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  Abstract- The Pulsed Electro Acoustic (PEA) method is very 
common to study the transport of space charges inside dielectric. 
Unfortunately, the current calibration of the transfer matrix does 
not take into account some phenomenon as reflections, attenuation 
and dispersion of the pressure wave going through the sample. 
Analytical models of the PEA help to bring this lack of information 
to the matrix transfer. In this study, we first introduce an electrical 
PSpice model, based on analytical ones, to define a new transfer 
matrix of the PEA. Second, we present a new method for the 
deconvolution of an experimental PEA signal. 
 

I.    INTRODUCTION 
 
   Many satellite’s mission difficulties are due to space charge 
occurrences as dielectric breakdown [1]. One useful system for 
space charge measurement is the Pulsed Electro Acoustic 
(PEA) introduced by Takada [2]. This method is non-
destructive and its aim is to stimulate charges by an electrical 
pulse and measuring the acoustic response with a piezoelectric 
transducer. A mathematical processing is applied on the output 
voltage of the sensor to recover the charges distribution inside 
the dielectric sample. This processing is first based on a 
calibration step to define the PEA transfer function. So far, the 
calibration is made with an output signal generated from an 
input well-known Dirac capacitive charge at the interface 
between the sample and the ground electrode[3]. Unfortunately, 
the transfer function resulting from this procedure does not take 
into account the dispersive propagation of the acoustic wave 
inside the sample. The acoustic distortion due to the wave 
generation near the High-Voltage (HV) electrode or inside thin 
sample (under 50	𝜇𝑚 ) are not considered too. First, an 
improved PSpice model based on [1] including acoustic waves 
attenuation and dispersion is presented. Second, this model is 
used to build a PEA transfer matrix. Finally, this matrix is 
employed to deconvoluate the experimental signal by using an 
improved regularization method based on the Tikhonov [4] one.  

 
Fig. 1. PEA in biasing configuration 

II.    PSPICE MODEL OF THE PEA 
 

A.    Overview 
   The PEA device is shown in the Fig. 1 under biasing 
configuration. A brief description is given here, for further 
details refer to [5]–[7]. A DC voltage generator 𝑉!" produces 
opposite sheet capacitive charges ±σ#  at each electrode. A 
pulsed electric field 𝐸$ is employed to stress the charges. For a 
dielectric sample that is no polar, no piezoelectric and no 
electrostrictive [5], 𝑝%  is the pressure force generated by the 
convolution between the pulsed electric field and the capacitive 
charges −σ# at the ground electrode, and 𝑝& is the one created 
at the HV electrode. Fig. 1 only shows the reflections of the 
pressure forces that affect the useful signal. A part of both 
pressure waves propagates to the transducer that convert these 
acoustic waves to an electrical signal. Finally, this signal is 
amplified to be measured. Note that both dipoles 𝑅 and 𝐶 are 
used to decouple 𝑉!" and 𝐸'. 
  The PEA system can be modeled by a PSpice electrical 
network as shown in the Fig. 2. Both pressure forces are 
modeled by voltage generators and all acoustic media by 
transmission lines, respecting the acoustic-electric analogy. The 
transducer is made up by the Redwood’s Model [6]. The 
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Fig. 2. PSpice model of the PEA 



amplifiers are defined by two 27	𝑑𝐵  gains and a 50	Ω input 
resistance. 
  Equations (1)-(4) reveal how to set transmission line 
parameters from acoustic medium values [7]. 𝐿  is the linear 
inductance that represents the linear mass of the medium which 
depends on the density ρ  and the surface 𝑆 . The linear 
capacitance 𝐶$  describes the medium’s elasticity which is 
proportional to the acoustic velocity 𝑐(). The linear resistance 
𝑅  defines the friction losses which is related to the viscous 
losses α. The linear conductance 𝐺 illustrates the thermal losses 
which are negligible, for the different media, compared to the 
viscous losses. 

      𝐿 = 𝜌𝑆                                 (1) 
     𝐶$ =

%
*+)!"#

                                 (2) 
      𝑅 = 2𝜌𝑆𝛼                                 (3) 
      𝐺 = 0                                 (4) 

 
  These relations are correct for low losses, which means for a 
given pulsation 𝜔, 𝑅 ≪ 𝐿𝜔 and 𝐺 ≪ 𝐶$𝜔. 
  Except the sample, all acoustic media are modeled by an ideal 
transmission line using (1)-(2). Because the dielectric sample 
attenuates and disperses the acoustic wave, (3) and (2) need to 
be modified to consider frequency dependent losses and 
velocity. 
 
B.   Model of lossy and dispersive polymeric sample 
   The losses and the velocity can depend on the frequency for 
some dielectrics and be measured from an experimental signal 
of the PEA in its biasing configuration. The Fig. 3 shows both 
voltage peaks 𝑉% and 𝑉& engendered by both pressure forces 𝑝% 
and 𝑝& previously seen.  

 
Fig. 3. Experimental signal 

  Respecting that the frequency response of the transducer is 
constant in the frequency range of interest, then its transient 
output voltage is proportional to its input pressure force. This 
leads to the next frequency relations: 

      𝐹𝐹𝑇(𝑉%) = 𝐾𝐺+→- . 𝐹𝐹𝑇(𝑝%)                (5) 
 

𝐹𝐹𝑇(𝑉&) = 𝐾𝐺./→+𝑇+→-𝑒
012(4)6 $#%&

"!"(&)
78𝐹𝐹𝑇(𝑝&)      (6) 

 
  𝐾 is a factor modeling the response of the transducer and 𝑙 is 
the length of the sample. The exponential term represents the 
attenuation and the dispersion of the pressure force 𝑝& to the 

transducer. 𝐺+→-  and 𝐺./→+ are respectively the generation 
coefficients at the ground and the HV electrode interfaces. 𝑇+→- 
is the transmission coefficient at the ground electrode interface. 
They are defined by:  

      𝐺+→- =
9)

9*69)
                           (7) 

                 𝐺./→+ =
9*

9+,69*
                           (8) 

                     𝑇+→- =
&9)

9*69)
                           (9) 

 
  𝑍-, 𝑍+ and 𝑍./ are respectively the mechanical impedance of 
the ground electrode, the sample and the HV electrode. Ditchi 
et al [8] suggested in 1993 a process to determine the losses and 
the velocity factors of an insulating material without the 
generation effect at the HV interface. We propose a method to 
take into account this mismatching impedance effect using (8) 
and (9): 

      𝛼(𝑓) − %
8
𝑙𝑛(2𝐺./→+) = − %

8
𝑙𝑛 I::;(0/#)

::;(/-)
I           (10) 

      𝑐()(𝑓) =
0&<48

=>::;(0/#)?0=>::;(/-)?
                    (11) 

 
  The plots of these experimental coefficients are shown in the 
Fig. 4. These factors have to be modeled by functions to be 
substituted in (3) and (2). Polynomial regressions can be 
achieved but the losses and velocity values for low frequency 
are inaccurate because of the use of FFT modulus and phase in 
the denominators. It is why the following model is often 
employed. 

 
Fig. 4. a) Losses factor, b) Velocity 

  Older studies show that the viscous losses of a polymeric 
material can be linear to the frequency 𝑓. 

                        𝛼(𝑓) − 𝑎@ = 𝑎𝑓                                 (12) 
 
  To respect the causality of the material, the Nearly Local 
Kramers-Kroning (NLKK) relation links α(𝑓) and 𝑐()(𝑓): 

    𝑐()(𝑓) = 𝑐()(𝑓@) + L
)!"(4.)

<
M
&
𝑎. 𝑙𝑛 L4

4.
M             (13) 

 
  This relation is acceptable for materials having no sharp 
resonance in the frequency range of interest |𝑐()(𝑓) −
𝑐()(𝑓@)| ≪ 𝑐()(𝑓@), and if: 

      O2(4))!"(4)
&<4

P
&
≪ 1                          (14) 
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  Fig. 4 shows the fitting of (10) and (11) to (12) and (13) in 
order to determine the NLKK parameters. The practicable 
bandwidth of this PEA signal is 60	𝑀𝐻𝑍. The values obtain 
from the NLKK regression are: 

      𝑍./ = 294	𝑁. 𝑠/𝑚                          
      𝑎 = 298	(𝑚.𝑀𝐻𝑧)0%                        
      𝑓@ = 14.8	𝑀𝐻𝑧                                  
      𝑐()(𝑓@) = 1417	𝑚/𝑠                        

 
  α(f) and 𝑐()(𝑓) in (10) and (11) are then substituted in (3) and 
(2) to define a Frequency Dependent Transmission Line 
(FDTL). Unfortunately, the PSpice lossy transmission line 
component cannot consider any frequency dependent values in 
passive elements such as the capacitance. This line is then insert 
into PSpice using the Method of Characteristics (MoC) of 
Brainin [9]. 
  The modelling of the lossy and dispersive polymeric sample 
leads to compare the PSpice simulation of the PEA to the 
experimental signal. 
 
C.   Simulation versus experiment 
   The experiment was operated under biasing configuration as 
seen in the Fig. 1. The DC voltage has been setup to 1	𝑘𝑉. The 
electrical pulse width is 3	𝑛𝑠 and its amplitude is 300	𝑉.  
  The physical values used to set the model are presented in the 
TABLE I. The Levenberg-Marquardt [10] algorithm has been 
employed to optimize some of these values in order to fit better 
the experimental signal. These parameters have been modified 
within an interval close to literature values. 

TABLE I 

 
HV 

Elec-
trode 

Sample Ground 
Electrode 

Acoustic 
transducer 

Absor-
ber 

Materials LDPE PTFE Aluminum PVDF PMMA 
Length
(𝜇𝑚) 1000	 205	 10000	 10.9	 2000	

Density
,𝑔 𝑐𝑚!/ 0 1410	 2200	 2700	 1524	 1132	

Speed of 
sound 
(𝑚/𝑠) 

2200	 1350	 6400	 2250	 2750	

Relative 
permittivity 	 	 	 7 	

Dielectric 
loss angle 	 	 	 0.02 	

 
Fig. 5. PEA output signal 

  The comparison between the simulation and the experimental 
signal is presented in the Fig. 5. The relative error is only 7.6	%. 
It shows up the efficiency of the model to fit the experiment. 
However, the model cannot fit well inside the A area. This part 
of the experimental signal is probably due to the electrical pulse 
form. 
Note that: 
- A Gaussian filter has been applied to the simulated signal. 
Indeed, our model bandwidth is larger than the experimental 
one maybe because the aluminum ground electrode dispersion 
is not considered. 
- The simulated signal amplitude has been normalized to the 
experimental one that is four time lower. This is probably 
because the ground electrode losses are not considered.  
This adjusted model can help to define the PEA transfer matrix. 
 

III.    SIGNAL PROCESSING OF THE PEA 
 

A.    PEA transfer matrix determination  
   The PEA system is built from the PSpice model (cf. Fig. 2). 
An input pressure force is defined as the convolution between 
the capacitive charge and the pulsed electric field. The sample 
is discretized under layers for which the length is Δ𝑥 . A 
simulation loop is made to set the pressure force input 𝑝A into 
different layer for each iteration. Every simulation provides a 
PEA response ℎ'BC with a temporal sampling 𝑇D . The matrix 
transfer is then built step by step a shown in the Fig. 6. 
  Note that the following condition, between the space sampling 
of the sample Δ𝑥 and the temporal sampling of the PEA signal 
𝑇D , is necessary to respect CFL and avoid any numerical 
diffusion: 
                                Δ𝑥 ≥ max	g𝑐()(𝑓)h𝑇D                           (15) 

 
  This matrix has a high condition number that leads to a large 
number of solutions by reversing the matrix to find the charge 
distribution. Method of regularization have to be used to obtain 
a noiseless deconvolution of the measurement signal.  

 
Fig. 6. PEA transfer matrix building  
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B.    Deconvolution processing of the PEA measurement  
   One method of regularization largely used is the Tikhonov 
one. This deconvolution does not recover a Dirac charge 𝜎 but 
it provides a volume distribution of the charge 𝜌 respecting: 
                                      ∫𝜌(𝑥)𝑑𝑥 = 𝜎(𝑥)              (16) 
 
  The Tikhonov method consists to minimize the residual norm 
and the solution norm: 
                            ‖ℎ'BC. 𝜌 − 𝑉'BC‖&& + 𝜆‖Γρ‖&&            (17) 
 
  Γ is the Tikhonov matrix that should be chosen according to 
the problem. In this study, Γ is set to the identity matrix 𝐼 in 
order to give preference to solution with smaller norm. 𝜆 is the 
regularization parameter. It controls the balance between both 
norms of (17) to provide the optimal solution: 
                              𝜌E$F =

G/012//01
G/012G/016H345I

                           (18) 

 
  The optimal regularization parameter 𝜆E$F is defined by using 
the L-curve method [11]. Equation (18) provides an analytical 
solution that is quickly calculated. This is the main advantage 
of Tikhonov method. However, minimizing the solution norm 
for this study is not the best choice. In fact, following this 
method provides a linear offset to the electric field due to an 
offset on the charge distribution obtained. A better choice for 
this problem is to minimize the average value of the solution in 
addition to the residual norm. 
                                   ‖ℎ'BC. 𝜌 − 𝑉'BC‖&& + ρo             (19) 
 
  Indeed, the sum of the charges inside the dielectric sample is 
null because of the electrostatic equilibrium. It makes more 
sense to minimize a well-known equation than minimizing the 
solution. Unfortunately, there is no analytical solution of the 
optimal charges distribution as for the Tikhonov method. The 
minimization of (19) is realized by an iterative numerical 
method using the Levenberg-Marquardt [10] algorithm. With 
any knowledge on the charge distribution, the iterative loop 
starts with a zero vector solution and then converge to the final 
solution. It takes more time to obtain the charges distribution 
compared to the Tikhonov method but the linear offset of the 
electric field disappeared. In this study, a hybrid deconvolution 
has been done. First, the Tikhonov regularization has been 
applied to obtain a charges distribution vector including an 
offset. Second, this vector is used to start the minimization loop 
of (19). The number of iterations spend 10 to 1. 
  Fig. 7 shows the solution of the distribution charges and the 
electric field obtained by the signal processing introduced in 
this study and an older signal processing that does not consider 
the generation and the propagation of the pressure wave through 
the sample. The charge distribution at the ground electrode 
obtained by the older method has a better space resolution than 
the one presented in this investigation. However, the charge 
distribution at the HV electrode has a better resolution for the 
presented method and it leads to an electric field that respect 
electrostatic equilibrium. 
 

IV.   Conclusion 
 
   A PSpice model of the PEA has been presented in this study. 
It helps to build a transfer matrix of the PEA that takes into 
account the generation and the propagation of the pressure force 
for different space positions inside the sample. An 
investigational testing has been done on a 205	𝜇𝑚  PTFE 
sample that is a material attenuating and diffusing pressure 
wave. This test has been conclusive and it will be an interesting 
thing to test multi-layers and thin dielectric sample. 

 
Fig. 7. a) Charge distribution, b) Electric field 
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