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Abstract

In parallel to the ever-growing usage of mechanized proofs in diverse areas of mathe-
matics and computer science, proof assistants are used more and more for education. In
this talk, we will provide a survey of the different works related to the use of proof as-
sistants for teaching. This includes works where the authors report on their experiments
using proof assistants to teach logic, mathematics or computer science, as well as designs
or adaptations of proof assistants for teaching. We provide an overview of both tutoring
systems that have been designed for teaching proof and proving, or general-purpose proof
assistants that have been adapted for education, adding user interfaces and/or dedicated
input or output languages.

Introduction

The story of proof assistants originates in 1968 with Automath developed by De Bruijn [24].
Two categories of software can be identified.

Automatic Theorem Provers (ATP) take a statement as input (often expressed in a language
supporting First Order Logic) and act as a black box to determine if the statement is universally
true or if a counter-example can be produced. CVC-5, Z3, Vampire, Superposition are some
famous examples.

On the other hand, Interactive Theorem Provers (ITP) check for validity formal proofs
designed and written by a human user in a dedicated programming language, as expressive as
possible (i.e. supporting high order logic (HOL) or dependent type theory (DDT)). In ITPs,
some automation is provided to help the user fill in parts of the proof considered trivial by a
human being. The proof state (current goal and hypothesis) is displayed at any point of the
proof.

Since the 1960s, numerous Interactive Theorem Provers, also called Proof Assistants, have
been developed. Among the most famous still widely used nowadays are Mizar [76], Agda [74,
83], Coq [37, 32], HOL-Light [49] Isabelle [82] and Lean [40]. All these systems mainly differ in
the size of their kernels, the underlying foundations and the expressiveness of their language1.

These ITPs have been successfully used in mathematics to formally verify proofs containing
computer code (famous examples are proofs of the four-color theorem by Appel and Haken in
1976, formally verified by Gonthier in 2008 [48] and the Kepler conjecture - Hales theorem,
proved by Hales in 1998 following Toth in 1953 and formally verified by the FlySpeck project
in 2006 in Isabelle [52, 53]), and also in software verification (an example is the C compiler
CompCert verified by Coq in 2016 [67]).

The growing role of formalization in mathematics and computer science (the most famous
example being the formalization and proof of the four-color theorem [48]) has at the same time

1As the detailed description of each of these proof assistants is out of the scope of this paper, the reader can
refer [47, 78, 113] for a survey about proof assistants.
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stimulated the use of proof assistants in education, especially for teaching mathematics, logic,
and computer science. In this talk, we will provide a survey of the different works related to
the use of proof assistants for teaching.

Section 1 exposes a variety of teaching experiences using proof assistants, from undergrad-
uate mathematics to quasi-expert manipulation of program proofs. Section 2 describes adapta-
tions that have been made to adapt the tools themselves, and also their user interfaces, to the
special needs of education. We dedicate Section 3 to natural language interfaces.

1 Teaching experiments using proof assistants

From the 70’s, with the first reported experiences using Mizar, to now, the literature is full of
experiences that somehow reflect the existing status of proof assistants: their expressiveness, of
course, and also the publicity that often comes from their usage in research developments. In
this section, we report a variety of teaching experiences using teaching assistants, at different
levels from undergraduate to master, and targeting various topics, from logic to more advanced
formal verification of programs.

1.1 Teaching logics and meta-theory

The first experience of teaching (propositional) logic using proof assistants dates back to 1975,
with the Mizar software. Matuszewski, Rudnicki and Trybulec developed an environment based
on Mizar dedicated to teaching logic [106]. This experiment, conducted at the Warsaw Univer-
sity, is described in the more recent paper [76].

Similarly, other proof assistants have been widely used in the last 40 years as computer
artifacts to support teaching logic-related topics such as propositional logic, induction, or set
theory. The Coq Wiki [101, 102] reports a list of such experiences with Coq.

Teaching regarding logical and predicate logic can rely on relatively low additional machin-
ery as proof assistants expose natively their underlying logic. Exercising natural deduction,
sequent-calculus is thus relatively straightforward. Other authors such as Villadsen and its co-
authors have proposed using proof assistants with a deep embedding of some calculus, allowing
formalization of meta-theory to teach both logic and automated deduction [107, 44, 108].

1.2 From logics to mathematical proofs

Mathematical proofs are not all captured by the manipulation of logical artifacts, and the
previous teaching experiences, although beneficial since they enable the formal (and quasi-
syntactic) manipulation of proofs, quickly show their limit as they do not capture all subtleties
of even undergraduate mathematics. Many experiences thus relate courses and even sequences
of courses elaborating on a continuum of concepts from propositional logics to analysis via set
theory, functions and relations, number theory, calculations and induction.

Following the initial experiment at University of Warsaw cited in Section 1.1, Retel and
Zalewska relate [90] that different flavors of Mizar were then used, mostly at the University of
Warsaw, but also at other institutions, to also teach axiomatic geometry (1985), introduction
to mathematics (1987), topology (c.a. 1990). In the same paper, the authors describe their own
teaching experience with 1st-year students in Bialystok learning formalization of mathematics,
logic, and set theory with Mizar.

Blanc, Giacometti, Hirschowitz and Pottier proposed in 2007 a software learning environ-
ment based on Coq [17] to teach undergraduate mathematics.
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In [58], the authors report on four different experiments teaching mathematics in Orsay,
Montpellier, Paris, and Strasbourg using Coq, Edukera and Lean.

From 2014 to 2018, Avigad, Lewis, and Van Doorn taught an undergraduate mathematics
course where proofs in natural language, symbolic logic and natural deduction, and the language
of the Lean3 theorem prover were presented as 3 distinct languages to avoid confusion between
all these activities. However, they “emphasize that the latter two components are carried
out in service of the first.” [8]. The course covered the following topics: propositional logic,
elementary set theory, relations and functions, natural numbers and induction, elementary
number theory, finite combinatorics, construction of real numbers, and theory of infinite, but
only the first four chapters were worked out using the Lean3 prover. At the Sorbonne University,
a front-end to Lean (Deaduction [58]) was also used as an executable support to teach 1st-year
undergraduate maths (algebra (sets, functions), analysis (limits, continuity)). [105] reports
the development of a 1st-year undergraduate mathematics course at Université Grenoble-Alpes
in 2022, complementing the main math class, where students used in parallel Edukera [93]
and Lean3 to explore the mathematics formal language, propositional logic, natural numbers,
functions, and an overview of real analysis (numerical sequences and limits). Notably, the
originality of this course is the dual navigation between two different tools.

At Fordham University, Heather MacBeth ran a 1st-year undergraduate mathematics course
entitled “The Mechanics of Proof”, [73] as a sequence of worked examples and exercises. Each
statement is proved first with a natural language style, and then in Lean4. The course starts
with very elementary “proofs by calculation”, and progressively introduces logic connectives
(first with familiar examples, with numbers), and then natural numbers and induction, divisi-
bility and number theory, functions, sets and relations.

These individual experiences all rely on the fact that proof assistants provide a way to
check student proofs, with various possible adaptations that we shall develop later (Section 2).
Nevertheless, there are relatively few analyses of the impact of such new student skills on the
concrete ability to understand and write classical “pen and paper” proofs. One such notable
work is [18], in which the authors report a precise pedagogical method introducing three
intermediate levels of formality to transition from a Coq proof to a textbook proof advocating
that “the difficulty and the value of transferring the skill of proving in a proof assistant to
the skill of textbook proving is extremely underestimated.”. In [9], Bartzia et. al. studied
the potential impact of different features of proof assistants. Thoma et. al. [104] report on
the effect on proof production and proof writing after using the Lean proof assistant. They
conclude on clear progress but not for all the problems related to the development of textbook
proofs: they conclude that at least for computer science students the formalism is not the main
difficulty in learning proof, and that starting undergraduate studies with the use of “a suitable
proof assistant” is valuable.

1.3 Proofs assistants and program verification

Proof assistant machinery beyond propositional logics is also taught “for itself”: as some ex-
amples, the Coq wiki [102] mentions: a Theoretical Foundations of Theorem Proving Systems,
by Pawe l Urzyczyn, in 2006 at Warsaw University; and also a class on Automated Theorem
Proving, conducted by Andrew W. Appel, in 2007 at Princeton University. There are also
classes about Coq in Strasbourg and many other universities.

More interestingly, the increasing usage of proof assistants in the formal verification research
community had a strong impact on the evolution of graduate programs in computer science. In
this particular domain, the proofs are all done by induction on the syntax of the programming
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languages which consist of many cases that are easier to deal with using a proof assistant,
and the research specialists have made their graduate courses evolve in the same way as their
research activities. As few examples, the proof assistant Coq has for example been used at the
ENSTA french engineering school, for a course on software safety; and at ENIEE-CNAM for a
master-level class on formal methods and specification languages.

Proof assistants are here used as a way to automatize proofs checks, or semantics specifi-
cation, but not for themselves, as advocated by Tobias Nipkow that uses HOL/Isabelle (and
the Isabelle/Isar high level language [111] for proof scripts) as a support of its graduate course
about semantics and Hoare’s logic [81].

Similarly, [43] reports and compares a few experiences teaching formal verification with
various proof assistants such as PVS (the Prototype Verification System). Bertot has also
given a course about programming language semantics using Coq [14].

In 2005, Delahaye reported on an experience of teaching an introduction to programming
languages semantics course with Coq to fifth-year students [41]. The course was associated with
a workshop about the design of certified software. The author asserts the students benefited
from the practical nature of the course, finding it easier to start programming while receiving
instant feedback than to specify and prove theorems on paper without feedback.

Perhaps the best-known material in this line of program verification and foundations of
programming languages is the series of 6 volumes entitled Software Foundations [86], initiated by
Benjamin Pierce, which served as a basis for a software verification course he gave at University
of Pennsylvania [85], and many courses after him over the world.

Finally, Coq and other proof assistants are at the heart of the courses and seminars on
program reasoning, coordinated by Xavier Leroy in 2020, at Collège de France [66].

2 Specializing proof assistants for education

The variety of teaching experiences, in terms of purpose, types of students, and the studied area,
has unsurprisingly led to the observation of the necessity of a specialized proof environment.
The teachers face the following difficulties: the necessity to teach a new specific language as
a premise of the course itself; the proof steps granularity, which often is too fine grain for the
desired effect; the action of transferring to full “pen and paper” proof; and finally, the question
of feedback.

In this section, we review some proof assistants specifically dedicated to education (Sec-
tion 2.1); some interface adaptations to state-of-the-art proof assistants (Section 2.2); and then
enumerate some tutoring fonctionalities based on the improvement of feedback added to existing
proof assistants (Section 2.3).

2.1 Some proof assistants dedicated to education

Teachers, or didacticians, have designed proof assistants specialized to their educational pur-
pose. A special focus is placed on the graphical user interfaces (GUIs), on tutoring, and on
simplified language interfaces. As a special case, the proof assistants dedicated to geometry
form a huge part of this category.

Logics In the textbook “A logical approach to discrete math”, by Gries and David [51], the
authors develop a mechanized simple language to express the solutions of exercises in logic.
Realizing that students needed more feedback, Wolfram Kahl developed in 2011 CalcCheck,
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a proof-checker able to verify if LATEX-formatted sheets expressing proofs in this language are
correct [55].

Jape [19], developed by Surin and Bornat at the University of Oxford in 1996, is a proof
editor in first-order logic integrating a graphical user interface, designed to be easy to use by
beginners. The interface displays lists of definitions and conjectures, it can display proofs in a
boxed Fitch-style.

PhoX is a proof assistant with High-order logic (à la HOL/Isabelle) since 2018 by Raffali
specifically to teach logic to 3rd-year and 4th-year master students [89]. PhoX provides a
graphical user interface through XEmacs, thanks to its support by ProofGeneral [7], over a
limited number of tactics, designed to ease usability.

There also exists some educational point-and-click environments aimed at solving logic puz-
zles, in propositional and first-order logic: among them, we can cite The incredible proof machine
by Breitner [20], the Logic Puzzle proof game of Lerner [65], QED by Terence Tao [98] or Carnap
by Leach-Krous [63].

Undergraduate mathematical proofs PhoX [89]’s environment also comes with some
analysis topics (limits continuity, intermediate value theorem), topology (properties of closures,
of connected sets), and algebra and number theory (symmetric group, rings, prime numbers),
thought for undergraduate students.

Lurch is described by its authors, Carter and Monks, as a word processor enabling to
typeset maths [31], equipped with verification features designed for student use. In a graphical
environment, the user enters a mathematical text in natural language, but selects specific
expressions to mark them as “meaningful”. Lurch verifies the logical coherence of meaningful
expressions and provides feedback, and ignores the rest of the text. Three levels of input
constraints and automation are available: formal proofs, semi-formal proofs, and expository
proofs. The teacher can prepare a dedicated rule set (logic system, axioms). The system can
act as a tutor, grading, coaching and providing hints. Two experiments using Lurch with
students were conducted [30].

Diproche (“DIdactical PROof CHEcking”) checks student solutions to proving exercises
written in a controlled natural language [29] (The authors present it as an educational variant
of Naproche [61]). Its language is adapted to specific areas common in introductory courses to
proof method, and supports exercises in propositional logic, set theory, functions and relations,
number theory, axiomatic geometry, and elementary group theory. An ATP is used to provide
feedback to check inference steps, detect typical error patterns and provide counterexamples to
false claims. The set theory number theory modules of the system were used in 2020/2021 in
a first-semester course at the University of Flensburg.

Edukera has been developed in 2016 by Rognier and Duhamel [93]. It appears as a web
interface: the user interacts with the software by pointing and clicking, there is no text-based
language to typeset. A database of 900 exercises is provided, including 200 formalization
exercises. In formalization exercises, the student is proposed a sentence in French or English
(like “Someone read all books by Victor Hugo”), and is asked to formalize it using quantifiers,
variables and given predicates; to do so, the user has to click on connectives in a prefix order.
The resulting answer is dynamically displayed. In proof exercises, a statement is to be proven.
To show the goal, one must select suited rules to apply (introduction, elimination, apply lemmas,
...); the current state of the proof can be displayed in Fitch style or Gentzen sequent calculus
style.
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The special case of geometry Several e-learning environments have also emerged to sup-
port proof learning in the context of synthetic geometry in secondary education. They differ
from general-purpose proof assistants for two reasons. First, the feedback and error messages
are designed for use in the classroom. Second, the systems are often not of general purpose
from a logical point of view: there are proper proofs that can not be formalized in these systems
(using analytic geometry, using complex numbers, . . . ), the user can not introduce its lemmas or
definitions. These geometric systems do not deal with degenerated cases and hence can present
proofs without case distinctions as a list of modus-ponens steps along with figures displayed
with embedded dynamic geometry software. They usually do not allow reasoning by contra-
diction. There are many such software such as AgentGeom [34], Baghera [110], Chypre [12],
Cabri Euclide [70], Geometrix [50], Geometry Tutor [4], Geometry Explanation Tutor [2], Men-
toniezh [88],QED-Tutrix [64], Turing [91]. They differ in many aspects such as the feedback
they provide to students’ errors and how they can provide hints by computing the distance
from a pre-defined list of solutions or using key steps provided by the teachers, the way proofs
are stored behind the scenes, if they separate the exploration and problem-solving phase of the
exercises, . . . For a survey (in French) comparing these systems from the didactic point of view
see [100].

2.2 Development of user interfaces on top of proof assistants

User interfaces make sense particularly for teaching purposes, as they partly respond to essential
challenges: interactivity and visualization are essential to understand the structure of proofs,
and provide feedbacks; and graphical helpers could help to manipulate the underlying sometimes
complex language.

As programming languages, proof assistants are “naturally” equipped with graphical user
interfaces and development environments. In addition to editing facilities, the ability to update
the proof state was their minimal interactivity requirement. Individual proof assistants often
have their own graphical user interface, like CoqIDE for Coq, XIsabelle [27] or Isabelle/jEdit for
Isabelle. Web interfaces (jsCoq [45] for Coq, Clide [71] for Isabelle, The Lean 4 web editor [80]
for Lean) have the advantage to facilitate maintenance or adoption to large classes. Other
web interfaces include Alfie [103], CoqWeb [17], Waterproof [87], ProofWeb [112], Trylogic [99],
PeaCoq [92].

Among all these interfaces, the Emacs-based front-end ProofGeneral is the most generic
front-end for interactive assistants; which supports more than 10 proof assistants, including Coq,
Isabelle, PhoX, HOL Light and others. The advent of Visual Studio also enabled the diffusion
of provers plugins, with enhanced capabilities. As plugins become more pervasive, some APIs
(Lean Proofwidgets [79]) have been designed for the participative evolution of interfaces for the
most common provers.

An additional and required feature for education is the capability to provide a visualization
of the proof itself: displaying proof trees, Fitch or Genzen style while manipulating these
proof techniques. Our oldest reference is CPT [94], in which “Goal Tree display” was designed
with ergonomy in mind when proceeding forward and backward proofs. Various proof displays
are available for instance in Proofweb, Deaduction [58] and Paperproof [57]. Paperproof is a
Visual Studio Code extension for Lean that displays a boxed proof tree-like representation of
the current active - possibly incomplete - proof. With a clever use of nested boxes, colors and
curved arrows, it manages to render backward chaining as well as forward chaining and variable
scopes. On the proof presentation side, JsCoq and Waterproof provide a “mixed document”
feature that allows the formal proof source code to be embedded into formatted HTML or
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LaTeX content.

Bertot, Thery and Kahn conceived in 1994 a “proof by pointing” algorithm [16] which
associates the backward application of an inference rule and a residual sub-expression to each
possible user selection of a sub-expression of a goal sequent. The implementation results in a
graphical interface that enables the user to direct her proof by selecting sub-expressions, the
tactic corresponding to the inferred rule being automatically applied subsequently to the mouse
selection The software has been implemented in Coq and for other proof assistants (Isabelle,
HOL). These principles were later embedded in a wider multi-process interface first called
CtCoq [13], implemented in Lisp ; PCoq (2001-2003) is a reimplementation in Java [3].

This concept of “proof by pointing” has been used in a variety of proof assistants, used or not
for educational purposes: CtCoq, Papuq [33], CoqWeb, Deaduction, Waterproof, ProveEasy [26],
for instance, proposes such a feature.

Among proofs, interfaces have been developed to help visualize the objects “under proof”
themselves. Geoview, an extension of PCoq designed for geometry [15] and GeoProof [77]
for instance, displays geometric figures. ProofWidgets’ supplied examples include graphical
presentations like commutative diagrams, Venn diagrams, geometry diagrams, animated plots
of parametric functions, and graph representations.

Some extensions have been specially designed to target teaching activities. Some are rather
technical yet important: ProofWeb, Trylogic, ProofLab/AProS [96] as a few, provide access to
exercise database that can be enriched by the teacher; and/or link to existing classical material
to understand a particular proof technique. Deaduction’s database contains exercises in logic,
set theory, functions and relations, and basic analysis, as needed for a first-year undergraduate
course. The Theorem Proving Environment (Epgy project) [97], ProofWeb, and the Trylogic
interface to Moodle provide the ability for the teacher to replay student proofs or track student
progression. Finally, PROOFBUDDY [56] collects “fine-grain” data about the way students
interact with the Isabelle proof assistant.

Other adaptations include “next step guidance” (some of the software cited in “proof by
pointing”, as well as ETPS [5], CPT); eventually based on “proof planning” technique: X-
Barnacle/CLAM [69]; Ωmega Tutor (dialog project) [95]; Tutch (Tutorial Proof Checker) [1].

Theory adaptations, simplifications Papuq is an extension of CoqIde designed for teach-
ing logic and set theory to first-year students at Warsaw University. The authors first propose
to expose only the aspects of Coq type theory that are relevant to teach to students, and slightly
adapt its vocabulary. They discuss the presentation of sets as predicates, partial functions, re-
lations and functions as primitive objects and functional relations. They call these adaptations
“Näıve Type Theory” after Constable [36] and Kozubek [60].

The formalization and manipulation of functions over a subset of a type universe (typically:
a subset of R) or undefined terms (e.g. : undefined division result, limit, derivative, supremum)
with rough proof assistants is known to be an additional burden irrelevant to the study of
undergraduate mathematics. Several authors tried to tackle this difficulty in a teaching context.
Sommer and Nuckols proposed [97] to handle functions and relations defined on a partial domain
(e.g. x 7→ 1/x) by generating side conditions either automatically justified or returned to
the user as “proof obligations” to be proved, the management of the proof obligations being
integrated into the internal system of inference rules. The method has been implemented in the
Theorem Prover Environment (Epgy project). Coen and Zoli adopt a theoretical modelization
of undefined terms by elements of a partial setoid over an asymmetric relation of “quasi equality”
[35]. They implemented their idea in the Matita theorem prover [6].

The CoqWeb interface for Coq was designed to target teaching activities. It features proof
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by pointing and clicking like CtCoq, but does not, on purpose, infer the right tactic from
a pointed expression, since “it was too much an invitation to click without relating it to any
concept”. Instead, the student can choose from a list of possible moves given in informal natural
language, each of which, when clicked, triggers a specific Coq tactic. The original available Coq
tactic library has been restricted to the minimum necessary for educational purposes, and some
of them have been adapted to provide modes: in student-guided mode, a hint is provided for
the next move; in teacher mode, expert teachers can declare definitions, axioms and exercises.

Other tools (Waterproof, ProveEasy, TPE/Epgy, WinKE [39], ETPS) also provide a teacher
mode to provide additional (simplifier) rules and axioms. Finally, Ωmega Tutor, TPE/Epgy
and Tutch provide automation to adapt proof step granularity. proof step granularity.

2.3 Improving the feedback

A major advantage of proof assistants is that they provide immediate feedback on the validity
of a proof step. Error messages returned by the assistant are generally not usable by students:
the feedback is therefore binary. A crucial issue if proof assistants are to be used in teaching,
is that they should be able to provide feedback that sheds light on the error made. Below are
some responses to this problem.

The proof tutor Tutch of Abel, Chang and Pfenning consists of a proof language and a
command line proof checker program which can annotate proof steps; in case of erroneous
or insufficiently justified steps, the program provides error messages, and assumes them to
continue checking to the end of the input. Terms of the proof language are structured by
bracket-surrounded frames corresponding to the scope of introduced symbols or hypotheses.
Several flavors (from proof-term style to assertion level via declarative style) of the language
are available, depending on the teaching activity purpose.

Inspired by the results of the Dialog Project (2001) [11], Dietrich, Benzmüller and Schiller
integrated a tutoring module to the Ωmega proof assistant [10, 95]. The system invites the
student user to a dialog in natural language where she submits her next proof step. The
system replies to the student proposition along three criteria: correctness, proof granularity, or
relevance. In case of too coarse-grained step, the user is prompted for an additional justification.

The idea of introducing “buggy rules” into a problem solver to model bugs in algorithms
or fallacies in students’ reasoning seems to originate in the late 1970s with Brown, Burton and
Larkin [22, 23]. The authors conceived a system for synthesizing a model of pupil misconceptions
in school basic arithmetics, and applied it by designing for student teachers a game simulating
the possible errors of a pupil [21]. Following the same idea, Farrell et al. designed a tutor to teach
how to program in Lisp [42]. This work later inspired Zinn in the 2000s when developing Slopert
aimed at diagnosing errors in symbolic differentiation. Recently, Diproche named anti-ATP [28]
the idea of trying to verify students’ erroneous proof steps with an ATP with false rules or axioms
as input. Different types of false rules (logical fallacies, axioms of erroneous distributivity,
commutativity, monotonicity, or rules of false analogy), based on teaching experience, lead to
the prediction of different possible types of mistakes, thus providing precise feedback to the
students.

3 Proof output or input in natural language

Proof assistants have often been criticized for the fact that their language, which is essentially a
computer language, is too far away from the vernacular of mathematics, and that it requires an
excessive depth of detail in the justifications, masking the key ideas of proofs. These peculiarities
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put off both the mathematical community, which was reluctant to commit to formalization, and
the teaching community, which saw the use of proof assistants as ineffective in transmitting the
language habits of mathematicians.

Based on these observations, many authors have sought to bring the language of proof
assistants closer to the natural language of mathematics, in two main ways :

• Using controlled natural languages (CNL) [62] as input. These are languages that have the
rigor and precision of a programming language, but whose vocabulary, syntactic structure,
and tolerance for ellipses and missing steps allow them to resemble natural language; their
interpretation generally requires a high level of automation.

• Conversely, converters have been developed to convert a proof script in the native language
of a proof assistant into a ”human-readable” language emulating the vernacular language.
The presentation of the output can be formatted, for example in LATEX. The structured
nature of the proof term and the use of interactive formats (html, javascript) allows a
level of detail to be selected by the user.

3.1 Translating formal proof into natural language

Ωmega , implemented in Lisp by Benzmüller [10] is based on a concept of “proof planner”
which consists in identifying different levels of granularity in the proof, using forward and
backward state-space search. It supports ATP integration (Otter) and embeds a computer
algebra system (CAS) to help extract proof plans. It relies on Proverb [54] to output proofs in
a natural language at a user-selectable level of abstraction.

Theorema is an environment been developed since 1995 by Buchberger and then by Wind-
steiger [25, 115] on top of Mathematica (and in the language of Mathematica scripts), which
aims at associating theorem proving with computing and solving facilities. It generates proofs
for statements expressed in untyped higher-order logic, in a style that imitates natural lan-
guage, but seemingly still supports only a few theories (eg predicate logic, induction on natural
numbers).

In 2013, Ganesalingam and Gowers wrote a program that proves elementary undergraduate-
level statements trying to produce a “human-style output” [46]; to do so they try to analyze and
reproduce typical stereotypes mathematicians apply when faced with these kinds of problems.
The outputs of the program were mixed with human solutions written by an undergraduate stu-
dent and a PhD student, and submitted to the internet community to guess which of them were
auto-generated: according to the authors, the results were encouraging in that “the program
did reasonably well at fooling people that it was human”.

3.2 Controlled Natural Languages (CNL)

The first step in this direction was the use of a declarative style [114] in place of procedural style
as input in interactive theorem provers. While the latter consists of a sequence of imperative
orders constructing the proof term (the intermediate statements can generally be omitted or
are considered as simple type ascriptions; they can be computed and dynamically displayed by
the software), the former expects the user to enter a list of statements, like in a traditional
mathematical text, the proof terms justifying these statements being essentially automatically
computed, even if the user can provide hints.

Mizar [76] is probably the first famous interactive theorem prover to accept a declarative
style script. The Isabelle community followed when Wenzel developed the Isar extension in
2007 [111].
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In the 1960s, Glushkov carried out research aimed at designing a system featuring a low-level
inference engine complemented by a high-level reasoner, and parsing a powerful input language
close to the natural mathematical language. These objectives stimulated the work of several
research teams in Kiev in a program called “Evidence Algorithm” [72]. By 1990, a language
(TL - Theory Language) and a parser and prover (SAD - System for Automated Deduction)
were developed in a Russian version. This work was later taken up by Andriy Paskevych in
Paris during his PhD thesis [84]. TL evolved to ForTheL (Formula Theory Language), SAD
was rewritten in English, the inference engine based on external ATPs, and theoretical advances
enabled the development of the reasoner. Independently, Bonn, Schröder, Koepke, Kühlwein
and Cramer were pursuing similar goals - a controlled natural language associated with an
adapted prover [61, 38]. The Naproche system was developed during Cramer’s PhD thesis in
2013 and later merged with SAD, enriching the language ForTheL and extending the parser
to support LaTeX input [59]. The program has been integrated into Isabelle IDE and benefits
from the user interface and the access to the ATPs but do not share any logical connection with
Isabelle prover [68].

On top of Ωmega discussed above, Autexier and Wagner developed PlatΩ, a “mediator
between text editors and proof assistance systems” [109] which allows the user to enter her
statements in a CNL named PL (proof language). PlatΩ converts the input into a format
understandable by Ωmega ; in return, hints or completed proofs from Ωmega are converted by
PlatΩ into PL to be displayed by the editor (Texemacs).

Lean Verbose is a controlled natural language in development since 2021 by Patrick Massot,
implemented as a set of user-defined tactics in Lean4 [58, 75]. According to the author, using
this tactic language is not easier to learn than the core Lean language but using it improves
students’ performance while transitioning to handwritten proofs.

With Waterproof [87] (2018), Jim Portegies and Jelle Wemmenhove imagined a custom
tactic language on top of Coq that on the one hand requires the user to respect additional
constraints (like type ascription, signposting, or distinguish “take” from “assume”); but on the
other hand, it relaxes the requirements on trivial steps justification. Note that a hint tactic is
provided to suggest the introduction of the main connector of the goal and error messages have
been refined. The software has been tested for four years at Eindhoven University of Technology
with first-year undergraduate students.

Conclusion

We have presented an overview of the use and design of proof assistants for teaching. Proof
assistants have been used for a long time for teaching, and many tools have been designed. In
some fields such as foundations of software and logic, some teaching material has been produced
and shared, and the use of proof assistants is widespread. However, the evaluation of the impact
of these tools from a didactic point of view and their use for teaching mathematics is still at its
debut. A growing community of researchers is addressing these issues, and we are optimistic
that using proof assistants for both teaching and research will be commonplace by the middle
of the 21th century.
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[16] Yves Bertot, Gilles Kahn, and Laurent Théry. Proof by pointing. In Masami Hagiya and John C.
Mitchell, editors, Theoretical Aspects of Computer Software, pages 141–160, Berlin, Heidelberg,
1994. Springer Berlin Heidelberg.
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[45] Emilio Jesús Gallego Arias, Benôıt Pin, and Pierre Jouvelot. jsCoq: Towards Hybrid Theorem
Proving Interfaces. Electronic Proceedings in Theoretical Computer Science, 239:15–27, January
2017.

[46] M. Ganesalingam and W. T. Gowers. A fully automatic problem solver with human-style output,
September 2013.

[47] H. Geuvers. Proof assistants: History, ideas and future. Sadhana, 34(1):3–25, February 2009.

[48] Georges Gonthier. Formal Proof—The Four- Color Theorem. 55(11), 2008.

[49] Mike Gordon. From LCF to HOL: A Short History. In Gordon Plotkin, Colin P. Stirling, and
Mads Tofte, editors, Proof, Language, and Interaction, pages 169–186. The MIT Press, May 2000.
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École Polytechnique de Montréal, December 2016.
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didactique et de sciences cognitives, (22):93–117, July 2017.

[101] The Cocorico Coq wiki. Coq in the classroom. http://coq.inria.fr/cocorico/

15

https://ptival.github.io/2015/06/04/introducing-peacoq/
https://ptival.github.io/2015/06/04/introducing-peacoq/
http://coq.inria.fr/cocorico/CoqInTheClassroom
http://coq.inria.fr/cocorico/CoqInTheClassroom


Research report: Proof assistants for teaching mathematics: a survey Tran Minh, Gonnord and Narboux

CoqInTheClassroom, 2021.

[102] The Cocorico Coq wiki. Universities teaching Coq. https://github.com/coq/coq/wiki/

Universities-teaching-Coq, 2024.
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