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Analytic Model for the Energy Spectrum of the Anharmonic Oscillator

Michel Caffarel1, ∗

1Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France

In a recent work we have proposed an original analytic expression for the partition function
of the quartic oscillator. This partition function, which has a simple and compact form with no
adjustable parameters, reproduces some key mathematical properties of the exact partition function
and provides free energies accurate to a few percent over a wide range of temperatures and coupling
constants. In this work, we present the derivation of the energy spectrum of this model. We also
generalize our previous study limited to the quartic oscillator to the case of a general anharmonic

oscillator. Numerical application for a potential of the form V (x) = ω2

2
x2 + gx2m show that the

energy levels are obtained with a relative error of about a few percent, a precision which we consider
to be quite satisfactory given the simplicity of the model, the absence of adjustable parameters, and
the negligible computational cost.

The one-dimensional quantum anharmonic
oscillator[1] plays an important role in quantum
mechanics as a simple yet nontrivial model for de-
scribing nonlinear (anharmonic) effects. As such, it
is commonly used in various scientific fields including
molecular physics (rovibrational spectra), condensed
matter physics (phonons), nuclear physics (collective
vibrational motions of nuclei), and quantum field theory
(e.g., ϕ4-theory, Higgs mechanism), to cite the main ones.
No exact solution for a general anharmonic potential has
been found so far, although some partial solutions have
been developed for specific potentials, for example in the
case of the so-called quasi-exactly-solvable problems; see
Turbiner[2] and references therein. From a numerical
point of view, the simplicity of the ordinary differential
equation to solve allows very accurate solutions. To cite
one numerical approach among many, let us mention
the recently developed Lagrange Mesh method of Baye
[3] as recently implemented by del Valle[4]. However,
as for any physical model, having analytical solutions
-even approximate ones- is important since it may lead
a deeper insight into the nature of the problem, reveal
underlying hidden structures that may not be evident
from numerical solutions and, also, guide further analysis
or generalizations. A great variety of approximate ana-
lytical approaches have been proposed, making it very
difficult to provide an exhaustive account of the litera-
ture. In this work, we are more specifically interested in
evaluating the energy levels of the anharmonic oscillator.
Among the main approaches developed for this purpose,
let us mention the semi-classical approaches, such as
WKB[5, 6] or the phase-integral method based on the
generalized Bohr-Sommerfeld quantization condition ([7]
and references therein) and the methods based on the
use of a variational approach either using parameterized
excited wavefunctions[8] or path integrals[9, 10]. Other
interesting approaches include the design of simple
analytic expressions for the energy levels built from the
weak- and/or strong-coupling expansions[11, 12] and
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methods based on the tuning of boundary conditions[13]
or eigenvector continuation [14].

The aim of this work is to present novel analytical ex-
pressions for the energy levels of the anharmonic oscilla-
tor. For that, we take advantage of a recently proposed
partition function for the quartic oscillator,[15] which we
extend here to an arbitrary potential. As shown in our
previous study[15], this partition function provides an
appealing simple and physically meaningful model for the
exact solution. Indeed, it has a simple and compact form
with no adjustable parameters, a desirable property for
an analytical model. Furthermore, it reproduces some
key mathematical properties of the exact partition func-
tion, thus supporting the idea that the important features
of the non-trivial mathematical structure of the solution
are, at least partially, accounted for.

These properties are the following: i) The har-
monic and classical limits are exactly recovered, ii) the
well-known divergence of the weak-coupling (Rayleigh-
Schrödinger) expansion of the energy is reproduced. As
for the exact solution, the energy corrections are found to
be rational numbers and display a factorial-like growth in
terms of the perturbational order, and iii) the functional
form of the strong-coupling expansion is recovered.

From a quantitative point of view, the free energy is
found to be accurate to a few percent over a wide range of
temperatures and coupling constants. A similar precision
is also obtained for the ground- and first-excited state
energies.

To the best of our knowledge, no partition function
in closed-form proposed so far is capable of simultane-
ously reproducing all these features (see, for example,
references [9, 16–18] and a comparative study with other
models in [15]).

Having at our disposal a simple and physically mean-
ingful model for the partition function, it is of interest to
derive the full energy spectrum of the model. This is the
purpose of the present work. As we shall see, the energy
levels obtained turn out to be accurate with a relative
error of about a few percent, a precision which we
consider to be quite satisfactory for such a simple model.
Of course, a higher precision can be obtained without
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difficulty by using some of the numerical/analytical
approaches cited above. However, we emphasize that
the aim of this work is not to achieve an ultimate
precision in the spectrum but, instead, to propose a
simple yet faithful analytical model for the spectrum
of a general anharmonic oscillator that can be readily
applied in various scientific contexts with essentially no
computational cost.

The Hamiltonian considered here is as follows

H = −1

2

d2

dx2
+ V (x) (1)

where V (x) is a rather general potential function
bounded from below and verifying lim|x|→∞ V (x) = +∞
(in other words, there are only discrete energies). In the
numerical applications presented below, we will particu-
larize the potential in the form

V (x) =
ω2

2
x2 + gx2m (2)

where ω2 and g denote the harmonic force constant and
coupling constant, respectively.

As a first step let us briefly recap the main steps
leading to the model partition function.

i) The partition function is first expressed as a
path integral in a standard way (see, e.g., [19])

Z = Tre−βH = lim
n→∞

Zn (3)

with

Zn =

(
1√
2πτ

)n ∫ ∞

−∞
dx1...

∫ ∞

−∞
dxn

e−
1
2τ

∑n
i=1 (xi+1−xi)

2

e−τ
∑n

i=1 V (xi). (4)

where τ = β
n is the time-step and periodic conditions are

used, xn+1 = x1.

ii) Second, the short-time anharmonic contribution,
e−τV (x), is approximated by a gaussian distribution cen-
tered on some position x∗ (typically, the position of the
lowest minimum of the potential; here, x∗ = 0 in our
applications) with an effective frequency ωg(τ), that is

e−τV (x)∫∞
−∞ dxe−τV (x)

∼ e−τ 1
2ω

2
g(τ)(x−x∗)2∫∞

−∞ dxe−τ 1
2ω

2
g(τ)(x−x∗)2

. (5)

To set the frequency ωg(τ) we have proposed to impose
to the two distributions to have the same variance. In
the case of the quartic oscillator treated previously,[15]

it leads to ωg = ω
√
B
[

4g
τω4

]
where B is some function.

In the more general case V (x) = ω2

2 x2 + gx2m, we get

ωg(τ) = ω

√
B(m)

[
2mg

τm−1ω2m

]
(6)

where the parameter-free function B(m)(x) is given by

B(m)(x) =
1

2

∫∞
−∞ dy e−y2−xy2m∫∞

−∞ dy y2e−y2−xy2m
. (7)

For a general potential V the formula writes

ωg(τ) =

√√√√1

τ

∫∞
−∞ dxe−τV (x)∫∞

−∞ dx(x− x∗)
2
e−τV (x)

(8)

iii) The gaussian approximation being made, the
infinite-n limit of Zn is no longer defined, limn→∞ Zn =
+∞. To circumvent this problem, we have proposed to
introduce a Principle of Minimal Sensitivity (PMS) for
the path integral. More precisely, we impose to the path
integral to minimally depend on the effective frequency
used in the gaussian approximation, that is, ∂Zn

∂ωg(τ)
= 0.

For a given temperature, the PMS condition holds only
for a unique value of n denoted as nc(β) [and, thus, a

unique time-step, τc(β) =
β

nc(β)
]. We have then proposed

to define the model partition function as the value of Zn

at this ”optimal” value of n, Z ≡ Znc(β). In particular,
the ill-defined n → ∞-limit is avoided. The nonlinear
implicit equation for nc(β) resulting from the PMS con-
dition writes

nc(β) =
βωg[τc(β)]

2
coth

βωg[τc(β)]

2
. (9)

iv) Finally, the analytical expression of the model parti-
tion function is given by

Z =
C(β)nc(β)

e
βωg [τc(β)]

2 − e−
βωg [τc(β)]

2

(10)

with

C(β) =

√
ωg[τc(β)]

π coth
βωg [τc(β)]

2

Ig(β) (11)

and

Ig(β) =

∫ ∞

−∞
dxe−τc(β)V (x), (12)

where the time-step τc(β) = β
nc(β)

is obtained from

Eq.(9).

At this point, an important remark is in order.
Introducing a gaussian approximation of a non-
gaussian quantity is a standard practice in physics
(harmonic phonons, Gaussian approximation for the
Ginzburg–Landau action, etc.) In short, it is done
by restricting to the second-order a Taylor expansion
of some Hamiltonian or action. Here, our gaussian
approximation is very different in nature. Instead
of approximating the potential V (x) by a quadratic
potential, we approximate the quantity e−τV (x) by a
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gaussian distribution with an effective frequency which
depends explicitly on the time-step. It is this dependence
on the time-step that makes Zn to diverge in the large-n
limit, but which, after application of the PMS condition,
allows to fix n at a finite value nc(β) and, then, leads
to an accurate model for the exact partition function.
Approximating V (x) using a quadratic potential in-
dependent on the time-step would merely lead to the
partition function of a simple harmonic oscillator and,
thus, to a very poor model for the exact partition
function.

A. Ground-state energy. The ground-state energy is
obtained from the large-β behavior of Z

E0(g) = lim
β→∞

− 1

β
lnZ. (13)

At large β, the (unique) solution nc(β) of Eqs.(6) and (9)
is proportional to β and given by

nc(β) =
βω̄g

2
, (14)

where ω̄g = ωg[τc(+∞)] is the solution of the implicit
equation given by

ω̄g = ω

√
B(m)

(
2gω̄m−1

g

ω2m

)
. (15)

Using the zero-temperature limit of the free energy and
the expression for the partition function we get

E0(g) =
ω̄g

2

[
1− ln

(√
ω̄g

π
Īg

)]
(16)

where

Īg =

∫ ∞

−∞
dxe

− 2
ω̄g

V (x)
. (17)

B. Excited-state energies. The exact partition function
of the quartic oscillator decomposes as a discrete sum of
exponentials

Z =

∞∑
n=0

e−βEn (18)

where En are the excited-state energies. As just seen,
the ground-state energy E0 is obtained by extracting
the leading exponential component of the PF at large β.
To get excited-state energies subleading components are
to be evaluated.

In the following we will show that the model partition
function actually does not write as a sum of simple expo-
nentials, as it should be for the exact PF, but, instead, as
a sum of exponentials multiplied by a polynomial term
as follows

Z =

∞∑
n=0

Pn(β)e
−β(E0+nω̄g) (19)

where Pn(β) is a polynomial of degree n in β with
Pn(0) = 1. The partition function being no longer ex-
pressed as a sum of simple exponentials, the definition
of what is meant by excited-state energies becomes prob-
lematic. Comparisons with the ”exact” numerical spec-
trum show that defining the excited energies as the ex-
ponents of the exponential contributions, that is,

En = E0 + nω̄g (20)

gives a very poor approximation of the exact spectrum.
Note that this is not surprising since, in such a case,
the energy differences between successive states would
remain constant, a property which is clearly wrong for
the exact spectrum. In sharp contrast, we have found
that modifying the partition function by exponentiating
the linear contribution of the polynomials and incorpo-
rating it into the exponential part leads to remarkably
good energy levels. Precisely, we propose to replace the
polynomial

Pn(β) = 1 + Pn1β + ...+ Pnnβ
n (21)

by eβPn1 and to define the excited-state energies of our
model as

En = E0 + nω̄g − Pn1. (22)

Let us emphasize that this replacement should not be
considered as a quantitative approximation, but rather,
as a ”minimal” modification of the model to impose
to the partition function to have the exact expansion,
Eq.(18). Unfortunately, we have not been able to un-
derstand why this simple additional prescription to our
model is so effective in giving accurate energy levels (see,
the figures to follow). However, it should be considered
as a salient result of this work.
To derive the functional form of the partition function,

Eq.(19), we first need to expand the effective frequency
ωg[τc(β)] as a power series of exponential-like contribu-
tions.
Let us first consider the case ω ̸= 0. Using Eqs.(6) and

(9), and introducing the variable y defined as

y = e−βωg (23)

the implicit equation obeyed by ωg is rewritten as

ωg = ω

√√√√√B

 2g

ω2m
ωm−1
g

(
1 + 2

∞∑
n=1

yn

)m−1
 (24)

where the coth function has been expanded in power se-
ries of y. Note that the superscript (m) has been removed
from B(m)(x) to simplify the notation. This will also be
the case in the following for most quantities depending on
m when no confusion is possible. The function B being
infinitely differentiable, ωg can be expanded in powers of
y

ωg = ω̄g +

∞∑
n=1

ωny
n. (25)
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Remark that the equation obeyed by ωg has no explicit
dependence on β (the dependence on the temperature
is only through the variable y). Accordingly, the coeffi-
cients ωn are independent of β. Their evaluation is done
i) by introducing the expansion of ωg in Eq.(24), ii) by

Taylor-expanding the function B at x0 = 2g
ω2m ω̄m−1

g , and,
finally, by identifying the contributions corresponding to
a given power of y. After some algebra, an explicit ex-
pression for the ωn’s can be derived. For example, the
first coefficient, ω1’s is given by

ω1 = ω̄g

B1

B0
x0(m− 1)

1−
B1
B0

x0

2 (m− 1)

(26)

where B0 = B(m)(x0) and B1 = dB(m)

dx (x0). For n ≥
2, ωn can be expressed as a function of the preceding
coefficients, ωp with 1 ≤ p ≤ n− 1. The explicit formula
is given in Appendix A.

When ω = 0 the coefficients ωk are more easily derived.
From the general expression of the effective frequency,

Eq.(8), we get ωg(τ) = c0
(
g
τ

) 1
4 with c0 =

√ ∫
dxe−x4∫

dxx2e−x4 .

Using the PMS condition, Eq.(9), we obtain

ωk = ω̄g

k∑
l=1

2l
( 1

3

l

)(
k − 1

l − 1

)
k ≥ 1 (27)

with

ω̄g = c
4
3
0

(g
2

) 1
3

. (28)

In this ω = 0-case, the ground-state energy can be ex-
plicitly written as

E0 =

[
Γ
(
5
4

)
Γ
(
3
4

)] 2
3

1− log

√√√√[2Γ( 54)]3
πΓ
(
3
4

)
g

1
3 . (29)

Now, to proceed, let us introduce the following new
variable y0

y0 = e−βω̄g . (30)

The next step consists in expressing the partition func-
tion as a power series in y0, thus leading to Eq.(19). For
that, we first need to derive the expansion of the effective
frequency in terms of y0. We have

ωg = ω̄g +

∞∑
n=1

ωny
n
0 e

−βn[ωg−ω̄g ]. (31)

By expanding the exponential in power series and by sim-
ple inspection, the form of the solution is

ωg = ω̄g +

∞∑
n=1

Qn(β)y
n
0 (32)

where Qn(β) are polynomials of degree n − 1 in β. The
polynomials can be evaluated by differentiation

Qn(β) =
1

n!

∂nωg

∂yn0
(y0 = 0). (33)

Using Eq.(31) and the Leibniz formula for derivatives,
the n-th derivative of ωg writes

1

n!

∂nωg

∂yn0
(y0 = 0) =

n∑
k=1

ωk
1

(n− k)!

∂n−k

∂yn−k
0

[
e−βk(ωg−ω̄g)

]
(y0 = 0).

(34)
To proceed we make use of the Faà di Bruno formula

∂n

∂xn
ef(x) = ef(x)

′∑
m1,m2 ...,mn

n!

m1!m2! ... mn!

n∏
j=1

[
f (j)(x)

j!

]mj

(35)
where the prime on the sum indicates summing with the
constraint

1m1 + 2m2 + .... nmn = n. (36)

We then have

1

n!

∂nωg(β)

∂yn0
(y0 = 0) =

n∑
k=1

ωk
1

(n− k)!

×
′∑

m1,m2 ...,mn−k

(n− k)!

m1!m2! ... mn−k!

n−k∏
j=1

[
(−kβ)(ωg)

(j)(x)

j!

]mj

(y0 = 0)

and, finally

Qn(β) = ωn +

n−1∑
k=1

ωk

×
′∑

m1,m2 ...,mn−k

[−kβQ1(β)]
m1

m1!
...
[−kβQn−k(β)]

mn−k

mn−k!
,

a relation which allows to evaluate iteratively the poly-
nomials Qn(β). From this expression, we see that Qn(β)
are indeed polynomials of degree n − 1 as stated above.
Let us give the first five polynomials

Q1(β) = ω1

Q2(β) = ω2 − βω2
1

Q3(β) = ω3 − 3βω1ω2 +
3

2
β2ω3

1

Q4(β) = ω4 − 2β(2ω1ω3 + ω2
2) + 8β2ω2ω

2
1 −

8

3
ω4
1β

3
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Q5(β) = ω5 − 5β(ω2ω3 + ω1ω4) +
25

2
β2(ω3ω

2
1 + ω1ω

2
2)

−125β3

6
ω3
1ω2 +

125

24
ω5
1β

4

We are now ready to derive the expansion of the par-
tition function in the variable y0. It is convenient to
introduce the following three quantities

∆ωg ≡ ωg − ω̄g, (37)

∆T ≡ lnC(β)− ln

√
ω̄g

π
Īg, (38)

and

∆R ≡ 1

2
(coth

βωg

2
− 1). (39)

The partition function can be written as

Z = e−βE0P. (40)

Simple algebra shows that P can be expressed as

P = eβS [1 + ∆R] (41)

where

S = c1∆ωg + c2∆T + c3∆R

+c4∆ωg∆T + c5∆ωg∆R+ c6∆T∆R+ c7∆ωg∆T∆R
(42)

with the following coefficients

c1 =
1

2

(
ln

√
ω̄g

π
Īg − 1

)

c2 =
ω̄g

2

c3 = ω̄g ln

√
ω̄g

π
Īg

c4 =
1

2

c5 = ln

√
ω̄g

π
Īg

c6 = ω̄g

c7 = 1

Let us introduce the following form for the expansion of
a quantity X

X =

∞∑
n=1

Xn(β)y
n
0 (43)

where Xn is a polynomial of order n − 1 in β. Note
that this form is stable by multiplication by a scalar, ad-
dition, multiplication, and exponentiation. We have al-
ready seen that ∆ωg admits such a representation. From
the relation

y = y0e
−β∆ωg (44)

we see that it is also the case for y. The quantities ∆T
and ∆R can be written as a function of the variable y
only. By expanding these quantities in terms of y we thus
find that they also both admit this representation. From
(42) it is also true for S. Finally, the partition function,
Eqs.(40,41), can be written as

Z = e−βE0

[
1 +

∞∑
n=1

Pn(β)y
n
0

]
(45)

where Pn(β) is a polynomial of order n in β. This is the
form given in Eq.(19).

To get the excited-state energies the quantities Pn1

need to be evaluated, see Eq.(22). Using the formula

Pn1 =
1

n!

∂n+1P (β)

∂β∂yn0
(β = 0, y0 = 0)

we get

Pn1 = Sn0 +∆Rn1 +
∑

k+l=n k≥1 l≥1

Sk0∆Rl0. (46)

where Snk and ∆nk are the coefficients of the n-th order
polynomial in the representation, Eq.(43), for S and ∆R,
respectively. Using Eq.(42) and Qn0 = ωn we have

Sn0 = c1ωn + c2∆Tn0 + c3∆Rn0

+c4
∑

k1+k2=n

ωk1
∆Tk20 + c5

∑
k1+k2=n

ωk1∆Rk20

+c6
∑

k1+k2=n

∆Tk10∆Rk20

+c7
∑

k1+k2=n

( ∑
k3+k4=k1

ωk3
∆Tk40

)
∆Rk20 (47)

where ∆Tnk are the coefficients of the polynomial for
∆T . In each sum above, ki ≥ 1. Let us evaluate the
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quantities ∆Rn0, ∆Rn1, and ∆Tn0.

Starting from

∆R =

∞∑
n=1

yn0 e
−βn∆ωg

we have

∆R =

∞∑
n=1

yn0

∞∑
k=1

(−βn)k

k!

( ∞∑
l=1

Ql(β)y
l
0

)k

=

∞∑
n=1

yn0
∑
k=1

αky
k
0

with

αk =

k∑
l=1

(−βn)l

l!

∑
k1+...+kl=k

Qk1
(β)...Qkl

(β)

which gives

∆Rn0 = 1, ∆R11 = 0, and ∆Rn1 = −
n−1∑
k=1

k ωn−k for n ≥ 2

(48)
Let us now calculate ∆Tn0. ∆T , as defined by Eq.(38),

is decomposed as

∆T = ∆A+∆B

with

∆A = ln

√
ωg(β)

π coth
βωg [τc(β)]

2

− ln

√
ω̄g

π

and

∆B = ln Ig(β)− ln Īg

Let us begin with ∆A which can be written as

∆A =
1

2
ln

 1 +
∑∞

n=1
Qn(β)
ω̄g

yn0

1 +
∑∞

n=1 2∆Rn(β)yn0

.
Expanding the two logarithmic terms, we get after some
algebra

∆An0 =
1

2

n∑
k=1

(−1)k−1

k

∑
l1+...+lk=n

[(
ωl1

ω̄g

)
...

(
ωlk

ω̄g

)
− 2k

]
.

We are now left wit the calculation of ∆Bn0. We have

Ig(β) =

∞∑
n=0

(−1)nĪn
n!

∆τnc

with

∆τc ≡ τc − τ̄c

where τ̄c = τc(∞) = 2
ω̄g

and

Īn ≡
∫ ∞

−∞
dxxne−τ̄cV (x).

After some algebra

∆τc =
2

ω̄g

∞∑
n=1

(−1)n

[ ∞∑
k=1

Xk(β)y
k
0

]n
with

Xk(β) = 2∆Rk(β)+
Qk(β)

ω̄g
+

2

ω̄g

∑
l+m=k l≥1 m≥1

Ql(β)Qm(β).

We then have

∆τc =

∞∑
n=1

Yn(β)y
n
0

with

Yn =
2

ω̄g

n∑
k=1

(−1)k
∑

l1+...+lk=n

Xl1 ...Xlk

Then

Ig = Īg +

∞∑
n=1

(−1)nĪn
n!

( ∞∑
k=1

Yk(β)y
k
0

)n

Ig = Īg +

∞∑
n=1

Zn(β)y
n
0

Zn =

n∑
k=1

(−1)k
Īk
k!

∑
l1+...+lk=n

Yl1 ...Ylk

Thus

ln Ig = ln Īg + ln

(
1 +

∞∑
n=1

Zn

Īg
yn0

)
.

Finally,

ln Ig = ln Īg +

∞∑
n=1

∆Bn(β)y
n
0

with

∆Bn =

n∑
k=1

(−1)k

kĪkg

∑
l1+...+lk=n

Zl1 ...Zlk .

The quantities ∆Bn0 are then evaluated by taking β = 0
in the preceding expressions.
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Figure 1 shows the ground-state energy and the first
eight excited state energies of the quartic oscillator with
ω = 1 versus the coupling constant g. The ”exact”
numerical energies, obtained by diagonalization of the
Hamiltonian in a sufficiently large Gaussian basis set,
are shown as solid lines. At the scale of the figure, the
energy levels and their overall behavior as functions of
g and n are well reproduced and appear satisfactory.
Quantitative results are presented in Table I, which re-
ports the relative errors ϵ in the computed energies. We
present results for three different potentials: the first two
are the quartic (m = 2, ω = 1) and sextic (m = 3,
ω = 1) anharmonic potentials, respectively. The third is
the ”pure” quartic potential, defined by the absence of a
quadratic term (ω = 0). Results are given for five values
of g (g = 0.1, 1, 10, 40, and 400), spanning the weak- to
strong-coupling regimes. A first remark is that relative
errors are all negative. In other words, the computed
energies are always smaller than the exact ones. Unfor-
tunately, we were not able to understand the origin of
this interesting observed property. A second remark is
that relative errors are all of the order of a few percent
(up to 10% in the worst case of the sextic potential at
large g). We consider this level of accuracy as quite sat-
isfactory in view of the simplicity of the model. Let us
insist on the fact that the model partition function has
a particularly simple and compact form, Eq.(10) with
Eqs.(11) and (12); and, most importantly, no adjustable
parameters. In addition, the computational cost for cal-
culating the energies is negligible. Another remark is
that for each potential the relative error is maximal for
the two lowest energies. Quite remarkably, the errors
on the higher energies (n ≥ 2) are almost constant and,
also, nearly independent on the value of g. This is a
quite interesting feature of the model. The comparison
between the three different potentials is instructive. As
expected, the accuracy reached for the sextic oscillator
is inferior to that obtained for the quartic oscillator, a
consequence of the greater anharmonicity of the former
potential. This is also the case at small values of g for
the pure quartic oscillator in which the quadratic term
has been removed. However, for large g’s the errors be-
come nearly identical. A striking feature of the energies
of the pure quartic potential is that the relative errors
are independent on g (actually, all digits of the errors are
identical for the different g’s, a result not shown here).
This result is explained as follows. By a simple rescaling
of the Schrödinger equation, the exact energies En(g) of

the pure quartic oscillator can be shown to scale as g
1
3 .

Quite satisfactorily, it is also the case for our model. This
can be proved by noting that ω̄g, Eq.(28), and the ωk’s,

Eq.(27) scale also as g
1
3 and, then, by invoking the se-

ries of equations, (22),(46),(47) and (48). The exact and
model energies having the same scaling in g, the relative
errors are thus independent on g.

 0

 10

 20

 30

 40

 50

 0  1  2  3  4  5  6  7  8  9  10

n=0 

n=1 

n=2 

n=3 

n=4 

n=5 

n=6 

n=7 

n=8 

E
n
(g

)

g

Figure 1. Energy levels of the quartic oscillator as a function
of g for n = 0 to n = 8. Exact results given by the solid lines.
Harmonic frequency, ω = 1
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Table I. Relative errors ϵ (in %) on the energy levels En for
different values of g and potentials V[a,n](x) = ax2 + gxn;
ϵ = (Emodel − Eex)/Eex.

E0 E1 E2 E3 E4 E5 E6 E7 E8

g=0.1
V[ 1

2
,4] -0.5 -0.4 -0.5 -0.6 -0.7 -0.8 -0.8 -0.9 -0.9

V[ 1
2
,6] -2.5 -2.6 -2.7 -2.9 -3.1 -3.2 -3.3 -3.4 -3.4

V[0,4] -4.2 -2.0 -1.6 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7
g=1
V[ 1

2
,4] -2.3 -1.4 -1.3 -1.4 -1.4 -1.4 -1.4 -1.5 -1.5

V[ 1
2
,6] -6.3 -4.6 -3.7 -3.7 -3.7 -3.7 -3.8 -3.8 -3.8

V[0,4] -4.2 -2.0 -1.6 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7
g=10
V[ 1

2
,4] -3.7 -1.9 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6

V[ 1
2
,6] -9.0 -5.4 -4.0 -4.0 -4.0 -3.9 -3.9 -3.9 -3.9

V[0,4] -4.2 -2.0 -1.6 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7
g=40
V[ 1

2
,4] -4.0 -2.0 -1.6 -1.7 -1.6 -1.6 -1.6 -1.6 -1.6

V[ 1
2
,6] -9.0 -5.5 -4.1 -4.1 -4.1 -4.0 -4.0 -4.0 -4.0

V[0,4] -4.2 -2.0 -1.6 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7
g=400
V[ 1

2
,4] -4.2 -2.0 -1.6 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7

V[ 1
2
,6] -10. -5.7 -4.2 -4.1 -4.0 -4.0 -4.0 -4.0 -4.0

V[0,4] -4.2 -2.0 -1.6 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7

Appendix A: Formula for evaluating ωn’s

In this appendix, we give the explicit formulas for the
coefficients of the expansion of ωg in powers of y written
as

ωg = ω̄g +

∞∑
n=1

ωny
n. (A1)

Note that to simplify the notation the dependence on m
of the various quantities considered here will be omitted.

Let us define now the following quantities

Bn ≡ dnB(m)

dxn
(x0) (A2)

x0 =
2g

ω2m
ω̄m−1
g (A3)

αn =
1

n!

Bn

B0
xn
0 (A4)

and

βn =
1
2

(
1
2 − 1

)
...
(
1
2 − (n− 1)

)
n!

(A5)

ω̄g is given by

ω̄g = ω
√

B0 (A6)

The first coefficient ω1 is given by

ω1 = Aα1(m− 1) (A7)
with

A =
ω̄g

1− α1(m−1)
2

(A8)

For n ≥ 2 the ωn’s are function of the previous coeffi-
cients ωp with 1 ≤ p ≤ n− 1 as follows

ωn = A

[
α1(m− 1)Sn +

1

2
α1Tn + Un + Vn

]
(A9)

where

Sn = 1 +
∑

k+l=n k≥1 l≥1

ωk

ω̄g
(A10)

Tn =

m−1∑
k=2

(
m− 1

k

) ∑
l1+...+lk=n li≥1

al1 ...alk (A11)

with

an =
ωn

ω̄g
+ 2Sn n ≥ 1 (A12)

Un =
1

2

n∑
k=2

αk

∑
l1+...+lk=n li≥1

bl1 ...blk (A13)

with

bn = (m− 1)an + Tn n ≥ 1 (A14)

and

Vn =

n∑
k=2

βk

∑
l1+...+lk=n li≥1

cl1 ...clk (A15)

with

cn = α1bn + 2Un n ≥ 1 (A16)

When no index fulfills the constraint in the sum, the
corresponding quantity is equal to zero. Here, it means
that S1 = 1, T1 = 0, U1 = 0, V1 = 0, and Tn = 0 for
m = 2.
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[18] H. Büttner and N. Flytzanis. Effective free energies.
Phys. Rev. A, 36:3443–3445, Oct 1987.

[19] L.S. Schulman. Techniques And Applications of Path In-
tegration. Dover Publications Inc., 2005.


