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Abstract—Latent representation learning has been an active
field of study for decades in numerous applications. Inspired
among others by the tokenization from Natural Language
Processing and motivated by the research of a simple data
representation, recent works have introduced a quantization step
into the feature extraction. In this work, we propose a novel
strategy to build the neural discrete representation by means of
random codebooks. These codebooks are obtained by randomly
sampling a large, predefined fixed codebook. We experimentally
show the merits and potential of our approach in a task of audio
compression and reconstruction.

Index Terms—feature extraction, quantization, random code-
books, audio reconstruction

I. INTRODUCTION

The extraction of a meaningful and compact representation
of the input data is an essential step of modern machine
learning based systems. This representation is expected to
extract relevant information about the input data to ease the
resolution of a target task such as audio classification [1],
speech enhancement [2] or audio inpainting [3]. Numerous ar-
chitectures have been proposed to obtain such a representation
for audio signals in a supervised or unsupervised manner [4],
[5]. The objective is usually to express the input data under the
form of a continuous latent representation which is then further
processed by subsequent blocks for the downstream task. For
example, Variational Auto Encoders (VAE) [6], [7] are very
popular models which allow to fit a probabilistic distribution
to input data, and randomly sample a corresponding latent
representation from it.

Traditionally, the goal has been to extract a continuous
representation from the input data, but there is nowadays a
strong trend towards obtaining a discrete representation which
has many advantages for data modeling, prediction or gener-
ation. For instance, in the VQ-VAE model introduced in [8],
the latent representation, learned in an unsupervised manner,
is quantized using vector quantization exploiting a so-called
dictionary (or codebook) of tokens (or codewords). Many
variations of this model exploiting multiple subdictionnaries
were then introduced either in a global hierarchical mul-
tiresolution quantization scheme [9]–[11] or in a successive
residual quantizations framework [12], [13]. The latter model
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is particularly efficient for audio coding and demonstrated
excellent performances in sound generation by incorporating
an autoregressive language model.

Nevertheless, discrete neural approaches in general face
several challenges: first, they are subject to a suboptimal
exploitation of the codebooks, the so-called codebook collapse
problem and they usually rely on ad-hoc heuristics to mitigate
this collapse problem; second, there is no clear evidence that
all codebooks need to be explicitly learned; and third despite
their inherent advantage compared to approaches based on a
continuous latent representation, they may still suffer from
limited generalization capabilities.

In this work, we propose an alternative strategy to build the
discrete latent representation. Inspired by the work of Mous-
sallam et al. on Sequential Subdictionaries Matching Pursuits
[14], the core idea of our method is to obtain successive small
dictionaries randomly sampled from a large fixed dictionary.

Using the recent Descript Audio Codec (DAC) model [15]
as a strong baseline, our preliminary experiments show that
this novel strategy for codebook design :

• is robust to the codebook collapse problem,
• has potential to avoid the learning of some of the code-

books, leading to a gain of complexity while maintaining
compression efficiency and audio reconstruction quality.

The paper is organised as follows: we first describe the
related work (section II), before describing in detail our
approach (section III). We then present our experimental plan
in section IV and discuss the results obtained in sections V
and VI. Finally, we highlight some future work and suggest
some conclusions in section VII.

II. RELATED WORK

A. VAE for audio neural modeling
The objective of the VAE [6], [7] is to fit a probabilis-

tic distribution to input data, by jointly learning the latent
generative modeling and the variational posterior distribution.
Whereas the original VAEs were primarily applied to image
data, subsequent studies have expanded their use to audio data
modeling [16] and showcased their effectiveness for various
downstream tasks such as speech enhancement [17], voice
conversion [18] and text-to-speech generation [19]. Mean-
while, the conventional VAE model relies on single latent
space with the i.i.d assumption, which motivates researchers
to investigate hierarchical [20] and disentangled [21] latent
space, and dynamical modeling [22].



B. Feature quantization and VQ-VAE

Besides learning continuous representation for audio data,
recent studies show the interest of learning discrete, or quan-
tized, representations [23]. While forcing the model to ignore
the irrelevant information during quantization, the discrete
representations can then be related to high level concepts easily
understandable by humans such as phonemes in speech or
notes in music. Injecting the feature quantization to a VAE
leads to the well-known VQ-VAE model [8], that has been
used to generate images [9] and audio [24]. More recently,
the residual VQ-VAE [12], [13] has been introduced for
audio coding and modeling, which also shows impressive
performance on audio generation [25].

C. Codebook collapse

Despite the promising results in many tasks of generating
complex data, the standard training approach frequently en-
counters codebook collapse, i.e. only a portion of available
codes are actually utilized, largely restricting the quality of the
discrete latent representations. To mitigate this problem, many
techniques have been proposed, such as exponential moving
average (EMA) for codebook update [8], codebook reset [10],
a stochastic variant (SQ-VAE) [26], and factorizing the codes
with L2-normalization [15].

III. RANDOM RESIDUAL VECTOR QUANTIZATION

Our main goal in this work is to explore an alternative
strategy for defining, using and training the codebooks used
in residual vector quantization (RVQ). As discussed above,
dictionary learning is an active area of research, since the
training procedures proposed in [8] and used in [13] trigger
codebook collapse. Furthermore, given the generative potential
of such a quantized representation [23], [25], there is a clear
interest to build expressive and general purpose dictionaries.

A straightforward modification along these lines would be
to increase the size of the quantization codebooks. However,
this would greatly increase the computation complexity (at
inference and training) and the bitrates (leading to less efficient
audio codecs), and would not solve any codebook collapse
issue.

We rather propose an alternative strategy inspired by the
Sequential Subdictionaries Matching Pursuits algorithm intro-
duced in [14]. In this algorithm, a signal is reconstructed by
a sum of tokens that are iteratively selected from a sequence
of dictionaries. The randomness comes from the fact that, at
each step, the best token for reconstruction is selected from
a small sub-dictionnary built as a random subsampling of a
much larger dictionary. Experiments have shown in the context
of Matching Pursuit that by proceeding this way, the quality
of the reconstruction is almost equivalent to that obtained by
using the whole dictionary, for a much lower complexity.

Furthermore, the observations made in [11], as well as the
observations we made on DAC model [15], hint that, in a
hierarchy of quantizers, deeper quantizers only bring fine grain
information to the reconstruction (similar to encoding noise).

Thus, it seems relevant to apply the random sampling proce-
dure only to deeper quantizers, as they encode less specific
information. In our case, we then obtain these high level
quantizers by randomly subsampling a significantly larger
codebook, while guaranteeing non-redundant sub-sampling
for each quantizer. This permits to directly account for the
similar nature of tokens at high level and contribute to enforce
generalizability.

As the big codebook is supposed to be large, compared to
the initial size of the trained codebooks, we advocate that it
does not need to be trained, which is an important advantage
for controlling complexity. To further detail our approach,
let’s say we aim to quantize x ∈ RD using the codebook
B = (βi)i≤N ∈ (RD)N . The token is selected following
argminβ∈B ||x − β||22. Let’s now define Bbig ∈ (RD)Nbig a
big codebook, instead of computing argminβ∈Bbig

||x− β||22,
we will randomly extract Bs ⊂ Bbig of size s, and compute
argminβs∈Bs

||x − βs||22. A schematic description of that
process is introduced in Algorithm 1 and in Figure 1.

Algorithm 1 Random RVQ model
Input: Input signal x ∈ RD

Trainable codebooks (Bi)i≤nt
sampled from N (0, ID, Nt)

Big fixed codebook Bbig sampled from N (0, ID, Nbig)
Sampling size s
Number of random quantizers nr

Output: Quantization tokens (β̄i)i≤nt+nr

Process:
residual← x
for i ≤ nt + nr do

if i ≤ nt then
β̄i ← NearestNeighbour(residual, Bi)

else
Bs ← UniformRandomSampling(Bbig , s)
β̄i ← NearestNeighbour(residual, Bs)

end if
residual← residual − β̄i

end for
return (β̄i)i≤nt+nr

IV. EXPERIMENTS

1) Architecture: To evaluate our approach, we select the
same use case (i.e. audio reconstruction) as the EnCodec [13]
and DAC [15] models. The latter architecture is currently the
state of the art for audio compression and reconstruction. Just
as for EnCodec, the DAC model is formed of an encoder
module, a quantization module and a decoder module. The en-
coder module extracts continuous 2-D latent features from the
input 1-D audio data, then the quantization module discretizes
the latent representation and feeds the result to the decoder
module which builds a reconstruction of the input signal. The
encoder and decoder modules are stacks of convolutional and
down/up sampling layers, the quantization module is shaped
as a residual vector quantizer.



Big Codebook

Input

Feature

Quantizer 1
0

Nt

Quantizer nt
0

Nt

Random

Draw

Random

Draw

Quantizer nt+1

0

Ns

Quantizer nt+s

0

Ns

Output

Feature

Trainable Codebook

Randomly Sampled Sub-Codebook, No Training

0
1

Nbig

Fig. 1. The illustration of Random RVQ. Same as DAC [15], it contains
nine layers of quantizer. However, the first five layers are trainable and the
last four layers are randomly sampled from a large codebook, while all layers
are trainable in DAC. The dimension reduction (orange rectangles in each
quantizer) represents the codebook collapse mitigant operations.

The quantization module is formed of 9 quantizers, which
are organized in a pile-like structure, each quantizer computing
a new residual after quantization, and feeding it to the next
quantizer. Our Random RVQ approach is potentially applica-
ble to all quantizers, but in this work we limit our study to
the replacement of the 4 to 6 last quantizers, which given their
position in the quantization pile, mostly encode noise.

2) Data: The DAC model [15] is initially trained on mixed
audio data: music, speech and environmental sounds extracted
from 8 underlying datasets. In this work, to evaluate the
potential of our approach, we trained our model on only one
of these 8 datasets: MUSDB18 [27]. It is composed of a train
set of 100 music tracks, and a test set of 50 music tracks,
all sampled at 44.1 kHz with a total length around 10 hours.
To obtain a meaningful baseline, we retrained the DAC model
on that dataset only. It can be noted that only a very limited
decrease of performance was observed after re-training which
confirms that the DAC model can be considered as a strong
baseline.

3) Evaluation: We kept the same losses as in DAC [15]
for the training of the randomized model: generative and
feature matching losses (adversarial), a multi-scale mel loss
and codebook and commitment losses. We keep the same
balancing between the losses as introduced in DAC [15].

To evaluate a model, we also applied the same metrics as
the one used for the training of DAC: waveform loss, stft loss,
mel loss, scale invariant signal-to-distortion ratio (SI-SDR) as
introduced in [28], and the ViSQOL value, a perceptual audio
quality assessment introduced in [29].

To monitor the usage of the codebooks, and therefore assess
the potential codebook collapse, we report the perplexity of
each codebook. The perplexity of a codebook B, composed of

TABLE I
RECONSTRUCTION WITHOUT (LEFT) AND WITH (RIGHT) RANDOMIZED

QUANTIZERS

Baseline 5q RandRVQ1

mel loss (↓) 0.81 0.72
stft loss (↓) 2.10 2.00

waveform loss (↓) 0.05 0.04
SI-SDR (↑) 6.53 8.25
ViSQOL (↑) 3.87 3.94

N tokens (βi)i=1...N , is defined as:

PP (B) = e
−(

∑N
i=1

1
ni

ln( 1
ni

))

where (ni)i=1...N represent the occurences of tokens used for
a given test set. Such a metric converges towards N when the
codebook is equally partitioned for quantization. In the case
of codebook collapse, the perplexity takes low values.

We also measure the training time, as a statistical estimator
for complexity.

4) Collapse mitigants: The initial version of DAC included
codebook collapse mitigants, which were compatible with the
initial VQ-VAE training trick: the straight through operator
trick. These collapse mitigants are the normalization of
codebooks and latents before quantization, and the projection
of latents on a smaller dimensional space before quantization
(the representation is projected back onto the initial space
after quantization). The latter mitigant is performed thanks
to convolutional layers placed at the input and the ouptut of
each quantizer (see Fig. 1).
We discuss in our experiments the impact of removing these
mitigants for our model and the baseline.

5) Model variants: We propose five variations of our model
to explore the impact of each parameter. The different pa-
rameters values characterizing each variant (from RandRVQ1
to RandRVQ5) are displayed in the upper part of Table II.
Through these experiments, a variation in the ratio of the size
of the big codebook and the random sampling was introduced.
We also explored the impact of the collapse mitigants, and the
number of random quantizers.

V. RESULTS

The results1 displayed in Table I show the reconstruction
metrics obtained with a partial Baseline (5 trained quantizers)
and a total RandRVQ1 (5 trained and 4 randomized quan-
tizers). It clearly shows that even using random codebooks
without training, RandRVQ1 can still improve the reconstruc-
tion quality compared to a partial Baseline, underlining that
deeper quantizers do encode useful information and that it is
well captured by our random scheme.

As shown in Table II, the results obtained with our Rand-
RVQ models are, overall, slightly below those of the Baseline.

1Some examples are displayed at: https://randrvq.github.io/



TABLE II
OBJECTIVE EVALUATION ON MUSDB18 DATASET (AVERAGED OVER 5 RANDOM DRAWS)

Baseline Collapse RandRVQ1 RandRVQ2 RandRVQ3 RandRVQ4 RandRVQ5

Nbig ∅ ∅ 8192 8192 8192 16384 16384
sample size ∅ ∅ 1024 1024 256 512 512

Collapse miti.
√

∅
√

∅ ∅
√ √

# rand. quantizers 0 0 4 4 4 4 6

mel loss (↓) 0.71 0.86 0.72±0.001 0.78±0.001 0.79±0.001 0.72±0.001 0.75±0.002
stft loss (↓) 1.99 2.16 2.00±0.002 2.07±0.001 2.08±0.001 2.00±0.002 2.03±0.003

waveform loss (↓) 0.041 0.057 0.042±0.000 0.048±0.000 0.048±0.000 0.043±0.0001 0.044±0.0001
SI-SDR (↑) 8.40 5.26 8.25±0.02 6.99±0.01 7.00±0.01 8.14±0.02 7.76±0.03
ViSQOL (↑) 3.92 3.85 3.94±0.007 3.87±0.006 3.88±0.004 3.93±0.008 3.92±0.01

training time (days) 1.55 1.583 1.459 1.465 1.442 1.462 1.51

TABLE III
CODEBOOK PERPLEXITIES (PP) ON MUSDB18 DATASET (in parentheses: ratio to the maximum, trained codebooks are of size 1024)

Baseline Collapse RandRVQ1 RandRVQ2 RandRVQ3 RandRVQ4 RandRVQ5

PP - cb 1 545 (0.53) 25 (0.02) 569 (0.55) 536 (0.52) 534 (0.52) 545 (0.53) 507 (0.49)
PP - cb 2 834 (0.82) 42 (0.04) 810 (0.79) 810 (0.79) 817 (0.79) 807 (0.78) 828 (0.80)
PP - cb 3 889 (0.86) 67 (0.06) 914 (0.89) 873 (0.85) 905 (0.88) 896 (0.87) 906 (0.88)
PP - cb 4 928 (0.90) 83 (0.08) 913 (0.89) 905 (0.88) 924 (0.90) 919 (0.89) 15565 (0.95)
PP - cb 5 935 (0.93) 113 (0.11) 947 (0.92) 950 (0.92) 927 (0.90) 934 (0.91) 15586 (0.95)
PP - cb 6 946 (0.92) 140 (0.13) 7744 (0.94) 574 (0.07) 3703 (0.45) 15601 (0.95) 15784 (0.96)
PP - cb 7 957 (0.93) 137 (0.13) 7720 (0.94) 594 (0.07) 3850 (0.46) 15659 (0.95) 15723 (0.95)
PP - cb 8 959 (0.93) 166 (0.16) 7730 (0.94) 616 (0.07) 3997 (0.48) 15622 (0.95) 15923 (0.97)
PP - cb 9 966 (0.94) 145 (0.14) 7776 (0.94) 633 (0.07) 4131 (0.50) 15730 (0.96) 15987 (0.97)

PP - Big cb ∅ ∅ 7981 (0.97) 606 (0.07) 3937 (0.48) 16090 (0.98) 16230 (0.99)

Nbig ∅ ∅ 8192 8192 8192 16384 16384
s ∅ ∅ 1024 1024 256 512 512

Yet, except for the SI-SDR metrics of RandRVQ2 and Rand-
RVQ3, the figures are comparable, and even slightly better for
VISQOL in RandRVQ1, RandRVQ4 and RandRVQ5. These
observations, even if they do not constitute a breakthrough
in terms of quality of reconstruction, are positive. Indeed, it
indicates that in a setting where we forced the quantization to
be untrained, and where the reconstruction is highly dependant
on randomness, the obtained quality of the encoding we get
from quantization at the same bitrate is globally comparable.

On the complexity side, as expected, our approaches demon-
strate a slight advantage with a gain of a couple hours in
training compared to the baseline. Nevertheless, this gain
remains small.

The codebook perplexities of the different models are given
in Table III. As a control experiment, we verify the mitigating
effects of the collapse mitigants introduced in DAC [15], as the
collapse experiment shows a clear codebook collapse pattern
in the perplexities, compared to the Baseline.

Looking at our experiments, we also notice that, overall,
the behaviour of the learned first codebooks is similar to the
Baseline, meaning that the usage of randomized quantizers
does not influence these. Similarly, the perplexities measured
for randomized codebooks which are featured with the col-
lapse mitigants of [15], indicate a nearly optimal usage of

codebooks. This was predictable, as we are still profiting from
the effect of the collapse mitigant, and as the quantization is
subject to a random sampling which forces the exploration of
the whole codebook.

The results from RandRVQ2 and RandRVQ3 bear more
interesting information, as we can clearly see that in the case of
no collapse mitigants, and poor parameters selection (Rand-
RVQ2), the randomized quantizers fall back into codebook
collapse in spite of the random sampling. This can be (at least
partially) solved, by making a better choice of parameters,
as we can see that RandRVQ3 has much better values of
perplexities over its randomized quantizers (though not perfect,
which indicates a possibility to probably go further).

The difference between those two experiments comes from
the sampling size that is applied for each random quantizer: the
smaller the sampling, the smaller the choice of tokens for the
quantizer, which forces exploration of the codebook, but limits
the precision of the quantization. Then, the randomization of
quantizers, associated with a correct choice of parameters,
can be used as a collapse mitigant. Overall, these results are
promising and indicate that the randomization of codebooks is
potentially relevant for quantization since it can lead to good
reconstruction metrics.



VI. DISCUSSION

Although it is shown in this preliminary work that the
randomization of quantizers bears promising prospects, some
aspects must be further explored to better substantiate the
potential of our approach.

1) Fixed codebooks at inference: The ”surprising” part of
our method is that during inference, the random quantizers
are still subject to random sampling. Such randomness could
have great implications in terms of generalization, and it
would be interesting to study the potential gain in exploiting
several random draws to find an optimal quantization. Further
explorations could be dedicated to finding a way to fix the
sampling of the big codebook at inference.

2) Generalizability: Preliminary experiments evaluating the
generalization capabilities of our approach on unseen data
(environmental audio data from ESC50) have shown a slightly
better robustness than the baseline (although statistically in-
significant). Future work is needed to fully explore the robust-
ness potential of our approach.

3) Training the big codebook: Allowing the big codebook
to be trained could further improve the reconstruction quality
of our model, as the big codebook would still be of a
much bigger size than traditional codebooks, and as it would
converge through the training to a version of itself that would
be adapted to the input data. It is also expected that codebook
training may be necessary to allow an extension of the random
process to the first codebooks which are apparently capturing
more structured information departing clearly from Gaussian
noise.

VII. CONCLUSION

Overall, though still in progress, this exploration has clearly
shown that this novel concept of randomization of quantizers,
in a context of quantized feature extraction, is very promising.
As discussed above, there are several interesting directions that
deserve to be pursued to better characterize and substantiate
the potential of using random dictionaries including the design
of optimal fixed dictionaries at inference, on the generalisation
properties and on the extension of the random process to all
codebooks of the Residual Vector quantization scheme.
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