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Abstract

In this paper we examine the numerical approximation of the limiting invariant measure associated
with Feynman-Kac formulae. These are expressed in a discrete time formulation and are associated
with a Markov chain and a potential function. The typical application considered here is the computa-
tion of eigenvalues associated with non-negative operators as found, for example, in physics or particle
simulation of rare-events. We focus on a novel lagged approximation of this invariant measure, based
upon the introduction of a ratio of time-averaged Feynman-Kac marginals associated with a positive
operator iterated l ∈ N times; a lagged Feynman-Kac formula. This estimator and its approximation
using Diffusion Monte Carlo (DMC) have been extensively employed in the physics literature. In short,
DMC is an iterative algorithm involving N ∈ N particles or walkers simulated in parallel, that undergo
sampling and resampling operations. In this work, it is shown that for the DMC approximation of
the lagged Feynman-Kac formula, one has an almost sure characterization of the L1-error as the time
parameter (iteration) goes to infinity and this is at most of O(exp{−κl}/N), for κ > 0. In addition a
non-asymptotic in time, and time uniform L1−bound is proved which is O(l/

√
N). We also prove a

novel central limit theorem to give a characterization of the exact asymptotic in time variance. This
analysis demonstrates that the strategy used in physics, namely, to run DMC with N and l small and,
for long time enough, is mathematically justified. Our results also suggest how one should choose N
and l in practice. We emphasize that these results are not restricted to physical applications; they
have broad relevance to the general problem of particle simulation of the Feynman-Kac formula, which
is utilized in a great variety of scientific and engineering fields.
Keywords: Feynman-Kac Formula, Diffusion Monte Carlo, Eigenvalue approximation.

1 Introduction
The Feynman-Kac (FK) formula plays a central role in many scientific fields including mathematics [5],
statistics [17], physics [7, 29], control theory [15], quantitative finance [24], to name some of the main
ones, see for instance [11, 12] for book-length introductions to the subject. In the context of this work,
the Feynman-Kac formula can be formulated in the following way. Consider a time-homogeneous Markov
chain with initial distribution η0 and transition kernel M on a measurable state-space E and let G be
a bounded, measurable and strictly positive real-valued function on E. The Feynman-Kac expresses the
evolution of the initial distribution as follows. Let n ∈ N and any φ : E → R bounded and measurable,
the Feynman-Kac measure ηn(φ) is given by

ηn(φ) :=
E
[
φ(Xn)

∏n−1
p=0 G(Xp)

]
E
[∏n−1

p=0 G(Xp)
] (1.1)

where E[·] is the expectation operator w.r.t. the probability law of the afore-mentioned Markov chain.
In this work, we will be in particular interested in evaluating η∞(φ) := limn→+∞ ηn(φ) which exists
under certain mathematical assumptions. However, except for trivial cases, the quantity ηn(φ) cannot be
evaluated analytically and one must rely upon numerical methods. These approaches are referred to as
sequential Monte Carlo or particle filters in mathematics/statistics and under the general denomination of
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Diffusion Monte Carlo (DMC) in physics. Several variants of DMC have been introduced such as Green’s
function Monte Carlo [6, 25], Fixed-Node Diffusion Monte Carlo [27], Pure Diffusion Monte Carlo [7, 8],
Stochastic Reconfiguration Monte Carlo [2, 22, 30, 31] and Reptation Monte Carlo [3], to cite the main
ones.

In practice, calculations are done by introducing a McKean interacting particle system involving a
number of particles to which stochastic rules built from M (sampling using the Markov kernel) and G
(resampling using the weight G) are applied iteratively. In the mathematical literature, these methods
are by now rather well understood, with a plethora of results; see for instance [4, 11, 12, 18, 33]. In the
following where the estimator discussed is borrowed to physics, we will adopt the name DMC for the
preceding numerical algorithm. Note that in physics, the N samples/particles of the evolving population
are called walkers, so the two terms "particles" and "walkers" will be used interchangeably in this article.
Now, a key point is that a great freedom exists in choosing either the the stochastic rules and/or the
estimator employed for ηn(φ). The problem of making some optimal choice leading to smaller variances
and reduced finite-population biases is thus a central issue in numerical implementations.

In this work we analyze an original estimator for the Feynman-Kac measure introduced in physics [7, 8]
and which appears, to the best of our knowledge, not to have been considered in the mathematical liter-
ature. In physics, the problem considered consists in solving the imaginary-time dependent Schrödinger
equation using the Feynman-Kac formula.

In its simplest formulation, the Feynman-Kac formula is a particular case of Eq.(1.1) with the following
setting: i) Q(x, y) = G(x)M(x, dy) is the kernel of the operator e−τH where H is the Hamiltonian operator
describing the system and τ a small positive quantity playing the role of a time step, ii) M(x, dy) the
Markov kernel corresponding to the brownian process, and iii) G(x) = e−τV (x) where V (x) is the potential
function. In practice, for non-trivial quantum systems, calculations are possible (small enough statistical
errors) only if importance sampling is introduced. We are then led to a so-called importance sampled
Feynman-Kac formula, which is still a particular case of Eq.(1.1), but with some more general operator
Q. Details are given in Appendix A. A general presentation of this setting and the way it is derived
in physics can be found for example in [7, 29]. As known, the quantity η∞(G) obtained from Eq.(1.1)
turns out to be the eigenvalue of the operator Q, that is the λ ∈ R+ such that for some h : E → R+,∫
E
h(y)Q(x, dy) = λh(x); the computation of which has found several applications in mathematics, for

example, in rare-events estimation [13, 34]. In physics, getting λ gives the ground-state energy, E0, via the
relation λ = e−τE0 and h is the ground-state eigenstate from which physical properties can be computed
[28].

Based upon the Feynman-Kac formula representation, different FK-like formulae can be proposed to
evaluate η∞(φ). For instance, one can consider the following quantity

ηn(φ) :=
1

n

n−1∑
k=0

ηk(φ), (1.2)

which, as n grows large, will converge, under assumptions, to η∞(φ). In this work, we introduce the
alternative quantity built from ηk and defined as follows. Let l ∈ N be a lag, which can be chosen to be
any fixed value and define the function for x0 ∈ E:

Ql(φ)(x0) :=

∫
El
φ(xl)

l∏
k=1

Q(xk−1, dxk).

We define the quantity
ηn(Q

l(φ))

ηn(Q
l(1))

(1.3)

which leads to the following FK-like formula for the limiting invariant measure

η∞(φ) = lim
n→∞

ηn(Q
l(φ))

ηn(Q
l(1))

. (1.4)
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In the following, we will refer to (1.3) as the lagged Feynman-Kac formula.
The general idea of why one may prefer to apply the numerical DMC algorithm to (1.3) instead of (1.2)

is the flexibility resulting from the introduction of the lag parameter l. For example, and without entering
into details at this stage, using DMC for approximating (1.2) necessitates in general a large number N of
walkers to extrapolate to zero the population bias of order 1

N as N goes to infinity. In sharp contrast, this
problem becomes much less severe using (1.3) since, as we shall show, the N -dependence of the results
decreases rapidly as the lag l increases. From that, one might obtain a substantial computational saving
in the DMC simulation. Finally, as already mentioned and to the best of our knowledge, a mathematical
study of the DMC approximation of (1.3) has not been undertaken; this is the topic of the present study.

1.1 Summary of Main Results and Article Structure
The analysis of the DMC approximation of (1.3) is rather challenging. As we will show later on, this
consists of a normalized estimator of walkers over the lag l, time-averaged in as in (1.3). The standard
theory associated to DMC (e.g. [11]) is not trivially applicable to the estimator that is used in practice,
hence requiring an original approach. In this article, under assumptions, we prove the following interesting
results:

• For a fixed number of particles N we prove an almost sure (as n grows) limit for the L1−error of
the DMC approximation of (1.3) and show that this is at most O(exp{−κl}/N), κ > 0. This is
Theorem 4.1 and Corollary 4.1.

• For a fixed number of particles N and time horizon n we prove that the appropriately centered
L1−error DMC approximation of (1.3) is at most O(l/

√
N). The bound is uniform in time (n).

This is Theorem 4.2.

• For a fixed number of particles N we prove an asymptotic in n central limit theorem (CLT) for the
estimator. This is in Theorem 4.3.

The implication of these results are rather important. Theorem 4.1 and Corollary 4.1 establish that, as
is done in practice, DMC can be run with N the number of walkers small and l small, for long-times and
the error of the approximation can be vanishingly (exponentially) small. Theorem 4.2 also shows that
one should not necessarily grow l arbitrarily large as there is a price to pay. We also use our theorems to
compare with the DMC approximation of (1.2). Theorem 4.3 provides an exact characterization of the
asymptotic in time variance. Our results are also confirmed in numerical simulations. The proofs of the
afore mentioned results require some non-standard arguments based upon novel path-wise solutions of
the Poisson equation for Markov chains. Our proofs are not confined to problems in physics and indeed,
apply to any application where the particle approximation of (1.3) is of practical interest. This constitutes
many applications in rare-events estimation and stochastic control problems; see [13, 34] for instance.

This paper is structured as follows. In Section 2 we detail the formulae of interest and the Diffusion
Monte Carlo algorithm. In Section 3 we give the numerical estimator under study. Section 4 presents
our mathematical results with discussion. The appendix contains the technical details associated to the
proofs of our main results as well as some details of the application in physics.

2 Feynman-Kac Formulae and Diffusion Monte Carlo

2.1 Notation
Let (E, E) be a measurable space. Denote by P(E) and M(E) the collection of probability measures
and non-negative measures on (E, E). For φ : E → R we write Bb(E) as the collection of bounded
and measurable functions on (E, E). For φ ∈ Bb(E), the sup-norm is written ∥φ∥ supx∈E |φ(x)|. For
(µ, φ) ∈ M(E) × Bb(E), µ(φ) =

∫
E
φ(x)µ(dx). Let P : E → M(E), (µ, φ) ∈ M(E) × Bb(E) we use the
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short-hand notation for x ∈ E:

µP (φ) =

∫
E

µ(dx) P (φ)(x) and P (φ)(x) =

∫
E

P (x, dy)φ(y).

Note that one can use the notation µP (φ) and µ(P (φ)) exchangeably, but we generally use the former.
N0 = N ∪ {0}. For P : E → M(E), φ ∈ Bb(E) and n ∈ N, Pn(φ)(x0) =

∫
En
φ(xn)

∏n
k=1 P (xk−1, dxk)

with the convention that P 0(φ)(x0) = φ(x0). For A ∈ E the Dirac measure is written δA(dx), with
the convention that if A = {x}, x ∈ E, we write δx(dy). For (µ, ν) ∈ P(E)2, we denote by ∥µ −
ν∥tv = supA∈E |µ(A)−ν(A)| as the total variation distance. N (0, σ2) denotes the one-dimensional normal
distribution of mean 0 and variance σ2 > 0.

2.2 Feynman-Kac Semigroups
Consider the Feynman-Kac measures on a measurable space (E, E), for (n, φ) ∈ N0 × Bb(E):

ηn(φ) = γn(φ)/γn(1) with γn(φ) := E

(
φ(Xn)

n−1∏
p=0

G(Xp)

)

where G : E → R+ is a strictly positive and bounded potential and the expectation E(·) is w.r.t. the law
of a time-homogenous Markov chain with initial distribution η0 and transition kernel M : E → P(E). We
use the convention γ0 = η0 = Law(X0), for n = 0. The unnormalized measures γn have a linear evolution
given for any n ≥ 1 by the recursion

γn(φ) = γn−1Q(φ) and we have γn(φ) = ηn(φ)
∏

0≤p<n

ηp(G) (2.1)

where Q(x, dy) = G(x)M(x, dy). The normalized measures have a nonlinear evolution

ηn+1(φ) = Φ(ηn)(φ) = ΨG(ηn)M(φ) with ΨG(ηn)(φ) :=
ηn(Gφ)

ηn(G)
. (2.2)

The evolution semigroup associated with the flow ηn is given for any p ≤ n by

ηn(φ) = Φn−p(ηp)(φ) with Φn−p(ηp)(φ) = Φ ◦ Φ ◦ . . . ◦ Φ(ηp)

where the composition is (n− p)−times. Note that

Φn−p(ηp)(φ) =
ηpQ

n−p(φ)

ηpQn−p(1)
and Φl(ηn)(φ) =

ηnQ
l(φ)

ηnQ
l(1)

.

For any given l ≥ 1 we set

µln(φ) :=
1

n

∑
0≤k<n

γl+k(φ)/γk(1) =
1

n

∑
0≤k<n

ηk(Q
l(φ)) = ηnQ

l(φ)

and their normalized versions

µln(φ) := µln(φ)/µ
l
n(1) =⇒ µln = Φl(ηn).

In our context, under some stability conditions (see e.g. [11, 34] for instance), there exists an invariant
measure η∞, a parameter λ > 0 and a function h ≥ 0 such that for any (x, φ) ∈ E× Bb(E)

Q(h)(x) = λ h(x) and η∞(φ) = Φ(η∞)(φ) (=⇒ Qn(h) = λn h).
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Applying the above fixed point equation to φ = h we check that

Φn(η∞)(h) =
η∞Q

n(h)

η∞Qn(1)
= η∞(h) = λn

η∞(h)

η∞Qn(1)
⇐⇒ η∞Q

n(1) = λn.

Also note that
G(x) = Q(1)(x) =⇒ η∞(G) = λ.

More generally, for any φ ∈ Bb(E) we have

Φn(η∞)(φ) = η∞(φ) ⇐⇒ η∞Q
n(φ) = λn η∞(φ).

2.3 Diffusion Monte Carlo
DMC is a discrete-time system of N walkers ξn =

(
ξin
)
1≤i≤N . The system starts with N independent

copies of a random variable with distribution η0. Given the system ξn at some time n ≥ 0, we sample N
conditionally independent walkers ξin+1 with their respective distribution Φ(ηNn ), with

ηNn := m(ξn) :=
1

N

∑
1≤i≤N

δξin .

In other words, the DMC method consists of approximating the measure ηn by using the occupation
measure ηNn associated with a system of N walkers. The initial positions of the walkers are randomly
chosen from the distribution η0. The evolution of each walker follows then the following selection/mutation
steps:

• Selection: We evaluate the current position ξin of all of the walkers at its potential value G(ξin). For
each walker, we select a walker amongst the current collection with probability G(ξin)/ηNn (G), giving
the new position ξ̂in.

• Mutation: We move the selected walker ξ̂in = x to a new location ξin+1 = y using the transition
kernel M(x, dy).

3 Numerical Estimator

3.1 Unnormalized Particle Measures
We consider some well-known facts about particle approximation of unnormalized measures; this discussion
will prove useful as we give lagged estimators that are used in the physics literature. Mimicking the
r.h.s. formula in (2.1), the unbiased estimate of γn(φ) (see [11, Chapter 7]) is defined by

γNn (φ) := ηNn (φ)
∏

0≤p<n

ηNp (G).

The unbiasedness property ensures that

E(γNn (φ)) = γn(φ) = η0Q
n(φ).

To check this claim, note that

E(ηNn (φ) | ξn−1) = Φ(ηNn−1)(φ) =
ηNn−1Q(φ)

ηNn−1Q(1)
=
ηNn−1Q(φ)

ηNn−1(G)
.

This implies that
E(γNn (φ) | ξn−1) = ηNn−1Q(φ)

∏
0≤p<(n−1)

ηNp (G) = γNn−1Q(φ).
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Iterating the argument, for any k < n we check that

E(γNn (φ) | ξk) = γNk Q
n−k(φ). (3.1)

Applying the above to k = 0 we recover the unbiasedness property

E(γNn (φ) | ξ0) = ηN0 Q
n(φ) and E(γNn (φ)) = η0Q

n(φ) = γn(φ).

Note that
η0 = η∞ =⇒ E(γNn (φ)) = η∞(Qn(φ)) = λn η∞(φ).

3.2 Fix Lagged Estimator
For any given (l, k, φ) ∈ N2

0 × Bb(E) we have

γNl+k(φ)/γ
N
k (1) = ηNl+k(φ)

∏
k≤p<k+l

ηNp (G) = Fφ(ξk, ξk+1, . . . , ξk+l)

with
Fφ(ξk, ξk+1, . . . , ξk+l) = m(ξl+k)(φ)

∏
k≤p<k+l

m(ξp)(G).

The estimate we want to analyze is based upon:

µl,Nn (φ) :=
1

n

∑
0≤k<n

γNl+k(φ)/γ
N
k (1) =

1

n

∑
0≤k<n

Fφ(ξk, ξk+1, . . . , ξk+l).

The estimator is:

µl,Nn (φ) :=
µl,Nn (φ)

µl,Nn (1)
=

1
n

∑
0≤k<n Fφ(ξk, ξk+1, . . . , ξk+l)

1
n

∑
0≤k<n F1(ξk, ξk+1, . . . , ξk+l)

. (3.2)

To understand the intuition for this estimator, observe that

l = 0 =⇒ γNk (φ)/γNk (1) = ηNk (φ)

and more generally for any l ≥ 0 we have, noting (3.1):

E
(
γNk+l(φ) | ξk

)
γNk (1)

=
γNk Q

l(φ)

γNk (1)
= ηNk Q

l(φ)

and hence
E(µl,Nn (φ)) =

1

n

∑
0≤k<n

E
(
γNl+k(φ)/γ

N
k (1)

)
=

1

n

∑
0≤k<n

E
(
ηNk Q

l(φ)
)
.

The limiting object is given by

1

n

∑
0≤k<n

ηk(Q
l(φ)) ≃n↑∞ η∞(Ql(φ)) = λl η∞(φ).

As a result, we expect that for long-time intervals n that µl,Nn (G) should give a good approximation of
λ the eigenvalue; or indeed, µl,Nn (φ) an approximation of η∞(φ). What is important, is to understand
the bias and variance of this estimator, precisely in the long-time regime, which is the topic of the next
section. Particularly, what the effect of l ∈ N is.
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4 Main Results

4.1 Assumption
(A1) There exists a C < +∞ such that

sup
(x,y)∈E2

G(x)

G(y)
≤ C.

There exists a (θ, β) ∈ (0, 1)× P(E) such that for any (x,A) ∈ E× E

θ

∫
A

β(dy) ≤
∫
A

M(x, dy) ≤ θ−1

∫
A

β(dy).

This assumption is well-studied in the context of particle approximations of Feynman-Kac formulae;
see [11] for example. The assumption will typically hold in scenarios where the state-space E is compact
and seldom holds otherwise. For instance, it is satisfied for Markov transitions of elliptic diffusions on
compact manifolds E, see for instance the pioneering work of [1, 26, 32] on Gaussian estimates for heat
kernels on manifolds. The assumption can be relaxed using the methods in [4, 9, 18, 19, 33, 36] at the
cost of more technical proofs that one would expect to lead to the same qualitative conclusions. Note that
(A1) assures that for φ ∈ Bb(E)

η∞(φ) := lim
n→∞

γn(φ)

γn(1)
.

is well-defined. Indeed in [11, 12, 13, 16, 34] rates of convergence of ηn(φ) to η∞(φ) have been established.

4.2 Particle System as a Markov Chain
We can consider the particle system ξ0, ξ1, . . . as a time-homogeneous Markov chain on (EN , E⊗N ) with
initial distribution

∏N
i=1 η0(dξ

i
0) and transition RN (ξp−1, dξp) =

∏N
i=1 Φ(m(ξp−1))(dξ

i
p). Moreover, under

(A1) the Markov chain is uniformly ergodic and there exist a unique invariant measure, which we shall call
ΠN . Note that it is simple to see that ΠN is deterministic, in that it does not depend on the randomness
of the simulated particle system and, indeed, an exact expression is availabe; see [23, Corollary 1] for
example. Now as the particle system is exchangeable, the marginal of ΠN in any co-ordinate is the same
and we will write it as πN ∈ P(E). We have the following result which shall prove useful in the subsequent
discussion.

Proposition 4.1. Assume (A1). Then there exists a C ∈ (0,∞) such that for any N ∈ N:

∥πN − η∞∥tv ≤ C

N
.

Proof. Recall from [14, 15] the time-uniform estimate, for φ ∈ Bb(E)

sup
n≥0

∣∣E [ηNn (φ)− ηn(φ)
]∣∣ ≤ C∥φ∥

N
. (4.1)

Now we have that ∣∣E [φ(ξ1n)− η∞(φ)
]∣∣ =

∣∣E [ηNn (φ)− η∞(φ)
]∣∣

≤
∣∣E [ηNn (φ)− ηn(φ)

]∣∣+ |ηn(φ)− η∞(φ)|.

Then on noting that
|πN (φ)− η∞(φ)| = lim

n→+∞

∣∣E [φ(ξ1n)− η∞(φ)
]∣∣

the result is concluded by using (4.1), limn→+∞ |ηn(φ) − η∞(φ)| = 0 and basic properties of the total
variation distance.
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4.3 The Effect of the Lag
Theorem 4.1. Assume (A1). Then for any (N, l, φ) ∈ N2 × Bb(E) we have almost surely:

lim
n→+∞

µl,Nn (φ)− η∞(φ) = Φl(πN )(φ)− Φl(η∞)(φ)

Proof. Using the exposition in Section 4.2 we can use Proposition B.1 in the Appendix along with a simple
first Borel-Cantelli argument, to determine that

µl,Nn (φ) →a.s.

∫
E(l+1)N

m(ξl+1)(φ)

{
l−1∏
p=1

m(ξp)(G)

}
ΠN (dξ1)

l+1∏
p=1

RN (ξp−1, dξp). (4.2)

where →a.s. denotes almost sure convergence as n → ∞. Moreover, by using standard properties of
particle filters, (see e.g. [11, Chapter 7]) the R.H.S. of (4.2) is equal to

ΠN
(
m
(
Ql(φ)

))
where m is the N−equally weighted empirical measure. Therefore we one has that

µl,Nn (φ) →a.s.

ΠN
(
m
(
Ql(φ)

))
ΠN (m (Ql(1)))

. (4.3)

As the particle system is exchangeable, the marginal of ΠN in any co-ordinate is the same, we have that

ΠN
(
m
(
Ql(φ)

))
ΠN (m (Ql(1)))

=
πN
(
Ql(φ)

)
πN (Ql(1))

= Φl(πN )(φ).

As
η∞(φ) = Φl(η∞) (φ)

the proof is completed.

Corollary 4.1. Assume (A1). Then there exists a (C, κ) ∈ (0,∞)2 such that for any (N, l, φ) ∈ N2×Bb(E)
we have almost surely:

lim
n→+∞

|µl,Nn (φ)− η∞(φ)| ≤ Ce−κl∥φ∥
N

.

Proof. Using Theorem 4.1 the proof can be completed by using the exponential stability property of the
semigroup Φ(·) which holds under (A1); see [11, Chapter 4] for example. More precisely, we have the
exponential decay

∥Φl(πN )− Φl(η∞)∥tv ≤ Ce−κl ∥πN − η∞∥tv

for some constants (C, κ) ∈ (0,∞)2 that do not depend upon (N, l, φ). Application of Proposition 4.1
allows one to conclude.

Remark 4.1. The approach here relies on a novel path-based Markov chain Lp−bound using a martingale
plus remainer structure. It is not the first theoretical analysis for particle methods that keeps N fixed and
allows another parameter to grow; see [4, 35].

The implication of Theorem 4.1 and Corollary 4.1 is rather interesting. The results say that for the
asymptotic in n regime, that the almost sure L1−error is exponentially small as a function of l irregardless
of the number of walkers, that is one can take N = O(1). From a practical point of view it suggests that a
small number of walkers can be run for a long time and so long as l is moderate, the error of the estimator
should be small. This shows that the parameter l provides quite a substantial freedom. For instance, one
could estimate λ using the estimator:

ηNn (G) :=
1

n

n−1∑
k=0

ηNk (G) (4.4)
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for which, using the approaches in [11] and under mathematical assumptions would have a bias∣∣∣∣∣E
[
1

n

n−1∑
k=0

{
ηNk (G)− ηk(G)

}]∣∣∣∣∣
of O(N−1) for any fixed n. Then it is simple to establish that the asymptotic in n bias is upper-bounded
by a term that is O(N−1). What this means is that the only way in which this conventional estimate can
indeed recover λ, for long-time periods, is by increasing the number of walkers, which could be subtantially
more expensive than using the estimator (3.2). More formally, when considering the estimator (3.2) , for
ϵ ∈ (0, 1) given, asymptotically in n, to obtain an error of O(ϵ), one can choose l = O(− log(ϵ)), N = O(1).
When considering the estimate (4.4) then N = O(ϵ−1) to have an asymptotic bias of O(ϵ). The cost of
this computation could be substantially more than considering (3.2) depending on the relative of cost of
computing (3.2) over (4.4).

4.4 Non-Asymptotic Bounds
We now investigate the non-asymptotic L1−error, where n,N, l are all fixed. Below N0 = N ∪ {0}. We
have the following, uniform in time, non-asymptotic error bound.

Theorem 4.2. Assume (A1). Then there exists a C ∈ (0,∞) such that for any (n,N, l, φ) ∈ N0 × N2 ×
Bb(E):

E
[∣∣µl,Nn (φ)− µln(φ)

∣∣] ≤ C∥φ∥l√
N

.

Proof. We have:
µl,Nn (φ)− µln(φ) = T1 + T2

where

T1 =
µl,Nn (φ)

µl,Nn (1)µln(1)

(
µln(1)− µl,Nn (1)

)
T2 =

1

µln(1)

(
µl,Nn (φ)− µln(φ)

)
.

The proof is easily completed by using Minkowski, the fact that

µl,Nn (φ)

µl,Nn (1)
≤ ∥φ∥

and Lemma C.2.

Remark 4.2. If one wants to consider E
[∣∣µl,Nn (φ)− η∞(φ)

∣∣] then by using results on the rates of the
bias (see [13, 34]) one would, under (A1), have an upper-bound of the type:

O
(

l√
N

+ κn
)

for κ ∈ (0, 1).

Theorem 4.2 shows that one cannot naively increase l so as to obtain a small error (as in Corollary
4.1) and there is at most a linear increase in the non-asymptotic L1−error. On the basis of Corollary 4.1
and Theorem 4.2 one expects that the asymptotic (in n) L1−error is at most

O
(
min

{
e−κl

N
,
l√
N

})

9



so that again one can choose l = O(− log(ϵ)), N = O(1) to obtain the error as O(ϵ) (ϵ ∈ (0, 1)). That
is, there is not a contradiction with our previous discussion. None-the-less, the afore-mentioned points
are based upon asymptotics in n. For instance, combining Theorem 4.2 and Remark 4.2 choose n =
O(− log(ϵ)), l = f(ϵ), where f is a non-decreasing function which explodes at zero and N = O(ϵ−2f(ϵ)2)
would achieve a non-asymptotic L1−error of O(ϵ). This again establishes the flexibility of the estimator
where one can of course control the error with N if needed.

4.5 Central Limit Theorem
Whilst the previous results give a characterization of the bias and variance for large n, one can give exact
expressions of this asymptotic error. This is done in the following central limit theorem.

We require several notations, which are given now. For (ξ0, . . . , ξl, φ) ∈ EN(l+1) × Bb(E) define:

F̂φ(ξ0, . . . , ξl) := Fφ(ξ0, . . . , ξl)− πN (Ql(φ)) +

∞∑
q=1

{
E
[
Φ(ηN(q−1)l)(Q

l(φ))|Ξ0 = ξl

]
− πN (Ql(φ))

}
(4.5)

where E[·|Ξ0 = ξl] is the expectation w.r.t. the law associated to the DMC algorithm, with the initial
particles at time zero equal to ξl. Using (A1) one can show that the function F̂φ is upper-bounded by a
constant (which would explode as N grows). Now define for (q, r) ∈ {1, . . . , n} × {0, . . . , l}

(RN )⊗(l−r)(F̂φ)(ξq, . . . , ξq+r) :=

∫
EN(l−r)

F̂φ(ξq, . . . , ξq+l)

q+l∏
j=q+r+1

RN (ξj−1, dξj) (4.6)

(RN )⊗(l+1−r)(φ̂)(ξq, . . . , ξq+r−1) :=

∫
EN(l+1−r)

F̂φ(ξq, . . . , ξq+l)

q+l∏
j=q+r

RN (ξj−1, dξj) (4.7)

with the convention that (ξq, ξq−1) = ξq−1. We will also write

(RN )⊗(0)(φ̂)(ξq, . . . , ξq+l) = F̂φ(ξq, . . . , ξq+l). (4.8)

Next, for (l, k, φ) ∈ N× {l, l + 1, . . . } × Bb(E)

σ2
Fφ :=

∫
ENl

F̃φ(ξk−l, . . . , ξk−1)Π
N (dξk−l)

k−1∏
s=k−l+1

RN (ξs−1, dξs) (4.9)

F̃φ(ξk−l, . . . , ξk−1) =

∫
EN

 l∑
j=0

(RN )⊗(l−j)(F̂φ)(ξk−j , . . . , ξk)

2

RN (ξk−1, dξk)−

 l∑
j=0

(RN )⊗(l+1−j)(F̂φ)(ξk−j , . . . , ξk−1)

2

. (4.10)

Finally set

Fφ(ξ0, . . . , ξl) :=
1

πN (Ql(1))
Fφ(ξ0, . . . , ξl)−

πN (Ql(φ))

πN (Ql(1))2
F1(ξ0, . . . , ξl)

F̂φ(ξ0, . . . , ξl) :=
1

πN (Ql(1))
F̂φ(ξ0, . . . , ξl)−

πN (Ql(φ))

πN (Ql(1))2
F̂1(ξ0, . . . , ξl).

Below we use d−→ to denote convergence in distribution as n increases.
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Theorem 4.3. Assume (A1). For any (N, l, φ) ∈ N2 × Bb(E) we have

√
n
(
µl,Nn (φ)− Φl(πN ) (φ)

) d−→ N (0, σ2
Fφ

).

Proof. This is Proposition B.3 in the appendix, amended to the notation used in the main text. For
instance, one can compare (4.6)-(4.8) with (B.4)-(B.6) and (4.9)-(4.10) with (B.8)-(B.9).

Remark 4.3. We note that

√
n
∣∣Φl(πN ) (φ)− η∞(φ)

∣∣ ≤ C
√
n exp{−κl}
N

which means one must choose l and N appropriately to control
√
n
∣∣Φl(πN ) (φ)− η∞(φ)

∣∣. For instance
one could have n = O(ϵ−2), l = O(− log(ϵ)) and N = O(1) to make this latter term small for large n.

Theorem 4.3 gives an exact description of the errors of the estimator in N and l through the expression
of the asymptotic variance σ2

Fφ
. As is typical in Markov chain CLTs, this latter variance is written in

terms of a solution to the Poisson equation (see e.g. [20]) as in (4.5). σ2
Fφ

is further complicated as one
has the form of a ratio of lagged Markov chain estimators. In general one would need numerical methods
to approximate the asymptotic variance and this is considered below. Understanding how σ2

Fφ
behaves

as a function of N, l is an important mathematical question, which requires further investigation, but one
might expect that it is related to Theorem 4.2 and this is then O(l2/N).

To conclude this section on CLTs one can also give a result related to an approach that is considered in
the literature. In some cases, authors have proposed running two different (independent) DMC algorithms,
one that gives the estimate µl,Nn (φ) and the other which gives the estimate µl,Nn (1). In this case defining

σ2,ind
φ =

1

πN (Ql(1))
σ2
Fφ +

πN (Ql(φ))2

πN (Ql(1))4
σ2
F1

one can apply Proposition B.4 in the appendix to show that the asymptotic variance for such estimators
(under (A1)) is exactly σ2,ind

φ . In general, one expects that σ2
Fφ

< σ2,ind
φ but proving this is rather difficult.

We consider a numerical comparison below.

4.6 Numerical Study
Consider the quantum harmonic oscillator Hamiltonian

H = − 1

2m
∇2 +

1

2
mω2x2.

The ground state energy (smallest eigenvalue) of the operator H is known to be E0 =
(
n+ 1

2

)
ω. Following

the discussion in Appendix A, we set τ = 1/16 (time discretization), ω = 1, and m = 1. Define G(x) =
e−τx

2/2 and M(·, dx) to be the Brownian motion transition kernel (over time unit τ). The operator Q is
given by Q = e−τH and the largest eigenvalue of the operator Q is given by λ = e−τE0 .

We ran the DMC algorithm and calculated the fixed lag estimator(3.2) with φ = G. We varied the
lag values from 0 to 50, with N = 10 and n = 50000. In order to calculate the bias and the variance we
conducted 128 independent runs. For each lag value, we obtain an estimator of λ. Lag 0 case corresponds
to the standard method the DMC particles are used to estimate λ. Non-zero lag values correspond to
the estimators studied in this paper. Corollary 4.1 predicts that for a fixed number of particles N and a
large n, the bias will decay at an exponential rate. Figure 1 presents two plots, one for the absolute bias
and one for the log absolute bias each plotted against the different lag values. The figure exhibits a linear
trend in the log absolute bias plot which affirms the statement about the exponential decaying bias stated
in Corollary 4.1.
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Figure 1: Bias Comparison. Left: Absolute Bias vs Lag. Right: Log Aboslute Bias vs Lag.

Let (ξi)i≥0 and (ξ̃i)i≥0 be identically distributed and independent DMC particles. Consider the fol-
lowing two estimators:

µ̄l,Nn =
1
n

∑
0≤k≤n FG(ξk, . . . , ξk+l)

1
n

∑
0≤k≤n F1(ξk, . . . , ξk+l)

, µ̃l,Nn =
1
n

∑
0≤k≤n FG(ξk, . . . , ξk+l)

1
n

∑
0≤k≤n F1(ξ̃k, . . . , ξ̃k+l)

.

Figure 2 shows the variance of both estimators under the same setting used for the bias simulation above.
The simulation results indicate that the variance of the estimator µ̄l,Nn is much smaller than the variance
of µ̃l,Nn . This is because we expect that the numerator and denominator of µ̄l,Nn are highly positively
correlated which reduces the overall variance of the estimator µ̄l,Nn . Moreover, comparing Figures 1 and
2 reveals an opposing trend between the bias and the variance as the lag value increases. The bias
exponentially decreases, while the variance increases.
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A Feynman-Kac formula in physics
In physics we are interested in solving the imaginary-time dependent Schödinger equation

∂ψ(x, t)

∂t
= −Hψ(x, t) (A.1)

with some function ψ(x, 0) as initial condition and x ∈ E = Rd with d ≥ 1. Here, H is the Schrödinger
Hamiltonian given by

H = −1

2
∇2 + V (x).

The solution of Eq.(A.1) is expressed using the Feynman-Kac formula as follows

ψ(x, t) = Ex[e
−

∫ t
0
dsV (X(s))]

where the expectation Ex is with respect to the law of the Brownian process with initial distribution
ψ(x, 0) and final condition X(t) = x. Using the notations of the present article, this FK formula can be
put into the form

γt(ϕ) ≡
∫
dxϕ(x)ψ(x, t) = E[ϕ(X(t))e−

∫ t
0
dsV (X(s))].

In DMC the continuous time variable needs to be discretized. Writing t = nτ where τ is a time-step (a
"small" positive quantity), γt(ϕ) is approximated by

γn(ϕ) = E[ϕ(Xn)

n−1∏
p=0

G(Xp)] (A.2)

with G(x) = e−τV (x) and initial distribution η0(x) = ψ(x, 0). As seen, γn(ϕ) is the unrenormalized
Feynman-Kac measure introduced in this work, see section 2.2, with operator Q given by e−tH .

In physics where the number of degrees of freedom d of the quantum systems studied is large (typically,
d is proportional to the number of physical particles), DMC calculations using Eq.(A.2) are just unfeasible
because of the uncontrolled fluctuations of G(x). In practice, this problem is solved by introducing impor-
tance sampling. Let ψG : E → R+ be a so-called guiding wavefunction (in practice, a good approximation
of the ground-state wavefunction). Let us introduce the distribution f(x, t) = ψG(x)ψ(x, t). The partial
differential equation obeyed by f is easily shown to be

∂f(x, t)

∂t
= Lf(x, t)− EL(x)f(x, t)

where L is a Fokker-Planck operator written as

L =
1

2
∇2 −∇[b.] (A.3)

where the drift vector is b(x) = ∇ψG
ψG

and EL(x) is a new potential function, called the local energy, given
by

EL(x) =
HψG
ψG

. (A.4)

The FK formula, Eq.(A.2), becomes

γn(ψGϕ) = E[ϕ(Xn)

n−1∏
p=0

G(Xp)]

where the expectation, E, now refers to the law of the drifted Brownian process associated with the
Fokker-Planck operator, Eq.(A.3), the weight is G(x) = e−τEL(x), and the initial condition is η0(x) =

ψG(x)ψ(x, 0). Note that the operator Q is now given by Q = e
−τψGH 1

ψG .
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Introducing importance sampling has two important consequences which make in practice the DMC
simulations feasible. First, the drift contribution of the Markow kernel "pushes" the particles toward the
regions where ΨG is important (large), thus avoiding to accumulate statistics in regions where the product∏n−1
p=0 G(Xp) is (very) small. Second, the statistical fluctuations of the weights are much reduced since

the variations of the local energy, Eq.(A.4), are directly related to the quality of the approximate guiding
wavefunction (no fluctuations when ψG is the exact ground-state).

B Proofs

B.1 Structure of Appendix
This appendix is split into two sections. The first is Section B.2 which considers some technical results
for Markov chains, which are applied particularly for the proof of Theorem 4.1 and also Section B.2.1
used for the proof of Theorem 4.3. Section C houses all the proofs for Theorem 4.2. Throughout this
appendix C is generic finite constant whose value may change from line-to-line of the computations and
any dependencies in terms of the parameters of DMC or of FK models will be made clear in each context.

B.2 Technical Results for Markov Chains
The notations in this section, in particular the symbols used, should be taken as independent of the main
text. The reason for this is that these results are of independent interest and do not need the notation
of DMC to be written. We consider a time-homogenous Markov chain on general state-space (X,X ) of
initial distribution µ and kernel K, with the latter having invariant measure π. Let l ∈ N be fixed and
consider for φ ∈ Bb(X)

1

n

n∑
q=1

φ (Xq:q+l−1) .

We shall prove, under assumptions, convergence of the above quantity to

π ⊗K⊗(l−1)(φ) =

∫
Xl
φ(x1:l)π(dx1)

l∏
j=2

K(xj−1, dxj)

where we use the notation x1:l = (x1, . . . , xl).

(H1) There exists a (ϵ, ν) ∈ (0, 1)× P(X) such that for any (x,A) ∈ X×X we have∫
A

K(x, dy) ≥ ϵ

∫
A

ν(dy).

Proposition B.1. Assume (H1). Then for any p ≥ 1 there exist a C < +∞ such that for any (n, l, φ) ∈
N2 × Bb(Xl):

E

[∣∣∣∣∣ 1n
n∑
q=1

φ (Xq:q+l−1)− π ⊗K⊗(l−1)(φ)

∣∣∣∣∣
p]1/p

≤ C∥φ∥lϵ−1

√
n

where ϵ is as (H1) and ∥φ∥ = supx∈Xl |φ(x)|.

Proof. Define the function

φ̂(x1:l) =
∑
q≥0

{
(K⊗l)q(φ)(x1:l)− π ⊗K⊗(l−1)(φ)

}
(B.1)
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where for q ∈ N

(K⊗l)q(φ)(x1:l) =

∫
Xlq

φ(xq1:l)

q∏
j=1

K⊗l(xj−1
1:l , dx

j
1:l)

=

∫
Xlq

φ(xq1:l)

q∏
j=1

{
l∏

k=1

K(xjk−1, dx
j
k)

}

with x01:l = x1:l and xj0 = xj−1
l (notice that there is 0 subscript of x in the first line). In the summand in

(B.1) if q = 0 we set (K⊗l)q(φ)(x1:l) = φ(x1:l). Note that because of (H1) it easily follows that

sup
x1:l∈Xl

|φ̂(x1:l)| ≤ 2ϵ−1∥φ∥.

Then it is easy to check that for any x1:l ∈ Xl

φ(x1:l)− π ⊗K⊗(l−1)(φ) = φ̂(x1:l)−K⊗l(φ̂)(x1:l)

= φ̂(x1:l)−K⊗l(φ̂)(xl).

Now, denoting the natural filtration of the Markov chain (Xk)k≥0 as (Fk)k≥0, we remark that

E[φ (Xq:q+l−1) |Fq−1] = K⊗l(φ̂)(xq−1).

Therefore it easily follows that

1

n

n∑
q=1

{
φ (Xq:q+l−1)− π ⊗K⊗(l−1)(φ)

}
=

1

n

n∑
q=1

{
φ̂(xq:q+l−1)−K⊗l(φ̂)(xq)

}
=

1

n
{Mn +Rn} (B.2)

where

Mn =

n∑
q=1

{
φ̂(xq:q+l−1)−K⊗l(φ̂)(xq−1)

}
Rn =

{
K⊗l(φ̂)(x0)−K⊗l(φ̂)(xn)

}
.

Then combining (B.2) with the Minkowksi inequality we have that

E

[∣∣∣∣∣ 1n
n∑
q=1

φ (Xq:q+l−1)− π ⊗K⊗(l−1)(φ)

∣∣∣∣∣
p]1/p

≤ E
[∣∣ 1
nMn

∣∣p]1/p + C∥φ∥ϵ
n

(B.3)

Now we adopt the notation for any (q, r) ∈ {1, . . . , n} × {0, . . . , l − 1}

K⊗(l−r−1)(φ̂)(xq:q+r) :=

∫
Xl−r−1

φ̂(xq:q+l−1)

q+l−1∏
j=q+r+1

K(xj−1, dxj) (B.4)

K⊗(l−r)(φ̂)(xq:q+r−1) :=

∫
Xl−r

φ̂(xq:q+l−1)

q+l−1∏
j=q+r

K(xj−1, dxj) (B.5)

with the convention that xq:q−1 = xq−1. We will also write

K⊗(0)(φ̂)(xq:q+l−1) = φ̂(xq:q+l−1). (B.6)
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Then we have that

Mn =

n∑
q=1

l−1∑
r=0

ξq,r (B.7)

where
ξq,r := K⊗(l−1−r)(φ̂)(xq:q+r)−K⊗(l−r)(φ̂)(xq:q+r−1).

Now set

Mn(r) :=

n∑
q=1

ξq,r

and note we clearly have Mn =
∑l−1
r=0Mn(r). For r ∈ {0, . . . , l − 1} fixed define the filtration Fr

q :=
σ(X0, . . . , Xq+r), q ≥ 1 with Fr

0 := σ(X0). Then it is clear that Mn(r) is a Fr
n−martingale. Then

applying the Minkowski inequality l−times followed by the Burkholder-Gundy-Davis inequality l−times,
we obtain the upper-bound:

E
[∣∣ 1
nMn

∣∣p]1/p ≤ C∥φ∥lϵ−1

√
n

and then combining the above upper-bound with (B.3) allows us to conclude.

B.2.1 Central Limit Theorems

Recall the definitions in (B.1) and (B.4)-(B.6) and set for (l, k, φ) ∈ {2, 3, . . . } × {l, l + 1, . . . } × Bb(Xl)

σ2
φ :=

∫
Xl−1

φ̃(xk−l+1:k−1)π(dxk−l+1)

k−1∏
s=k−l+2

K(xs−1, dxs) (B.8)

φ̃(xk−l+1:k−1) =

∫
X

 l−1∑
j=0

K⊗(l−1−j)(φ̂)(xk−j:k)

2

K(xk−1, dxk)−

 l−1∑
j=0

K⊗(l−j)(φ̂)(xk−j:k−1)

2

.

(B.9)

Below we use d−→ to denote convergence in distribution as n increases.

Proposition B.2. Assume (H1). For any (l, φ) ∈ {2, 3, . . . } × Bb(Xl) we have

1√
n

n∑
q=1

(φ (Xq:q+l−1)− π ⊗K⊗(l−1)(φ))
d−→ N (0, σ2

φ)

where σ2
φ is defined in (B.8)-(B.9).

Proof. We follow the notation of Proposition B.1. We have | 1√
n
Rn| ≤ C∥φ∥ϵ/

√
n → 0. For 1√

n
Mn we

have the representation

Mn =
1√
n

n∑
k=l

l−1∑
j=0

ξk−j,j +
1√
n

l−1∑
k=1

l−k∑
j=0

ξk,j +
1√
n

n∑
k=n−l+1

l−1∑
j=n−k+1

ξk,j .

The number of terms in the second and third terms on the R.H.S. is O(l2) and all the terms are bounded
thus they approach zero as n → ∞. For the first term, we use the Martingale array CLT ([21, Corollary
3.1]). Notice that

∑n
k=l

∑l−1
j=0 ξk−j,j is a F0

n-martingale. Let δ > 0, we have

n∑
k=l

E


 1√

n

l−1∑
j=0

ξk−j,j

2

1{|x|>δ}

 1√
n

l−1∑
j=0

ξk−j,j

∣∣∣∣F0
k−1

 ≤ 1

n3/2δ

n∑
k=l

E


 l−1∑
j=0

ξk−j,j

3 ∣∣∣∣F0
k−1


≤ 8l3(n− l + 1)∥φ∥ϵ−1

n3/2δ
−→ 0.
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For the asymptotic variance, noting (B.9), we use the definition of ξk−j,j and write

n∑
k=l

E


 1√

n

l−1∑
j=0

ξk−j,j

2 ∣∣∣∣F0
k−1

 =
1

n

n∑
k=l

φ̃(Xk−l+1:k−1) →P σ
2
φ,

where →P denotes convergence in probability as n grows and this follows from Proposition B.1.

Proposition B.3. Assume (H1). For any (l, φ, ψ) ∈ {2, 3 . . . } × Bb(Xl)2 we have

√
n

(
1
n

∑n
q=1 φ(Xq:q+l−1)

1
n

∑n
q=1 ψ(Xq:q+l−1)

− π ⊗K⊗(l−1)(φ)

π ⊗K⊗(l−1)(ψ)

)
d−→ N (0, σ2

τ ),

with τ = 1
π⊗K⊗(l−1)(ψ)

φ− π⊗K⊗(l−1)(φ)
(π⊗K⊗(l−1)(ψ))2

ψ.

Proof. Using the delta method, the limit is the same as

1

π ⊗K⊗(l−1)(ψ)

1√
n

(
n∑
q=1

φ(Xq:q+l−1)− π ⊗K⊗(l−1)(φ)

)

− π ⊗K⊗(l−1)(φ)

(π ⊗K⊗(l−1)(ψ))2
1√
n

(
n∑
q=1

ψ(Xq:q+l−1)− π ⊗K⊗(l−1)(ψ)

)
.

Similar to Proposition B.2 we use the decomposition

ξq,r =
1

π ⊗K⊗(l−1)(ψ)

(
K⊗(l−1−r)(φ̂)(xq:q+r)−K⊗(l−r)(φ̂)(xq:q+r−1)

)
− π ⊗K⊗(l−1)(φ)

(π ⊗K⊗(l−1)(ψ))2

(
K⊗(l−1−r)(ψ̂)(xq:q+r)−K⊗(l−r)(ψ̂)(xq:q+r−1)

)
=K⊗(l−1−r)(τ̂)(xq:q+r)−K⊗(l−r)(τ̂)(xq:q+r−1)

(B.10)

and doing similar calculations we get the desired result.

Proposition B.4. Assume (H1). Let (X̃q)q≥0 be an independent copy of (Xq)q≥0. For any (l, φ, ψ) ∈
{2, 3 . . . } × Bb(Xl)2 we have

√
n

(
1
n

∑n
q=1 φ(Xq:q+l−1)

1
n

∑n
q=1 ψ(X̃q:q+l−1)

− π ⊗K⊗(l−1)(φ)

π ⊗K⊗(l−1)(ψ)

)
d−→ N (0, σ2)

with

σ2 =
1

(π ⊗K⊗(l−1)(ψ))2
σ2
φ +

(π ⊗K⊗(l−1)(φ))2

(π ⊗K⊗(l−1)(ψ))4
σ2
ψ,

where σ2
φ and σ2

ψ are defined via (B.8).

Proof. By the delta method the distributional limit of

√
n

(
1
n

∑n
q=1 φ(Xq:q+l−1)

1
n

∑n
q=1 ψ(X̃q:q+l−1)

− π ⊗K⊗(l−1)(φ)

π ⊗K⊗(l−1)(ψ)

)
is the same as the distributional limit of

1

π ⊗K⊗(l−1)(ψ)

1√
n

(
n∑
q=1

φ(Xq:q+l−1)− π ⊗K⊗(l−1)(φ)

)

− π ⊗K⊗(l−1)(φ)

(π ⊗K⊗(l−1)(ψ))2
1√
n

(
n∑
q=1

ψ(X̃q:q+l−1)− π ⊗K⊗(l−1)(ψ)

)
The result follows because of the independence of (Xq)q≥0 and (X̃q)q≥0 and the CLT for each term.

17



C L1−Proofs
Lemma C.1. We have the following decomposition for any (n, l,N, φ) ∈ N0 × N2 × Bb(E) whenever the
formulae exist:

µl,Nn (φ) =
1

n

n−1∑
p=0

ηNp Q
l(φ) +

1√
N

V l,Nn (φ)

where

V l,Nn (φ) :=
1

n

n−1∑
p=0

l∑
k=1

γNp+k(1)

γNp (1)
V Np+k(Q

l−k(φ))

V Nn (φ) :=
√
N
(
ηNn (φ)− Φ

(
ηNn−1

)
(φ)
)
.

Proof. We start by noting that

γNp+l − γNp Q
l =

l∑
k=1

(
γNp+kQ

l−k − γNp+(k−1)Q
l−(k−1)

)
.

Conversely, we have

ηNp+(k−1)Q
l−(k−1) = ηNp+(k−1)QQ

l−k = ηNp+(k−1)(G)
ηNp+(k−1)QQ

l−k

ηNp+(k−1)Q(1)
= ηNp+(k−1)(G) Φ

(
ηNp+(k−1)

)
Ql−k.

This yields the decomposition

γNp+l − γNp Q
l =

l∑
k=1

γNp+k(1)
(
ηNp+k − Φ

(
ηNp+(k−1)

))
Ql−k

from which we check that

γNp+l(φ)

γNp (1)
− ηNp Q

l(φ) =
1√
N

l∑
k=1

γNp+k(1)

γNp (1)
V Np+k(Q

l−k(φ))

with the centered local perturbation random fields

V Nn =
√
N
(
ηNn − Φ

(
ηNn−1

))
.

This implies that

µl,Nn (φ) =
1

n

n−1∑
p=0

ηNp Q
l(φ) +

1√
N

V l,Nn (φ)

with

V l,Nn (φ) :=
1

n

n−1∑
p=0

l∑
k=1

γNp+k(1)

γNp (1)
V Np+k(Q

l−k(φ))

which completes the proof.

Lemma C.2. Assume (A1). Then there exists a C ∈ (0,∞) such that for any (n,N, l, φ) ∈ N0 × N2 ×
Bb(E):

E
[∣∣∣∣µl,Nn (φ)− µln(φ)

µln(1)

∣∣∣∣] ≤ C∥φ∥l√
N

.
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Proof. Using Lemma C.1 and the fact that

µln(φ) =
1

n

n−1∑
p=0

ηp(Q
l(φ))

we have that by the Minkowski inequality

E
[∣∣∣∣µl,Nn (φ)− µln(φ)

µln(1)

∣∣∣∣] ≤ T1 + T2

where

T1 =
1

nµln(1)

n−1∑
p=0

E
[∣∣ηNp (Ql(φ))− ηp(Q

l(φ))
∣∣]

T2 =
1

nµln(1)

n−1∑
p=0

l∑
k=1

E

[∣∣∣∣∣γNp+k(1)γNp (1)

{
ηNp+k(Q

l−k(φ))− Φ
(
ηNp+k−1

)
(Ql−k(φ))

}∣∣∣∣∣
]
.

We deal with T1 and T2 individually to conclude.
For T1 one has

T1 =
1

nµln(1)

n−1∑
p=0

ηp(Q
l(1))E

[∣∣∣∣ηNp ( Ql(φ)

ηp(Ql(1))

)
− ηp

(
Ql(φ)

ηp(Ql(1))

)∣∣∣∣] .
By using standard L1−bounds for Feynman-Kac formula (e.g. [11, Theorem 7.4.4.]) it follows that

T1 ≤ C
1

n
√
Nµln(1)

n−1∑
p=0

ηp(Q
l(1))

∥∥∥∥ Ql(φ)

ηp(Ql(1))

∥∥∥∥ .
By (A1) one can show that for any s ∈ N0

sup
p≥0

∥∥∥∥ Qs(φ)

ηp(Qs(1))

∥∥∥∥ ≤ C∥φ∥ (C.1)

where C does not depend upon s; see [10, Lemma 4.1] for example. Therefore we have shown that

T1 ≤ C∥φ∥√
N

.

For T2 using the conditional i.i.d. property of the particle system one has

T2 ≤ C

n
√
Nµln(1)

n−1∑
p=0

l∑
k=1

ηp(Q
l−k(1))

∥∥∥∥ Ql−k(φ)

ηp(Ql−k(1))

∥∥∥∥E
[
γNp+k(1)

γNp (1)

]

and then using (C.1)

T2 ≤ C∥φ∥
n
√
Nµln(1)

n−1∑
p=0

l∑
k=1

ηp(Q
l−k(1))E

[
γNp+k(1)

γNp (1)

]
.

Now

E

[
γNp+k(1)

γNp (1)

]
= ηp(Q

k(1))E
[
ηNp

(
Qk(1)

ηp(Qk(1))

)]
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so combining with (C.1) yields

T2 ≤ C

n
√
Nµln(1)

n−1∑
p=0

l∑
k=1

ηp(Q
l−k(1))ηp(Q

k(1)).

Now due to (A1) there exist finite and positive constants C, C̄ so that for any (x, y) ∈ E2 and any s ∈ N0

C̄Qs(1)(y) ≤ Qs(1)(x) ≤ CQs(1)(y)

so that it follows that there exists a finite C that does not depend on p, k, l or ηp so that

ηp(Q
l−k(1))ηp(Q

k(1))

ηp(Ql(1))
≤ C.

Hence

T2 ≤ C∥φ∥lµln(1)√
Nµln(1)

=
C∥φ∥l√

N

and this concludes the proof.

Remark C.1. Extending Lemma C.2 and hence Theorem 4.2 to Lq−is challenging as one has to control
the moment

E

[∣∣∣∣∣γNp+k(1)γNp (1)

∣∣∣∣∣
q]1/q

.

This is particularly simple when q = 1, but even the case q = 2 is not trivial; see [10] for instance.
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