wealth of domains of application
as diverse as nonlinear physics [5, 6], astronomy [7], hy-
perspectral imaging [8], tomography [9], cardiology [10] and
epidemiology [11]. A general inverse problem consists in
estimating underlying quantities of interest from direct or
indirect observations. The intricate measurement processes
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necessary to obtain physical1 observations can be the source
of several difficulties in estimating the quantities of interest,
among which: acquisition performed in a transformed domain
requiring backward transformation to access the quantity of
interest [9], linear or nonlinear deformation of observations
through the measurement process [12, 13], and corruption by
stochastic perturbations, either stemming from the physical1
phenomenon at stake or from the measurement device [2].
Mathematically, without loss of generality, the quantity of
interest and observations can be represented by real-valued
vectors X 2 RT and Y 2 RS respectively, with T, S 2 N⇤,
and a generic inverse problem writes

Y ⇠ B(A(X)) (1)

where A : RT
! RS is a possibly nonlinear and non-

invertible continuous transformation and B is a stochastic
degradation, possibly data-dependent, i.e., neither additive nor
multiplicative. For example, in low-photon imaging [4], A is
a singular blur operator and the observations are corrupted by
Poisson noise, i.e., for s 2 {1, . . . , S}, the random variable
Ys follows a Poisson distribution of intensity (AX)s.

Most inverse problems of the form (1) are ill-posed, e.g.,
when S < T leading to non-injective A, hence compromising
uniqueness of the quantity of interest given observations
under Model (1), or ill-conditioned, e.g., when A is a linear
operator with a large conditioning number, inducing numerical
instability which, in the presence of noise, translates into
prohibitively large estimation variance. Numerous strategies
have been designed to address these challenging limitations,
which can be divided into two categories: supervised machine
learning [14–16] and unsupervised variational and Bayesian
techniques [2, 17–19]. The present work focuses on the
later category, which is particularly adapted when tackling
fundamental research problems [5, 6] or newly emerging
phenomena [11], for which annotated data are not available.
While the negative log-likelihood associated to Model (1)
provides a measure of the fidelity of the observations to
the model, a regularization term is designed to lift up the
ambiguity in the solution of ill-posed and ill-conditioned
problems, e.g., leveraging negative log-prior on the quantity
of interest [20, 21]. Balancing the fidelity to the data and the

1Physical is to be understood in a very broad sense, encompassing
biological, epidemiological as well as human data.
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regularity constraints then amounts to compute the maximum
a posteriori estimate of the quantity of interest as

bX(Y;�) 2 Argmin
X2RT

D(Y,AX) +R(X;�), (2)

where D is the negative log-likelihood used as a measure
of discrepancy between the observations and the model, R

is the negative log-prior penalizing highly irregular solution,
and � 2 ⇤ is a set of hyperparameters controlling the level
of regularity enforced in the estimate. For example, in the
study of solid friction targeting the characterization of the
stick-slip regime [5, 6], observations consists in a force signal
measured across time corrupted by independent identically
distributed (i.i.d.) additive Gaussian noise of variance �2.
Hence, T = S and A = IT , with the data fidelity term
in (2) reducing to the negative log-likelihood of a Gaussian
random vector of mean X and scalar covariance matrix �2

IT ,
that is D(Y,AX) = kY � Xk22/�

2. Physicists expect the
stick-slip regime to induce an almost piecewise linear force
signal, a behavior that is favored in the estimate through the
penalization R(X;�) = �kD2Xk1, where D2 : RT

! RT�2 is
the discrete Laplacian operator,2 the `1-norm enforces sparsity
of the second order derivative of the estimate, and the level of
sparsity is controlled by the regularization parameter � > 0.
As in most ill-posed inverse problems, the tuning of � is key to
obtain an accurate estimate: for small �, some noise remains,
while large � might cause significant information loss due to
over-regularization.
Related works. Ideally, the hyperparameters would be se-
lected by minimizing the estimation error, that is by choosing

�†
2 Argmin

�2⇤

���bX(Y;�)� X
���
2

2
. (3)

Though, in practice, the ground truth is not available, and
hence the estimation error cannot be evaluated. To tackle
this issue, several classes of hyperparameter tuning strategies
have been developed during the past decades. For additive
Gaussian noise models, leading to quadratic data-fidelity
terms, regularized with quadratic penalizations, the L-curve
criterion consists in selecting the regularization level by close
inspection of the plot of the residual against the regularity
of the solution as the regularization parameter is varied [22].
Not only the L-curve method is restricted to Gaussian models
under Tikhonov regularization, but also it has been shown
to be inaccurate when the targeted ground truth is very
smooth [23] and to behave inconsistently as the size of the
problem increases [24]. An alternative way is to model the
hyperparameters as random variables and to estimate them
via hierarchical Bayesian techniques [2, 20]. Such strategies
come at the price of an extra complexity, as they require
to specify the a priori hyperparameters distribution, and a
significant computational cost, as Monte Carlo sampling is
often necessary. Recent deep learning methods take advantage
of large training databases to learn the hyperparameters of
variational estimators [25–27]. While being very accurate as
soon as enough annotated data are available, these methods are

2
D2 consists in the discrete second order derivative defined such that

(D2X)t = Xt+2 � 2Xt+1 + Xt, 8t 2 {1, . . . , T � 2}.

not adapted to tackle fundamentally new problems for which
the generation of training database would either be too costly
or even not possible due to lack of available expert knowledge.
A widely used class of unsupervised methods consists in the
construction of an oracle O not depending explicitly on the
ground truth, which can thus be evaluated in practice, and
whose minimization yields an approximation of the optimal
hyperparameter in terms of the true error (3) defined as

�O 2 Argmin
�2⇤

O(Y;�) (4)

where ⇤ ⇢ RL denotes the set of admissible hyperparameters.
For linear parametric estimates under additive Gaussian noise
hypothesis, the Generalized Cross Validation strategy [28]
consists in minimizing a data-dependent criterion constructed
as the ratio between the residual sum of squares and the
trace of a model-dependent linear operator. Tough, it has
been shown that the Generalized Cross Validation function
might not have a unique properly defined minimizer [29],
leading the Generalized Cross Validation method to fail catas-
trophically by producing grossly underestimated regularization
parameters. Moreover, it is not flexible enough to handle
sparsity-inducing penalizations, which are very popular in the
inverse problem literature [30]. Among the methods relying
on the design of a tractable oracle, Stein’s Unbiased Risk
Estimate based strategies, elaborating on the seminal work [31]
to construct an approximation of the estimation risk, were
initially formulated for i.i.d. Gaussian noise model, but have
then been extended to more general noise models [32], notably
including a data-dependent Poisson contribution [33–35]. In
the past decades, Stein-based strategies have demonstrated
their ability to provide accurate hyperparameter selection in
numerous applications, reaching state-of-the-art performance
in inverse problem resolution, both in the variational frame-
work as multispectral image deconvolution [36], denoising of
force signal in nonlinear physics [6], and more recently in
unsupervised deep learning for image denoising [37].
Contributions and outline. The recent COVID-19 pandemic
crisis has triggered massive research efforts on epidemic mod-
eling and surveillance, way beyond the scientific community of
epidemiologists [38–45]. Notably, the challenging estimation
of the COVID-19 transmissibility in real-time, and with high
accuracy despite the low quality of data collected day-by-
day by health agencies, has been reformulated as a look-
alike inverse problem, enabling to leverage the state-of-the-
art variational estimators to get very accurate estimates of
the reproduction number, a crucial indicator quantifying the
intensity of an epidemic [11, 38]. The popular model for
viral epidemics proposed in [46] states that the number of
new infections at time t, Zt, follows a Poisson distribution
whose time-varying intensity is the product of the global infec-
tiousness, defined as a weighted sum of past infection counts
�t(Z) =

P
s�1 'sZt�s, and of the effective reproduction

number at time t, Rt,

Zt | Z1, . . . ,Zt�1 ⇠ P (�t(Z)Rt) . (5)

Model (5) is very reminiscent of Problem (1), the unknown
quantity X being (R1, . . . ,RT ), the role of A being played by
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the linear operator:

(R1, . . . ,RT ) 7! (�1(Z)R1, . . . ,�T (Z)RT ) (6)

and the degradation B consisting in data-dependent Poisson
noise. Elaborating on this formal resemblance, the variational
framework (2) has been fruitfully leveraged to design COVID-
19 instantaneous reproduction number Rt estimators [11, 38].
Up to now, the fine-tuning of the regularization parameters
of these variational estimators has been done manually, based
on expert knowledge, which not only impairs the analysis of
huge amount of data, but also might reflect subjective biases
of the users. To derive a fully data-driven hyperparameter
selection strategy, the main challenge lies in the design of an
adapted oracle O, for example of a Stein estimator. Indeed,
meticulous comparison of Models (1) and (5) shows that the
autoregressive nature of the epidemiological model (5), which
induce a dependency of the linear operator (R1, . . . ,RT ) 7!

(�1(Z)R1, . . . ,�T (Z)RT ) in the observation vector Z, defini-
tively excludes direct use of generalized Stein Unbiased Risk
Estimators, requiring A to be statistically independent of Z,
if not deterministic [6, 31, 32, 47]. Developing a novel Stein
paradigm, adapted to autoregressive models, is a challenging,
though crucial, step toward the design of fully data-driven,
hence objective, strategies for reproduction number estimation.

Section II first proposes a formal description of a new class
of models, namely the generalized nonstationary autoregres-
sive models, providing a general framework encompassing
Model (5); then the variational framework is leveraged to
design estimators of generalized nonstationary autoregressive
models unknown parameters under several commonly encoun-
tered noise distributions. The proposed original autoregressive
Stein paradigm is developed in Section III; a novel Stein’s-
type lemma is first derived in Section III-B for generalized
nonstationary autoregressive models involving Poisson noise,
and then used to derive a prediction and an estimation unbiased
risk estimators in Section III-C; finally Finite Differences and
Monte Carlo strategies are implemented to yield tractable Au-
toregressive Poisson Unbiased Risk Estimates. The accuracy of
the derived risk estimates is supported by intensive numerical
simulations on synthetic data, presented in Section IV. Then,
in Section V, a novel weekly scaled Poisson epidemiological
model, accounting more precisely for the intrinsic variability
of the pathogen propagation while being robust to administra-
tive noise, is introduced. Finally, the Autoregressive Poisson
Unbiased Risk Estimate is particularized to this new model to
design an original data-driven COVID-19 reproduction number
estimator, which is exemplified on real data from different
countries worldwide and at different pandemic stages.

Notations. R denotes the set of real numbers, R+ the non-
negative real numbers and R⇤

+ the positive real numbers. N
denotes the set of nonnegative integers and N⇤ the positive
integers. Matrices are denoted in roman bold characters, e.g.,
L, vectors in upper case sans serif bold characters, e.g.,
Y, and scalars in upper case sans serif plain characters,
e.g., Y. To avoid unnecessary complications, deterministic and
random variables are denoted in the same font; explanations
are provided in case the context induces any ambiguity. For

Y 2 RT a vector of length T , diag(Y) 2 RT⇥T denotes the
diagonal square matrix of size T , with diagonal consisting in
the components of Y. The entrywise product (resp. division)
between two vectors is denoted by � (resp. ⇧/).

II. NONSTATIONARY AUTOREGRESSIVE MODELS

A. Observation model
The proposed nonstationary autoregressive model encom-

passes both the standard autoregressive model of finite order
and the epidemiological model introduced in [46] and gen-
eralizes them in several directions. First, the memory term
 t is not necessarily a linear function, it is only assumed
to be causal, that is depending only on past observations, and
smooth. Second, observations are no longer restricted to follow
an independent Gaussian distribution with constant variance,
but instead any distribution with prescribed mean, possibly
depending on additional time-varying parameters. Finally, and
this is the major originality, observations are externally driven
by a time-varying reproduction coefficient.

Definition 1 (Driven autoregressive model). Let T 2 N⇤ be
a time horizon, X = (X1, . . . ,XT ) 2 RT

+ a time-varying
reproduction coefficient, Y0 2 R⇤

+ an initial state, and for each
t 2 {1, . . . , T},  t : Rt�1

! R a smooth function, with by
convention  1 = Y0. Observations Y = (Y1, . . . ,YT ) follow
a driven autoregressive model with reproduction coefficient X
and memory functions { t, t = 1, . . . , T} if and only if

8t 2 {1, . . . , T}, Yt ⇠ B↵t

�
Xt t(Y1, . . . ,Yt�1)

�
, (7)

where B↵(U) denotes a probability distribution of mean U 2 R
depending on an additional parameter ↵ 2 R.

The memory functions { t, t = 1, . . . , T} encapsulate how
the memory of past observations impacts the process at time
t. In this work, they are assumed to be perfectly known. As
an external source of nonstationarity, the parameter of the
probability distribution ↵t is allowed to vary with time.
Example 1 (Driven linear autoregressive model). The class
of linear driven autoregressive models corresponds to linear
functions { t, t = 1, . . . , T} defined as

 t(Y1, . . . ,Yt�1) =

min(⌧,t�1)X

s=1

 sYt�s (8)

where ⌧ 2 N⇤ is a finite memory horizon. The sequence
{ s}

⌧
s=1, encoding the dynamical characteristics of the sys-

tem, then fully characterizes the entire family of memory
functions. If, moreover, { s}

⌧
s=1 is normalized, that is ifP⌧

s=1  s = 1, then the global trend in the behavior of Yt

is governed by Xt: if Xt > 1, Yt is exponentially growing,
while if Xt < 1, Yt decreases exponentially fast.

Linear driven autoregressive models are widely used in
epidemiology, where the sequence { s}

⌧
s=1 corresponds to the

serial interval distribution, accounting for the randomness of
the time delay between primary and secondary infections, and
Xt corresponds to the effective reproduction number [38, 46].
Figure 1 provides a synthetic example of linear driven autore-
gressive observations under the Poisson model (11), with  
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corresponding to a discretized Gamma distribution of mean
6.6 and standard deviation 3.5 truncated at ⌧ = 25, mim-
icking the serial interval function of COVID-19 [48, 49] used
in [11, 38, 46]. The three time periods corresponding to Xt > 1
are represented as light blue areas (first row), and results in
three temporally separated bumps in Yt (second row).
Remark (Autoregressive model of order ⌧ ). The driven au-
toregressive model of Definition 1 encompasses the standard
autoregressive model of order ⌧ 2 N⇤ defined as

Yt =
⌧X

s=1

 sYt�s + ⌅t, ⌅t ⇠ N (0,↵2) (9)

where (⌅t)t2N⇤ is a sequence of i.i.d. Gaussian variables of
zero mean and variance ↵2, for some ↵ > 0 [50, Section
2.2]. This standard autogressive model indeed corresponds
to the linear model described in Example 1 with constant
reproduction coefficient Xt = 1, and Gaussian noise with
constant variance ↵2

t = ↵2.
It is worth noting that the present work focuses on autore-

gressive processes which are driven by an external unknown
and time-varying reproduction coefficient, which constitutes
a paradigm drastically different from the thoroughly studied
autoregressive processes, preventing from using the standard
tool described, e.g., in [50].
Example 2 (Noise models). Numerous probability distribu-
tions B are encountered in the inverse problem literature [4,
34, 51–53]. Three major representative examples adapted to
the driven autoregressive model introduced in Definition 1 are:
i) the additive Gaussian noise of variance ↵2

t

Yt | Y1, . . . ,Yt�1 ⇠ N (Xt t(Y),↵2
t ) (10)

where N (U,↵2) denotes the Gaussian distribution of mean U
and variance ↵2;
ii) the scaled Poisson distribution with scale parameter ↵t > 0

Yt | Y1, . . . ,Yt�1 ⇠ ↵tP

✓
Xt t(Y)

↵t

◆
, (11)

where P(U) denotes the Poisson distribution of intensity U,
which has mean and variance both equal to U; 3

iii) the multiplicative Gamma noise of shape parameter ↵t > 0

Yt | Y1, . . . ,Yt�1 ⇠ G

✓
↵t,

Xt t(Y)

↵t

◆
, (12)

where G (↵,U) refers to the Gamma distribution of shape
parameter ↵ and scale parameter U.3

B. Variational estimators
Notations. From now on, for the sake of compactness, the
driving term at t will be denoted  t(Y) :=  t(Y1, . . . ,Yt�1)
and the collection of all terms will be referred to as  (Y) =
( 1(Y), . . . , T (Y)).

Given some observations Y = (Y1, . . . ,YT ), the most
straightforward way to estimate the time-varying reproduction

3By convention, whatever ↵ > 0, if U  0, P(U) and G (↵,U) are
Dirac distributions, i.e., Yt = 0 deterministically.

Fig. 1: Driven Poisson autoregressive data. The process Yt

(top plot, solid curve) follows Model (7) with piecewise linear
reproduction coefficient Xt (bottom row, deep blue curve);
linear memory functions (8) with horizon ⌧ = 25; Poisson
degradation (11), with constant scale parameter ↵t ⌘ 103;
initialized at Y0 = 104 and run for T = 300 steps. Blue areas
corresponds to Xt � 1, driving exponential growth of Yt.

coefficient X = (X1, . . . ,XT ) consists in maximizing the
likelihood associated with Model (7), yielding the Maximum
Likelihood (ML) estimator:

bX
ML

= argmin
X2RT

D↵ (Y,X� (Y)) (13)

where the discrepancy function D↵(Y,X �  (Y)) =
� ln (P(Y|X;↵)) is the opposite log-likelihood of Model (7).4

Example 3 (Discrepancies, Example 2 continued). Under
the additive Gaussian noise Model (10) the discrepancy is
quadratic

� ln (P(Y|X;↵)) =
TX

t=1

1

↵2
t

(Yt � Xt t(Y))2 . (14)

Under the scaled Poisson noise Model (11), the discrepancy
coincides with the so-called Kullback-Leibler divergence

� ln (P(Y|X;↵)) =
TX

t=1

dKL

✓
Yt

↵t

����
Xt t(Y)

↵t

◆
, (15)

where dKL(Y|U) =
8
<

:

Y ln
�
Y
U

�
+ U� Y if Y > 0, U > 0

U if Y = 0, U � 0
1 otherwise.

(16)

Finally under the multiplicative Gamma noise Model (12), the
discrepancy is, up to a term independent of U, the Itakura-
Saito divergence [51]

� ln (P(Y|X;↵)) =
TX

t=1

dIS

✓
Yt|↵t,

Xt t(Y)

↵t

◆
(17)

where dIS(Y|↵,U) =
⇢

Y
U � ↵ ln

�
Y
U

�
+ ln (�(↵)) + ln (Y) if Y > 0, U > 0

1 otherwise,
(18)

4Note that, according to Model (7), the probability distribution of the
random vector Y = (Y1, . . . ,YT ) depends on the memory functions and on
the initialization Y0 which are assumed known and deterministic, hence are
not mentioned in the conditional probability.
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where � denotes the Euler gamma function.
For all three models, Gaussian (10), Poisson (11) and

Gamma (12), provided that  t(Y) is positive for all t 2

{1, . . . , T}, the maximum likelihood estimator (13) writes

bXML
t = Yt / t(Y) . (19)

An example of Maximum Likelihood estimate on synthetic
observations following the Poisson noise model is provided in
Figure 1. Due to the presence of noise in the observations (top
plot, black solid curve,) the straightforward Maximum Like-
lihood estimate of the instantaneous reproduction coefficient
(bottom plot, light blue curve) suffers from erratic fluctuations
compared to ground truth (bottom plot, deep blue curve). Such
noisy estimate severely impairs the diagnostic of exponential
growth based on Xt > 1; e.g., around t = 50, although ground
truth is clearly above one, some values bXML

t < 1 are observed.
Obtaining an accurate estimate of the reproduction coeffi-

cient thus requires to use additional information. Widely used
strategies consists in enforcing a priori constraints, such as,
e.g., piecewise linearity [6, 38] and/or sparsity [11, 54]. To
that aim, the variational framework consists in augmenting
the negative log-likelihood objective of Equation (13) with a
regularization term enforcing a priori desirable properties on
the estimate leading to parametric estimators of the form

bX(Y;�) 2 Argmin
X2RT

D↵ (Y,X� (Y)) +R(X;�), (20)

where � = (�1, . . . ,�L) 2 ⇤ is a vector of regularization
parameters, balancing the overall regularization level as well
as the relative importance of the different constraints encoded
in the penalization. Commonly used regularization terms are
composite [13, 55, 56] and are expressed as

R(X;�) =
LX

`=1

�`kL`Xk
q`
q` (21)

where for each ` 2 {1, . . . , L}, L` is a linear operator, q` a
positive exponent, and �` � 0 is a regularization parameter
balancing the importance of the `th constraint with respect
to the other constraints in (21) and to the data-fidelity term
of Equation (20). Each term of the functional enforces a
specific constraint, hence enabling to take into account several
regularity and sparsity properties simultaneously. For example,
when choosing the discrete Laplacian L = D2, q` = 1, favors
sparsity of the second order temporal derivative, and hence
results in piecewise linear estimates, while q = 2 yields
smooth estimates. The penalized likelihood strategy sketched
in Equation (20) is highly flexible and adapts to a large
collection of noise models and constraints, hence, by favoring
a priori behavior, it has the ability to provide consistent and
accurate regularized estimates. The excellent performances of
variational estimators are at the price of a cautious fine-tuning
of the regularization parameters associated to each term of
the penalization. Not only this task is very tough to perform
manually but also, and more importantly, in practice ground
truth is not available and it is necessary to resort to data-driven
oracles to approach optimal hyperparameters.

III. UNBIASED RISK ESTIMATORS

A. General framework

Given an observation model and a parametric estimator, e.g.,
a variational estimator of the form (20), the ideal hyperpa-
rameter selection strategy would consists in minimizing the
estimation risk, defined as

E

⇣
bX( · ;�),X

⌘
:= EY

���bX(Y;�)� X
���
2

2

�
(22)

where EY denotes the expectation over realizations of Y. For
inverse problems of the form (1) with an ill-conditioned or
non-injective operator A, the estimation risk is potentially
numerically instable; an alternative is to shift the emphasis
on the reconstruction error and to consider the prediction risk

P

⇣
bX( · ;�),X

⌘
:= EY

���bX(Y;�)� (Y)� X� (Y)
���
2

2

�
.

(23)

Both the estimation and prediction risks depends on the ground
truth X, which in practice is not available. The purpose of this
section is thus to devise oracles for the quality an estimate
bX, which are independent of the unknown ground truth, and
whose minimization provides approximately optimal hyperpa-
rameters, where optimal is to be understood as reaching low
estimation or prediction risk.

B. A novel autoregressive Poisson lemma

The remaining of the paper focuses on the Poisson
model (11), which is commonly used for modeling the
pathogen spread during epidemics, with the aim of applying
the developed tools to the estimation of COVID-19 reproduc-
tion number from real infection counts in Section V.

The cornerstone of the design of the Stein’s Unbiased
Risk Estimate is the seminal Stein’s lemma [31], turning
an expectation explicitly involving ground truth, into another
one in which the explicit dependency is completely removed.
Under the Poisson noise model (11), the standard Stein’s
lemma cannot be used. Further, due to the dependency of the
memory term in past observations stated in Equation (7), none
of the Stein’s lemmas generalized to Poisson noise [32, 33, 35]
apply. The major challenge in designing oracles adapted to the
driven autoregressive Poisson model is thus to derive a new
autoregressive Poisson Stein’s lemma counterpart.

Proper definition of the estimation and prediction risks
and formal derivation of the proposed autoregressive Pois-
son lemma require further hypotheses: Assumption 1 ensures
integrability of all quantities involved, while the technical
Assumption 2, easily checked in the practical application of
Section V-B, is required to handle autoregressive models.

Assumption 1. Let ⇥ : RT
! R, the real-valued function

defined on NT as

k 7! ⇥(↵1k1, . . . ,↵T kT )Xt t(↵1k1, . . . ,↵t�1kt�1)
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is summable with respect to the driven autoregressive Pois-
son distribution obtained plugging the driven autoregression
model (7) into the Poisson distribution (11)

P(k1, . . . , kT ) =
TY

s=1

(Xs s(Y))ks

ks!
e�Xs s(Y), (24)

where for all s 2 {1, . . . , T} Ys = ↵sks.
Assumption 2. For all t, s 2 {1, . . . , T},

8Y 2 RT
+, |@Yt s(Y)⇥ ↵t| ⌧ | s(Y)|. (25)

It is worth insisting on the fact that, due to the dependency
of the memory functions in the past observations, the compo-
nents of Y are not independent Poisson random variables. This
is visible in Equation (24) where, because  s(Y) depends on
Y1, . . . ,Ys�1, the right-hand side is not a separable product
of independent Poisson distribution and cannot be reframed
as such. This is precisely this major difference with standard
inverse problems of the form (1) which impairs the application
of the standard Poisson counterpart of Stein’s lemma [33–35].5

Notations. Let ⇥ : RT
! R and ↵ 2 RT , for t 2 {1, . . . , T}

the function ⇥�t is defined as

⇥�t(Y) = ⇥(Y1, . . . ,Yt � ↵t, . . . ,YT ), Y 2 RT . (26)

Lemma 1 (Autoregressive Poisson lemma). Let Y =
(Y1, . . . ,YT ) observations following the driven autoregressive
model (7) with ground truth time-varying reproduction coeffi-
cient X = (X1, . . . ,XT ) 2 RT

+ and memory functions  t satis-
fying Assumption 2, corrupted by scaled Poisson noise (11) of
time-varying scale parameter ↵ = (↵1, . . . ,↵T ) 2 RT

+. Then,
for ⇥ : RT

! R satisfying Assumption 1 8t 2 {1, . . . , T},

EY

⇥
⇥(Y)Xt t(Y)

⇤
=

↵!0
EY

⇥
⇥�t(Y)Yt

⇤
. (27)

Proof. Proof of lemma 1 is detailed in Appendix VII.

Thanks to Lemma 1, the ground truth-dependent expectation
in the left-hand side of (27) is approached by a fully data-
dependent one, which will turn out key in the derivation of
unbiased risk estimates.

C. Autoregressive Poisson Unbiased Risk Estimators
Expanding the estimation and prediction risks of Equa-

tions (22) and (23) respectively, and applying Lemma 1 to
remove the explicit dependency in the ground truth, Theorem 1
yields novel estimation and prediction Autoregressive Poisson
Unbiased Risk Estimates.

Theorem 1. Let Y = (Y1, . . . ,YT ) be observations satisfying
the requirements enunciated in Lemma 1. Let bX(Y;�) be a
parametric estimator of X, such that 8t 2 {1, . . . , T}, 8� 2

⇤, Y 7! bXt(Y;�) satisfies Assumption 1. Define the data-
dependent prediction risk estimate

APUREP(Y;� |↵) = kbX(Y;�)� (Y)k22

� 2
TX

t=1

bX�t
t (Y;�) t(Y)Yt +

TX

t=1

�
Y2
t � ↵tYt

� (28)

5This remark on data-dependent Poisson noise would be true as well for
the additive Gaussian and multiplicative Gamma noises of Example 2.

where bX�t
t (Y;�) = bXt(Y1, . . . ,Yt � ↵t, . . . ,YT ;�). Then,

APUREP is an asymptotically unbiased estimate of the pre-
diction risk in the small scale parameters limit, that is

EY

h
APUREP(Y;� |↵)

i
=

↵!0
P(bX,X). (29)

Further assuming that 8t 2 {1, . . . , T},  t(Y) 6= 0, define
the data-dependent estimation risk estimate

APUREE(Y;� |↵) = kbX(Y;�)k22 (30)

� 2
TX

t=1

bX�t
t (Y;�)

 t(Y)
Yt +

TX

t=1

✓
Y2
t

 t(Y)2
�

↵tYt

 t(Y)2

◆
.

Then, APUREE is an asymptotically unbiased estimate of the
prediction risk in the small scale parameters limit, that is

EY

h
APUREE(Y;� |↵)

i
=

↵!0
E(bX,X). (31)

Proof. Proof of Theorem 1 is developed in Appendix VIII.

D. Finite difference Monte Carlo estimators
Although fully data-driven with an explicit formula, both

the estimation and prediction risk estimates APUREE and
APUREP turn out to be complicated to evaluate in practice.
Indeed, they both involve all T functions Y 7! bX�t

t (Y). Since,
in general, the estimator bX(Y;�) is not separable in t, it is thus
necessary to evaluate the estimator T times. For parametric
estimators designed using the variational framework of Equa-
tion (20), the involved minimization can be very costly. Con-
sequently, as T is growing, the computational burden of the
direct evaluation of APUREE and APUREP from (22) and (23)
rapidly becomes prohibitive. To circumvent this difficulty, the
Finite Difference and Monte Carlo strategies [36, 57–59] are
combined to yield tractable asymptotically unbiased estimation
and prediction risk estimates, requiring further assumptions on
the parametric estimator bX(Y;�).
Assumption 3. For any hyperparameters � 2 ⇤, the function
Y 7! bX(Y;�) is continuously differentiable on RT

+.

Theorem 2. Let Y = (Y1, . . . ,YT ) be observations satisfying
the requirements of Lemma 1 and bX(Y;�) be a parametric es-
timator of X whose components satisfy Assumption 1 as stated
in Theorem 1 and satisfying Assumption 3. Let ⇣ ⇠ N (0, I) a
zero-mean Gaussian vector with covariance matrix the identity
in dimension T . Define the data-dependent Finite Difference
Monte Carlo prediction risk estimate

APUREP

⇣ (Y;� |↵)

= kbX(Y;�)� (Y)k22 � 2
TX

t=1

bXt(Y;�) t(Y)Yt (32)

+ 2
D
diag(↵� (Y))@YbX[⇣], diag(Y)⇣

E
+

TX

t=1

�
Y2
t � ↵tYt

�

where @YbX[⇣] denotes the differential of Y 7! bX(Y;�) at
the current point (Y;�) applied to the random vector ⇣.
Then, APUREP

⇣ is an asymptotically unbiased estimate of the
prediction risk in the small scale parameters limit, that is

EY,⇣

h
APUREP

⇣ (Y;� |↵)
i

=
↵!0

P(bX,X). (33)
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Further assuming that 8t 2 {1, . . . , T},  t(Y) 6= 0, define
the data-dependent Finite Difference Monte Carlo estimation
risk estimate

APUREE

⇣ (Y;� |↵) = kbX(Y;�)k22 � 2
TX

t=1

bXt(Y;�)

 t(Y)
Yt

+ 2
D
diag(↵ ⇧ / (Y)) @YbX[⇣], diag(Y)⇣

E
(34)

+
TX

t=1

✓
Y2
t

 t(Y)2
�

↵tYt

 t(Y)2

◆
.

Then, APUREE

⇣ is an asymptotically unbiased estimate of the
estimation risk in the small scale parameters limit, that is

EY,⇣

h
APUREE

⇣ (Y;� |↵)
i

=
↵!0

E(bX,X). (35)

Proof. Proof of Theorem 2 is developed in Appendix IX.

Using only one realization of the Monte Carlo vector ⇣
in the evaluation of APUREE

⇣ and APUREP

⇣ might lead to
noisy estimates of E and P; using them directly as oracles for
hyperparameters selection according to (4) hence might result
in suboptimal and unstable hyperparameter choices [60]. To
circumvent this issue, it is possible to average over several in-
dependent realizations of ⇣ to stabilize both the risk estimates
and the resulting hyperparameter choice [59, 60].

Proposition 1. Let Y = (Y1, . . . ,YT ) be observations satisfy-
ing the requirements enunciated in Lemma 1 and bX(Y;�) be a
parametric estimator of X satisfying the assumptions listed in
Theorem 2. Let N 2 N⇤ and (⇣(1), . . . , ⇣(N)) be independent
realizations of the Monte Carlo vector ⇣ ⇠ N (0, I). The
robustified risk estimates defined as

APUREE

⇣

N
=

1

N

NX

n=1

APUREE

⇣(n)

APUREP

⇣

N
=

1

N

NX

n=1

APUREP

⇣(n)

(36)

are asymptotically unbiased estimation (resp. prediction) risk
estimates.

Proof. By linearity of the expectations EY,⇣ in Equation (36)
and of the limit ↵ ! 0 in Equations (33) and (35)

EY,⇣


APUREE

⇣

N
�

=
↵!0

E(bX,X)

EY,⇣


APUREP

⇣

N
�

=
↵!0

P(bX,X).
(37)

IV. APPLICATION TO PIECEWISE LINEAR ESTIMATION

The purpose of this section is twofold: first, to assess the
ability of the robustified Finite Difference Monte Carlo risk
estimates deriving from Theorem 2 and Proposition 1, to
approximate faithfully the true estimation and prediction risks;
second, to demonstrate numerically that the hyperparameters
selected by minimizing these risk estimates yields accurate
estimates of the reproduction coefficients from observations

following the driven autoregressive model with data-dependent
Poisson noise (11). To that aim, intensive simulations are run
on synthetic data generated according to (7) and (11).

A. Synthetic data

To prepare for the application to epidemiological indicator
estimation, developed in Section V, the ground truth repro-
duction coefficient X is designed piecewise linear [11, 38],
imitating temporal evolution of the reproduction number of
COVID-19 observed from real-world data [61]. All synthetic
data in this section are of length T = 70 and share the
same ground truth, represented by the deep blue curve in
Figure 1, bottom plot, alternating expansion and recession
phases, as represented by the blue areas indicating exponential
growth period characterized by Xt > 1. The initial state
is set according to the observed real COVID-19 infection
counts during the imitated period at Y0 = 3395. Mimicking
the epidemiological model proposed in [46] particularized to
COVID-19 pandemic, the memory functions are chosen linear,
as described in Example 1, with a constant memory horizon
of ⌧ = 25 and a sequence { s}

⌧
s=1 chosen as the daily

discretization of the serial interval distribution of COVID-
19 modeled as a Gamma distribution of mean 6.6 days and
standard deviation 3.5 days [48, 49]. The scale parameter of
the data-dependent Poisson noise is constant through time, that
is 8t,↵t = ↵ > 0. Seven values of ↵ logarithmically spaced
between ↵ = 102, corresponding to low noise level, to a very
high noise level of ↵ = 105, are explored. Figure 2 provides
in top row examples of synthetic observations with the same
underlying ground truth reproduction coefficient, displayed in
blue in the second row plots, for three scale parameter values,
corresponding, from first to third columns, to low ↵ = 102,
medium ↵ = 103 and high ↵ = 104 noise levels.

B. Estimation strategy

The estimation of the reproduction coefficient is performed
through a variational procedure consisting in the minimization
of the penalized negative log-likelihood functional

bX(Y;�) = argmin
X2RT

+

D↵ (Y,X� (Y)) + �kD2Xk1 (38)

where D is the Kullback-Leibler divergence customized to the
driven autoregressive Poisson model as described in Equa-
tions (15) and (16), D2 is the discrete Laplacian, which, com-
bined with the `1 norms favors piecewise linear behavior of the
estimate, and � > 0 is a regularization parameter balancing the
data-fidelity and the penalization [11, 38]. As the minimization
problem (38) is convex but nonsmooth, it is solved using the
Chambolle-Pock proximal algorithm [11, 38, 62] leveraging
the closed-form expression of the proximity operator of the
Kullback-Leibler divergence of Equation (15) [38].

Proposition 2. Let Y observations following the driven au-
toregressive Poisson model described in Section IV-A. Then,
the variational estimator bX(Y;�) defined in Equation (38)
satisfies the assumptions enunciated in Theorems 1 and 2.
Hence, for any N 2 N⇤, the data-driven robustified oracles
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(a) log10 ↵ = 3 (b) log10 ↵ = 3.5 (c) log10 ↵ = 4

Fig. 2: Estimation of the reproduction coefficient from synthetic driven autoregressive Poisson observations using

the variational estimator (38) coupled with the oracle-based hyperparameter selection strategy (4). First row: One
realization of synthetic observations drawn following the setup described in Section IV-A. Second row: Underlying ground
truth reproduction coefficient in blue, and estimates obtained from the variational estimator (38) combined with the oracle-
based regularization parameter selection strategy, for the two ground truth-dependent oracles P

� and E
� in red and green

respectively, and for the two data-driven oracles APUREP

⇣

N
and APUREE

⇣

N
in pink and orange respectively. Third and

fourth rows: Robustfied data-driven prediction and estimation risk estimates computed on a logarithmic grid of regularization
parameters �, accompanied with their Gaussian confidence regions computed from the N = 10 Monte Carlo vector realizations,
and exact prediction and estimation errors; vertical dashed lines indicate optimal hyperparameters selected for each oracle.

APUREE

⇣

N
and APUREP

⇣

N
are asymptotically unbiased esti-

mators of the estimation and prediction risks respectively.

Given a realization of synthetic observations Y, the fine-
tuning of the regularization parameter � is performed through
the oracle minimization strategy of Equation (4). Four oracles
are considered: the exact estimation and prediction errors

E
�(Y;�) = kbX(Y;�)� Xk22,

P
�(Y;�) = kbX(Y;�)� (Y)� X� (Y)k22

(39)

which, by definition of E and P , are ground truth-dependent
unbiased estimates of the estimation and prediction risk
respectively; and the proposed APUREE

⇣

N
and APUREP

⇣

N

introduced in Section III, which are fully data-driven. Oracles
are minimized through exhaustive search over a logarithmic
grid of � from 10�2 ⇥ std(Y) to 104 ⇥ std(Y), providing
four hyperparameter choices �O, and resulting in four esti-
mates bX(Y;�O).6 Numerical simulations aim at assessing the
quality of the estimates obtained from the proposed data-driven
oracles compared to estimates based on ground truth oracles,
which are not usable in real-world problems, such as epidemic
monitoring described in Section V.

C. Performance evaluation
For each scale parameter explored, performances are evalu-

ated on a collection of Q = 10 independent synthetic observa-
tions {Y(q), q = 1, . . . , Q} generated following the setup of

Section IV-A. For O 2 {E
�,P�,APUREE

⇣

N
,APUREP

⇣

N
}, the

hyperparameters selected through the oracle strategy applied
to the qth realization are denoted6

�(q)
O

2 Argmin
�2R+

O(Y(q);�). (40)

Several performance criteria are considered. First, the Minimal
Mean Squared Error over the Q realizations, defined as

MMSE =
1

Q

QX

q=1

���bX
⇣
Y(q);�(q)

O

⌘
� X

���
2

2
, (41)

quantifies the overall accuracy of the estimate obtained when
selecting hyperparameters so as to minimize the oracle O. It
is accompanied by its 95% Gaussian confidence interval:

CI =
1.96
p
Q

⇥
1

Q

QX

q=1

✓���bX
⇣
Y(q);�(q)

O

⌘
� X

���
2

2
�MMSE

◆2

.

(42)

Let hbXiO the mean estimate obtained using the oracle O over
the Q realizations,7 then the Minimal Mean Squared Error

6The dependency of �O in Y is omitted for readability.

7The mean estimate writes hbXiO =
1

Q

QX

q=1

bX
⇣
Yq);�

(q)
O

⌘
.
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Metric Minimized oracle log10 ↵ = 2 log10 ↵ = 2.5 log10 ↵ = 3 log10 ↵ = 3.5 log10 ↵ = 4 log10 ↵ = 4.5 log10 ↵ = 5

MMSE± CI Estimation error E� 0.51± 0.03 0.59± 0.07 1.14± 0.36 1.53± 0.76 1.69± 0.73 1.28± 0.36 4.20± 3.35

Prediction error P� 0.52± 0.03 0.61± 0.07 1.35± 0.62 1.71± 0.74 1.85± 0.76 1.39± 0.38 5.22± 4.01

APUREP

⇣

N
0.52± 0.03 0.62± 0.07 1.37± 0.63 1.82± 0.74 1.84± 0.80 1.46± 0.43 20.03± 26.27

APUREE

⇣

N
0.52± 0.03 0.61± 0.07 1.57± 0.77 6.39± 7.31 6.98± 6.25 16.69± 19.51 209.61± 286.66

Bias – Variance Estimation error E� 0.49 – 0.02 0.52 – 0.07 0.76 – 0.38 0.78 – 0.75 0.85 – 0.84 0.53 – 0.75 1.59 – 2.61

Prediction error P� 0.49 – 0.03 0.51 – 0.09 0.64 – 0.71 0.72 – 0.99 0.76 – 1.08 0.48 – 0.91 1.11 – 4.11

APUREP

⇣

N
0.50 – 0.02 0.54 – 0.07 0.68 – 0.69 0.75 – 1.07 0.97 – 0.87 0.59 – 0.87 2.67 – 17.36

APUREE

⇣

N
0.50 – 0.03 0.58 – 0.08 0.66 – 0.91 1.16 – 5.23 1.28 – 5.69 1.91 – 14.78 25.81 – 183.78

TABLE I: Performance of the variational estimate (38) combined with oracle-based selection of the regularization

parameter. Ground truth-dependent oracles, E� and P
� defined in Equation (39), are compared with the proposed fully data-

driven robustified APUREE

⇣

N
and APUREP

⇣

N
derived in Proposed (1), averaged over N = 10 realizations of the Monte Carlo

vector for seven logarithmically spaced scale parameters ↵. Second to fifth rows: Minimal Mean Squared Error accompanied
with 95% Gaussian confidence intervals. Sixth to ninth rows: Estimation bias and estimation variance. Performances are
computed on Q = 10 realizations of synthetic observations drawn following the setup described in Section IV-A.

further decomposes into a squared bias term and a variance
term, MMSE = Bias+ Variance, with

Bias =
���hbXiO � X

���
2

2
, (43)

Variance =
1

Q

QX

q=1

���bX
⇣
Y(q);�(q)

O

⌘
� hbXiO

���
2

(44)

reported together with the MMSE for further comparison.

D. Results
Figure 2 compares the four oracle-based estimation strate-

gies on one realization of driven autoregressive Poisson syn-
thetic observations for three values of the scale parameter,
corresponding to low, medium and high noise levels. Synthetic
observations and memory terms are displayed in the first row;
the underlying ground truth reproduction coefficient and its es-
timates obtained using the four different oracles are plotted in
blue on the second row; third (resp. fourth) row compares the
prediction (resp. estimation) ground truth and data-dependent
oracles, and the associated optimal hyperparameters.

First of all, for the three noise levels, both the prediction
and estimation data-dependent oracles, displayed as the orange
curves in the third row plots and pink curves in the fourth
row plots respectively, approximate very closely the true
prediction and estimation errors, displayed as the red curves
in the third row plots and green curves in the fourth row
plots respectively, throughout the large range of regularization
parameter explored. For low and medium noise levels, first
and second columns in Figure 2, the four oracles are flat
enough in the optimal regularization parameter region so that
the small differences between the selected hyperparameters are
not visible on the obtained estimates, displayed in the second
row, which are all of equal quality. When the noise level
gets higher, all oracles are more picked around their minima
and the hyperparameters selected by ground truth dependent
or data-driven oracles are very close, yielding similarly good
estimates. As expected, the 95% Gaussian confidence regions
around the robustified data-driven oracles, computed from the

N = 10 realizations of the Monte Carlo vector and displayed
in deemed colors, thicken as the noise level increases, while
remaining of reasonable size, demonstrating the stability of the
parameter selection strategy relying on the data-driven oracles.

Table I provides systematic performances computed on
Q = 10 realizations of the observations for each of the
seven noise levels explored. As expected, the larger ↵, the
larger the Minimal Mean Squared Error. Though, the esti-
mation accuracy when using the two ground truth-dependent
oracles, second and third row, and the robustified prediction
unbiased risk estimate, fourth row, increases very slowly with
↵. Furthermore, at fixed noise level, using either E

�, P� or
APUREP

⇣

N
leads to equivalent Minimal Mean Squared Error.

This shows, first, that the estimation accuracy is unaltered
when replacing the exact estimation error E

� by the exact
prediction error P

�, and second, that the data-driven oracle
APUREP

⇣

N
yields estimates of very similar quality. Consid-

ering the performances of the robustified unbiased estimation
risk estimate, reported in the fifth row, they remain similarly
good as the three other oracles for low to medium noise levels,
but then suddenly drop for ↵ > 103 while the associated
95% Gaussian confidence intervals are also thickening vio-
lently. This shows that, despite the robustification procedure
of Proposition 1, the data-driven oracle APUREE

⇣

N
is unstable,

which is probably due to the division by  t(Y) which order
of magnitude varies significantly with t, between 103 and 105

in these examples, as can be observed on Figure 2, top row.
To gain further insight, the decomposition of the Minimal
Mean Squared Error into the squared bias and the variance
is reported in sixth to ninth rows of Table I. For low noise
levels ↵ < 103, third and fourth columns, the bias, which is
intrinsic to all regularized estimation strategies of the form (2),
is responsible of almost all the estimation error. When the
noise levels exceeds ↵ = 103, squared bias and variance
contributes equally to the estimation error, as observed in
fifth to ninth columns. These results advocates, in a practical
context, to use preferably the robustified unbiased prediction
risk estimate which appears both very accurate in the selection
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of the optimal regularization parameter and more robust to
medium to high noise levels.

V. APPLICATION TO EPIDEMIOLOGY

A major motivation of the present work lies in the need for
data-driven hyperparameter fine-tuning strategies for recently
proposed COVID-19 reproduction estimators leveraging the
variational framework sketched in Equation (2) [11, 38, 61].

A. Weekly scaled Poisson epidemiological model
The considered epidemiological model, briefly introduction

in Section I, in Equation (5), was initially proposed in [46] and
states that, conditionally to past infection counts Z1, . . . ,Zt�1,
the number of new infections at time t, denoted Zt, follows
a Poisson distribution of intensity equal to the product of
the effective reproduction number at time t, Rt, and the
global infectiousness �t(Z) =

P
s�1 'sZt�s with ' the

serial interval distribution.8 Although very accurate for a
posteriori consolidated data [46], the daily version of this
model appeared not suitable for real-time COVID-19 daily
infection counts, an example of which is displayed in Figure 3,
gray curve. Indeed, COVID-19 data are severely corrupted by
administrative noise, taking the form of missing counts during
week-ends and holidays, large cumulative counts on Mondays,
pseudo-seasonalities, erroneous samples, to name but a few.
This noise has two major effects: first, reported COVID-19
daily infections counts contain outlier values, notably during
week-ends as illustrated in the gray curve in Figure 3; second,
the variance of the reported counts reflects both the intrinsic
variance of the propagation process and the additional variance
induced by the fluctuating administrative delays and errors. To
circumvent the presence of outlier samples, a classical strategy
in epidemiology is to consider aggregated data [45, 63, 64],
e.g., at the scale of the week as illustrated in Figure 3,
black curve, which is far smoother and hence more realistic
from an epidemiological point of view. The present work
proposes to account for the increased variance observed in real
COVID-19 infection counts through a constant in time scale
parameter ↵ > 1. Up to the authors knowledge, scaled Poisson
distributions have not yet been explored in the epidemiology
literature, making this an original contribution of the present
work. Altogether, the proposed weekly scaled Poisson epidemi-
ological model writes

Zt | Z1, . . . ,Zt�1 ⇠ ↵P

✓
�t(Z)Rt

↵

◆
. (45)

where time instants t corresponds to weeks and the serial
interval distribution used to compute �t(Z) is weekly dis-
cretized. The weekly discretized COVID-19 serial interval
distribution can be obtained by coarsening the daily discretized
distribution provided in [48, 49] into a weekly distribution,
e.g., by performing an integration over one-week windows
using the left rectangle method with a one-day integration step.
Under Model (45), the expected number of infections at week
t is �t(Z)Rt, unchanged compared to the standard Poisson

8The serial interval is the random delay between primary and secondary
infections; its distribution encodes the typical time scales of the propagation.

Fig. 3: COVID-19 daily vs. weekly new infections counts.

French counts from Johns Hopkins University repository,
covering 71 weeks from October 4, 2021 to February 6, 2023.

model of Equation (5), but the variance is ↵�t(Z)Rt, larger
by a factor ↵ than the variance of the standard Poisson model.

B. Data-driven reproduction number estimation strategy
Following [11, 38], Rt is assumed piecewise linear in

time, and the COVID-19 weekly reproduction number is thus
estimated from aggregated infection counts by plugging the
weekly discretized propagation model introduced in Equa-
tion (45) into the variational estimator of Equation (38) leading
to

bR(Z;�) = argmin
R2RT

+

D↵ (Z,R��(Z)) + �kD2Rk1. (46)

The scale parameter, unknown in practice, is assumed constant
in time. Remark that �t(Z) is linear in Z, with

P
s�1 's = 1

by normalization of the serial interval distribution, hence if
s > t, then @Zt�s(Z) = 's�t is of order one. Thus, to ensure
that ↵ is reflecting the inflated variance observed in COVID-19
data while satisfying Assumption 2, the following data-driven
heuristics is proposed ↵ = 0.1 ⇥ std(Z). The regularization
parameter � controlling the level of regularization in Equa-
tion (46) is selected in a data-driven manner through

�
APUREP

⇣

N 2 Argmin
�2R+

APUREP

⇣

N
(Z;�) (47)

leveraging the robustified unbiased prediction risk estimate,
whose accuracy and robustness have been demonstrated on
synthetic data in Section IV.

C. Experimental setup
During the entire course of the COVID-19 pandemic, daily

infection counts reported by National Health Agencies of
200+ countries worldwide were collected by Johns Hop-
kins University and made publicly available in an online
repository.9 To demonstrate the universality of the proposed
data-driven reproduction number estimation procedure, four
countries, belonging to different continents, and two time
periods, corresponding to late and early epidemic stages, are
considered. Daily reported counts in France and India, from
October 5, 2021 to February 6, 2023, and in Canada and
Argentina, from December 22, 2020 to April 25, 2022, are
downloaded from JHU repository.9 Each sequence of daily
counts is then aggregated at the scale of the week, yielding a
vector of observed counts Z of length T = 70 weeks. Finally,

9https://coronavirus.jhu.edu/

https://coronavirus.jhu.edu/
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(a) France (b) India

(c) Canada (d) Argentina

Fig. 4: Data-driven estimation of the reproduction number of COVID-19 from weekly infection counts. Top row: weekly
aggregated infection counts. Middle row: estimated effective reproduction number with data-driven hyperparameter selection
based on the robustified APUREP

⇣

N
. Bottom row: robustified autoregressive unbiased prediction risk estimate averaged over

N = 10 realizations of the Monte Carlo vector with associated 95% Gaussian confidence interval for a logarithmically spaced
range of regularization parameters and minimizing regularization parameter obtained through grid search.

the associated global infectiousness �(Z) is computed using
�t(Z) =

P
s�1 'sZt�s, where ' is the weekly discretized

serial interval distribution introduced in Section V-A. Top plots
of Figure 4 shows weekly infection counts and associated
global infectiousness in France 4a and India 4b, from 2021 to
2023, and Canada 4c and Argentina 4d, from 2020 to 2022.

The minimization in Equation (46) is performed using the
Chambolle-Pock algorithm derived in [11, 38], as in Sec-
tion IV-B. Based on Section IV, the robustified unbiased pre-
diction risk estimate is computed by averaging over N = 10
realizations of the Monte Carlo vector, which yields a robust
approximation of the prediction error, and accurate estimates
when used as an oracle for hyperparameter selection. The
regularization parameter is chosen by solving (47) through an
exhaustive search over a logarithmic grid of hyperparameters

� ranging from 10�2
⇥ std(Z) to 104 ⇥ std(Z).

D. Discussion

For each country and pandemic phase configuration, the
robustified unbiased prediction risk estimate as a function of
the regularization parameter �, accompanied by the associ-
ated 95% Gaussian confidence interval computed from the
N realizations of the Monte Carlo vector, is displayed in
the bottom plots of Figure 4. The resulting optimal hyper-
parameter is indicated by the vertical dashed line. For all
four configurations, from Figure 4a to 4d, the prediction risk
estimate has a clearly identifiable minimizer. The resulting
reproduction number estimates are displayed as red curves
in the middle plots of Figure 4, together with the naive
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Maximum Likelihood Estimator of Equation (13), represented
as dashed gray curves. The regularized estimates with data-
driven hyperparameter selection, in red, vary more slowly
than the Maximum Likelihood estimates, in grey, and are
hence more realistic to account for the pandemic spread.
This is notably the case for France, Figure 4a, and Canada,
Figure 4c, where the Maximum Likehood estimate present
rapid fluctuations leading to significant overestimation of the
reproduction number, e.g., in July 2022 in France and August
2021 in Canada. This is all the more important to get accurate
estimate of Rt as the sanitary measures have dramatic social
and economical impact that decision makers need to balance.
In such context, both false alarms and missed events may have
highly detrimental consequences. Figure 4b shows that the
proposed data-driven reproduction number estimator is able to
capture both rapid bursts, corresponding to severe pandemic
waves, as experimented by India in January 2022, and smaller
waves, e.g., in June 2022, with similar accuracy. Together
with the quantitative assessment performed on synthetic data
in Section IV, this qualitative assessment of the proposed
data-driven reproduction number estimation strategy on real
COVID-19 infection counts of different countries in various
pandemic stages, demonstrates its ability to be used to monitor
closely a viral epidemics, even in a context of degraded
reporting suffering from outlier samples and inflated variance.

VI. CONCLUSION AND PERSPECTIVES

A novel driven autoregressive model has been proposed, in-
spired by state-of-the-art viral epidemics models. The estima-
tion of the parameters of the model, namely the time-varying
reproduction coefficient, has been framed as a nonstandard,
highly nonstationary, inverse problem. The proposed rigorous
mathematical formulation enabled to leverage the efficient and
versatile variational framework to design accurate reproduction
coefficient estimators which are robust to high noise levels
in the observations. The third major contribution consisted in
the design of asymptotically unbiased risk estimates, which
are then plugged into an oracle strategy for fully data-driven
fine-tuning of the hyperparameters of the variational estimator,
removing the major obstacle to its practical use. The resulting
data-driven estimation strategy has been assessed through
intensive Monte Carlo simulations on synthetic data. Taking
advantage of the proposed extended mathematical framework,
the standard epidemiological model for viral epidemics has
been enriched to account for the low quality of COVID-19
data, leading to a novel weekly scaled Poisson model. Finally,
the data-driven estimation procedure is shown to yield very
consistent estimation of the COVID-19 reproduction number
in various countries and pandemic stages despite the low qual-
ity of reported data, demonstrating its practical applicability
for epidemic monitoring an a crisis context. The data-driven
nature of the proposed epidemiological indicator estimation
strategy constitutes a major asset for its dissemination beyond
signal processing as its use requires no expert knowledge.

Further work will consists in, first, extending the unbi-
ased risk estimates to other noise models, e.g., to additive
Gaussian and multiplicative Gamma noises inspiring from

the generalized Stein estimators [32], in order to further
enrich the proposed framework and to be able to extend the
developed methodology to other models, in epidemiology or
beyond. Second, as in epidemiology the memory functions are
often parametric, with parameters encapsulating the pathogen
transmission characteristics, the proposed framework will be
leveraged to perform simultaneously the extraction of the
memory functions parameters and the fine-tuning of the es-
timator hyperparameters.

For the sake of reproducibility and dissemination, a Matlab
toolbox has been made publicly available on the GitHub of
the corresponding author. 10
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Féraud, “Fluorescence image deconvolution microscopy via generative
adversarial learning (FluoGAN),” Inverse Problems, vol. 39, no. 5, p.
054006, 2023.

[13] A. Repetti, M. Q. Pham, L. Duval, E. Chouzenoux, and J.-C. Pesquet,
“Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed `1/`2
Regularization,” IEEE Signal Process. Lett., vol. 22, no. 5, pp. 539–543,
2014.

[14] S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play ADMM
for image restoration: Fixed-point convergence and applications,” IEEE
Trans. Comput. Imaging, vol. 3, no. 1, pp. 84–98, 2016.

[15] H. Vu, G. Cheung, and Y. C. Eldar, “Unrolling of Deep Graph Total
Variation for Image Denoising,” in Proc. Int. Conf. Acoust., Speech
Signal Process. IEEE, 2021, pp. 2050–2054.

[16] R. Laumont, V. D. Bortoli, A. Almansa, J. Delon, A. Durmus, and
M. Pereyra, “Bayesian Imaging Using Plug & Play Priors: When
Langevin Meets Tweedie,” SIAM Journal on Imaging Sciences, vol. 15,
no. 2, pp. 701–737, 2022.

10https://github.com/bpascal-fr/APURE-Estim-Epi

https://github.com/bpascal-fr/APURE-Estim-Epi


13

[17] E. Chouzenoux, A. Jezierska, J.-C. Pesquet, and H. Talbot, “A convex
approach for image restoration with exact Poisson–Gaussian likelihood,”
SIAM J. on Imaging Sci., vol. 8, no. 4, pp. 2662–2682, 2015.

[18] M. Foare, N. Pustelnik, and L. Condat, “Semi-linearized proximal
alternating minimization for a discrete Mumford–Shah model,” IEEE
Transactions on Image Processing, vol. 29, pp. 2176–2189, 2019.

[19] C. Vacar and J.-F. Giovannelli, “Unsupervised joint deconvolution and
segmentation method for textured images: a Bayesian approach and an
advanced sampling algorithm,” EURASIP Journal on Advances in Signal
Processing, vol. 2019, pp. 1–17, 2019.

[20] C. P. Robert, The Bayesian choice: From Decision-Theoretic Founda-
tions to Computational Implementation. Springer, 2007, vol. 2.

[21] R. Gribonval, “Should Penalized Least Squares Regression be Inter-
preted as Maximum A Posteriori Estimation?” IEEE Trans. Signal
Process., vol. 59, no. 5, pp. 2405–2410, 2011.

[22] P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the
regularization of discrete ill-posed problems,” J. Sci. Comput., vol. 14,
no. 6, pp. 1487–1503, 1993.

[23] M. Hanke, “Limitations of the L-curve method in ill-posed problems,”
BIT Numerical Mathematics, vol. 36, no. 2, pp. 287–301, 1996.

[24] C. R. Vogel, “Non-convergence of the L-curve regularization parameter
selection method,” Inverse problems, vol. 12, no. 4, p. 535, 1996.

[25] C. Bertocchi, E. Chouzenoux, M.-C. Corbineau, J.-C. Pesquet, and
M. Prato, “Deep unfolding of a proximal interior point method for image
restoration,” Inverse Problems, vol. 36, no. 3, p. 034005, 2020.

[26] P. Nguyen, E. Soubies, and C. Chaux, “Map-informed unrolled al-
gorithms for hyper-parameter estimation,” in Proc. Int. Conf. Image
Process. IEEE, 2023, pp. 2160–2164.

[27] M. Gharbi, E. Chouzenoux, and J.-C. Pesquet, “An unrolled half-
quadratic approach for sparse signal recovery in spectroscopy,” Sig.
Process., vol. 218, p. 109369, 2024.

[28] G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation as
a method for choosing a good ridge parameter,” Technometrics, vol. 21,
no. 2, pp. 215–223, 1979.

[29] A. Thompson, J. Kay, and D. Titterington, “A cautionary note about
crossvalidatory choice,” J. Stat. Comput. Simul., vol. 33, no. 4, pp. 199–
216, 1989.

[30] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D: nonlinear phenomena, vol. 60,
no. 1-4, pp. 259–268, 1992.

[31] C. M. Stein, “Estimation of the mean of a multivariate normal distribu-
tion,” Ann. Stat., pp. 1135–1151, 1981.

[32] Y. C. Eldar, “Generalized SURE for exponential families: Applications
to regularization,” IEEE Trans. Signal Process., vol. 57, no. 2, pp. 471–
481, 2008.

[33] F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed Poisson–
Gaussian noise,” IEEE Trans. Image Process., vol. 20, no. 3, pp. 696–
708, 2010.

[34] Y. Le Montagner, E. D. Angelini, and J.-C. Olivo-Marin, “An unbiased
risk estimator for image denoising in the presence of mixed Poisson–
Gaussian noise,” IEEE Trans. Image Process., vol. 23, no. 3, pp. 1255–
1268, 2014.

[35] J. Li, F. Luisier, and T. Blu, “PURE-LET Image Deconvolution,” IEEE
Trans. Image Process., vol. 27, no. 1, pp. 92–105, 2018.

[36] R. Ammanouil, A. Ferrari, D. Mary, C. Ferrari, and F. Loi, “A parallel
and automatically tuned algorithm for multispectral image deconvolu-
tion,” Monthly Notices of the Royal Astronomical Society, vol. 490, no. 1,
pp. 37–49, 2019.

[37] D. Chen, J. Tachella, and M. E. Davies, “Robust Equivariant Imaging: A
Fully Unsupervised Framework for Learning To Image From Noisy and
Partial Measurements,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 5647–5656.

[38] P. Abry, N. Pustelnik, S. Roux, P. Jensen, P. Flandrin, R. Gribonval,
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VII. AUTOREGRESSIVE POISSON STEIN-LIKE LEMMA

Proof of driven autoregressive Poisson Stein-like lemma 1.

Let Y 2 RT
+ random observations under the driven

generalized autoregressive model (7) with ground truth
reproduction number X 2 RT

+ and memory functions
{ t, t = 1, . . . , T} satisfying Assumption 2, following a
scaled Poisson distribution (11) of time-varying modulus
↵ 2 (R⇤

+)
T , and a function ⇥ : RT

+ ! R satisfying
Assumption 1. First, by Assumption 1, the expectation in
the left-hand side of Equation (27) is well defined. Hence,
using the discrete probabilistic density function of the scaled
Poisson distribution leads to

EY

⇥
⇥(Y)Xt t(Y)

⇤
(48)

=
1X

k1=0

. . .
1X

kT=0

⇥(Y)Xt t(Y)
TY

s=1

(Xs s(Y))ks

ks!
e�Xs s(Y),

where 8t, Yt = ↵tkt, kt 2 N. Since  s(Y) does not depend
on Ys for s � u, considering only the sums over kt, . . . , kT ,
the above expression factorizes as

1X

kt=0

. . .
1X

kT=0

⇥(Y)Xt t(Y)
TY

s=1

(Xs s(Y))ks

ks!
e�Xs s(Y)

=
t�1Y

s=1

(Xs s(Y))ks

ks!
e�Xs s(Y) (49)

⇥
1X

kt=0

G(Y)Xt t(Y)
(Xt t(Y))kt

kt!
e�Xt t(Y)

where G(Y) =

1X

kt+1=0

. . .
1X

kT=0

⇥(Y)
TY

u=t+1

(Xs s(Y))ks

ks!
e�Xs s(Y). (50)

G(Y) is obtained by marginalizing over the variables
Yt+1, . . . ,YT , and thus it depends only on Y1, . . . ,Yt. Then,
the summation over kt appearing in (49) writes

1X

kt=0

G(Y)Xt t(Y)
(Xt t(Y))kt

kt!
e�Xt t(Y)

=
1X

kt=0

G(Y)⇥ (kt + 1)⇥ (Xt t(Y))kt+1

(kt + 1)!
e�Xt t(Y)

(51)
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where, by Definition 1,  t(Y) =  t(↵1k1, . . . ,↵t�1kt�1)1

is not depending on kt, and G(Y) = G(↵1k1, . . . ,↵T kT ).
Renaming the summation variable in the right-hand side of
Equation (51) so that kt + 1 ! kt, it follows

1X

kt=0

G(Y)Xt t(Y)
(Xt t(Y))kt

kt!
e�Xt t(Y)

=
1X

kt=0

G�t(Y)kt
(Xt t(Y))kt

kt!
e�Xt t(Y)

(52)

where  t(Y) is unchanged as it depends only on the
fixed variables Y1, . . . ,Yt�1, and, by definition, G�t(Y) =
G(Y1, . . . ,Yt � ↵t, . . . ,Yt).

Remark. The above discrete counterpart of integration by part
on variable kt performed in Equations (51) and (52) can
be seen as an application of the standard Poisson Stein’s
lemma counterpart [1, 2] on the function G. Though, this
reformulation is not enough to design Poisson Unbiased Risk
Estimates for the driven autoregressive model (7) as, contrary
to the case of standard Poisson Unbiased Risk Estimate,
neither the function G nor its translate versions G�t can be
reformulated easily as expectations of tractable quantities.

Further computations are thus required. By Assumption 2:

8u � t+ 1,  s(eY) '  s(Y)� @Yt s(Y)↵t '  s(Y),
(53)

which, when injected into the expression of G�t(Y), obtained
by replacing Y = (Y1, . . . ,YT ) by eY = (Y1, . . . ,Yt �
↵t, . . . ,YT ) in Equation (50), yields G�t(Y) '

1X

kt+1=0

. . .
1X

kT=0

⇥�t(Y)
TY

u=t+1

(Xs s(Y))ks

ks!
e�Xs s(Y) (54)

where the change of variable Y ! eY only affects the term in ⇥
but not the Poisson densities. Finally, injecting (54) into (48),
yields EY

⇥
⇥(Y)Xt t(Y)

⇤
'

1X

k1=0

. . .
1X

kT=0

⇥�t(Y)kt

TY

s=1

(Xs s(Y))ks

ks!
e�Xs s(Y) (55)

with 8t, Yt = ↵kt, in which one recognizes EY [⇥�t(Y)Yt]
by definition of the expectation on Y.

1By convention  1 = Y0, where Y0 is a deterministic initialization.
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VIII. AUTOREGRESSIVE POISSON UNBIASED RISK
ESTIMATE

Proof of Theorem 1. Let P be the prediction risk defined in
Equation (23). The derivation of an unbiased estimate of P
relies on the expansion of the prediction error:
���bX(Y;�)� (Y)� X� (Y)

���
2

2
=
���bX(Y;�)� (Y)

���
2

2

� 2
D
bX(Y;�)� (Y),X� (Y)

E
+
��X� (Y)

��2
2
.

(56)

The first term in the right-hand side of (56) only depends
on observations and hyperparameters, and hence appears as
is in APUREP in Equation (28). The second and third terms
depend on the inaccessible ground truth X, and hence need
to be reformulated, taking care of not introducing any bias.
Considering the second term,

EY

hD
bX(Y;�)� (Y),X� (Y)

Ei

=
TX

t=1

EY

h
bXt(Y;�) t(Y)Xt t(Y)

i
.

By hypothesis, the memory functions satisfy Assumption 2.
Further, for any � 2 ⇤, and any t 2 {1, . . . , T}, the
function Y 7! bXt(Y;�) t(Y) satisfies Assumption 1, hence
the autoregressive Poisson lemma 1 applies and yields

EY

h
bXt(Y;�) t(Y)Xt t(Y)

i

=
↵!0

EY

⇣
bXt(Y;�) t(Y)

⌘�t
Yt

� (57)

where
⇣
bXt(Y;�) t(Y)

⌘�t
= bX�t

t (Y;�) �t
t (Y). Since  t

does not depend on Yt,  �t
t (Y) =  t(Y), leading to

EY

h
bXt(Y;�) t(Y)Xt t(Y)

i

=
↵!0

EY

h
bX�t
t (Y;�) t(Y)Yt

i (58)

in which the reader recognizes the expression of the second
term in the definition of APUREP in Equation (28). As for
the third term of Equation (56), it writes

EY

h��X� (Y)
��2
2

i
=

TX

t=1

EY

⇥
|Xt t(Y)|2

⇤
. (59)

By hypothesis, the memory functions satisfy Assumption 2.
Moreover for all t 2 {1, . . . , T}, the function Y 7! Xt t(Y)
satisfies Assumption 1, hence the autoregressive Poisson
lemma 1 applies and yields

EY

⇥
(Xt t(Y))2

⇤
=

↵!0
EY

h�
Xt t(Y)

��t
Yt

i
(60)

where
�
Xt t(Y)

��t
= Xt 

�t
t (Y). But, since  t does not

depend on Yt, one has Xt 
�t
t (Y) = Xt t(Y), and hence

EY

⇥
(Xt t(Y))2

⇤
=

↵!0
EY

⇥
Xt t(Y)Yt

⇤
= EY

⇥
YtXt t(Y)

⇤
.

Then, remarking that the function Y 7! Yt satisfies Assump-
tion 1, the autoregressive Poisson Stein’s lemma 1 applies once
again, and it follows that

EY

⇥
(Xt t(Y))2

⇤
=

↵!0
EY [(Yt � ↵t)Yt] . (61)

Equations (58) and (61), combined with the expansion
provided in Equation (56) demonstrates the asymptotic
unbiasedness of APUREP stated in Equation (29).

Assuming that 8t 2 {1, . . . , T}, 8Y 2 RT ,  t(Y) 6= 0,
the estimation risk E of Equation (22) is well-defined and the
estimation error can be expanded as:
���bX(Y;�)� X

���
2

2
=
���bX(Y;�)

���
2

2
� 2

D
bX(Y;�),X

E
+
��X
��2
2
.

(62)

The first term of the expansion, which is fully data-dependent,
is kept as is in the definition of APUREE in Equation (22).
The second and third terms depend on the ground truth and
have to be carefully reformulated, while avoiding to introduce
any bias. The second term writes

EY

hD
bX(Y;�),X

Ei
=

TX

t=1

EY

h
bXt(Y;�)Xt

i
.

By hypothesis, the memory functions satisfy Assumption 2.
Further, for any � 2 ⇤, and any t 2 {1, . . . , T}, the
function Y 7! bXt(Y;�)/ t(Y) is well-defined and satisfies
Assumption 1, hence the autoregressive Poisson lemma 1
applies and yields

EY

h
bXt(Y;�)Xt

i
= EY

"
bXt(Y;�)

 t(Y)
Xt t(Y)

#

=
↵!0

EY

2

4
 
bXt(Y;�)

 t(Y)

!�t

Yt

3

5

=
↵!0

EY

"
bX�t
t (Y;�)

 t(Y)
Yt

#

(63)

since  t(Y) does not depend on Yt. The third term of
Equation (62) writes

EY

h��X
��2
2

i
=

TX

t=1

EY

h
X
2
t

i
(64)

=
TX

t=1

EY


Xt

 t(Y)
Xt t(Y)

�
. (65)

By hypothesis, the memory functions satisfy Assumption 2.
Moreover, for any � 2 ⇤, and any t 2 {1, . . . , T}, the
function Y 7! bXt(Y;�)/ t(Y) is well-defined and satisfies
Assumption 1, hence the autoregressive Poisson lemma 1
applies, using that  �t

t (Y) =  t(Y), it leads to

EY


Xt

 t(Y)
Xt t(Y)

�
=

↵!0
EY


Xt

 t(Y)
Yt

�
(66)

=
↵!0

EY


Yt

 2
t (Y)

Xt t(Y)

�
(67)
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By hypothesis, the memory functions satisfy Assumption 2.
Further remarking that the function Y 7!  t(Y) satisfies
Assumption 1, the autoregressive Poisson lemma 1 applies
once again, and using that  �t

t (Y) =  t(Y), one gets

EY


Xt

 t(Y)
Xt t(Y)

�
=

↵!0
EY

"✓
Yt

 2
t (Y)

◆�t

Yt

#

=
↵!0

EY


(Yt � ↵t)Yt

 2
t (Y)

�
.

(68)

Equations (63) and (68), combined with the expansion pro-
vided in Equation (62) demonstrates the asymptotic unbiased-
ness of APUREP stated in Equation (31).

IX. FINITE DIFFERENCE MONTE CARLO ESTIMATORS

Proof of Theorem 2. The Finite Difference Monte Carlo strat-
egy applied to the prediction risk estimate APUREP of Equa-
tion (28) consists in rewriting the second term in the definition
of APUREP in Equation (28) in a tractable way. The proof
thus focuses on this term and aims at demonstrating that

EY

"
TX

t=1

bX�t
t (Y;�) t(Y)Yt

#
= EY,⇣

"
TX

t=1

bXt(Y;�) t(Y)Yt

�
D
diag(↵� (Y))@YbX[⇣], diag(Y)⇣

E#
,

TX

t=1

(69)

which can be shown by alternatively demonstrating that for
any � 2 ⇤ and t 2 {1, . . . , T}

EY

h
bX�t
t (Y;�) t(Y)Yt

i
= (70)

EY,⇣

h
bXt(Y;�) t(Y)Yt � ↵t t(Y)

⇣
@YbX[⇣]

⌘

t
Yt⇣t

i

where @YbX[⇣] 2 RT is the differential of bX(Y;�) with respect
to the variable Y at (Y;�) applied to the T -dimensional
Monte Carlo vector ⇣ where for the sake of conciseness
the point (Y;�) at which the differential is applied is omitted.2

To prove (70), first remark that, in the limit of small scale
parameter ↵t ! 0, Assumption 3 implies that

bX�t
t (Y;�) =

↵!0
bXt(Y)� ↵t

@bXt

@Yt
. (71)

The first term in the right-hand side of Equation (70) stems
directly from the first term in Equation (71). Then, since ⇣
is a standard Gaussian vector, by definition E⇣ [⇣s⇣t] = �s,t
where �s,t is the Kronecker delta,3

@bXt

@Yt
=

TX

s=1

@bXt

@Ys
E⇣ [⇣s⇣t] = E⇣

"
TX

s=1

@bXt

@Ys
⇣s⇣t

#
, (72)

in which one recognizes the tth component of the differential
of bX with respect to Y applied to the vector ⇣

TX

s=1

@bXt

@Ys
⇣s =

⇣
@YbX[⇣]

⌘

t
.

2Remind that the differential of a function f : RT ! RT at a given
point Z 2 RT is a linear application @Yf(Z)[·] : RT ! RT .

3By definition, 8s, t 2 N, �s,s = 1 and if s 6= t, �s,t = 0.

Then, multiplying Equations (71) and (72) by  t(Y)Yt and
combining them, one gets

E⇣

h
bX�t
t (Y;�) t(Y)Yt

i

=
↵!0

E⇣

h
bXt(Y) t(Y)Yt � ↵t

⇣
@YbX[⇣]

⌘

t
⇣t t(Y)Yt

i
.

(73)

Taking the expectation with respect to EY on both sides
demonstrates (70), and finally shows the asymptotic
unbiasedness of APUREP

⇣ stated in Equation (33).

Assuming that 8t 2 {1, . . . , T}, 8Y 2 RT ,  t(Y) 6= 0, a
similar proof holds for the estimation risk estimate. Applying
the Finite Difference Monte Carlo strategy applied to the
estimation risk estimate APUREE of Equation (30) amounts
to rewrite the second term in the definition of APUREE in
Equation (30) in a tractable way. The proof thus focuses on
this term and aims at demonstrating that

EY

"
TX

t=1

bX�t
t (Y;�)

 t(Y)
Yt

#
= EY,⇣

"
TX

t=1

TX

t=1

bXt(Y;�)

 t(Y)
Yt

�
D
diag(↵ ⇧ / (Y)) @YbX[⇣], diag(Y)⇣

E#
,

TX

t=1

(74)

which can be shown by alternatively demonstrating that for
any � 2 ⇤ and t 2 {1, . . . , T}

EY

"
bX�t
t (Y;�)

 t(Y)
Yt

#
= (75)

EY,⇣

"
bXt(Y;�)

 t(Y)
Yt �

↵t

 t(Y)

⇣
@YbX[⇣]

⌘

t
Yt⇣t

#
.

The first term in the right-hand of Equation (75) stems
directly from the first term in the Taylor expansion of Equa-
tion (71). The second term Equation (71) when injected
in (75) and rewritten leveraging the Monte Carlo strategy of
Equation (72) yields exactly the second term in Equation (75).
Taking the expectation with respect to EY on both sides
demonstrates (75), and finally shows the asymptotic unbiased-
ness of APUREE

⇣ stated in Equation (35).
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