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Abstract

Motivated by the use of location-scale regression models to support several recent extremal
regression methods, we consider the estimation of, and inference about, conditional extreme quan-
tiles and related quantities based on standardized residuals obtained following a preliminary model
estimation step. We show that residual-based versions of extreme value estimators are asymptoti-
cally normal, just as their unachievable counterparts based on unobserved regression errors would
be, under a high-level condition which essentially requires the number of residuals that do not cor-
rectly predict the unobserved errors to be asymptotically smaller than the multiplicative inverse of
the rate of convergence of the extreme value procedure. This condition is shown to be substantially
weaker than corresponding conditions obtained in related recent work, and we discuss how our
theory applies to a wide range of examples containing location-scale parametric regression models
and autoregressive time series.
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Keywords: Extreme quantile estimation, heavy tails, location-scale regression, residuals, tail depen-
dence

1 Introduction

1.1 Background

Extremal regression is used in a variety of applications of statistics as a way to model the right

tail of a univariate random variable Y ∈ R given valuable information represented by a covariate

X. One may, for example, be interested in forecasting potential high financial losses given global

market performance (Chernozhukov et al., 2018), understanding wage inequalities given socioeconomic

factors (D’Haultfoeuille et al., 2018), or estimating extreme levels of a climate variable given auxiliary

weather information (Russell et al., 2016). This is typically done by estimating extreme quantiles of Y

given X = x at a level τ close to 1, which will be denoted in the sequel as qY |X(τ |x). The literature

has mainly attacked the extreme quantile regression problem using two broad classes of solutions: on

the one hand, techniques based on linear models and their natural extensions, such as the generalized

linear models of Davison and Smith (1990) and Chavez-Demoulin and Davison (2005) or extremal

linear quantile regression estimators, of which a nice review is Chernozhukov et al. (2018). On the

other hand, one can construct nonparametric extremal regression estimators (Daouia et al., 2011, 2013,
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2023), and pair them with methods such as random forests using the negative Generalized Pareto log-

likelihood as loss function (Farkas et al., 2021, 2024; Gnecco et al., 2024) in order to cope with the

curse of dimensionality. Statistical theory for the former approach is only well-developed in extremal

linear quantile regression models; nonparametric theory tends to be better established, but the validity

of nonparametric asymptotic inference has, to the best of our knowledge, only been checked by Daouia

et al. (2023) for the extreme kernel quantile regression estimator in low-dimensional settings.

A third approach, initiated by McNeil and Frey (2000) and recently adopted in several papers focusing

on the estimation of location-scale equivariant functionals (Martins-Filho et al., 2018; Hoga, 2019;

Ahmad et al., 2020; Girard et al., 2021; Davison et al., 2023), is to work in heteroskedastic regression

models of the form Y = m(X) + σ(X)ε. Here m and σ > 0 are two measurable functions of a

covariate X ∈ Rp, and the unobserved error ε is independent of X. This ensures that qY |X(τ |x) =

m(x) + σ(x)q(τ), where q(τ) = qε(τ) denotes the quantile of ε at level τ . Given data (Yi,Xi),

1 ≤ i ≤ n from the model, the commonly adopted point of view to estimate qY |X(τ |x) is that the

estimation of the location and scale functions by m̂n and σ̂n, say (whose exact construction depends

on the model considered), is a preliminary step before estimating unconditional extreme quantiles

q(τ) of ε by plugging the residuals ε̂
(n)
i = (Yi − m̂n(Xi))/σ̂n(Xi) instead of the unobserved errors

εi = (Yi − m(Xi))/σ(Xi) into an existing extreme quantile estimator (see Chapter 4 in de Haan

and Ferreira, 2006, for a review of such estimators). The key intuition of McNeil and Frey (2000) is

that since the whole sample of data can be used to estimate m and σ, while the extreme quantile

estimator requires the use of a much smaller sample of the largest observations, the extreme quantile

estimator based on residuals should have the same asymptotic behavior as its counterpart based on the

unobservable errors. In doing so, one may carry out extremal regression in models whose dimension p is

not low, while obtaining rates of convergence and asymptotic distributions reminiscent of i.i.d. theory.

The crucial point is that these residuals will typically not be independent or identically distributed even

if the unobserved errors are. An interesting methodological problem is therefore to prove that residual-

based versions of extreme value estimators indeed share the asymptotic behavior of their unachievable

counterparts based on i.i.d. data. This has been tackled by Girard et al. (2021), who construct a

Gaussian approximation to the tail process of residuals when both the uniform absolute and relative

differences between the residuals and the corresponding errors converge to 0 at an appropriate rate

depending on the quantile level. However, this turns out to impose undesirable restrictions in heavy-

tailed autoregressive time series models where the covariate contains lags of the response variable.

1.2 Contribution of the paper

Assume for now that the available data is a sample (ε̂
(n)
1 , . . . , ε̂

(n)
n ), viewed as approximating a sample of

unobserved i.i.d. and heavy-tailed random variables (ε1, . . . , εn). The random variables ε̂
(n)
1 , . . . , ε̂

(n)
n

are not assumed to be i.i.d. and may change with n. We call them residuals, by analogy with the

motivating regression problem, and we consider the estimation of extreme value quantities linked to

the distribution of ε ≡ ε1 when this random variable is heavy-tailed (i.e. Paretian-tailed).

Our contribution is to show that one can substantially weaken the assumptions of Girard et al. (2021)

and move away from uniform-type conditions. This is done by taking a different route to the proof
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of the asymptotic normality of standard extreme value estimators such as the Hill estimator of the

extreme value index (Hill, 1975) and Weissman estimator of extreme quantiles (Weissman, 1978) that

relies neither on the validity of the Rényi representation of transformed high order statistics nor on a

Gaussian approximation to the tail empirical process. We instead exploit the fact that the asymptotic

behavior of intermediate quantile estimators is closely linked to that of the corresponding empirical

distribution function, and that the Hill estimator, being a weighted integral of the tail empirical process,

is nothing but another integral over the tail of this same empirical distribution function. This reduces

our problem to the problem of finding appropriate conditions under which the tail of the empirical

distribution function of the residuals is sufficiently close to that of (ε1, . . . , εn), which prompts us to

introducing a class of conditions that, roughly speaking, count the number of residuals that do not

correctly predict the unobserved errors and impose that this number is smaller than the multiplicative

inverse of the rate of convergence of the extreme value procedure under consideration if it were based

on the ideal sample of data (ε1, . . . , εn). We demonstrate how this leads to a theoretical framework that

can handle a wider range of regression and time series models without having to impose unnecessary

technical restrictions as in Girard et al. (2021), while being able to handle the joint estimation of not

only intermediate and extreme quantiles, but also weighted integrals of tail quantiles, including for

example the Expected Shortfall, in a multivariate setting.

The outline of the remainder of this article is the following. In Section 2, we provide a detailed

explanation of our setting and main assumptions. Our main results are stated in Section 3. We

discuss how our high-level conditions compare with those of earlier literature and several examples of

models that we cover in Section 4. The proofs of our results are deferred to an Appendix.

2 Statistical framework

2.1 Residual-based estimation of extreme quantiles

Let, for 1 ≤ j ≤ d, the nj = nj(n) be sequences of integers tending to infinity as n → ∞. The

available data is assumed to be made of samples (ε̂
(nj)
1,j , . . . , ε̂

(nj)
nj ,j

), viewed as approximating samples of

unobserved i.i.d. random variables (ε1,j , . . . , εnj ,j) in a sense that will be made clear in our theoretical

results below. The random variables ε̂
(nj)
1,j , . . . , ε̂

(nj)
nj ,j

are not assumed to be i.i.d. and may change

with nj . They will be called residuals, by analogy with the motivating regression problem whereby a

d-dimensional response variable Yt = (Yt,1, . . . , Yt,d)
> is assumed to satisfy the system of equations

Yt,j = mj(Xt,j) + σj(Xt,j)εt,j , 1 ≤ j ≤ d, t ∈ Z,

where, for each j ∈ {1, . . . , d}, (Xt,j)t∈Z is an Rp-valued time series such that for any t, Xt,j is

independent of the error εt,j , and the measurable functions mj : Rp → R and σj : Rp → (0,∞) are

unknown. In this regression model, one would typically construct ε̂
(nj)
t,j = (Yt,j−m̂n,j(Xt,j))/σ̂n,j(Xt,j)

following the estimation of mj and σj by m̂n,j and σ̂n,j , respectively. Our general construction is of

course relevant to location-scale regression analysis, but also to other problems, such as any context

where the data points are recorded subject to measurement error or corrupted. We allow for different
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sample sizes nj so as to be able to consider the situation, common in economics, environmental science

and finance, where the d samples of data have not been recorded over the same time period.

Let Fj : t 7→ P(εj ≤ t) and F j = 1−Fj : t 7→ P(εj > t) respectively denote the distribution and survival

functions of εj ≡ ε1,j , and qj : τ 7→ inf{t ∈ R |Fj(t) ≥ τ} be the quantile of εj at level τ ∈ (0, 1). We

assume that each one of the εj has a heavy-tailed (or Paretian-tailed) distribution with extreme value

index γj > 0, in the sense that F j(tx)/F j(t) → x−1/γj as t → ∞ for any x > 0. This assumption

is generally appropriate to the modelling of actuarial and financial data, see e.g. p.9 in Embrechts

et al. (1997) and p.1 in Resnick (2007), and is also often used in environmental science, for instance

when modeling extreme return levels of rainfall and river flows (Kinsvater and Fried, 2017). The basic

question in extreme value analysis is to estimate extreme quantiles of the εj , that is, quantiles of the

form qj(1 − pn,j), with an exceedance probability pn,j ↑ 1 such that nj(1 − pn,j) is bounded. If the

εt,j were observed, then one could use the classical Weissman extreme quantile estimator (Weissman,

1978), whose construction we briefly recall now. Let ε1:nj ,j ≤ ε2:nj ,j ≤ · · · ≤ εnj :nj ,j be the order

statistics of the sample (ε1,j , . . . , εnj ,j), and let kj = kj(n) → ∞ with kj/nj → 0 be an intermediate

sequence of integers. The Weissman extreme quantile estimator is

q̃?n,j(1− pn,j) =

(
kj

njpn,j

)γ̃n,j

q̃n,j(1− kj/nj)

where q̃n,j(1− kj/nj) = εnj−kj :nj ,j is the empirical quantile estimator of qj(1− kj/nj) and γ̃n,j is any

consistent estimator of γj , such as the Hill estimator (Hill, 1975), that is,

γ̃n,j ≡ γ̃n,j(kj) =
1

kj

kj∑
i=1

log εnj−i+1:nj ,j − log εnj−kj :nj ,j =
nj
kj

∫ ∞
εnj−kj :nj,j

F̃n,j(t)
dt

t
,

where F̃n,j denotes the empirical survival function constructed upon the εt,j . The Hill estimator is

also the maximum likelihood estimator in a purely Pareto model and is arguably the most popular

semiparametric estimator in the analysis of heavy tails; the Hill and Weissman estimators are known to

be asymptotically normal under classical conditions, see Theorem 3.2.5 p.74 and Theorem 4.3.8 p.138

in de Haan and Ferreira (2006). The premise of this paper is that the εt,j are not available but the

residuals ε̂
(nj)
t,j are, which suggests to introduce their order statistics ε̂

(nj)
1:nj ,j

≤ ε̂
(nj)
2:nj ,j

≤ · · · ≤ ε̂
(nj)
nj :nj ,j

and to use instead the residual-based estimators

q̂?n,j(1− pn,j) =

(
kj

njpn,j

)γ̂n,j

q̂n,j(1− kj/nj), with q̂n,j(1− kj/nj) = ε̂
(nj)
nj−kj :nj ,j

and γ̂n,j ≡ γ̂n,j(kj) =
1

kj

kj∑
i=1

log ε̂
(nj)
nj−i+1:nj ,j

− log ε̂
(nj)
nj−kj :nj ,j

=
nj
kj

∫ ∞
ε̂
(nj)

nj−i+1:nj,j

F̂n,j(t)
dt

t
.

Here F̂n,j denotes the empirical survival function constructed upon the residuals ε̂
(nj)
t,j . Our objective

is to analyze the asymptotic properties of q̂?n,j(1 − pn,j) and γ̂n,j by relating them to those of the

unfeasible estimators q̃?n,j(1 − pn,j) and γ̃n,j . This will more generally push us to discuss the joint
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estimation of weighted integrals of tail quantiles, of the form

nj
kj

∫ ∞
1

F j(xqj(1− kj/nj))µj(dx)

where the µj are weighting measures. This contains the Hill estimator, of course, but also the so-called

Expected Shortfall risk measure at extreme levels. This will be done by comparing the estimators

nj
kj

∫ ∞
1

F̂n,j(xε̂
(nj)
nj−i+1:nj ,j

)µj(dx) with the unfeasible
nj
kj

∫ ∞
1

F̃n,j(xεnj−i+1:nj ,j)µj(dx).

We now explain the main modeling conditions that we shall require for doing so.

2.2 Extreme value model

Let ε = (ε1, . . . , εd)
>. There are two main modeling assumptions in our work. The first one, introduced

in order to deal with the marginal convergence of each extreme value estimator, is the following second-

order regular variation condition on the F j , under which the right tail of the distribution of each εj is

assumed to be close to pure Pareto tails at a rate which is precisely quantified.

C2(γ,ρ,A) For any j ∈ {1, . . . , d}, the marginal distribution of εj satisfies the second-order regular

variation condition C2(γj , ρj , Aj), namely: there are γj > 0, a second-order parameter ρj ≤ 0 and an

auxiliary function Aj having constant sign and converging to 0 at infinity such that

∀x > 0, lim
t→∞

1

Aj(1/F j(t))

(
F j(tx)

F j(t)
− x−1/γj

)
=
x−1/γj

γ2j

∫ x

1

sρj/γj−1 ds.

This classical condition is satisfied in any of the reasonable statistical models featuring heavy tails,

such as the Fréchet, Student and Inverse-Gamma models; see Appendix C in Daouia et al. (2024b) for

a table of standard distributions satisfying this assumption.

The second condition we require is a pairwise tail dependence condition specifically geared towards

the obtention of joint asymptotic results about extreme value estimators. Recall that for any (j, `)

there exists, by Sklar’s theorem, a (possibly not unique) copula function Cj,`, i.e. a bivariate cumu-

lative distribution function with uniform marginal distributions, such that P(εj ≤ xj , ε` ≤ x`) =

Cj,`(Fj(xj), F`(x`)) for any (xj , x`). The associated survival copula is then defined as Cj,`(u, v) =

u + v − 1 + C(1 − u, 1 − v) on [0, 1]2, so that P(εj > xj , ε` > x`) = Cj,`(F j(xj), F `(x`)). Our joint

dependence condition is as follows.

J (R) For all j, ` ∈ {1, . . . , d}, there is a function Rj,` such that lims→∞ sCj,`(xj/s, x`/s) = Rj,`(xj , x`)

for any (xj , x`) ∈ [0,∞)2.

[For j = `, Rj,j(x, y) = min(x, y); when j 6= `, if Cj,` is not uniquely determined because F j and/or

F ` is not continuous, this limit is required to be valid for one fixed choice of Cj,`.]

This condition imposes the existence of a limiting dependence structure in the joint right tail of εj and

ε`, given by the tail copula Rj,` (see Schmidt and Stadtmüller (2006)). This is a very mild condition
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that is weaker than assuming a multivariate regular variation structure on ε, as one would classically

do in multivariate extreme value theory (see Chapters 6 and 9 in Resnick, 2007).

3 Main results

3.1 Asymptotic behavior of high order statistics of residuals

Since the residual-based Weissman extreme quantile estimator extrapolates a single high order statistic

q̂n,j(1 − kj/nj) = ε̂
(nj)
nj−kj :nj ,j

, it is reasonable to first consider the joint asymptotic behavior of such

intermediate quantile estimators in order to gain valuable insight about the more difficult motivating

problem we have set. It should be clear that this simpler problem is nonetheless a difficult probabilistic

question, as the residuals are not considered i.i.d. The crucial point is that, as a consequence of the

definition of the quantile as a generalized inverse function, if

F̂n,j(t) =
1

nj

nj∑
i=1

1{ε̂(nj)
i,j > t} and F̃n,j(t) =

1

nj

nj∑
i=1

1{εi,j > t}

respectively denote the empirical survival functions of the errors and residuals in sample j, then

q̂n,j(τn,j) = ε̂
(nj)

nj−bnj(1−τn,j)c:nj ,j
≤ x ⇐⇒ F̂n,j(x) ≤ 1− τn,j

and q̃n,j(τn,j) = εnj−bnj(1−τn,j)c:nj ,j ≤ x ⇐⇒ F̃n,j(x) ≤ 1− τn,j

with b·c denoting the floor function. It follows that, intuitively, q̂n,j(τn,j) should have the same asymp-

totic distribution as q̃n,j(τn,j), whose asymptotic behavior is well-understood (see e.g. Theorem 2.4.8

p.52 in de Haan and Ferreira, 2006), provided F̂n,j(x) is close to F̃n,j(x) in a suitable sense. How

close they may be, according to our theoretical results, is based upon the following definition.

Definition 3.1 (un−small random array). Let (un) be a nonrandom positive sequence tending to ∞.

Then an array (C
(n)
i )1≤i≤n of positive random variables is said to be a un−small array if they satisfy

max1≤i≤n C
(n)
i /un

P−→ 0 and, for every positive nonrandom sequence (δn) converging to 0,

lim
n→∞

1

n

n∑
i=1

E(C
(n)
i 1{C(n)

i ≤ δnun}) = 0.

Loosely speaking, the columns of a un−small array of random variables are small on average and

their maximal element (for a given n) grows slower than un. This makes it possible to introduce the

following assumption on a sample of residuals (ε̂
(n)
1 , . . . , ε̂

(n)
n ) and the corresponding errors (ε1, . . . , εn)

that will be at the heart of our main results. In this condition, τn ↑ 1 is such that n(1− τn)→∞, and

µ is a measure putting finite mass on compact Borel subsets of R (for example, a Radon measure).

H(τn, µ) There is a
√
n(1− τn)−small array (C

(n)
i )1≤i≤n such that C

(n)
i is independent of εi for each
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i ∈ {1, . . . , n} and the residuals ε̂
(n)
i fulfill the convergence

∫ ∞
0

1√
n(1− τn)

n∑
i=1

1

{√
n(1− τn)|ε̂(n)i − εi|
xq(τn) + |εi|

> C
(n)
i

}
µ(dx)

P−→ 0

where q is the common quantile function of the heavy-tailed errors εi.

The fact that µ assigns finite mass to compact Borel subsets of R guarantees that the integral appearing

in condition H(τn, µ) is indeed a finite random variable because, with probability 1, the integrand is 0

for x large enough (measurability follows from the Fubini-Tonelli theorem, which applies because µ is

then necessarily σ−finite). Using this condition, we may now state our first main result on the joint

asymptotic normality of a finite number of high order statistics of residuals. Let, here and throughout,

Dir1 denote the Dirac mass at 1.

Theorem 3.1 (Joint asymptotic normality of high order statistics of residuals). Suppose that condi-

tions C2(γ,ρ,A) and J (R) hold. Assume also that, for any 1 ≤ j ≤ d:

• The nj = nj(n) satisfy n1/nj → bj ∈ (0,∞) (with b1 = 1), and the τn,j ↑ 1 satisfy nj(1−τn,j)→∞,

(1− τn,1)/(1− τn,j)→ θj ∈ (0,∞) (with θ1 = 1) and
√
nj(1− τn,j)Aj((1− τn,j)−1) = O(1).

• The residuals (ε̂
(nj)
1,j , . . . , ε̂

(nj)
nj ,j

) and i.i.d. errors (ε1,j , . . . , εnj ,j) satisfy condition H(τn,j ,Dir1).

Then (√
nj(1− τn,j)

{
q̂n,j(τn,j)

qj(τn,j)
− 1

})
1≤j≤d

d−→ N (0d,M)

where M = M(b,θ,γ,R) is the positive semidefinite d× d symmetric matrix having (j, `)th entry

Mj,` = γjγ`

√
bjb`

max(bj , b`)
Rj,`

(√
θ`/θj ,

√
θj/θ`

)
.

We may in particular draw from Theorem 3.1 a corollary about the joint convergence of order statistics

of a single sequence of residuals at several intermediate levels.

Corollary 3.1 (Joint asymptotic normality of multiple high residuals from a single sample). Assume

that the i.i.d. errors ε1, . . . , εn satisfy condition C2(γ, ρ,A). Suppose also that:

• One has τn ↑ 1, n(1− τn)→∞ and
√
n(1− τn)A((1− τn)−1) = O(1).

• The residuals (ε̂
(n)
1 , . . . , ε̂

(n)
n ) and corresponding errors (ε1, . . . , εn) satisfy assumption H(τn,Dir1).

If the τn,j, for 1 ≤ j ≤ d, are such that τn,1 ≡ τn and (1− τn,1)/(1− τn,j)→ θj ∈ (0,∞), then(√
n(1− τn,j)

{
q̂n(τn,j)

q(τn,j)
− 1

})
1≤j≤d

d−→ N (0d, γ
2M ′)

where M ′ is the positive semidefinite d×d symmetric matrix having (j, `)th entry
√

min(θj , θ`)/max(θj , θ`).
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An important conclusion from Corollary 3.1 is that the residual-based order statistic q̂n(τn) = ε̂
(n)
dnτne:n

estimating the intermediate quantile q(τn) has the same asymptotic distribution as the intermediate

empirical quantile q̃n(τn) = εdnτne:n from the error distribution, that is,

√
n(1− τn)

 ε̂(n)dnτne:n
q(τn)

− 1

 d−→ N (0, γ2)

when τn ↑ 1, n(1 − τn) → ∞ and
√
n(1− τn)A((1 − τn)−1) = O(1), subject to the ε̂

(n)
i being close

enough to the εi in the sense of the high-level condition H(τn,Dir1). The corresponding result for the

intermediate order statistic from the error distribution, namely

√
n(1− τn)

(
εdnτne:n

q(τn)
− 1

)
d−→ N (0, γ2)

is a standard result following from Theorem 2.4.8 p.52 in de Haan and Ferreira (2006).

3.2 Extreme value index estimation and Weissman estimator

The original question we considered was to estimate extreme quantiles of the form qj(1−pn,j), with an

exceedance probability pn,j ↑ 1 such that nj(1− pn,j) is bounded. This corresponds to the estimation

of quantiles which may lie beyond the range of the data. In this situation, the empirical quantile

estimators q̂n,j(1−pn,j) and their unfeasible counterparts q̃n,j(1−pn,j) will not be consistent, because

they are unable to extrapolate beyond this range. This motivates considering the residual-based version

q̂?n,j(1 − pn,j) of the Weissman extreme quantile estimator instead. The key to the joint asymptotic

analysis of these estimators, for 1 ≤ j ≤ d, is the identity

log
q̂?n,j(1− pn,j)
qj(1− pn,j)

= log

(
kj

njpn,j

)
(γ̂n,j(kj)− γj) + log

q̂n,j(1− kj/nj)
qj(1− kj/nj)

+ log

((
kj

njpn,j

)γj qj(1− kj/nj)
qj(1− pn,j)

)
. (1)

Under condition C2(γ,ρ,A), and provided ρj < 0, the final, nonrandom term above is a O(1/
√
kj)

when the kj are intermediate sequences such that kj = kj(n)→∞, kj/nj → 0,
√
kjAj(nj/kj) = O(1)

and kj/(njpn,j)→∞, see the top equation on p.139 of de Haan and Ferreira (2006).

It remains to analyze the joint asymptotic behavior of
√
kj(γ̂n,j(kj) − γj , log(q̂n,j(1 − kj/nj)/qj(1 −

kj/nj))) or equivalently, by the delta-method, of
√
kj(γ̂n,j(kj)−γj , q̂n,j(1−kj/nj)/qj(1−kj/nj)−1).

The main difficulty lies in understanding the asymptotic behavior of the residual-based Hill estimator

γ̂n,j(kj). This is done by writing

γ̂n,j(kj) =
nj
kj

∫ ∞
ε̂
(nj)

nj−kj :nj,j

F̂n,j(t)
dt

t
and γ̃n,j(kj) =

nj
kj

∫ ∞
εnj−kj :nj,j

F̃n,j(t)
dt

t

and then by showing that if F̂n,j(t) and F̃n,j(t) are sufficiently close on average over the right tail of

8



the distribution of εj , then γ̂n,j(kj) should be close to γ̃n,j(kj), whose asymptotic behavior is well-

known (see Theorem 3.2.5 p.74 in de Haan and Ferreira, 2006). To make this intuition rigorous, we

impose condition H(τn,j , x
−1
1{x ≥ 1}dx) on the residuals ε̂

(nj)
t,j , which makes it possible to obtain the

following main result.

Theorem 3.2 (Joint asymptotic normality of residual-based Hill estimators and order statistics).

Suppose that conditions C2(γ,ρ,A) and J (R) hold. Assume also that, for any 1 ≤ j ≤ d:

• The nj = nj(n) and kj = kj(n) satisfy n1/nj → bj ∈ (0,∞) and k1/kj → cj ∈ (0,∞) (with

b1 = c1 = 1), as well as kj →∞, kj/nj → 0 and
√
kjAj(nj/kj)→ λj ∈ R.

• The residuals (ε̂
(nj)
1,j , . . . , ε̂

(nj)
nj ,j

) and corresponding i.i.d. errors (ε1,j , . . . , εnj ,j) satisfy condition H(1−
kj/nj , x

−1
1{x ≥ 1}dx).

Then(√
kj{γ̂n,j(kj)− γj},

√
kj

{
q̂n,j(1− kj/nj)
qj(1− kj/nj)

− 1

})
1≤j≤d

d−→ N

((
λj

1− ρj
, 0

)
1≤j≤d

, V

)

where the matrix V = V (b, c,γ,R) is symmetric positive semidefinite of size 2d× 2d and described in

block form by 2× 2 blocks Vj,` having entries

[Vj,`]1,1 = [Vj,`]2,2 = γjγ`
bjb`

max(bj , b`)

1
√
cjc`

Rj,`(c`/b`, cj/bj),

[Vj,`]1,2 = γjγ`
bjb`

max(bj , b`)

1
√
cjc`

(∫ 1

0

Rj,`(u(c`/b`), cj/bj)
du

u
−Rj,`(c`/b`, cj/bj)

)
,

and [Vj,`]2,1 = γjγ`
bjb`

max(bj , b`)

1
√
cjc`

(∫ 1

0

Rj,`(c`/b`, v(cj/bj))
dv

v
−Rj,`(c`/b`, cj/bj)

)
.

This result shows that earlier results on the joint asymptotic normality of several Hill estimators, such

as Corollary 3.4 in Dematteo and Clémençon (2016), Theorem 4 in Stupfler (2019) and Theorem 1

in Daouia et al. (2024a) remain valid for their residual-based versions. The following corollary on the

joint asymptotic normality of Weissman residual-based extreme quantile estimators is then essentially

an immediate consequence of Equation (1).

Corollary 3.2 (Joint asymptotic normality of residual-based Weissman-Hill estimators). Work under

the conditions of Theorem 3.2 with ρj < 0, kj/(njpn,j)→∞ and
√
kj/ log(kj/(njpn,j))→∞ for any

j. Then( √
kj

log(kj/(njpn,j))

{
q̂?n,j(1− pn,j)
qj(1− pn,j)

− 1

})
1≤j≤d

=
(√

kj{γ̂n,j(kj)− γj}
)
1≤j≤d

+ oP(1)

d−→ N
((

λ1
1− ρ1

, . . . ,
λd

1− ρd

)
, Vγ

)

9



where Vγ = Vγ(b, c,γ,R) is the positive semidefinite d× d symmetric matrix defined elementwise as

[Vγ ]j,` = [Vj,`]1,1 = γjγ`
bjb`

max(bj , b`)

1
√
cjc`

Rj,`(c`/b`, cj/bj).

For the sake of convenience, and to make it easier to discuss the scope of our results, we state the

following simpler corollary about the convergence of Hill and Weissman residual-based estimators for

a single sample.

Corollary 3.3 (Marginal asymptotic normality of the residual-based Hill and Weissman estimators).

Assume that the i.i.d. errors ε1, . . . , εn satisfy condition C2(γ, ρ,A). Suppose also that:

• One has k = k(n)→∞ with k/n→ 0 and
√
kA(n/k)→ λ ∈ R.

• The residuals (ε̂
(n)
1 , . . . , ε̂

(n)
n ) and errors (ε1, . . . , εn) satisfy assumption H(1−k/n, x−11{x ≥ 1}dx).

If the kj, for 1 ≤ j ≤ d, are such that k1 ≡ k and k1/kj → cj ∈ (0,∞), then(√
k1{γ̂n(k1)− γ},

√
k1

{
q̂n(1− k1/n)

q(1− k1/n)
− 1

}
, . . . ,

√
kd

{
q̂n(1− kd/n)

q(1− kd/n)
− 1

})
d−→ N

((
λ

1− ρ
, 0, . . . , 0

)
, γ2Σ

)
where Σ = Σ(c) is the positive semidefinite (d+ 1)× (d+ 1) symmetric matrix defined elementwise as

Σ1,1 = 1, Σ1,`+1 =
log(c`)√

c`
1{c` > 1} and Σj+1,`+1 =

√
min(cj , c`)/max(cj , c`)

for any j, ` ∈ {1, . . . , d}. If moreover ρ < 0, and pn ↑ 1 is such that k/(npn)→∞ and
√
k/ log(k/(npn))→

∞, then

√
k

log(k/(npn))

(
q̂?n(1− pn)

q(1− pn)
− 1

)
=
√
k(γ̂n(k)− γ) + oP(1)

d−→ N
(

λ

1− ρ
, γ2
)
.

In other words, under condition H(1 − k/n, x−11{x ≥ 1}dx), the random pair of residual-based

estimators (
√
k{γ̂n(k) − γ},

√
k{q̂n(1 − k/n)/q(1 − k/n) − 1}) and the Weissman-Hill residual-based

estimator q̂?n(1 − pn) have the same asymptotic behavior than their traditional versions based on the

sample ε1, . . . , εn, as can be seen from the results of Section 3.2 and Theorem 4.3.8 p.138 in de Haan

and Ferreira (2006).

3.3 Expected Shortfall estimation above extreme levels

In risk management applications, the choice of risk measure is paramount. Part of the motivation for

the choice of a given risk measure lies in its axiomatic properties. Artzner et al. (1999) argue that it

is reasonable to ask a risk measure to be coherent, meaning that it should be translation equivariant,

positive homogeneous, monotonic and subadditive. While quantiles, also called Value-at-Risk in the

10



literature, are not subadditive in general, the Expected Shortfall (also called Conditional-Value-at-

Risk, or mean residual life) is so, and it has for this reason been the subject of substantial attention

in actuarial and financial risk assessment. It now tends to be preferred to the quantile risk measure

by practitioners concerned with exposure to a catastrophic event, and by major regulators such as the

EU, the UK, Australia and Canada, which will be requiring the use of ES(0.975), rather than q(0.99),

in alternative internal models from 1 January 2025: the EU has formalized this requirement in Article

325ba(1) of Regulation (EU) No 2019/876, itself a revision of the Capital Requirements Regulation

(EU) No 575/2013, implementing the latest Basel Committee on Banking Supervision rules.

The Expected Shortfall of a random variable ε, with survival function F , above its τth quantile q(τ),

is defined as

ES(τ) = E(ε | ε > q(τ)) = q(τ) +
1

F (q(τ))

∫ ∞
q(τ)

F (t) dt.

If a sample (ε1, . . . , εn) from ε is available, and if ε1:n ≤ ε2:n ≤ · · · ≤ εn:n are the corresponding order

statistics, then a natural estimator of ES(1− k/n) is

ẼSn(1− k/n) =
1

k

k∑
i=1

εn−i+1:n = εn−k:n +
n

k

∫ ∞
εn−k:n

F̃n(t) dt.

Up to the additional order statistic, this estimator has exactly the same form as the Hill estimator,

only with the weighting measure x−11{x ≥ 1}dx replaced by the restriction 1{x ≥ 1}dx of the

Lebesgue measure on [1,∞). Moreover, when ε has a heavy-tailed distribution with extreme value

index γ ∈ (0, 1), it is straightforward to obtain the convergence

ES(τ)

q(τ)
→ 1

1− γ
as τ ↑ 1. (2)

This follows, for instance, from Proposition B.1.10 p.369 in de Haan and Ferreira (2006). This means

that, just like extreme quantiles, the Expected Shortfall at extreme levels satisfies an extrapolation

relationship:

ES(τ ′)

ES(τ)
≈
(

1− τ ′

1− τ

)−γ
when τ ′ > τ ↑ 1.

Our general theory therefore also applies to the estimation of the Expected Shortfall at extreme levels.

Let ESj(τ) be the Expected Shortfall of εj above its quantile qj(τ) and

ÊSn,j(1− kj/nj) =
1

kj

kj∑
i=1

ε̂
(nj)
nj−i+1:nj ,j

= ε̂
(nj)
nj−kj :nj ,j

+
nj
kj

∫ ∞
ε̂
(nj)

nj−kj :nj,j

F̂n,j(t) dt

be its residual-based estimator. The following result examines the joint convergence of γ̂n,j(kj), q̂n,j(1−
kj/nj) and ÊSn,j(1−kj/nj) when the kj are intermediate sequences as a starting point, before obtaining

the convergence of a Weissman-type estimator of the Expected Shortfall above an extreme level.

Theorem 3.3 (Joint asymptotic normality of residual-based Hill estimators, order statistics and

empirical Expected Shortfall estimators). Assume that C2(γ,ρ,A) and J (R) hold. Assume also that,

for any 1 ≤ j ≤ d, γj < 1/2, and that:
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• The nj = nj(n) and kj = kj(n) satisfy n1/nj → bj ∈ (0,∞) and k1/kj → cj ∈ (0,∞) (with

b1 = c1 = 1), as well as kj →∞, kj/nj → 0 and
√
kjAj(nj/kj)→ λj ∈ R.

• The residuals (ε̂
(nj)
1,j , . . . , ε̂

(nj)
nj ,j

) and corresponding i.i.d. errors (ε1,j , . . . , εnj ,j) satisfy condition H(1−
kj/nj ,1{x ≥ 1}dx).

Then (√
kj{γ̂n,j(kj)− γj},

√
kj

{
q̂n,j(1− kj/nj)
qj(1− kj/nj)

− 1

}
,
√
kj

{
ÊSn,j(1− kj/nj)
ESj(1− kj/nj)

− 1

})
1≤j≤d

d−→ N

((
λj

1− ρj
, 0, 0

)
1≤j≤d

,S

)

where the matrix S = S(b, c,γ,R) is symmetric positive semidefinite of size 3d× 3d and described in

block form by 3×3 blocks Sj,` having entries [Sj,`]1,1 = [Vj,`]1,1, [Sj,`]1,2 = [Vj,`]1,2, [Sj,`]2,1 = [Vj,`]2,1,

[Sj,`]2,2 = [Vj,`]2,2, with the notation of Theorem 3.2, and

[Sj,`]1,3 = γjγ`(1− γ`)
bjb`

max(bj , b`)

1
√
cjc`

(∫ 1

0

∫ 1

0

Rj,`(u(c`/b`), v(cj/bj))
du

u

dv

vγ`+1

−
∫ 1

0

Rj,`(c`/b`, v(cj/bj))
dv

vγ`+1

)
,

[Sj,`]2,3 = γjγ`(1− γ`)
bjb`

max(bj , b`)

1
√
cjc`

∫ 1

0

Rj,`(c`/b`, v(cj/bj))
dv

vγ`+1
,

[Sj,`]3,1 = γj(1− γj)γ`
bjb`

max(bj , b`)

1
√
cjc`

(∫ 1

0

∫ 1

0

Rj,`(u(c`/b`), v(cj/bj))
du

uγj+1

dv

v

−
∫ 1

0

Rj,`(u(c`/b`), cj/bj)
du

uγj+1

)
,

[Sj,`]3,2 = γj(1− γj)γ`
bjb`

max(bj , b`)

1
√
cjc`

∫ 1

0

Rj,`(u(c`/b`), cj/bj)
du

uγj+1
,

and [Sj,`]3,3 = γj(1− γj)γ`(1− γ`)
bjb`

max(bj , b`)

1
√
cjc`

∫ 1

0

∫ 1

0

Rj,`(u(c`/b`), v(cj/bj))
du

uγj+1

dv

vγ`+1
.

An alternative estimator is a residual-based version of the so-called AE estimator of El Methni and

Stupfler (2017). This estimator relies on convergence (2) and is defined, in our setting, as

ẼSn,j(1− kj/nj) =
q̂n,j(1− kj/nj)

1− γ̂n,j(kj)
.

The joint convergence of these estimators follows from Theorem 3.2.

Corollary 3.4 (Joint asymptotic normality of residual-based Hill estimators, order statistics and

quantile-based Expected Shortfall estimators). Work under the conditions of Theorem 3.2, with γj < 1
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for any j. Then(√
kj{γ̂n,j(kj)− γj},

√
kj

{
q̂n,j(1− kj/nj)
qj(1− kj/nj)

− 1

}
,
√
kj

{
ẼSn,j(1− kj/nj)
ESj(1− kj/nj)

− 1

})
1≤j≤d

d−→ N

((
λj

1− ρj
, 0,− λjγjρj

(1− γj)(1− ρj)(1− γj − ρj)

)
1≤j≤d

,VES

)

where the matrix VES = VES(b, c,γ,R) is symmetric positive semidefinite of size 3d×3d and described

in block form by 3× 3 blocks VES,j,` having entries

[VES,j,`]1,1 = [Vj,`]1,1, [VES,j,`]1,2 = [Vj,`]1,2, [VES,j,`]2,1 = [Vj,`]2,1, [VES,j,`]2,2 = [Vj,`]2,2,

[VES,j,`]1,3 =
1

1− γ`
[Vj,`]1,1 + [Vj,`]1,2,

[VES,j,`]3,1 =
1

1− γj
[Vj,`]1,1 + [Vj,`]2,1,

[VES,j,`]2,3 =
1

1− γ`
[Vj,`]2,1 + [Vj,`]2,2,

[VES,j,`]3,2 =
1

1− γj
[Vj,`]1,2 + [Vj,`]2,2,

and [VES,j,`]3,3 =
1

(1− γj)(1− γ`)
[Vj,`]1,1 +

1

1− γj
[Vj,`]1,2 +

1

1− γ`
[Vj,`]2,1 + [Vj,`]2,2

with the notation of Theorem 3.2.

These two estimators of the Expected Shortfall at intermediate levels give rise to classes of Weissman-

type extrapolated estimators:

ÊS
?

n,j(1− pn,j) =

(
kj

njpn,j

)γ̂n,j

ÊSn,j(1− kj/nj),

based on the intermediate estimator ÊSn,j(1− kj/nj), and

ẼS
?

n,j(1− pn,j) =

(
kj

njpn,j

)γ̂n,j

ẼSn,j(1− kj/nj),

based on the intermediate estimator ẼSn,j(1 − kj/nj). The following result, which is obtained by

applying Theorem 3.3 and Corollary 3.4, examines their asymptotic behavior.

Corollary 3.5 (Joint asymptotic normality of Weissman-type Expected Shortfall estimators). Work

under the conditions of Theorem 3.3 (resp. Corollary 3.4) with ρj < 0, kj/(njpn,j) → ∞ and√
kj/ log(kj/(njpn,j))→∞ for any j. Then( √

kj

log(kj/(njpn,j))

{
ES

?

n,j(1− pn,j)
ESj(1− pn,j)

− 1

})
1≤j≤d

=
(√

kj{γ̂n,j(kj)− γj}
)
1≤j≤d

+ oP(1)

d−→ N
((

λ1
1− ρ1

, . . . ,
λd

1− ρd

)
, Vγ

)
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where ES
?

n,j = ÊS
?

n,j (resp. ES
?

n,j = ẼS
?

n,j), with the notation of Corollary 3.2.

We conclude with the following corollary in the univariate setting which, regarding the particular

estimator ÊSn, was noted in Theorem 2 in El Methni and Stupfler (2017) and Corollary 5 in Stupfler

(2019) for i.i.d. data. The result concerning ẼSn is, to the best of our knowledge, new even for

i.i.d. data.

Corollary 3.6 (Marginal asymptotic normality of the residual-based tail Expected Shortfall estima-

tors). Assume that the i.i.d. errors ε1, . . . , εn satisfy condition C2(γ, ρ,A). Suppose also that:

• One has k = k(n)→∞ with k/n→ 0 and
√
kA(n/k)→ λ ∈ R.

• The residuals (ε̂
(n)
1 , . . . , ε̂

(n)
n ) and errors (ε1, . . . , εn) satisfy assumption H(1−k/n, x−11{x ≥ 1}dx).

Then, if γ < 1, one has(
√
k{γ̂n(k)− γ},

√
k

{
q̂n(1− k/n)

q(1− k/n)
− 1

}
,
√
k

{
ẼSn(1− k/n)

ES(1− k/n)
− 1

})

d−→ N

( λ

1− ρ
, 0,− λγρ

(1− γ)(1− ρ)(1− γ − ρ)

)
, γ2

 1 0 1/(1− γ)

0 1 1

1/(1− γ) 1 1 + 1/(1− γ)2


 .

If moreover assumption H(1− k/n,1{x ≥ 1}dx) holds and γ < 1/2, then(
√
k{γ̂n(k)− γ},

√
k

{
q̂n(1− k/n)

q(1− k/n)
− 1

}
,
√
k

{
ÊSn(1− k/n)

ES(1− k/n)
− 1

})

d−→ N

( λ

1− ρ
, 0, 0

)
, γ2

 1 0 1/(1− γ)

0 1 1

1/(1− γ) 1 2(1− γ)/(1− 2γ)


 .

Finally, if ρ < 0 and pn ↑ 1 is such that k/(npn)→∞ and
√
k/ log(k/(npn))→∞, then

√
k

log(k/(npn))

(
ES

?

n(1− pn)

ES(1− pn)
− 1

)
=
√
k(γ̂n(k)− γ) + oP(1)

d−→ N
(

λ

1− ρ
, γ2
)

where ES
?

n = ẼS
?

n if γ < 1 and assumption H(1−k/n, x−11{x ≥ 1}dx) holds, or ES
?

n = ÊS
?

n if γ < 1/2

and assumption H(1− k/n,1{x ≥ 1}dx) holds.
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4 Examples of models covered by our framework

4.1 Location-scale parametric regression

Suppose that the observations are generated from a location-scale regression model of the form

Yi = m(Xi) + σ(Xi)εi, 1 ≤ i ≤ n,

where the covariate value Xi ∈ Rp is observed, and is either nonrandom, or random and independent

from εi. Assume that a suitable model identifiability condition (depending on the structure of the model

and/or the assumptions on εi) holds and that the functions m and σ > 0 can hence be estimated by

m̂n and σ̂n > 0, so that the residuals from the model are

ε̂
(n)
i =

Yi − m̂n(Xi)

σ̂n(Xi)
=
m(Xi)− m̂n(Xi)

σ̂n(Xi)
+

σ(Xi)

σ̂n(Xi)
εi.

As a consequence

|ε̂(n)i − εi|
q(τn) + |εi|

≤ |m̂n(Xi)−m(Xi)|+ |σ̂n(Xi)− σ(Xi)||εi|
σ̂n(Xi)(q(τn) + |εi|)

≤ 1

σ̂n(Xi)

(
|m̂n(Xi)−m(Xi)|

q(τn)
+ |σ̂n(Xi)− σ(Xi)|

)
.

Assume now that m(x) = m(x,β) and σ(x) = σ(x,θ), for β,θ ∈ Rr, and that m̂n, σ̂n are obtained

as m̂n(x) = m(x, β̂n) and σ̂n(x) = σ(x, θ̂n), where β̂n and θ̂n are
√
n−consistent estimators of β and

θ, respectively. Assume also that there is a neighborhood V of 0 in Rr such that

M(x) = sup
h∈V

|m(x,β + h)−m(x,β)|
‖h‖

<∞ and S(x) = sup
h∈V

| log σ(x,θ + h)− log σ(x,θ)|
‖h‖

<∞.

Assume finally that σ is bounded from below by a positive constant σ0 on V . Then, with arbitrarily

high probability as n→∞,

|ε̂(n)i − εi|
q(τn) + |εi|

≤ ‖β̂n − β‖
σ0q(τn)

M(Xi) + ‖θ̂n − θ‖S(Xi) exp(‖θ̂n − θ‖S(Xi)),

where the inequality |ex − 1| ≤ |x|e|x| for all x, coming as a consequence of the mean value theorem,

was used to obtain the second term. If moreover max1≤i≤n S(Xi) = oP(
√
n), then, with arbitrarily

high probability as n→∞,

|ε̂(n)i − εi|
q(τn) + |εi|

≤ ‖β̂n − β‖
σ0q(τn)

M(Xi) + 2‖θ̂n − θ‖S(Xi).

As such

√
n(1− τn)

|ε̂(n)i − εi|
q(τn) + |εi|

≤
(

1

σ0
+ 2

)
(
√
n‖β̂n − β‖+

√
n‖θ̂n − θ‖)×

√
1− τn

(
M(Xi)

q(τn)
+ S(Xi)

)
.
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The fact that
√
n‖β̂n − β‖ and

√
n‖θ̂n − θ‖ are OP(1) suggests defining C

(n)
i as

C
(n)
i = un

√
1− τn

(
M(Xi)

q(τn)
+ S(Xi)

)
where (un) is a suitably chosen nonrandom sequence tending to infinity. By definition, for each n ≥ 1

and i ∈ {1, . . . , n}, C(n)
i is independent of εi, and

max
1≤i≤n

1

C
(n)
i

×
√
n(1− τn)|ε̂(n)i − εi|
q(τn) + |εi|

P−→ 0.

Checking that (C
(n)
i )1≤i≤n is a

√
n(1− τn)−array then essentially amounts to showing that one can

choose (un) so that

max
1≤i≤n

M(Xi) = oP

(
q(τn)

√
n

un

)
and max

1≤i≤n
S(Xi) = oP

(√
n

un

)
as well as

1

n

n∑
i=1

M(Xi) = oP

(
q(τn)

un
√

1− τn

)
and

1

n

n∑
i=1

M(Xi) = oP

(
1

un
√

1− τn

)
.

Such a choice of (un) can for instance obviously be made as soon as there is δ > 0 such that

max
1≤i≤n

M(Xi) = oP(n1/2−δ) and max
1≤i≤n

S(Xi) = oP(n1/2−δ),

as well as
1

n

n∑
i=1

M(Xi) = OP(1) and
1

n

n∑
i=1

S(Xi) = OP(1).

This can either be imposed as an assumption on the covariate values Xi (when they are nonrandom)

or can follow from probabilistic considerations on the sequence (Xi)i≥1 (when it is random). We give

a simple, non-optimal general result following this discussion.

Corollary 4.1 (Extremal regression in a parametric location-scale regression model). Assume that

Yi = m(Xi,β) + σ(Xi,θ)εi, for i ≥ 1, where β,θ ∈ Rr and Xi is either nonrandom, or random and

independent from εi, with the εi being independent copies of a random variable ε satisfying condition

C2(γ, ρ,A). Assume that
√
n(β̂n − β) = OP(1) and

√
n(θ̂n − θ) = OP(1), and define ε̂

(n)
i = (Yi −

m(Xi, β̂n))/σ(Xi, θ̂n). Suppose that there is a subset X of Rp and a neighborhood V of 0 in Rr with

infx∈X infh∈V σ(x,θ + h) > 0 and, for all x ∈ X ,

M(x) = sup
h∈V

|m(x,β + h)−m(x,β)|
‖h‖

<∞ and S(x) = sup
h∈V

| log σ(x,θ + h)− log σ(x,θ)|
‖h‖

<∞.

Let k = k(n)→∞ satisfy k/n→ 0 and
√
kA(n/k)→ λ ∈ R.

• In the random design setting, suppose that the Xi are independent copies of a random vector X ∈ Rp
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with support X , such that T (X) = M(X) + S(X) belongs to the max-domain of attraction of an ex-

treme value distribution with extreme value index less than 1/2. Then (
√
k(γ̂n(k)− γ),

√
k log(q̂n(1−

k/n)/q(1−k/n))) converges weakly to a pair of independent Gaussian random variables having respec-

tive means λ/(1 − ρ) and 0, and the same variance γ2. If moreover ρ < 0, and τ ′n ↑ 1 is such that

k/(n(1− τ ′n))→∞ and
√
k/ log(k/(n(1− τ ′n)))→∞, then

√
k

log(k/(n(1− τ ′n)))

(
q̂?n(τ ′n)

q(τ ′n)
− 1

)
d−→ N

(
λ

1− ρ
, γ2
)
.

• In the nonrandom design setting, the above result stays true provided the Xi = xi all belong to the

set X and there is δ > 0 such that the T (xi) = M(xi) + S(xi) satisfy

max
1≤i≤n

T (xi) = o(n1/2−δ) and
1

n

n∑
i=1

T (xi) = O(1).

The conditions of Corollary 4.1 are quite general and, in particular, make it possible to handle a wide

range of linear heteroskedastic models. We discuss, as an illustration, the case of the class of models

Yi = x>i β+ exp(θh(x>i β))εi, considered in Carroll and Ruppert (1982), where the xi are nonrandom,

the εi are independent, identically distributed with a symmetric distribution, h is a known smooth

and Lipschitz function, and β ∈ Rr, θ ∈ R are unknown parameters to be estimated. This contains,

for example, the models Yi = x>i β + (1 + |x>i β|)θεi and Yi = x>i β + (1 + (x>i β)2)θεi. It follows

from Carroll and Ruppert (1982) that, in this general class of models, and provided a preliminary
√
n−consistent estimator of β can be constructed, robust weighted estimators of β and θ can be found

under the design assumptions that

1

n

n∑
i=1

xix
>
i

exp(2θh(x>i β))
→ S, positive definite, and

1

n

n∑
i=1

{‖xi‖2 + |h(x>i β)|2} = O(1),

as well as

max
1≤i≤n

{‖xi‖+ |h(x>i β)|} = o(n1/2), inf
i≥1

exp(θh(x>i β)) > 0 and inf
n≥1

1

n

n∑
i=1

{h(x>i β)}2 > 0,

see Theorems 1 and 2 in Carroll and Ruppert (1982). In this setting, m and log σ are respectively

m(x,β) = x>β and log σ(x,β, θ) = θh(x>β). Then M(x) = ‖x‖, and since

|θ̂h(x>β̂)− θh(x>β)| ≤ |θ̂||h(x>β̂)− h(x>β̂)|+ |θ̂ − θ||h(x>β)|,

it readily follows from the Lipschitz property of h that one can choose S(x) = C(‖x‖ + |h(x>β)|)
for a suitable positive constant C. Fulfilling the assumptions of Corollary 4.1 then only requires

imposing max1≤i≤n{‖xi‖ + |h(x>i β)|} = o(n1/2−δ) for some δ > 0, rather than the slightly weaker

o(n1/2) as above. A preliminary
√
n−consistent estimator of β, necessary for the construction of the

robust weighted estimators of β and θ, can be, for instance, obtained through L1−(median) regression,

see Knight (1999), under the assumption that the εi have a probability density function w.r.t. the
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Lebesgue measure which is positive at 0 and provided further mild conditions on the design hold.

It is important to note that the construction of the residuals in Corollary 4.1 requires observing

the covariate values Xi. This result therefore does not apply when part of the covariate values are

unobserved, as would be the case in time series models such as ARMA and GARCH. The general

construction of C
(n)
i we have introduced here, obtained by bounding |ε̂(n)i − εi|/(q(τn) + |εi|) from

above and then isolating terms that are independent of εi, will however inspire their construction in

such models where covariate values need to be estimated, as we illustrate next in ARMA models.

4.2 ARMA time series

Consider the ARMA(p,q) model Yt =
∑p
j=1 φjYt−j −

∑q
j=1 ψjεt−j + εt, for t ∈ Z, where φ1, . . . , φp

and ψ1, . . . , ψq are unknown real-valued coefficients. It is assumed that the polynomials P (z) =

1 −
∑p
j=1 φjz

j and Q(z) = 1 −
∑q
j=1 ψjz

j have no common root, and no root inside the closed unit

disk of the complex plane, and that (εt) is an i.i.d. sequence of centered heavy-tailed innovations

having a finite variance (i.e. γ < 1/2) and with extreme value index γ, such that ε ≡ ε0 satisfies

P(ε > x)/P(|ε| > x) → l ∈ (0, 1] as x → ∞ (meaning that the left tail of ε cannot dominate its right

tail). We assume that observations (Y1−p, . . . , Y0, Y1, . . . , Yn) are available from this model.

This ARMA model is causal and invertible. The parameter vector (φ1, . . . , φp, ψ1, . . . , ψq) can be

estimated by
√
n−consistent estimators, such as an ordinary least squares estimator or a pseudo-

maximum Gaussian likelihood estimator, see Theorem 10.8.2 in Brockwell and Davis (1991). We may

therefore assume here that an estimator (φ̂n,1, . . . , φ̂n,p, ψ̂n,1, . . . , ψ̂n,q) is given such that

∀i ∈ {1, . . . , p}, n1/2|φ̂n,i − φn,i| = OP(1) and ∀j ∈ {1, . . . , q}, n1/2|ψ̂n,j − ψn,j | = OP(1).

The residuals from the model are

ε̂
(n)
t = Yt −

p∑
j=1

φ̂n,jYt−j +

q∑
j=1

ψ̂n,j ε̂
(n)
t−j , for all 1 ≤ t ≤ n,

with ε̂
(n)
1−q, . . . , ε̂

(n)
0 arbitrary choices of the residuals at times 1− q, . . . , 0. Typically in practice, these

random variables ε̂
(n)
1−q ≡ ε̂1−q, . . . , ε̂

(n)
0 ≡ ε̂0 may be taken to be constant (for instance, equal to 0),

although we shall only assume below that each of them is independent of the ARMA observations and

has a finite moment of order 1.

The key step in order to get a good grasp of the difference |ε̂(n)t −εt| is to express the ARMA equations
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and the residuals in vector form. This can be done by noting that Yt = AYt−1 −Bεt−1 + εt with

Yt =


Yt

Yt−1
...

Yt−r+1

 and A =



φ1 · · · · · · · · · φr

1 0 · · · · · · 0

0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0


,

εt =


εt

εt−1
...

εt−r+1

 and B =



ψ1 · · · · · · · · · ψr

1 0 · · · · · · 0

0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0


,

where r = max(p, q) and with the convention φj = 0 for p + 1 ≤ j ≤ r and ψj = 0 for q + 1 ≤ j ≤ r;

likewise, ε̂
(n)
t = Yt − ÂnYt−1 + B̂nε̂

(n)
t−1 where

ε̂
(n)
t =


ε̂
(n)
t

ε̂
(n)
t−1
...

ε̂
(n)
t−r+1

 , Ân =



φ̂1,n · · · · · · · · · φ̂r,n

1 0 · · · · · · 0

0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0


, B̂n =



ψ̂1,n · · · · · · · · · ψ̂r,n

1 0 · · · · · · 0

0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0


with the convention φ̂j,n = 0 for p + 1 ≤ j ≤ r and ψ̂j,n = 0, ε̂

(n)
1−j = 0 for q + 1 ≤ j ≤ r. [A similar

vector form representation is used in the proof of Theorem 3.3 in Girard et al. (2021), although theirs

is incorrect when p 6= q. Their proof remains valid if the above correct representation is used.] Then

the identity ε̂
(n)
t − εt = (A− Ân)Yt−1 − (B − B̂n)εt−1 + B̂n(ε̂

(n)
t−1 − εt−1) yields recursively

∀t ∈ {1, . . . , n}, ε̂(n)t − εt =

t∑
j=1

(A− Ân)Âj−1
n Yt−j −

t∑
j=1

(B − B̂n)B̂j−1
n εt−j + B̂t

n(ε̂0 − ε0).

Let w ∈ Rr be the vector having first entry 1 and all other entries equal to 0. Then

√
n(1− τn)

|ε̂(n)t − εt|
q(τn) + |εt|

≤
√
n(1− τn)

q(τn) + |εt|
‖ε̂(n)t − εt‖

≤
√
n(1− τn)

q(τn) + |εt|

{
‖Ân −A‖

t−1∑
j=0

‖Âj
n‖‖Yt−j−1‖+ ‖B̂n −B‖

t−1∑
j=0

‖B̂j
n‖‖εt−j−1‖+ ‖B̂t

n‖‖ε̂0 − ε0‖

}

where ‖ · ‖ indifferently denotes the supremum norm on Rr and the induced operator norm ‖M‖ =

supx6=0 ‖Mx‖/‖x‖ on the space of r × r matrices. Based on this last inequality, and mimicking the

construction in Section 4.1, the intuition behind the construction of a valid
√
n(1− τn)−small array

(C
(n)
t ) here is that C

(n)
t should be chosen to be only slightly larger than the right-hand side above

(with arbitrarily high probability as n → ∞), while being independent of εt. The main difficulty is
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to handle the random matrix norms ‖Âj−1
n ‖ and ‖B̂j−1

n ‖, which are not independent of εt. The key

point is to note that the matrices A and B are essentially companion matrices for the polynomials P

and Q, with in fact

det(λIr −A) = λrP (1/λ) and det(λIr −B) = λrQ(1/λ).

Since P and Q have all their roots outside the closed unit disk, all the eigenvalues of A and B must

have modulus less than 1, i.e. the spectral radii ρ(A) ofA and ρ(B) ofB are smaller than 1. Moreover,

by Gelfand’s spectral radius formula, ‖AN‖1/N → ρ(A) and ‖BN‖1/N → ρ(B) as N →∞. Conclude

that there are δ > 0 and N0 ≥ 1 such that max(‖AN0‖, ‖BN0‖) ≤ 1 − 2δ. Note further that any

integer j can be written in the form j = N0bj/N0c + r, with r = j − N0bj/N0c ∈ {0, . . . , N0 − 1},
yielding the bound

√
n(1− τn)

|ε̂(n)t − εt|
q(τn) + |εt|

≤
√
n(1− τn)

q(τn)

{
‖Ân −A‖max(1, ‖Ân‖N0−1)

t−1∑
j=0

‖ÂN0
n ‖bj/N0c‖Yt−j−1‖

+ ‖B̂n −B‖max(1, ‖B̂n‖N0−1)

t−1∑
j=0

‖B̂N0
n ‖bj/N0c‖εt−j−1‖

+ max(1, ‖B̂n‖N0−1)‖B̂N0
n ‖bt/N0c‖ε̂0 − ε0‖

}
.

Now ‖ÂN0
n ‖ → ‖AN0‖ ≤ 1− 2δ and ‖B̂N0

n ‖ → ‖BN0‖ ≤ 1− 2δ in probability, and ‖Ân−A‖+ ‖B̂n−
B‖ = OP(n−1/2), thus suggesting to construct C

(n)
t as

C
(n)
t = un

√
n(1− τn)

q(τn)

{
1

n1/2

t−1∑
j=0

(1− δ)bj/N0c(‖Yt−j−1‖+ ‖εt−j−1‖) + (1− δ)bt/N0c‖ε̂0 − ε0‖

}

where (un) is a nonrandom sequence that diverges to infinity slowly enough. The sequence
∑t−1
j=0(1−

δ)bj/N0c, t ≥ 1, is bounded and increases to N0/δ. Then, by construction, C
(n)
t is independent of εt

for each n ≥ 1 and t ∈ {1, . . . , n} (since ε̂0 is chosen independently from the ARMA observations).

More precisely, assume that un/q(τn)→ 0. One has

1√
n(1− τn)

max
1≤t≤n

C
(n)
t = OP

(
un
q(τn)

{
1 +

1√
n

max
1−r≤i≤n−1

(|Yi|+ |εi|)
})

= OP

(
un
q(τn)

{
1 +

1√
n

max
1≤i≤n

(|Yi|+ |εi|)
})

.

By causality of (Yt)t∈Z, the Yt have the linear representation Yt =
∑∞
j=0 ajεt−j , and it is a consequence

of the arguments in the proof of Theorem 3.1.1 in Brockwell and Davis (1991) that the coefficients aj

define a summable series and decay geometrically fast, i.e. |aj | ≤ CRj for real constants C > 0 and
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R ∈ (0, 1). Then for any 1 ≤ t ≤ n,

|Yt| ≤
t−1∑
j=0

|aj ||εt−j |+
∞∑
j=t

|aj ||εt−j | ≤

 ∞∑
j=0

|aj |

 max
1≤t≤n

|εt|+ CR

∞∑
k=0

Rk|ε−k|.

The last sum on the right-hand side is finite with probability 1 because ε has a finite first moment.

Conclude that

max
1≤i≤n

|Yi| = OP

(
max
1≤i≤n

|εi|
)
.

[The bound |Y0| ≤ C
∑∞
j=0R

j |ε−j | also implies that Y0 is integrable.] Now by pairing Theorem 1.1.6

p.10 and Lemma 1.2.9 p.22 in de Haan and Ferreira (2006), one obtains

1

γ

(
max1≤i≤n εi
q(1− 1/n)

− 1

)
d−→ GEV(γ).

Then, using condition P(ε > x)/P(|ε| > x)→ l ∈ (0, 1] as x→∞, one gets, for any t > 0,

logP
(

max1≤i≤n |εi|
q(1− 1/n)

≤ t
)

= n log

{
1−

(
1

l
+ o(1)

)
P
(

ε

q(1− 1/n)
> t

)}
∼ −n

l
P
(

ε

q(1− 1/n)
> t

)
∼ 1

l
logP

(
max1≤i≤n εi
q(1− 1/n)

≤ t
)

as n→∞.

Consequently
max1≤i≤n |εi|
q(1− 1/n)

= OP(1).

Finally, from Potter bounds applied to the function t 7→ q(1− 1/t), see e.g. Proposition B.1.9.5 p.367

in de Haan and Ferreira (2006), one gets

max
1≤i≤n

|εi| = OP(nγ+ι) for any ι > 0.

This yields
1√

n(1− τn)
max
1≤t≤n

C
(n)
t = OP

(
un
q(τn)

)
= oP (1) .

Also, for any positive nonrandom sequence (δn) converging to 0, obviously

1

n

n∑
t=1

E(C
(n)
t 1{C(n)

t ≤ δn
√
n(1− τn)}) ≤ 1

n

n∑
t=1

E(C
(n)
t )
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and therefore

1

n

n∑
t=1

E(C
(n)
t 1{C(n)

t ≤ δn
√
n(1− τn)})

≤ un
√

1− τn
q(τn)

× 1

n

n∑
t=1


t−1∑
j=0

(1− δ)bj/N0cE(‖Y0‖+ ‖ε0‖) +
√
n(1− δ)bt/N0cE(‖ε̂0 − ε0‖)


≤ un

√
1− τn
q(τn)

(
N0

δ
E(‖Y0‖+ ‖ε0‖) +

1√
n

N0

δ
E(‖ε̂0 − ε0‖)

)
= OP

(
un

√
1− τn
q(τn)

)
= oP(1)

from the stationarity and integrability of the sequence (Yt). It follows that (C
(n)
t ) is a

√
n(1− τn)−small

array.

Finally, recall that ‖ÂN0
n ‖ → ‖AN0‖ ≤ 1− 2δ and ‖B̂N0

n ‖ → ‖BN0‖ ≤ 1− 2δ in probability, to obtain

that in particular ‖ÂN0
n ‖ ≤ 1− δ and ‖B̂N0

n ‖ ≤ 1− δ with arbitrarily high probability as n→∞, and

therefore

max
1≤t≤n

1

C
(n)
t

√
n(1− τn)|ε̂(n)t − εt|
q(τn) + |εt|

≤ 1

un
max
1≤t≤n

(
n1/2‖Ân −A‖max(1, ‖Ân‖N0−1)

∑t−1
j=0 ‖ÂN0

n ‖bj/N0c‖Yt−j−1‖∑t−1
j=0(1− δ)bj/N0c‖Yt−j−1‖

+ n1/2‖B̂n −B‖max(1, ‖B̂n‖N0−1)

∑t−1
j=0 ‖B̂N0

n ‖bj/N0c‖εt−j−1‖∑t−1
j=0(1− δ)bj/N0c‖εt−j−1‖

+ max(1, ‖B̂n‖N0−1)

(
‖B̂N0

n ‖
1− δ

)bt/N0c)

= OP

(
1

un

{
n1/2‖Ân −A‖+ n1/2‖B̂n −B‖+ 1

})
= oP(1).

This yields the following corollary about the intermediate quantile estimator q̂n(1−k/n), Hill estimator

γ̂n(k), and Weissman extreme quantile estimator q̂?n(τ ′n) constructed upon the residuals ε̂
(n)
1 , . . . , ε̂

(n)
n .

Corollary 4.2 (Dynamic extreme value estimation in the ARMA model). Work in the causal and

invertible ARMA(p,q) model Yt =
∑p
j=1 φjYt−j −

∑q
j=1 ψjεt−j + εt, for t ∈ Z, where φ1, . . . , φp and

ψ1, . . . , ψq are real-valued coefficients such that the polynomials P (z) = 1 −
∑p
j=1 φjz

j and Q(z) =

1 −
∑q
j=1 ψjz

j have no common root, and no root inside the closed unit disk of the complex plane,

and (εt) is an independent and identically distributed sequence such that ε ≡ ε0 satisfies condition

C2(γ, ρ,A) with γ < 1/2, and P(ε > x)/P(|ε| > x) → l ∈ (0, 1] as x → ∞. Let k = k(n) → ∞ satisfy

k/n→ 0 and
√
kA(n/k)→ λ ∈ R.

• If φ̂n,1, . . . , φ̂n,p, ψ̂n,1, . . . , ψ̂n,q are n1/2−consistent estimators of φ1, . . . , φp, ψ1, . . . , ψq, and ε̂
(n)
t =

Yt−
∑p
j=1 φ̂n,jYt−j+

∑q
j=1 ψ̂n,j ε̂

(n)
t−j are the pertaining residuals with initial values ε̂

(n)
1−q ≡ ε̂1−q, . . . , ε̂

(n)
0 ≡

ε̂0 that have a finite moment of order 1 and are determined independently of the sequence (Yt), then

(
√
k(γ̂n(k)− γ),

√
k log(q̂n(1− k/n)/q(1− k/n))) converges weakly to a pair of independent Gaussian

random variables having respective means λ/(1− ρ) and 0, and the same variance γ2.
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• If moreover ρ < 0, and τ ′n ↑ 1 is such that k/(n(1 − τ ′n)) → ∞ and
√
k/ log(k/(n(1 − τ ′n))) → ∞,

then √
k

log(k/(n(1− τ ′n)))

(
q̂?n(τ ′n)

q(τ ′n)
− 1

)
d−→ N

(
λ

1− ρ
, γ2
)
.

This example makes essential use of the randomness in the C
(n)
t in order to handle the very large

fluctuations of the heavy-tailed ARMA process; we did not manage to construct a nonrandom version

c
(n)
t of this sequence allowing us to check each condition without introducing further restrictions on γ

or τn. Corollary 4.2 constitutes a substantial improvement upon results such as Theorem 3.3 in Girard

et al. (2021) or Lemma 2 in Hill (2015) in the sense that it does not impose any restriction on k (or

equivalently τn = 1− k/n) or on the second-order properties of εt (see condition (3.1) in Hill, 2015).
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Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modelling Extremal Events for Insurance

and Finance. Springer-Verlag, Berlin.

Farkas, S., Heranval, A., Lopez, O., and Thomas, M. (2024). Generalized Pareto regression trees for

extreme event analysis. Extremes, 27(3):437–477.

Farkas, S., Lopez, O., and Thomas, M. (2021). Cyber claim analysis using Generalized Pareto regres-

sion trees with applications to insurance. Insurance: Mathematics and Economics, 98:92–105.

Girard, S., Stupfler, G., and Usseglio-Carleve, A. (2021). Extreme conditional expectile estimation in

heavy-tailed heteroscedastic regression models. Annals of Statistics, 49(6):3358–3382.

Gnecco, N., Terefe, E. M., and Engelke, S. (2024). Extremal random forests. Journal of the American

Statistical Association, to appear.

Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. The Annals

of Statistics, 3(5):1163–1174.

Hill, J. B. (2015). Tail index estimation for a filtered dependent time series. Statistica Sinica, 25(2):609–

629.

24



Hoga, Y. (2019). Confidence intervals for conditional tail risk measures in ARMA–GARCH models.

Journal of Business & Economic Statistics, 37(4):613–624.

Kinsvater, P. and Fried, R. (2017). Conditional heavy-tail behavior with applications to precipitation

and river flow extremes. Stochastic Environmental Research and Risk Assessment, 31(5):1155–1169.

Knight, K. (1999). Asymptotics for L1-estimators of regression parameters under heteroscedasticity.

Canadian Journal of Statistics, 27(3):497–507.

Martins-Filho, C., Yao, F., and Torero, M. (2018). Nonparametric estimation of Conditional Value-

at-Risk and Expected Shortfall based on extreme value theory. Econometric Theory, 34(1):23–67.

McNeil, A. J. and Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial

time series: an extreme value approach. Journal of Empirical Finance, 7(3–4):271–300.

Resnick, S. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer.

Russell, B. T., Cooley, D. S., Porter, W. C., Reich, B. J., and Heald, C. L. (2016). Data mining to

investigate the meteorological drivers for extreme ground level ozone events. The Annals of Applied

Statistics, 10(3):1673–1698.

Schmidt, R. and Stadtmüller, U. (2006). Non-parametric estimation of tail dependence. Scandinavian

Journal of Statistics, 33(2):307–335.

Stupfler, G. (2019). On a relationship between randomly and non-randomly thresholded empirical

average excesses for heavy tails. Extremes, 22(4):749–769.

Weissman, I. (1978). Estimation of parameters and large quantiles based on the k largest observations.

Journal of the American Statistical Association, 73(364):812–815.

25


