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S U M M A R Y 

Meteorite impacts have proved to be a significant source of seismic signal on the Moon, 
and have now been recorded on Mars by InSight seismometers. Understanding how impacts 
produce seismic signal is key to the interpretation of this unique data, and to improve their 
identification in continuous seismic records. Here, we use the seismic Representation Theorem, 
and particularly the stress glut theory, to model the seismic motion resulting from impact 
cratering. The source is described by equivalent forces, some resulting from the impactor 
momentum transfer, and others from the stress glut, which represents the mechanical effect 
of plasticity and non linear processes in the source region. We condense these equi v alent 
forces into a point-source with a time-varying single force and nine-component moment 
tensor. This analytical representation bridges the gap between the complex dynamics of crater 
formation, and the linear point-source representation classically used in seismology. Using the 
multiphysics modelling software HOSS, we develop a method to compute the stress glut of an 

impact, and the associated point-source from hypervelocity impact simulations. For a vertical 
and an oblique impact at 1000 m s −1 , we show that the moment tensor presents a significant 
deviatoric component. Hence, the source is not an ideal isotropic explosion contrary to previous 
assumptions, and draws closer to a double couple for the oblique impact. The contribution of 
the point force to the seismic signal appears negligible. We verify this model by comparing two 

signals: (1) HOSS is coupled to SPECFEM3D to propagate the near-source signal elastically to 

remote seismic stations; (2) the point-source model derived from the stress-glut theory is used 

to generate displacements at the same distance. The comparison shows that the point-source 
model is accurately simulating the low-frequency impact seismic waveform, and its seismic 
moment is in trend with Lunar and Martian impact data. High-frequencies discrepancies exist, 
which are partly related to finite-source effects, but might be further explained by the difference 
in mathematical framework between classical seismology and HOSS’ numerical modelling. 

Key words: Numerical modelling; Planetary seismology; Computational seismology; The- 
oretical seismology; Impact phenomena. 
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1  I N T RO D U C T I O N  

As space exploration and instrumentation progress, seismic inves- 
tigation of extra-terrestrial bodies has become possible and two 
space missions have been able to detect seismic waves generated 
by quakes and surface impacts. The first mission was the Apollo 
Lunar Surface Experiments (ALSEP), which deployed a network 
of four seismometers from 1969 to 1977 (Latham et al. 1969 ) on 
Now at NORSAR, Solutions Department, 2007 Kjeller, Norway. 
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the Moon. The second was the InSight mission (Banerdt et al. 
2020 ), which operated the Seismic Experiment for Interior Structure 
(SEIS), composed of a Short-Period (SP) and a Very Broad-Band 
(VBB) seismometer, from November 2018 to December 2022 on 
Mars (Lognonn é et al. 2019 , 2020 ; Giardini et al. 2020 ). 

In agreement with pre-landing estimates (McGarr et al. 1969 ), 
ALSEP detected seismic signals from more than 1750 meteoroid 
impacts (Latham et al. 1970 ; Nakamura et al. 1982 ; Oberst & Naka- 
mura 1987 , 1991 ). Similarly on Mars, impacts were thought to be a 
potential source of detectable signals prior to the landing of InSight 
(Davis 1993 ; Teanby & Wookey 2011 ; Lognonn é & Johnson 2015 ; 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
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eanby 2015 ; Daubar et al. 2018 ). Despite the lack of detections
uring the nominal mission from 2018 to 2020 (Daubar et al. 2020 ;
iljkovic et al. 2021 ; Fernando et al. 2022 ), several impacts were

ecorded during the extended mission. The first ones, located at close
istances from InSight (less than 300 km), generated six very-high
requency (VF) seismic events identified by the Marsquake Service
Clinton et al. 2018 ; Ceylan et al. 2022 ) and were notably accompa-
ied by late low-frequenc y, dispersed wav e trains. These dispersed
rri v als, predicted in pre-landing studies (Garcia et al. 2017 ), corre-
pond to acoustic wa ves tra velling through the Martian night-time
coustic wav e guide (Xu et al. 2022 ). Using their seismic arri v al
imes and backazimuth (Garcia et al. 2022 ; Daubar et al. 2023 ), the
ocation of these e vents w as determined and associated with fresh
raters imaged around InSight by the Mars Reconnaissance Orbiter
MRO) cameras (Malin et al. 2007 ). Two other very large craters,
50 ± 10 and 130 ± 12 m in diameter, at 3460 and 7455 km distance
rom InSight, were later detected by the MRO imager (Posiolova
t al. 2022 ), and associated with seismic events recorded by SEIS
n 24 December and on 18 September 2021. These two significant
vents produced broad-band seismic motion with a moment larger
han 4. 

Impact seismic observations on both the Moon and Mars allow
or the first time a comparative study, and as such raise a number
f questions. For example, can a single approach relate the long
eriod amplitude of the seismic signals to the crater size measured
n both celestial bodies? Can we predict seismic directivity effects
or impacts with relati vel y oblique velocity such as the 18 Septem-
er 2021 event (Posiolova et al. 2022 )? In order to address these
uestions, we must integrate differences between the Martian or
unar subsurface, and deconvolve the combined effects of wave
ropagation and wave generation on the observed signal in the time
nd frequency domain. Achieving this goal requires a model of the
mpact seismic source, accounting for the dynamic process during
hich the energy and momentum of the impactor is transferred into

lastic energy within the target body. Such a model must quantify
he magnitude of the impact seismic event, as well as the various
imescales of the source. 

Existing models of the impact seismic source rely on small-
cale laboratory experiments, scaling laws developed using far-field
mpact seismic signals on the Moon, or analytical models based
n explosion seismology. In preparation for the Apollo mission,
cGarr et al. ( 1969 ) proposed to describe the impact seismic source

y measuring the ratio between the seismic energy E s within the
arget and the kinetic energy E k of the impactor. This energy ratio
uantifies the amount of impactor energy that is converted into
eismic waves and is called the seismic efficiency , k s . It has been
sed in numerous impact related studies: the seismic efficiency
f impacts can indeed be estimated using recordings of missiles,
urface explosions and lunar impacts, or via hydrocode modelling
Latham et al. 1970 ; Shishkin 2007 ; G üldemeister & W ünnemann
017 ; Raj ši ́c et al. 2021a ). 

More recently, in the frame of InSight pre-launch activities, scal-
ng laws between the impact crater diameter and the seismic mo-
ent of the source, M 0 , were proposed (Teanby & Wookey 2011 ;
eanby 2015 ; W ójcicka et al. 2020 ; see the re vie w of Daubar
t al. 2018 ). One advantage of the seismic moment over the seis-
ic efficiency is that the former scales linearly with the peak dis-

lacement or the peak velocity of a seismogram, thus facilitating
etectability analyses. It derives from a more complex mathemat-
cal object known as the moment tensor , which contains a rep-
esentation of each force couples exerted on the target in every

irection. t  
In the past, various models have been proposed to evaluate the
eismic moment, either from modelling or data. W ójcicka et al.
 2020 ) tested different methods to compute the seismic moment
rom hydrocode impact simulations. One method uses an analytical
xpression of the seismic moment of an explosion, obtained from the
educed displacement potential of compressional waves by M üller
 1973 ): 

M 0 = 

(
K + 

4 G 

3 

)
S 〈 D 〉 , (1) 

here K and G represent the bulk modulus and shear modulus of
he target material, and < D > represents the residual radial seismic
isplacement on a sphere of surface S surrounding the impact region.
nother method by Walker ( 2003 ) uses the seismic impulse to derive
 measure of the radial (in the cylindrical sense) component of the
oment tensor: 

M rr = 

∫ 
ρv r r d V 

t 
, (2) 

ith v r the radial velocity at a radial distance r from the impact and
 the time since the impact. 

In both methods, the moment is computed directly from seismic
mplitudes. Lognonn é et al. ( 2009 ) on the other hand, estimated
 0 from a scaling of artificial impact seismic data recorded by the
pollo seismometers. More precisely, in Lognonn é et al. ( 2009 )

nd Gudkova et al. ( 2011 ), the seismic amplitude of lunar impacts,
nd hence the seismic moment, is found to be proportional to the
ertical component of the seismic impulse, which is amplified by
jecta. 

All the aforementioned models show limits in describing the im-
act seismic source. The seismic efficiency proposed by McGarr
t al. ( 1969 ) varies by several orders of magnitude across differ-
nt studies: Daubar et al. ( 2018 ) report values of k s ranging from
0 −6 to 10 −1 depending on the calculation method. The alternative
pproaches with the seismic moment or seismic impulse reported
bove are not entirely satisfactory either. Often, an analogy be-
ween impacts and shallow e xplosiv e sources is made. Thus, the
mpact seismic source is considered isotropic, ignoring the momen-
um transfer and the impactor directivity evidenced by the ejecta
nd surface expression of recent impacts on Mars (Posiolova et al.
022 ). Although authors have also dedicated efforts in measuring
he seismic impulse of impacts (McGarr et al. 1969 ; Walker 2003 ;
udkova et al. 2015 ), or in developing more complex moment tensor

Lo gnonn é et al. 1994 ; Gudkov a et al. 2015 ), no study to date was
ble to reconcile the respective contribution of momentum exchange
nd e xplosiv e cratering on the impact seismic source. Fur ther more,
oth the moment tensor and the seismic impulse are point-source
odels, which overlook finite-size effects at the source. These lim-

tations justify a more physics-based approach to the development
f impact source models. 

One of the most e xhaustiv e representation of seismic sources
as established by Backus & Mulcahy (Backus & Mulcahy 1976a ,
 ), initially to describe earthquakes. They introduced the notion of
 stress glut ’, which allows to quantify the plastic processes happen-
ng in the source region and translate them into a field of equi v alent
orces. Lognonn é et al. ( 1994 ) and Gudkova et al. ( 2015 ) were the
rst studies to use the stress glut theory, with simplified hypotheses
n source dynamics, in order to anal yticall y deri ve a moment tensor
epresentation for an impact. In this work, we propose to revisit
his approach, by combining a rigorous application of Backus &
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Mulcah y’ s theory with state-of-the art modelling of impact dynam- 
ics. We obtain a semi-analytical description of the impact seismic 
source. 

Today, se veral v alidated and benchmarked hydrocodes have 
proven successful in resolving the complex dynamics of impact 
cratering (Pierazzo et al. 2008 ; W ünnemann et al. 2011 ; Collins 
et al. 2012 ; G üldemeister & W ünnemann 2017 ; W ójcicka et al. 
2020 ; Raj ši ́c et al. 2021a ; Caldwell et al. 2021 ). Here, we introduce 
a new numerical method to compute the stress glut and seismic 
source of an impact based on the HOSS hydrocode (Knight et al. 
2020 ). Our method is tested by comparing seismic motion recorded 
in the impact simulation with the seismic motion modelled using 
our semi-analytical seismic source. 

The combination of a ne w anal ytical representation of the impact 
source with a physics-based numerical model allows for a detailed 
understanding of impact wave generation processes, with the ability 
to investigate their sensitivity to a wide range of parameters such as 
impactor velocity and mass, and target seismic velocity and strength. 
Moreover, this approach enables direct comparison of the impact 
source with other types of seismic sources, which may in the future 
allow better identification of impact-generated seismic signals on 
the solar system bodies. 

This article consists of three sections, in which we present (i) 
an application of the seismic representation theorem to the impact 
problem, (ii) a numerical method to calculate the stress glut and 
associated seismic source terms, results and interpretation for a 
vertical and oblique impact simulations and (iii) tests conducted to 
assess the ability of this source model in representing impact seismic 
signals, both numerically and using comparisons with Lunar and 
Martian data. 

2  T H E  R E P R E S E N TAT I O N  T H E O R E M  

A P P L I E D  T O  I M PA C T S  

The goal of this section is to develop an analytical representation 
of the impact seismic source. In what follows, vectors are written 
as lower-case bold letters, while upper-case bolds letters are used to 
name tensors of order two or more. Operations on tensor and vector 
components follow Einstein summation conventions. 

2.1 Representation of seismic sources 

2.1.1 Elastic and non-linear equations of motion 

The dynamics of seismic waves is developed in the framework 
of continuum and linearized mechanics. For a planetary body of 
volume V and surface �, seismic displacements are expressed by: 

ρ0 ∂ 
2 u i 

∂t 2 
= ∂ j � i j + f V i in V , 

� i j n j = f � i on �, 

� i j = C i jkl ε kl . 

(3) 

These three lines represent the elasto-dynamics equation, the bound- 
ary conditions and the constitutive relation for an elastic medium 

of density ρ0 and stiffness tensor C . These equations relate dis- 
placement u ( x , t) and strains ε within the material, to linear-elastic 
stresses � , surface forces f � and volume forces f V . They are thor- 
oughly detailed in the literature (Aki & Richards 2002 ; Dahlen & 

T romp 1998 ). How ev er, the y are only valid for a linear-elastic ma- 
terial which exhibits little changes in shape and no change in mass 
during its deformation. Such conditions are not fulfilled when deal- 
ing with large deformations and stresses caused by an hypervelocity 
impact. We now relax several assumptions made in eq. ( 3 ): 

(i) The linearization of the left-hand side of the equation of mo- 
tion is abandoned in order to account for the variations in the true 
local density ρ and the advection of momentum caused by the im- 
pact. 

(ii) The material of V is no longer considered ideally linear- 
elastic, that is, stresses within it are no longer dictated by Hooke’s 
law. 

(iii) Loss of mass and momentum through surface � is intro- 
duced to account for the reactive effect of impact ejecta. 

The loss of mass through surface � is the major difference with 
respect to previous works, such as Lognonn é et al. ( 1994 ), where the 
impact source (in this specific study, associated to the Shoemaker 
Levy 9 impact) was embedded in the volume. We develop the for- 
malism in Appendix A by making use of the Reynolds Transport 
Theorem, following Irschik & Holl ( 2004 ). The equation of motion 
in volume V remains the same as in fluid mechanism (e.g. Landau 
& Lifshitz 1987 ) and can therefore be either written as: 

∂ 

∂t 
( ρv i ) = ∂ j S i j + h 

V 
i − ∂ j ( ρv i v j ) , (4) 

or: 

ρ
d 

d t 
( v i ) = ∂ j S i j + h 

V 
i , (5) 

with d / d t the material deri v ati v e, and where v is the v elocity, h 

V is 
the volumetric density of forces and S the non-linear stress tensor. 
The stress S is different from the ideal elastic stress � of eq. ( 3 ) 
and does not a priori follow Hooke’s law of elasticity. 

In distinction to the equation of motion, the continuity of stress 
at the mass-less boundary of � must integrate the transfer of mo- 
mentum through this surface by ejecta, which leads to: 

S i j n j = f � i + ρv i 
(
v j − v � j 

)
n j , (6) 

with v � the velocity of the surface bounding the non-ejected mate- 
rial. 

2.1.2 Equivalent forces of the impact and seismic wavefield 
r epr esentation 

An accurate representation of the seismic source of an impact re- 
quires non-linear phenomena of Section 2.1.1 (eqs 4 and 6 ) to be 
accommodated into the elastic system of eq. ( 3 ). To do so, following 
the method of Backus & Mulcahy ( 1976a ), non-linear effects are 
introduced in the form of equi v alent volume and surface forces γ V 

and γ � . The updated system is the following: 

ρ0 ∂ 
2 u i 

∂t 2 
= ∂ j � i j + f V i + γ V 

i in V , 

� i j n j = f � i + γ � 
i on �, 

� i j = C i jkl ∂ k u l . 

(7) 

The equi v alent forces are obtained b y equating system (eq. 7 ) with 
the true boundary conditions in eq. ( 6 ) and the true equation of 
motion in eq. ( 4 ): 

γ V 
i = 

∂ 

∂t 

[
( ρ0 − ρ) v i 

] + h 

V 
i − f V i − ∂ j ( � i j + ρv i v j ) , 

γ � 
i = 

[
� i j + ρv i ( v j − v � j ) 

]
n j , 

� i j = � i j − S i j . (8) 
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q. ( 8 ) introduces the tensor � , which is the difference between
deal, elastic stresses and true, non-linear stresses associated to
he current deformation state. It is named the stress glut and was
rst discussed in the work of Backus & Mulcahy ( 1976a ), who
emonstrated its key role in explaining indigenous seismic sources
uch as earthquakes. The stress glut measures the deviation of true
tress from the stress predicted by Hooke’s law, and is consequently
elated to the amount of plastic processes taking place in a seismic
ource region. The ability of a local thermoplastic stress change to
enerate elastic motion w as originall y proven in Eshelby’s famous
nclusion problem (Eshelby 1957 ). As noted by several authors
Backus & Mulcahy 1976a ; Madariaga 2015 ), the stress glut is
elated, in a dynamic sense, to the str ess-fr ee strain proposed in
shelby’s static approach. We also note here the similarity of eq. ( 8 )
ith the expressions of equi v alent forces proposed by Takei &
 umazaw a ( 1994 ) and Lognonn é et al. ( 1994 ), who generalized
ackus & Mulcah y’ s source formulation by including a non linear
ass advection term. 
We will now definiti vel y ignore gravity and will therefore assume

hat h 

V 
i and f V i are both null. Thanks to the seismic Representation

heorem, equi v alent forces of eq. ( 8 ) can now be used to build the
esponse of the media to the seismic source, as further detailed in
ppendix B . When the surface � is a free surface, the expression
f the n th component of displacements at time t and coordinates x 
n V is given by: 

 n ( x , t) = 

+∞ ∫ 
−∞ 

d τ
�  

V 

γ V 
i ( ξ , τ ) G in ( ξ , t − τ, x , 0) d V ( ξ ) 

+ 

+∞ ∫ 
−∞ 

d τ
� 

� 

G in ( ξ , t − τ, x , 0) γ � 
i ( ξ , τ ) d �( ξ ) . (9) 

Hence, seismic motion derives from a field of equivalent forces
pread over coordinates ξ in space and exerted at time τ . G in is the
reen’s function of the target medium, which propagates informa-

ion elastically from the sources at ξ and τ to the receiver at x and t .
he expression of the Green’s function depends on the elastic equa-

ions of motion: if gravity and rotation of a planet are accounted
or, the Green’s function must be defined using the operators of
ravito-elasticity and of Coriolis forces. We refer the reader to Ap-
endix D or for example Dahlen & Tromp ( 1998 ) for more details
n the linearized gravito-elastic equations of motion. Despite this
hange in equations, the Representation Theorem of eq. ( 9 ) remains
n essence the same (Dahlen & Tromp 1998 , section 5.3). 

Note that most studies making use of the seismic Representation
heorem assume that the mass enclosed by surface � is constant.
gain, the formation of ejecta during an impact constitutes a mass

nd momentum loss, which in turn adds equi v alent terms in the
epresentation Theorem of eq. ( 9 ). In this study, we do not account

or the effects of variable mass and volume on the source, as we will
nd them to be negligible for the simulated impacts. Ho wever , the
eader can find an exact version of Betti’s relation for a variable-
ass system in Appendix C , as proposed by Minster ( 1974 ) and

eported by Archambeau & Scales ( 1989 ). 

.2 Point-source of an impact 

.2.1 The point-source approximation. 

i ven the equi v alent forces and expression of displacements de vel-
ped above, it is possible to further simplify the representation of
he source. Following the point source approximation, we assume
hat the source is exerted at a point ξ ∗ in space. This approximation
s valid if the source is sufficiently small compared to the receiver’s
istance and other typical spatial variations ( | ξ − ξ ∗| << | x | ). As-
uming that the Green’s function v aries smoothl y and that its deri v a-
ive is defined in the inner side of the free surface, its Taylor’s ex-
ansion of order 2 is conducted around ξ ∗, before being reinserted
n eq. ( 9 ). Details on this technique can easily be found in the litera-
ure (see e.g. Stump & Johnson 1977 ; Jost & Herrmann 1989 ; Julian
t al. 1998b ). Through this multipole expansion, displacements now
ecome: 

u n ( x , t) ∼
+∞ ∫ 

−∞ 

d τ

⎧ ⎨ 

⎩ 

G in ( ξ
∗, t − τ, x , 0) 

[ � 

V 

γ V 
i ( ξ , τ ) d V ( ξ ) 

+ 

� 

� 

γ � 
i ( ξ , τ ) d �( ξ ) 

] 

+ 

∂G in 

∂ξ j 
( ξ∗, t − τ, x , 0) 

[ � 

V 

γ V 
i ( ξ , τ ) ( ξ j − ξ∗

j ) d V ( ξ ) 

+ 

� 

� 

γ � 
i ( ξ , τ ) ( ξ j − ξ∗

j ) d �( ξ ) 

] ⎫ ⎬ 

⎭ 

. 

(10) 

r, expressed as a convolution (Stump 1985 ; Julian et al. 1998a ): 

 n ( x , t) = F i ( τ ) ∗ G in ( ξ
∗, t − τ, x , 0) 

+ M i j ( ξ
∗, τ ) ∗ ∂G in 

∂ξ j 
( ξ ∗, t − τ, x , 0) . (11) 

wo key source parameters are revealed: 

F i ( τ ) = 

�  

V 

γ V 
i ( ξ , τ ) d V ( ξ ) + 

� 

� 

γ � 
i ( ξ , τ ) d �( ξ ) , 

M i j ( ξ
∗, τ ) = 

�  

V 

γ V 
i ( ξ , τ ) ( ξ j − ξ ∗

j ) d V ( ξ ) 

+ 

� 

� 

γ � 
i ( ξ , τ ) ( ξ j − ξ ∗

j ) d �( ξ ) . (12) 

he above developments mean that, once integrated over the volume
 

t of the source region, the force field γ V and tractions γ � reduce
o the following approximations: 

(i) A vector force of the form −→ , also called a monopole . It
orresponds to the term F i ( τ ) in eq. ( 12 ). This term encompasses
ll momentum changes caused by the seismic source. 

(ii) Force-less couples of the form ← − · −→ , also called dipoles .
hey are contained in the moment tensor terms M ij ( τ ) in eq. ( 12 ). 

If an exact non-linear solution of the wavefield and stress field
s modelled in the whole source volume, for example numerically,
hen the equi v alent forces can be e v aluated. We de velop below the
xpression of the monopole and dipole in terms of these wavefields.

.2.2 Expression of the monopole of the impact source 

he expressions of equi v alent volume and surface forces from
qs ( 8 ) and ( 7 ) are inserted into the definition of F i ( τ ) (eq. 12 ).
he Gauss–Green–Ostrogradsky Theorem allows us to simplify the
xpression of the net vector force exerted on Earth by the impact: 

F i ( τ ) = 

� 

V 

γ V 
i ( ξ , τ ) d V ( ξ ) + 

� 

� 

γ � 
i ( ξ , τ ) d �( ξ ) 

= 

� 

V 

( ρ0 ∂v i 

∂t 
− ∂ j � i j )( ξ , τ ) d V ( ξ ) + 

� 

V 

∂ j � i j ( ξ , τ ) d V ( ξ ) , (13) 
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or: 

F i ( τ ) = 

�  

V 

ρ0 ∂v i 

∂τ
( ξ , τ ) d V ( ξ ) . (14) 

This vector force is merely the variation of momentum in the instan- 
taneous target volume following the impact, in the approximation of 
constant density. Note here that the mass leaving volume V will lead, 
b y momentum conserv ation, to a v ariation of the target momentum. 
Therefore, even though F i ( τ ) is an integral of momentum restricted 
to the target volume V , it includes by definition the impulse resulting 
from ejecta motion. 

2.2.3 Expression of the dipole of the impact source 

An expression of moment tensor components is obtained by replac- 
ing equi v alent volume and surfaces forces in eq. ( 12 ) using their 
definition in eqs ( 8 ) and ( 7 ): 

M i j ( ξ
∗, τ ) = 

�  

V 

∂ 

∂τ

[
( ρ0 − ρ) v i 

]
( ξ , τ ) ( ξ j − ξ ∗

j ) d V ( ξ ) 

−
�  

V 

∂ 

∂ξ j 

[
� i j + ρv i v j 

]
( ξ , τ ) ( ξ j − ξ ∗

j ) d V ( ξ ) 

+ 

� 

� 

� i j ( ξ , τ ) n j ( ξ j − ξ ∗
j ) d �( ξ ) . (15) 

Integration by part is used to further simplify the second and third 
integrals. We get: 

M i j ( ξ
∗, τ ) = 

�  

V 

∂ 

∂τ

[
( ρ0 − ρ) v i 

]
( ξ , τ ) ( ξ j − ξ ∗

j ) d V ( ξ ) 

+ 

� 

� 

� i j ( ξ , τ ) n j ( ξ j − ξ ∗
j ) d �( ξ ) 

−
� 

� 

[ � i j + ρv i v j ]( ξ , τ ) n j ( ξ j − ξ ∗
j ) d �( ξ ) 

+ 

�  

V 

[ � i j + ρv i v j ]( ξ , τ ) d V ( ξ ) , (16) 

which yield after rearranging the stress terms: 

M i j ( ξ
∗, τ ) = 

�  

V 

∂ 

∂τ

[
( ρ0 − ρ) v i 

]
( ξ , τ ) ( ξ j − ξ ∗

j ) d V ( ξ ) 

+ 

� 

� 

[ S i j − ρv i v j ]( ξ , τ ) n j ( ξ j − ξ ∗
j ) d �( ξ ) 

+ 

�  

V 

[ � i j + ρv i v j ]( ξ , τ ) d V ( ξ ) . (17) 

eq. ( 12 ) can also be re-arranged dif ferentl y if we recall from eq. ( 7 )
that γ V 

i = ρ0 ∂v i 
∂t − ∂ j � i j . This time, using an integration by part on 

∂ j � ij , surface integrals can be eliminated and we obtain: 

M i j ( ξ
∗, τ ) = 

�  

V 

∂( ρ0 v i ) 

∂τ
( ξ , τ ) ( ξ j − ξ ∗

j ) d V ( ξ ) 

+ 

�  

V 

� i j ( ξ , τ ) d V ( ξ ) . (18) 

This expression, which only requires volume integrals, is better 
suited for an e v aluation with a numerical calculation. Like relation 
( 14 ), it only requires the computation of velocity, elastic and non- 

linear stress fields within finite volume elements. 
2.2.4 Remarks on these results 

We have now gone from a source composed of distributed force 
fields, to a point source approximation composed of a monopole 
F and dipole M . Further description of the source requires an 
e v aluation of physical fields such as density , velocity , true stresses 
and ideal stresses within the material, which will be made possible 
with numerical modelling. Meanwhile, the expression of F and M 

already provide insights into the mechanism at play at the impact 
seismic source: 

The vector force F (eq. 14 ) takes a rather elegant form, which 
is simply the integral of the linearized momentum within the in- 
stantaneous target volume. It hints at the fact that part of the impact 
seismic signal is due to momentum exchange between the impactor 
and ejecta. It also means that F ( t) should be an impulse-shaped 
function, which decays with time as the impacted volume slowly 
relaxes to a new equilibrium. As such, it is not able to describe 
the permanent deformation of the surface, that is the crater, as this 
would require the application of a constant equi v alent force on the 
surface. Such per manent defor mations are linked to the creation of 
plasticity, and will therefore be accommodated by the stress glut 
present in the dipole term of the point source. 

The typical duration of the monopole impulse is strongly depen- 
dant on the dynamics of the impactor and ejecta. The deceleration 
of the impactor occurs mainly in the first stage of crater formation, 
called the contact and compression stage. Its duration is typically 
the time needed for the impactor to burry itself, that is r i /( v i sin ( θ )), 
with r i , v i the radius and velocity of the impactor, and θ its inci- 
dence angle (Melosh 1989 ; Melosh & Ivanov 1999 ). This contact 
and compression time should thus be one of the dominant time 
scales of the monopole source. 

The moment tensor : The expression of M ij ( t ) in eq. ( 18 ) contains 
two integ ral ter ms. The first ter m is the first moment of momentum, 
which is similar in dimensions to the angular momentum ( L = 

r × p for a point in space with momentum p ). The second term 

is the ideal elastic stress, that is the stress computed from the non- 
linear strain field using an ideal elastic stiffness tensor. Therefore, 
M ij ( t ) originates both from momentum exchange and from the non- 
linear elastic behaviour of material close to the source. 

From eq. ( 18 ), and recalling that � ij = � ij + S ij , we see that the 
time-evolution of M ij ( t ) depends on the time evolution of v i ( t ), S ij ( t )
and � ij ( t ). We can infer some properties about the first integral of 
eq. ( 18 ) from the behaviour of v i ( t ) in the far field. As the impactor
momentum dissipates into the target volume, regions of non-zero 
velocity will concentrate in the seismic P and S waves. In the far- 
field, these wa ves deca y proportionally to 1 / | ξ P,S − ξ ∗| , where ξ P,S 

is the position of the P or S pulse with respect to the point-source 
(Aki & Richards 2002 ). Therefore, the first term of M ij ( t ) should 
reach a constant value in the far field. Note also that this term is 
analogous to the expression of the radial seismic moment proposed 
by Walker ( 2003 ) (eq. 2 ). 

The second term of M ij ( t ) should also converge to a constant 
value, illustrating the presence of a residual plastic deformation at 
the source location. Similarly to Backus & Mulcahy ( 1976a ), we can 
write that lim t→+∞ 

� i j ( ξ , t) = lim t→+∞ 

� i j ( ξ , t) = C i jkl ε 
P ( ξ ) , 

with ε P ( ξ ) being the residual plastic strain field of the source. This 
non-zero value of M ij after the seismic event mean that couples of 
forces are being per manently exer ted within V in order to maintain 
its ne w permanentl y deformed shape. We point out to the reader that 
there exists an interesting relationship between the integral of the 
stress glut and the expression of the seismic moment of an explosion 
due to M üller ( 1973 ) presented in section 1 (eq. 1 ). In a discussion 
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n 2005, Richards & Kim pointed out the debate surrounding two
ifferent expressions of the moment of an explosion. The expres-
ion of M üller ( 1973 ), M 0 , 1 = ( K + 

4 G 

3 ) δV , with δV = S < D > ,
 and G the bulk and shear modulus of the medium, competed
ith another expression: M 0, 2 = K 
 V . The difference between the
olume changes δV and 
 V involved in the two expressions was
et unclear. Richards & Kim ( 2005 ) resolved this debate by stating
hat these two moment definitions are in fact equi v alent, but that the

eaning of each volume is dif ferent. Precisel y, the volume 
 V in
 0, 2 corresponds to the permanent volume change experienced by

he strongly loaded material of the source. Again, we find a parallel
etween the second integral of M ij ( t ) (eq. 18 ) and M üller’s equiv-
lent M 0, 2 . Indeed, if we consider a purel y isotropic, compressi ve
ource and assume the plastic strain to be related to the volume
hange by ε P v = 


V 
V source 

, the second integral of M ij ( t ) becomes: 
�  

V source 

� i j dV = 

�  

V source 

C i jkl ε 
P 
v dV 

= K 


V 

V source 
V source 

= K
V = M 0 , 2 . (19) 

hanks to Richards & Kim ( 2005 ), we can thus conclude that the last
erm of the definition of the seismic moment in eq. ( 18 ) is equi v alent
o the expression of M üller ( 1973 ) used in W ójcicka et al. ( 2020 ). 

Finally, we indicate a possible further simplification of the
oment Tensor expression. We recall from an integration by

art that 
∫ 

V S i j d V = 

∫ 
� 

S i j ( ξ j − ξ ∗
j ) d � − ∫ 

V ∂ j S i j ( ξ j − ξ ∗
j ) d V .

n the far -field, w here density changes and Reynolds inertial effects
an be neglected, we have: ∂ j S i j ( t)( ξ j − ξ ∗

j ) ∼ ρ0 
∂v i 
∂t ( ξ j − ξ ∗

j ) from
q. ( 4 ). This means that in the far field, the ‘angular momentum’
ntegral and the ‘true stress’ integral of eq. ( 18 ) should amount to: 
�  

V 

S i j ( ξ , τ ) dV ( ξ ) + 

�  

V 

ρ0 
∂v i 

∂t 
( ξ , τ )( ξ j − ξ ∗

j ) dV ( ξ ) 

= 

� 

� 

S i j ( ξ , τ )( ξ j − ξ ∗
j ) dS( ξ ) , (20) 

nd that the moment should be reduced to: 

M i j ( ξ
∗, τ ) = 

� 

� 

S i j ( ξ , τ ) ( ξ j − ξ ∗
j ) d �( ξ ) + 

�  

V 

� i j ( ξ , τ ) d V ( ξ )

(21

his approximation and the respective amplitudes of the two re-
aining source terms will be further discussed in Section 3.5 . 
As a final note, we point out that, while this second integral of

q. ( 18 ) yields a symmetric tensor by definition of the Cauchy stress
ensor, this is not necessarily true for the first integral. In particular,
f the impact problem is not cylindrically symmetric, such as during
n oblique impact, the first integral conveys the change of angular
omentum imparted to the celestial body by the bolide. 

.3 To war ds a more detailed source model 

ll the above development aims at obtaining a simple model of
he impact seismic source, in the form of a point of origin for a
orce and six couples of forces. While the point-source approxi-
ation has proved to be successful in a large variety of seismic

tudies (inversion of sources, estimations of signal amplitude and
agnitude, etc.), it does not provide a full description of the seismic

ource physics. One of its biggest limitation is that it overlooks the

ffects of the source kinematics and of its finite dimensions on the r
bserved seismic signal. In particular, the geometry of a source has
n influence on the seismic signal. Indeed, in eq. ( 9 ), the source
nergy radiates from multiple points ξ in space, like an antenna.
ence, as the shock front progresses, the delayed radiation of two
istinct points causes interferences in the generated seismic signal
nd alters its frequency content. This phenomenon has been at the
ocus of many earthquake studies, for example by Savage ( 1966 ),
askell ( 1969 ) or Madariaga ( 1976 ) for elliptical, rectangular or

ircular fault ruptures. The geometry of an impact source is likely
o be very different from an essentially 2-D fault surface. 

The development of analytical models for an extended impact
ource and its kinematics is beyond the scope of this study. Ho wever ,
e will show in Section 4.2.2 that we can reproduce an extended

ource numerically using the stress glut and velocity fields described
bove. The effects of the finite source dimension on the signal
pectrum can then be assessed. 

 N U M E R I C A L  C O M P U TAT I O N  O F  T H E  

E I S M I C  S O U RC E  

he above analytical developments quickly reach a limit in their
bility to describe the source. Further understanding of the impact
eismic source requires us to compute several fields (velocity, stress
nd displacements) evolving in a strongly non-linear regime. Nu-
erical modelling is adequate to our development as it provides all

he needed fields in a discretized space. In this section, we present
 numerical method to quantify the stress glut field associated to
mpacts, and to estimate the source terms developed in Section 2.2 .

e show an application of this method to two impact scenarios with
ifferent incidence angles and we analyse their source mechanism. 

.1 Numerical model and methods 

.1.1 The HOSS software 

e develop algorithms and numerical methods to compute the stress
lut field using the Hybrid Optimization Software Suite (HOSS).
OSS is based on the Finite-Discrete Element Method (FDEM;
unjiza 2004 ; Knight et al. 2020 ), which combines the Finite El-

ment method for the description of continuum, with the Discrete
lement (DE) Method to simulate fractures, fragmentation and in-

erpar ticle interactions. HOSS suppor ts large-scale parallelization
nd is equipped with a variety of tunable material models for an
ccurate description of metals and geomaterials (Lei et al. 2014 ).
s such, it has been applied to simulate various impact problems

Froment et al. 2020 ; Caldwell et al. 2021 ), and to model dynamic
racture processes at play during earthquake ruptures and their ef-
ects on the frequency content of near-field seismic radiation (Okubo
t al. 2019 ). 

.1.2 Material models 

OSS’ simulation domain is a user-defined mesh of tetrahedral
lements. In the framework of FDEM, each tetrahedron constitutes
 Finite Element (FE), but the bounding surfaces of each FE are also
iscretized by a set of DEs. The interaction of adjacent elements is
alculated through these DEs. Hence, neighbouring elements can
e bounded and form a continuous volume, or they can behave
ndependently and interact via contact and friction. Consequently,
OSS material models are of two kinds, in order to define the

esponse of both FEs and DEs to deformation. 
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Figure 1. Graphic showing the computation method for volumetric stress 
glut. A compressed material follows a path in red in the { P , ε v } space, with 
a pressure never exceeding P 

True (black curve). In the orange area, P 

True ( ε v ) 
differs from the ideal elastic pressure K el ε v (blue curve) due to plasticity, 
and a volumetric stress glut � 

V appears. 

� will thus be defined as the difference between ideal stresses ‘if 
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The response of FEs is typically separated into a volumetric and 
a deviatoric material model. The volumetric model specifies the 
evolution of pressure as a function of the volumetric strain of an 
element, while the deviatoric model defines the six remaining devi- 
atoric components of stress. In this work, we develop a stress glut 
calculation method based on the volumetric and deviatoric models 
used by Froment et al. ( 2020 ), described below. Indeed, as shown 
by the authors, these models successfully reproduce the response of 
a porous and granular material, similar to the regolith present on the 
surface of Mars and the Moon, to impacts in laboratory conditions. 
Each response models handles elasticity and plasticity in its own 
way, which leads to two separate methods of computation of the 
stress glut. FEs may also be subject to an additional damping stress, 
which is added in order to reproduce the visco-elastic behaviour of 
realistic geomaterials. This stress term is purely inelastic, and can 
be simply added to the measure of the stress glut. In this study, the 
contribution of damping stress on the stress glut was determined to 
be negligible, and it will hence be ignored in the following sections. 

In contrast with FEs, the response of DEs depends on the current 
conformation of simulation elements. For two initially bounded, 
adjacent elements, it takes the form of a strain softening curve: 
elements with opposite motion gradually dissipate energy into a 
fracturing process, until their maximal fracture aperture is reached 
(see e.g. Rougier et al. 2014 ). Beyond this point, the two elements 
become independent, and will interact together via a contact de- 
tection and friction algorithm associated to a penalty that prevents 
interlocking. In the following approach, for simplicity, we do not 
consider the effect of fracturing on the impact seismic source. To 
ensure that the fracture phenomenon does not affect the estimate of 
the source, we define the material strain softening curve as having 
a small fracture energy compared to the energies of other dynamic 
processes. On the other hand, friction between particles is an im- 
portant mechanism at play in the response of geomaterials and 
constitutes an additional force in our simulations. Although this 
interelement friction has not been included in the equations of Sec- 
tion 2.2 and in the following development, we discuss its possible 
effects on the seismic source in Section 5 . 

3.2 Computation of the stress-glut 

We present numerical methods adopted to compute the stress glut. 
Numerical tests of these algorithms for a single simulation element 
are found in the Supplementary Information (Section SI-2 ). 

3.2.1 The pr essur e glut 

The volumetric deformation of the material is represented using 
the SocCrush model, based on an algorithm by Schatz ( 1974 ). In 
this model, the deformation of an element is separated into three 
domains. At low pressure, the material follo ws Hooke’s la w: the 
pressure P and volumetric strain ε v are related by P = K el ε v , with 
K el being the bulk modulus of the elastic material. In this regime, 
the modelled pressure and the ideal, elastic pressure are equal: by 
definition, the volumetric term of the stress-glut (or ‘pressure glut’) 
is thus zero (see Fig. 1 ). Above a certain limit stress, the pressure–
strain relationship departs from this ideal linear behaviour and the 
material starts accumulating plasticity. Froment et al. ( 2020 ) as 
well as laboratory studies (Yamamuro et al. 1996 ; Luo et al. 2011 ; 
Housen et al. 2018 ) showed that an exponential curve provides a 
good description of the pore-crushing and compaction phenomenon 
that occur in a regolith-like material. In this regime, we have: 

� 

V = K el ε v − P 

True 
= 0 . (22) 

Once pressure in the material starts decreasing, it follows a 
new linear-elastic unloading path back to P 

True = 0 (see Fig. 1 ). 
Each modelled element that has entered the pore-crush regime re- 
tains a final volumetric strain ε P . Following eq. ( 22 ), this means 
that in the last stages of deformation, its pressure-glut converges 
to lim t→∞ 

� 

V ( t) = K el ε 
P , as mentioned in the remarks of sec- 

tion 2.2.4 . 

3.2.2 The deviatoric stress glut 

We now consider deviatoric stresses using the algorithm described 
in Lei et al. ( 2020 ). The deviatoric stresses of an element are related 
mathematicall y to se ven dif ferent modes of deformation: one rep- 
resenting pure volumetric strain, which is handled by the method of 
section 3.2.1 above, and six modes of pure shear deformation. The 
six shear modes refer to six angles of deformation, written ϕ 1 − 6 , 
which are measured within a reference material element. At each 
new simulation time step t N + 1 , the algorithm predicts the angles 
of the deformed material element, ϕ 1 − 6 ( t N + 1 ). It verifies whether 
the deformation associated to ϕ 1 − 6 ( t N + 1 ) have brought the element 
beyond its yield surface. If it is the case, a correction is applied to 
ϕ 1 − 6 ( t N + 1 ) using a return mapping method, so that corrected angles 
ϕ 

E 
1 −6 ( t N+ 1 ) keep stresses within the yield surface. This correction is 

equi v alent to a measure of plasticity: total angles ϕ 1 − 6 ( t N + 1 ) are 
separated into ‘elastic angles’ ϕ 

E 
1 −6 , and their plastic correction or 

‘plastic angles’ ϕ 

P 
1 −6 , as in: 

ϕ 1 −6 = ϕ 

E 
1 −6 + ϕ 

P 
1 −6 . (23) 

After the correction step, a linear relationship transforms angles 
ϕ 

E 
1 −6 into the deviatoric Cauchy stress S D of the element. This 

action can be summarized by a linear operator F ij [detailed steps 
can be found in Lei et al. ( 2020 )]: 

S D, True 
i j = F i j ( ϕ 

E 
1 −6 ) . (24) 

By analogy with the volumetric stress glut, the deviatoric stress-glut 
D 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae144#supplementary-data
art/ggae144_f1.eps
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ll deformations associated to ϕ 1 − 6 were elastic’ and true stresses: 

 

D 
i j = � 

D, Ideal 
i j − S D, True 

i j 

= F i j ( ϕ 1 −6 ) − F i j 

(
ϕ 

E 
1 −6 

)
. (25) 

ecause F ij is linear, the deviatoric stress glut is simpl y obtained b y
omputing the stresses associated to plastic angles: 

 

D 
i j = F i j 

(
ϕ 

P 
1 −6 

)
. (26) 

n the same way that a residual volumetric strain ε P is created in the
lastic regime of the volumetric model in Section 3.2.1 , the element
ight also accumulate a final plastic angle ϕ 

P 
1 −6 in each mode of

hear deformation. 
Note that this measure of plasticity requires us to compute the

eformation of a reference element, with its own fixed reference
xes. The computation steps hidden within the function F ij , aim at
apping the deformation of this reference element onto the global

imulation space, taking into account the position of each simu-
ation element. Contrary to the v olumetric stress-glut, w hich is a

easure of the trace of the stress-glut tensor, and is consequently
ndependent of any change of reference frame, the deviatoric stress-
lut is sensitive to geometrical changes brought for instance by the
otation of a simulation element (see section 2 of the Supporting In-
ormation for an example). This sensitivity of deviatoric stress-glut
o rotation can be problematic. Indeed, even if inelastic deformation
as stopped and plastic angles ϕ 

P 
1 −6 are constant, the components of

he stress-glut tensor will change over time as long as the position
f the reference frame is changing with respect to the global simula-
ion frame. Long-term variation of the stress-glut may appear, even
hough the exchange of forces with simulation elements may have
nded. A method to quantify the effect of rotation on the source is
roposed in the next section. 

.3 Final numerical representation of the source 

omputing the stress glut is one piece of the solution to the prob-
em of representing the impact seismic source. Here, we state the
rotocol established for the full determination of the seismic point-
ource: 

(i) A numerical simulation of an impact is run. The simulation
omain must be large enough to encompass the entirety of the
nelastic source region. The simulation is stopped when the dis-
lacement recorded on sensors outside the inelastic source region
as stabilized. 

(ii) Images of the full simulation domain and its various fields
 � 

V , � 

D , v ...) are saved at regular time intervals of typically 0.1 ms
or a metre-size crater. A shorter interval ( ∼1 e − 6 s) is used in the
rst few milliseconds of the impact to correctly capture the very
ast exchange of momentum between the impactor and target. 

(iii) The volume integrals of eqs ( 14 ) and ( 18 ) are computed in
 discrete w ay b y summing variables over each simulation element.
ecause simulations are often run with a restricted domain due to
omputational costs (for example: a 45 ◦ or 180 ◦ cylindrical slice
entred on the impact point), components of the physical fields or
f the source have to be rotated or mirrored to recover the full
60 ◦ volume. In the source computation, a distinction between the
jecta (i.e. material not in contact anymore with the planet) and the
arget (i.e. the planet) is made: the target volume is considered to be
omposed of every element whose centroid coordinate z e is below
he ground surface z = 0. For example, the force component of the
ource is given by: 

F i ( τ ) = 

1 

t j+ 1 − t j 

⎡ 

⎣ 

⎛ 

⎝ 

N E, j+ 1 ∑ 

e= 0 
ρ0 [ e] v i [ e] V 0 [ e] 

⎞ 

⎠ 

j+ 1 

−
⎛ 

⎝ 

N E, j ∑ 

e= 0 
ρ0 [ e] v i [ e] V 0 [ e] 

⎞ 

⎠ 

j 

⎤ 

⎦ , (27) 

here j and j + 1 designate two successive simulation images
ith time t j and t j + 1 , respecti vel y, N E , j is the number of element

n the target domain at time t j , V 

0 [ e ] (resp. ρ0 [ e ]) is the initial,
ndeformed volume (resp. density) of one of these elements, and
 i [ e ] the velocity of its centroid. 

(iv) To measure the influence of rotation on the integrated mo-
ent tensor, an alternativ e v ersion of it is computed using the ‘coro-

ated Cauchy stress’ �̄ as a measure of stress and stress glut. This al-
ernative stress measure infers the finite rotation of an element from
he polar decomposition of its deformation gradient F [ e] (Hoger &
arlson 1984 ), such that: 

F [ e] = R [ e] U [ e] = V [ e] R [ e] , (28) 

here R [ e] is the rotation tensor. The corotated formulation of
tresses is then: 

¯
 [ e] = R 

T [ e] � [ e] R [ e] . (29) 

These post-processing steps provide three measures of the point-
ource of the impact: one force component F i ( τ ), and two time-
arying moment tensors M̄ i j ( ξ

∗
, τ ) and M i j ( ξ

∗
, τ ) , with and without

otation correction. 

.4 Application to two impact scenarios 

he approach described above is tested for two impact scenarios.
n both cases, a spherical basaltic bolide with a mass of 12 kg
nd a velocity of 1000 m s −1 impacts a cohesive surface similar
o Martian regolith. In scenario (A), the impactor has a vertical
ncidence angle, compared to 45 ◦ in scenario (B). We describe here
he characteristics of the simulation geometry and material models.

.4.1 HOSS simulation geometry design 

he two simulations are conducted in 3-D. Due to the cylindrical
ymmetry of the vertical impact problem, the target geometry of
cenario (A) consists of a cylindrical sector of 45 ◦ angle. The target
eometry for the oblique impact of scenario (B) is a half-cylinder
ith 180 ◦ angle to accommodate its plane symmetry. The impactor

s a section of a sphere with a r i = 10 cm radius and with a 45 ◦ or
80 ◦ aperture, placed at the centre of rotation and at the top of the
arget cylinder. 

To ensure the correct computation of the stress glut, the target
omain must be larger than the region of non-linearities close to the
rater. Consequently, an initial simulation is performed with a rough
esh to estimate the size of the inelastic source region, defined as

he radius R s beyond which the stress glut vanishes. The final mesh
nsures that the radius and depth of the target cylinder exceed R s . 

Here, the resulting target domain extends to 17 m. This is about a
undred times larger than the impactor, which presents a computa-
ional challenge. In an attempt to limit the total number of simulation
lements, different mesh resolutions are tested. The mesh test and
arameters of the final mesh for scenarios (A) and (B) are presented
n the SI (section SI-3). Shock wave amplitudes in the final meshes
re within 85 per cent of the ones obtained with higher-resolution
eshes. These meshes provides a good compromise between ac-

uracy, element number and load balance between parallelization
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3.4.2 HOSS material model design 

The impactor and target materials are simulated with a model 
adapted from W ójcicka et al. ( 2020 ). The target model was previ- 
ously implemented in HOSS in order to simulate the impact of Per- 
severance’s entry balance masses on Mars (Fernando et al. 2021 ), 
and it aims at representing the response of the upper ten meters of the 
martian surface regolith. The target deviatoric response is modelled 
using a Lundborg pressure-dependant strength model (Lundborg 
1968 ), and the volumetric response with an elasto-plastic model for 
porous materials adapted from Froment et al. ( 2020 ), with param- 
eters from W ójcicka et al. ( 2020 ). The impactor is made of solid 
basalt and simulated with a Tillotson equation of state (Tillotson 
1962 ) and another Lundborg strength model. Parameter values and 
details for both materials can be found in Table 1 of the SI. Other 
target models could have been used for this work, but this particular 
model is chosen due to its high elastic velocities ( v p = 1090 m s −1 

and v s = 583 m s −1 ), which helps with simulation convergence. 
We leave the investigation of impact sources in other materials to a 
future study. 

3.5 Results: source of a vertical and an oblique impact 

3.5.1 Impact dynamics and stress glut 

Images of the simulated stress glut fields � 

D 
zz and � 

V are shown 
on Fig. 2 for the vertical impact and on Fig. 3 for the oblique 
impact, at three different times. For both simulations, the stress 
glut field shows a transient stage until around 15 ms, during which 
the inelastic region is growing. After 15 ms, the field appears to 
have stabilized. With a radius of around 10 m compared to only 
5 m, the region of non-zero stress glut is larger for deviatoric pro- 
cesses (fourth line, � 

D 
zz ) than for volumetric processes (third line, 

� 

V ). This is not surprising according to the definition of material 
response in Section 3.1.2 : the computation of the volumetric and 
deviatoric stress glut rely on two different material models. Volu- 
metric stress glut appears when the pressure in the material exceeds 
its crushing strength P el , while the presence of deviatoric stress glut 
is determined by the material’s yield surface, i.e. its shear strength 
and internal friction, which leads to two different spatial dimen- 
sions. Note also that the deviatoric stress glut field grows at the 
same speed as the region of non-zero rotational velocity ( ∇ × v ): 
this confirms that the deviatoric stress glut is inherently related to 
shear processes and thus to the shear ( S ) wave propagation. On the 
other hand, the volumetric stress glut follows the pressure ( P ) wave. 

The craters formed in both simulations are shown 116 ms after the 
impact on Fig. 4 . The vertical impactor results in a crater of about 
70 cm depth, while the oblique impactor crater reaches only about 
65 cm in depth. Moreover, while the vertical impactor remains at 
the bottom of the crater, the oblique one is subject to a rebound, and 
is shown to have escaped the crater at 116 ms (see Fig. 4 b). This is 
an interesting behaviour, as the impactor rebound could enhance the 
impulse transferred to the target in the vertical direction. Although 
the 116 ms of simulation are not sufficient to capture the final crater 
dimension with zero gra vity, w e can estimate lower bounds for the 
final crater diameter of 1.9 m for the vertical scenario and 2 m for 
the oblique scenario. 

3.5.2 Source parameters 

The stress, stress glut and velocity fields shown in Figs 2 and 3 
are integrated to obtain the point-source components, following the 
method of Section 3.3 . In order to generalize these results, we scale 
the obtained point source terms in time and in amplitude. The time 
is scaled to the duration of the contact and compression stage for 
the vertical impact: 

τN = 

r i 
v i 

, (30) 

with impactor radius r i and total velocity v i giving τN = 1 e − 4 s. 
The point source force component is scaled to the measure: 

F N = 

P i 

τN 
= 

P i v i 

r i 
, (31) 

corresponding to the hypothesis that the total momentum P i is de- 
livered to the target within a time τN . We have here F N = 1.2 e 8 N. 
Finally, the point source moments are dimensionally scaled based 
on the equi v alence between the seismic response to a point force 
and to a moment tensor (see e.g. Aki & Richards 2002 ). This 
gives: 

M N = v p P i , (32) 

a scaling also proposed by Daubar et al. ( 2018 ) for a known impactor 
and material velocity. Here, M N = 1.3 e 7 Nm. 

Fig. 5 shows the components of the force F ( τ ) representing the 
monopole of the seismic source, for both simulations. The force 
takes the form of a pulse with a duration of about ∼5 τN , which 
confirms that most of the impactor momentum is delivered to the tar- 
get during the contact and compression stage as noted in Section 3.5 . 
For the vertical impact, the vertical force amounts to 0.28 F N ( ∼3.3 
× 10 7 N), compared to 0.19 F N ( ∼2.3 × 10 7 N) for the oblique im- 
pact. In both scenarios, the maximum force is less than F N , which 
suggests that the impactor penetrates the target for about 3.5 times 
its radius before delivering its total momentum P i during the contact 
and compression stage. We also note that for the oblique impact, 
the amplitude of the force in the � z direction is well predicted by 
projecting the force of the vertical impact at 45 ◦, as shown by the 
dashed black curve in Fig. 5 (a). Indeed, 0.19 ≈ sin (45 ◦) × 0.28. 
Ho wever , the horizontal force reaches a maximum of only 0.13 F N 

(1.5 × 10 7 N), suggesting that the transfer of momentum is less 
efficient in the � x direction. A possible explanation is the lingering 
motion of the oblique impactor observed in Fig. 4 (b) along � x , which 
reveals that the impactor keeps part of its horizontal momentum and 
does not transmit it to the target. It could also be due to a difference 
in the generation of ejecta between both cases. 

Fig. 6 displays the components of the moment tensor extracted 
from HOSS, either with or without correcting for element rotation. 
We adopt the traditional sign convention of seismology, were a pos- 
itive moment signifies a compression of the material surrounding 
the source. The oblique and vertical moment functions present sim- 
ilar amplitudes reaching up to 8 M N ( ∼1 e 8 Nm). Ho wever , some 
of the components dif fer strongl y. In particular, the oblique sim- 
ulation is characterized by the presence of a non-zero M xz com- 
ponent. Without correcting for rotation (Fig. 6 a), the M xx , M yy 

and M zz components have rather similar shapes in both the ver- 
tical and oblique simulation. Ho wever , the correction of rotation in 
Fig. 6 (b) has significant effects: the average amplitude of M̄ zz is in- 
creased in the vertical simulation, while it is decreased in the oblique 
simulation. 

As the target reaches an equilibrium, that is a state of constant 
deformation, we would expect the moment to converge to a constant 
value. Here, we note that, even after correcting for rotation in plot 
6 (b), the moment source time function still shows residual variations 
instead of converging. This long-term evolution of moments is an 
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Table 1. Absolute maximum amplitude of each force and moment time-series shown in Figs 5 and 6 . 
The non-rotated components are used in the calculations. Values are shown in SI units and in units of F N 

= P i / τN for the single force and in units of M N = v P P i for the moments. The seismic moment M 0 of 

each impact is computed using the formula: M 0 = max 

⎧ ⎨ 

⎩ 

1 √ 

2 

[ ∑ 

i j 
M 

2 
i j ( t) 

] 1 / 2 
⎫ ⎬ 

⎭ 

, with M ij the total moment 

tensor in Nm. The moment magnitude is defined as M w = 

2 
3 

(
log 10 M 0 − 9 . 1 

)
, with M 0 in Nm. 

Vertical Oblique Vertical × sin (45 ◦) 

Force components Units F N [N] F N [N] F N [N] 
F z 0.28 3.3e7 0.19 2.3e7 0.20 2.4e7 
F x – – 0.12 1.5e7 – –

Moment components Units M N [Nm] M N [Nm] M N [Nm] 
M 

V 6.38 8.3e7 4.79 6.3e7 4.51 5.9e7 
M 

D 
xx 2.12 2.8e7 2.91 3.8e7 1.50 2.0e7 

M 

D 
yy 2.12 2.8e7 1.30 1.7e7 1.50 2.0e7 

M 

D 
zz 4.24 5.6e7 3.88 5.1e7 3.00 4.0e7 

M 

D 
zx – – 6.85 9e7 – –

Seismic moment M 0 [Nm] 1.11e8 1.2e8 0.79e8 
Moment magnitude M w −0.7 −0.68 −0.80 
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mportant aspect of the seismic source. This feature could be due
o the ejecta elements still leaving the crater at large time scales,
arrying with them part of the stress glut and thus artificially altering
he source. Indeed, Figs 2 (c) and 3 (c) indicate that some elements
lose to the crater still have strong positive vertical velocities after
16 ms. In the absence of gravity, they continue to escape the target
omain, while they would e ventuall y settle down if it was taken into
ccount. 

.5.3 Analysis of the source mechanism 

e investigate the source mechanism further by looking into dif-
erent decompositions of the moment tensor. The simplest possible
ecomposition consists in separating the tensor into its volumet-
ic and deviatoric parts. This is also a meaningful operation, as it
choes the ways in which moments are integrated from a volumet-
ic and a deviatoric stress glut in our method, themselves calculated
sing two different material models. This decomposition unveils
hree classes of source time functions, represented in Fig. 7 . The
olumetric moment M 

V , defined as M 

V = 

1 
3 ( M xx + M yy + M zz )

eaches a quasi-constant value in a short time of about 50 τN 

Fig. 7 a). The diagonal terms of the deviatoric moment tensor, de-
ned as M 

D 
i j = M i j − δi j M 

V , reaches a maximum around 200 τN ,
hen decrease over long time scales until they reverse sign (Fig. 7 b).
inally, the non diagonal term M 

D 
zx presents a maximum around

00 τN , and a more tempered decrease (Fig. 7 c). The first two
ource time functions are similar for both impact scenarios, but

M zx ( ξ ∗, τ ) is unique to oblique impacts. The timescales of 50–
00 τN (5–30 ms) are likely associated to the formation of the
trongly damaged region below the crater, illustrated in Figs 2 and
 . The smaller extent � 

V supports a shorter formation time, and thus
 shorter timescale for volumetric moments compared to deviatoric
nes. 

We present the maximum amplitude of the volumetric and de-
iatoric moments in Table 1 . We note that contrary to the force
omponent, the moment components of the oblique impacts are
enerally larger than the values predicted by multiplying the vertical
mpact source with sin (45 ◦), and larger than M N . Hence, no sim-
le relationship between moments and impactor impulse appears.
ore importantly, the maximum amplitude of deviatoric compo-

ents appear comparable to the volumetric component. This is an
ndication that the impact source mechanism is more complex than
he isotropic explosion chosen by previous studies (Shishkin 2007 ;
eanby 2015 ; W ójcicka et al. 2020 ). 

The decomposition of a moment tensor into basic source mech-
nisms, is non unique. We have presented above a decomposition
nto M 

V 
i j and M 

D 
i j . For the vertical impact, this is equi v alent to a

ecomposition into an isotropic (ISO) mechanism equal to M 

V , and
 Compensated Linear Vector Dipole (CLVD) mechanism equal to

M 

D 
i j , thus having a principle axis aligned with the vertical direction.
o wever , the full moment tensor M i j = M 

V 
i j + M 

D 
i j of the vertical

mpact could also be viewed as a crack (C) opening in the vertical
irection. 

On the other hand, due to the presence of a non-diagonal compo-
ent and the fact that M xx 
= M yy , the moment tensor of an oblique
mpact cannot be represented by a simple crack or ISO + CLVD

echanism. Other, more general decompositions involving Double
ouple (DC) mechanisms should instead be used. For earthquake

ource, common choices are ISO + CLVD + DC, ISO + DC + DC,
r a ‘crack + double couple’ (CDC) mechanism (see e.g. Dahlen
 Tromp 1998 ; Minson et al. 2007 ; Tape & Tape 2013 ; Shearer

019 ). These mechanisms all define a fault plane along which the
aterial shears. Contrary to the vertical impact case, the vertical

irection is no longer a natural direction for these cracks, CLVD or
C mechanisms. 
The visualization of these possible mechanism can be made

learer by placing the moment tensor M i j ( ξ ∗, τ ) on a Lune dia-
ram. This type of diagram was proposed by Tape & Tape ( 2012 )
o facilitate discrimination of seismic sources on Earth: it maps
very possible moment tensor onto a 2-D space, giving them two
oordinates ( δ, γ ). These coordinates are calculated from the ten-
or eigenvalues, thus any moment tensor has a unique position of
he Lune. The proximity of the moment tensor to specific kind of
ources (Isotropic, CLVD, DC) can this way be measured. On Fig. 8 ,
e applied this representation to the vertical and oblique impact,
sing the original and corotated moment tensor. 

For the vertical impact (Figs 8 and b), both expressions of the
oment tensor lie on the top part of the Lune diagram, in a region

ontaining purel y extensi ve sources. Because the moment tensor
f a vertical impact has two identical eigenvalues, it stays on the
orders of the diagrams, close to a pure explosion. On the other
and, the moment tensor of the oblique impact possesses three
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Figure 2. Stress glut and velocity fields of a vertical impact 4 ms (left-hand panels), 14 ms (middle panels) and 116 ms (right-hand panels) after the impact 
on the top left-hand side of each cylindrical sector. The top line shows the vertical velocity field, V z and the second the magnitude of ∇ × v , indicative of the 
presence of a shear wave and a conical surface P –S converted wave. The third line shows the volumetric stress glut field, � 

V and the bottom line the deviatoric 
stress glut component � 

D 
zz . The orange lines close to the crater correspond to fractures opened in the target material. The dark red line represent the dimension 

on the coupling box used to record the seismic displacement wavefield. Note that it is chosen so as to be outside the non-linear source region, that is in a region 
where the stress glut is zero. 
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distinct eigenvalues: as such, it is placed in the inner part of the 
diagram (Figs 8 c and d). It is not purely e xtensiv e: the effect of 
the directivity of the impact is visible from the white region of the 
beachball, where the source is compressed. The arc-length between 
two points in the Lune diagram measures the difference between two 
moment tensors in matrix space, if their orientation and norm are 
ignored (Tape & Tape 2019 ). The source of the oblique impact lies at 
equal distance from the Isotropic, CLVD and DC source in the Lune 
diagram, therefore, it is equally close to each of these physical source 
processes. The diagram also highlights the time variability of the 
source: although the vertical impact appears similar to an explosion 
at some times during the cratering process, its moment tensor also 

art/ggae144_f2.eps
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Figure 3. Same representation as Fig. 2 for the oblique impact. 

Figure 4. Crater of the vertical (left-hand panel) and oblique (right-hand panel) simulations after 116 ms. The light blue material represents the impactor. 
Simulation elements (tetrahedrons) are delimited by thin brown lines. 
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Figure 5. Force experienced by the target material for the vertical (left-hand panel) and oblique (right-hand panel) simulations. The sign of the force along the 
� z -axis has been inverted for clarity. The projection of the vertical force at 45 ◦ is shown in (a), for comparison with the oblique force. The amplitudes and times 
are normalized to F N = 1.2 e 8 N and τN = 1 e − 4 s. 

Figure 6. Components of moment tensor M ( ξ∗, τ ) for the vertical impact (left-hand panel) and the oblique impact (right-hand panel). The amplitudes and 
times are normalized to M N = 1.3 e 7 Nm and τN = 1 e − 4 s. The plots in (a) do not correct for rotation, while the plots (b) apply a rotation correction as 
described in Section 3.3 . Note that due to the symmetry of the vertical impact, non-diagonal components of the moment tensor are all zero for the vertical 
impact and M xx ( ξ∗, τ ) = M yy ( ξ∗, τ ) . In the oblique case, the M xx ( ξ∗, τ ) and M yy ( ξ∗, τ ) components are no longer equal, and M xz ( ξ∗, τ ) (g reen cur ve) is 
non zero. 
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travels through lower latitudes over time, showing the complexity 
brought by the deviatoric moments to the source mechanism. The 
rotation correction diminishes this time variability, resulting in a 
simpler source mechanism. 

3.5.4 A possible simplification of the moment tensor 

The moments represented in Fig. 6 are computed by summing the 
two integrals of eq. ( 18 ). In a final analysis of the seismic point 
source, we would like to test the hypothesis of Section 2.2.4 on 
a possible simplification of the expression of M i j ( ξ ∗, τ ) . To this 
aim, we can plot integrals of eq. ( 18 ) indi viduall y to determine 
their respective contribution. This was done in particular with the 

‘angular momentum’ term 

∫ 
V 

∂ρ0 v i 
∂τ

( ξ j − ξ ∗
j ) dV and the ‘true stress’ 

term 

∫ 
V S ij d V . As seen on Fig. 9 , taken indi viduall y, the amplitude of

these two terms is of about 1 × M N ( ∼10 7 Nm), thus comparable to 
the total moment components (Fig. 6 ). Ho wever , the bottom plot of 
Fig. 9 shows that their sum becomes negligible a few milliseconds 
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Figure 7. Source time functions for different parts of the moment tensor: the volumetric part ˆ M 

V (a), the diagonal terms of the deviatoric moment ˆ M 

D 
xx , ˆ M 

D 
xx 

and ˆ M 

D 
xx (b) and the non-diagonal term 

ˆ M 

D 
zx (c). Only the non-rotated components are shown, and moments are normalized such that ˆ M i j = M i j / max | M i j | . 

Figure 8. Lune diagram of the vertical (a and b) and oblique (c and d) impact moment focal mechanisms. For different times t n , the moment tensor M ij ( t n ) 
is plotted as a beachball at its coordinates ( γ , δ) on the Lune diagram (Tape & Tape 2012 , 2015 ). Values of M ij ( t n ) can be read from Fig. 6 . Typical ideal 
seismic sources (Isotropic, CLVD, Double-Couple) are marked by points (A, B, C, D and E) on the Lune plot and identified at the bottom of the plot by their 
coordinates ( λ1 , λ2 , λ3 ), where λi are the tensor eigenvalues such that λ1 ≥ λ2 ≥ λ3 . A small blue-pink beachball associated to these mechanism is also plotted. 
The blue-shaded region at the top of the diagram contain moment tensors for which the beachball representation is completely black, that is the source region 
is purely in tension ( λ1 ≥ λ2 ≥ λ3 > 0). The pink-shaded region contains all pure-white beachball, where the source region is purely in compression ( λ3 ≤ λ2 

≤ λ1 < 0). Plots are produced using routines from the mtuq python package (Modrak et al. 2018 ). 
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fter the impact. We recall the exact expression of their sum: 

� 

V 

[
S i j + 

∂( ρ0 v i ) 

∂τ
( ξ j − ξ∗

j ) 

]
( ξ , τ ) dV ( ξ ) = 

� 

V 

∂ 

∂τ

[
( ρ0 − ρ) v i 

]
( ξ , τ ) ( ξ j − ξ∗

j ) dV ( ξ ) 

+ 

� 

� 

[
S i j − ρv i v j 

]
( ξ , τ ) ( ξ j − ξ∗

j ) n j d�( ξ ) 

+ 

� 

V 

[ ρv i v j ]( ξ , τ ) dV ( ξ ) . (33) 

he fact that the term on the left-hand side of eq. ( 33 ) is negligible
ight be associated to different explanations based on the term of

he right: either the three terms compensate each other, or they are
ndi viduall y negligible. For example, as mentioned in Section 2.2.4 ,
t is likely that the terms 
[
( ρ0 − ρ) v i 

]
( ξ j − ξ ∗

j ) and ( ρv i v j ) are neg-
igible except in the very first milliseconds of the impact, when the
elocity of target particles are comparable to those of the impactor,
eaving only the stress term S ij . As mentioned in Section 1 , the
angular momentum’ term is analogous to the definition of the ra-
ial moment M rr proposed by Walker ( 2003 ) and used in W ójcicka
t al. ( 2020 ) (eq. 2 ). Given our observation that it is deemed to be
ompensated by the Cauchy stress term, the question of whether
q. ( 2 ) is reall y representati ve of the source moment deserves to be
ebated. 

In the same wa y, w e also measured the asymmetry of the moment
ensor. The asymmetric part of the moment tensor was found to be
egligible compared to the symmetric part after the first millisecond
f the impact: indeed, it has the same timescale as the transfer of

art/ggae144_f7.eps
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Figure 9. Plot of two of the Cauchy stress components 
∫ 

V S ij d V and of the ‘angular momentum’ components 
∫ 

V 
∂( ρ0 v i ) 

∂τ
( ξ j − ξ∗

j ) dV for the vertical (plain 

line) and oblique (dashed line) scenarios. Each components has indi viduall y a large amplitude ( ∼1 × M N or ∼10 7 Nm, top plot), but has a negligible amplitude 
when summed ( ∼0.1 × M N or ∼10 6 Nm, bottom plot). This plot uses the classical measure of Cauchy Stress, although a similar trend can be observed when 
using the corotated Cauchy stress. The amplitudes and times are normalized to M N = 1.3 e 7 Nm and τN = 1 e − 4 s. 
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momentum. It was therefore assumed to be zero in the rest of this 
work. 

4  T E S T S  O F  T H E  S E I S M I C  S O U RC E  

M O D E L  

The stress glut calculation method presented in Section 3 provides 
an e xhaustiv e description of impact source mechanism. In this sec- 
tion, we propose to test this seismic source model in dif ferent w ays. 
We will first e v aluate to which extent numerical impact seismic 
signals from HOSS are reproduced by our simplified point source 
model. This is a form of validation of the point source model against 
a numerical experiment. In addition, we will compare the quanti- 
tative properties of our signals, such as the seismic moment and 
corner frequency, to available Martian and Lunar data. 

4.1 A testing approach using software coupling 

4.1.1 Principle of the method 

Our source model was calculated based on numerical impact sim- 
ulations solving the non-linear equations of motion, with realistic 
material models. As such, the displacement and velocity waveforms 
produced by HOSS represent a ‘true’ solution to the impact wave- 
generation problem. We now wish to e v aluate how much of this 
numerical impact seismic signal is explained by our application of 
the representation theorem and our calculation of the stress glut. 

The seismic signal corresponding to the point source model is 
the solution of eq. ( 11 ). We propose to compare the simplified point 
source signals with HOSS’ signals, which are numerical solution to 
eqs ( 4 ) and ( 6 ). Ho wever , such approach is only meaningful if both 
solutions are linear at the point of comparison. To ensure this, we 
need to calculate point source and HOSS waveforms at a distance 
larger than R s , the radius at which stress glut becomes negligible 
(see Section 3.4.1 ). 

Solutions to eq. ( 11 ) are easily obtained at any distance by con- 
volving our point source parameters with a Green’s function solu- 
tion. Such Green’s functions can be calculated in any elastic media 
and geometry by modern wave propagation codes. Here, we use the 
SPECFEM3D code, based on the Spectral Element Method (Ko- 
matitsch & Vilotte 1998 ). However, computational costs limit the 
extent of HOSS simulations to the very near field. In order to enable 
the comparison of point source and numerical waveforms at larger 
distances, we prolongate the HOSS solution by coupling its wave- 
field to the SPECFEM3D code, following the method of Larmat 
et al. ( 2015 ). The HOSS-SPECFEM3D coupling method relies on 
passing displacement time-series extracted from HOSS to a spectral 
element node with the same location in SPECFEM3D. This node 
then acts as a source within the SPECFEM3D simulation. 

In order to transfer HOSS wavefield with a high accuracy, the 
coupling nodes must form a dense network of points on a sur- 
face surrounding the source. In addition, HOSS input time-series 
must be linear, meaning that the coupling interface must be out- 
side of the inelastic source region of radius R s . The duration of the 
SPECFEM3D simulation is limited by the duration of the provided 
coupling time-series. Moreover, the maximum signal frequency 
transferable to SPECFEM3D corresponds to f max ≈ β

λ
, with β the 

elastic S -wav e v elocity and λ the size of a spectral element. With 
such coupling method, SPECFEM3D may propagate HOSS wave- 
field at distances 10s to 100s of times larger than HOSS initial 
domain. 
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In conclusion, our testing method is summarized by Fig. 10 .
n one hand, HOSS’ wavefield is recorded at a dense network of
oints on a box surrounding, but outside of the inelastic source
e gion. This wav efield is passed to SPECFEM3D and propagated
p to 512 m distance. These Coupled signals constitute our nu-
erical solution to the impact wave-generation problem. On the

ther hand, the point source parameters of Section 3 , calculated
rom the non-linear source region using the representation theorem,
erve as a source for a different type of SPECFEM3D simulation.
hese Point source signals constitute our approximation of the im-
act seismic source. Both signals are recorded on similar stations
nd compared. 

.1.2 Test simulations design 

he point-source and coupled signal comparison is performed for
oth scenarios (A) and (B) described in Section 3.4 . In each case, the
hosen coupling box is 10 m wide and 14 m deep, as illustrated by
he dark red lines on Figs 2 and 3 . SPECFEM3D simulation domain
s a cube 512 m in size with elements of 2 m, which amounts
o ∼16.8 × 10 6 elements. The propagation material has the same
ensity and elastic wav e v elocities as the HOSS materials in their
lastic domain: ρ = 1589 kg m 

−3 (see Table 1 in the SI), v p =
090 m s −1 and v s = 583 m s −1 . It has no attenuation nor gravity.
eceivers are placed every 50 m vertically below the source and on
oncentric circles every 50 m on the free surface. 

For coupling simulations, the centre of the coupling box corre-
ponds to the centre of the top surface of the cube ( x = 0, y = 0, z =
). The coupling box occupies 7 elements in depth and 10 elements
n width, for a total of 8081 GLL points. 

For point-source simulations, the source is placed in the centre
f the top surface of the cube ( x = 0, y = 0, z = 0). We compute an
pproximation of the Green’s function of the material by simulating
mpulsi ve point-sources: impulsi ve forces are simulated using a
irac delta source function and moment tensors using a Heaviside

ource function. The results of SPECFEM3D can then be safely
onvolved with the source time function derived from HOSS to
btain the correct point-source signal (Komatitsch & Tromp 2002 ).
e generate one simulation for each separate component of the

ource. When using a point force, the Dirac impulse is represented
y a triangle function with width 2 × d t and height 1/d t . This
nsures that the total momentum of the source is 1 Ns, and facilitates
caling with HOSS’ source time function. Two simulations are run,
ith a force in the � x and � z directions respecti vel y. When using
 moment tensor source, the source is chosen to be SPECFEM3D
nternal Heaviside function, with a final value of 1 Nm. Four separate
imulations are run for M xx , M yy , M zz and M xz . The total point-
ource signal is then the sum of displacements obtained for each
imulated Green’s function convolved with corresponding source
ime functions F i ( τ ) for the force and 

∂M i j 

∂τ
( ξ ∗, τ ) for the moments.

In order to capture the propagation of P and S wave up to 512 m
istance, the simulations are ran for 1.8 s. This is longer than HOSS
imulations which last ∼120 ms, therefore both the point source
arameters and the coupling waveforms calculated by HOSS need
o be extrapolated in time before being used by SPECFEM3D. We
xtrapolate the source parameters time-series by fitting them with a
um of integrable pulse functions, with name ‘Jef fre ys pulse’ . This
ulse function was shown to successfully fit impulses recorded in
aboratory impact experiments (see e.g. Daubar et al. 2018 ). Details
nd results of the fit of force F ( τ ) and moment rate ∂ M 

∂τ
( ξ ∗, τ ) can

e found in Fig. S8. 
.2 Results of the test of the point-source 

.2.1 Comparison of coupled and point-source signals 

or both impactor scenarios, a comparison of point-source and cou-
led models is presented on Fig. 11 . The receiver is placed at coor-
inates (283,283,0) m on the surface, at a distance of 400 m from the
mpact point. The non-rotated source series of M ( ξ , τ ) of Fig. 6 (a)
re used to compute the point source signals. We show both the
isplacement time-series and associated spectra of the P and the
 waves, which are calculated from two separate tapered windows
f the displacement time-series using a fast Fourier transform. We
oint out that for this surface sensor, the window used to e v aluate
he S wave also contains the Rayleigh wave contribution. 

At 400 m distance, we observe a good match at low frequency
etween the point-source and coupled signals. The horizontal dis-
lacements are better matched than the vertical displacement series.
he arri v al times of the P and S w aves are also matched b y the point-
ource signal in the time domain. Ho wever , the overall ratio between
he point-source amplitude and the coupled waveform amplitude is

5 and ∼15 for the P and S w aves, respecti vel y. This discrepancy
s confirmed in the frequency domain: while the point-source spec-
rum of the P wave displays a trend similar to the coupled spectrum,
t appears shifted by a constant positive factor. In addition, the
oint-source spectrum of the S wave presents a significant excess
f energy, of more than an order of magnitude, with respect to the
oupled waveform above 2 Hz. A similar tendency is observed at
maller distances from the impact. Signals recorded at 100, 200 and
00 m can be found in the SI (Figs S9–S11). The high frequency
ontent of the P -portion and particularly the S -portion of the signal
s already found in the Green’s functions of our medium. Indeed, the
esponse of a half-space to impulse monopoles or step-like dipoles
the well-known Lamb’s problem ) produces discontinuities at the
nset of the Rayleigh wave (Johnson 1974 ; Kausel 2013 ; Feng &
hang 2018 ). As shown in SI-5.2, these discontinuities are associ-
ted to an increase in high-frequency amplitude for the S -portion of
he signal and may induce a higher corner frequency in the signal
ompared to the P -portion. 

Fig. 12 shows the respective amplitude of different components
f the point-source source in the total P -wave signal: the vertical
nd horizontal force terms, the isotropic (or e xplosiv e) term M 

V 

nd the deviatoric terms M 

D . For both the vertical and oblique
mpact, the signal of the P wave appears to be dominated by the
sotropic and deviatoric moment components (plain dark blue and
 reen cur ves). The amplitude produced by the deviatoric term is
omparable to the isotropic ter m, confir ming the results of Table 1 .
t is interesting to note that the single force components, F x and
 z , produce a lower amplitude signal than the moment source. In

he low-frequency limit, their amplitude is more than one order of
agnitude lower than the summed point-source signal, for both the

ertical and oblique impact simulations. Whether this partition of
nergy between force and moments is maintained for impacts of
igher velocity remains to be investigated. Indeed, we have shown
hat the moment is determined by the amount of inelastic damage,
hile the force is related to the amount of momentum transfer. Both
rocesses might depend dif ferentl y on the impactor velocity. 

In the time domain (Figs 11 a and b), the vertical coupled and
oint-source displacement signals ( u z ) present a discrepancy at long
ime scales. Indeed, the coupled displacement signal appears to be
onverging to a negative, static value of vertical displacement of
bout −3 e − 7 m at 400 m distance. This behaviour is not observed
n any of the point-source u z components produced with HOSS
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Figure 10. Graphic showing the principle of the test method. On the top, the results of a HOSS simulation are shown. On the left-hand side, the point-source 
components M ( ξ∗, τ ) and F ( τ ) are extracted from the inelastic source region. They are used as inputs to a SPECFEM3D simulation, and provide an elastic 
‘point-source’ signal (red). On the left-hand side, the displacement wavefield of HOSS is recorded on a box away from the inelastic region. The wavefields are 
used as a source for a second SPECFEM3D simulation, which allows us to prolongate HOSS’ signal at larger distances (black). The two types of signals are 
recorded on common receiver to be compared. 
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source time functions. A static displacement does also exist in the 
u x and u y coupled displacement signal and is correctly reproduced 
by the point-source, but its amplitude is about four times smaller 
than in the vertical direction. The reason for this discrepancy is not 
clear. it might indicate a missing analytical term in the definition 
of the force or moment tensor, which, in their current form, do not 
account for the permanent deformation of the free surface due to 
the crater. Using a simple convolution with a step function, we find 
that a constant vertical force of about −5 e 5 N, that is two orders of 
magnitudes smaller than the main force pulse, would be needed to 
fit the residual u z displacement. 

4.2.2 Simulating an extended source 

Spectral and time-domain differences observed between the coupled 
and point-source signals in Section 4.2.1 could be due to the limits 
of the point-source description in seismology. Indeed, although the 
source model presented in Section 4.2.1 seems to produce satisfying 
results at low frequency for the u x and u y displacements, the con- 
volution with point-source terms appears particularly inefficient at 
damping the high-frequencies Ra yleigh wa ve in the elastic Green’s 
function. As presented in Section 2.3 , one possible explanation is 
that a point-source is limited in its ability to model the interfer- 
ences, or antenna effect, occurring within the finite source volume 
itself. 

This finite-source effect determines the cut-off frequency and 
pulse shape of earthquakes (see e.g. Aki & Richards 2002 ; 
Madariaga 2015 ) and explosions (Denny & Johnson 1991 ). Their 
displacement spectra usually presents an omega-square ( ω 

−2 ) roll- 
off above the cut-off frequency f c . Ho wever , slo w earthquakes 
(Supino et al. 2020 ), as well as explosions in weak materials (Ford 
et al. 2011 ), are sometimes better explained using an omega-cubed 
model (with ω 

−3 roll-off). Here, we measure the spectral charac- 
teristics of the coupled signal using a fit to the ω- squared ( �2 ) and 
ω-cubed ( �3 ) model of Aki ( 1967 ) and Brune ( 1970 ). Details on 
the fitting method can be found in Section SI-5.3. 

We find that the �3 model accomplishes overall a better fit to 
the coupled spectra than the �2 model. Ho wever , the signal being 
contaminated by numerical noise above the cut-off frequency, it is 
difficult to discriminate with confidence between the two models. 
Using the �3 model the cut-off frequencies of the P and S wave are 
f c , P = 19.5 ± 6.2 and f c , S = 24.6 ± 8.2 Hz. Considering that the cut- 
off frequency is limited by interferences between the two furthest 
points of the source, we can estimate the source size necessary to 
generate f c , P and f c , S by D s = c / f c . Taking the minimal velocity and 
maximal cut-off frequency of our system, we find that the seismic 
source must be at least v s / f c , S ≈ 23 m in size. This dimension is 
comparable, but larger than the stress glut region in Figs 2 and 3 . 

In order to further investigate the effects of the point-source 
hypothesis, we propose to simulate an extended source using 
SPECFEM3D and the results of HOSS vertical impact simulation. 
This approach revisits the computation method of Section 3.3 , but 
using multiple smaller source volumes distributed in space. Instead 
of integrating the momentum and stress glut fields over the entirety 
of the HOSS volume, we start by cutting the simulation space into 
19652 cubes, 1 m in size, and bin HOSS elements depending on 
which cube they belong to. Next, the source time function terms of 
eqs ( 18 ) and ( 14 ) are computed within each cube, providing 19652 
new point-sources positioned at the centre of the cubes.Each source 
time function is then extrapolated to 1.8 s using a Hanning apodiza- 
tion method, and stored in SPECFEM3D data files. For the nine 
components of the source (i.e. F x , F y , F z , M xx , M yy , M zz , M xy , M yz 

and M zx ), we run a separate simulation containing 19652 sources 
and source time functions. The resulting signal is shown on Fig. 13 
in purple, compared to the coupled signal in black and the point- 
source signal in red. 

The spectra show clearly that the extended source simulated with 
method (1) is unable to suf ficientl y damp the high-frequency energy 
of the P and S wave. In fact, the point-source and extended source 
signals appears almost identical up to the frequency resolution of 
140 Hz for the P wave. The extended source signal shows a reduced 
damping effect above ∼60 Hz for the S wave. This means that 
with our current source model, interferences occur within a radius 
smaller than v p /140 ≈ 7.7 m for the P wave and v s /60 ≈ 10 m 

for the S wave. These size estimates are more consistent with the 
dimensions of the stress glut fields displayed in Fig. 2 , with the 
volumetric and deviatoric stress glut fields covering ∼5 and 10 m 

in diameter, respecti vel y. 
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Figure 11. Results of the comparison between coupled (black) and combined point-source (red) waveforms. The combined point-source signal (red) sums the 
displacements obtained for each individual modelled point-source components ( M xx , M yy , F z , etc.), while the coupled signal (black) is purely prolongated from 

HOSS simulations. Results are shown for a vertical impact ( a) and an oblique impact ( b). The left-hand column represents displacement signals U x , U y , U z in 
three directions for a sensor at 400 m from the source/origin. For the vertical impact, U y is omitted as it is equal to U x in this azimuth. To remove numerical 
noise, an order 5 Butterworth filter with cut-off period of 7 ms ( ∼140 Hz) is applied in the time domain. The right-hand column represent the associated 
spectr um, nor malized by 

√ 

2 dt/N , N being the number of samples in the waveform. These spectrum have been computed by separating the P and the S wave 
in the displacement time-series: the P -wave spectrum is shown with plain lines and the S wave with dashed lines. The grey shaded region on the left-hand plots 
indicates the time at which residual reflections on the simulation boundaries start contaminating the signal, and on the right-hand side the low-pass-filtered 
region. 
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It is clear that a larger source would be required in order to repro-
uce the frequency content of the coupled signal. This observation
eads to the conclusion that the source extent is likely underes-
imated by the current stress glut model. The explanation could
e that additional inelastic processes, different from plasticity but
resent in HOSS numerical framework, have not yet been accounted
or in our numerical definition of the stress glut. We discuss this
oint further in Section 5 . 
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Figure 12. Vertical displacement signal (left-hand panel) and spectra (right-hand panel) of the P wave in Fig. 11 , decomposed to show the contribution of the 
single-forces F z and F x , the isotropic and the deviatoric moments to the total point-source signal (red curve). The coupled signal is also shown for reference. 
To obtain each of these point source components, SPECFEM3D Green’s functions were convolved with the source time functions defined in Fig. 7 , without 
rotation correction. Panel (a) shows the signals associated to the vertical impact source, and panel ( b) the signals associated to the oblique impact source. The 
term F x is absent in the vertical impact case (a) due to cylindrical symmetry. 

Figure 13. Comparison between the coupled signal (black), the point-source signal (red) and signal from an extended source (purple), at 400 m distance. The 
extended source signal is the result of a SPECFEM3D simulation with 19652 sources placed on a grid in the source region. Signals are filtered as in Figs 11 
and 12 . 
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.3 To war ds Lunar and Martian data 

e further test our point source and coupled waveform models by
nalysing their signal at regional distance, and by comparing the
ssociated moment tensor and source duration to existing Lunar
nd Martian data. 

.3.1 Signal at regional distances 

ere, we investigate the evolution of SPECFEM3D waveforms at
egional distance ( > 100 km). Variations in seismic velocities and
he effects of seismic attenuation will start to affect the signal after
 few kilometres of propag ation. These propag ation effects can be
odelled on Mars in a simple way with the current knowledge on

he Martian subsurface, and using parameters estimated from the
nalysis of the recent impacts (Garcia et al. 2022 ). We propose to
lace the receiver at r = 100 km distance from the 1000 m s −1 ver-
ical impact. Signal recorded at such distance is known to be mostly
ropagating within the Martian crust, which can be considered ho-
o geneous. Thus, the w av e e xperiences a geometric attenuation in

/ r . We use 4000 m s −1 for the velocity of P waves and 2310 m s −1 

or S waves, as in Garcia et al. ( 2022 ). Similarly, a quality factor
 κ = 3500 is used for the attenuation of P waves, following the in-

erpretation of the P -wave spectrum of events S0981c and S0986c,
nd Q μ = 

4 
9 Q κ . With these parameters, the P - and S -wave spectra

t r 2 = 100 km distance can be estimated from the signal at r 1 =
00 m in the following way: 

˜ u z,P ( r = r 2 , ω) = ˜ u z,P ( r = r 1 , ω) 
r 1 
r 2 

exp 

[
−ω 

r 2 − r 1 
2 v p Q κ

]
, 

˜ u z,S ( r = r 2 , ω) = ˜ u z,S ( r = r 1 , ω) 
r 1 
r 2 

exp 

[
−ω 

r 2 − r 1 
2 v s Q μ

]
. 

(34) 

he resulting spectrums of the displacements ˜ u z and the velocities
˜  z associated to the P and S waves are shown on Fig. 14 . The
imulated P -wav e low-frequenc y amplitudes are about one to two
rders of magnitude smaller than for event S0793a ( 3 e − 9 m ·Hz −1/2 

t 2 Hz) and S0986c ( 2 e − 9 m ·Hz −1/2 at 2 Hz), with only 3 e −
1 m ·Hz −1/2 for the coupled signal at 2 Hz. This is consistent with
 smaller impact crater of about 2 m diameter for this simulation,
ompared to 3.9 and 5.7 m observed on Mars for S0793a and
0986c. The P -wave cut-off frequency measured in the attenuated
pectra using the �3 model is f c = 11 ± 6 Hz (See SI-5.3 and Fig.
14). Although smaller than the value obtained in Section 4.2.2
ithout attenuation ( f c, P = 18.8 Hz), it is also higher than observed

or InSight’s detected events, that is 9.4 Hz for S0793a and 8.0 Hz
or S0986c. We also note that the S -wave spectra represented in
ig. 14 are strongly contaminated by attenuation above 10 Hz, thus

he apparent cut-off frequency (also about 10 Hz) at this distance
s less than the true source cut-off, f c, S = 23.8 Hz and the high-
requency roll-off appears stronger than for the P wave. 

.3.2 Comparison model parameters with r ecor ded Lunar and 
artian Impacts 

e wish to verify the consistency of the seismic moment computed
y HOSS and estimates obtained for large Lunar impacts (Gudkova
t al. 2011 ; Daubar et al. 2018 ) and for Martian events S0793a,
0981c, S0986c and S1094b (Garcia et al. 2022 ; Posiolova et al.
022 ). As a base for our comparison, we use the scaling relationship
etween seismic moment and impactor momentum, which has been
emonstrated in several previous studies (Gudkova et al. 2015 ;
 ójcicka et al. 2020 ). 
The amplitude of seismic motion generated by an event depends

n the value of the source seismic moment, M 0 , but also on the
echanical properties of the source region (see e.g. Aki & Richards

002 ). Therefore, in order to properly compare seismic moments
rom impact sources on different bodies with varying surface mate-
ials, as on the Moon, on Mars, and in a numerical simulation, one
ust first establish a common reference source material. Daubar

t al. ( 2018 ) supposed that the impact-generated seismic wave was
easured in a strong bedrock layer beneath the impact region, with

ensity ρbr and P -wave velocity v p , br . A similar approach was fol-
owed by Posiolova et al. ( 2022 ) when comparing the seismic mo-
ent estimated from P -wave amplitudes using a seismic model

t 50 km depth on Mars, with the seismic moments computed in
 regolith or fractured basaltic material analogous to the Martian
urface. 

Following (Daubar et al. 2018 ), an impact with seismic moment
 0 happening in a layer with density ρ and P -wav e v elocity v p 

orresponds to an equi v alent moment M 0, br in underlaying bedrock
i ven b y : 

M 0 ,br = M 0 

ρbr v 
3 
p,br 

ρv 3 p 

2 ρv p 

ρbr v p,br + ρv p 
. (35) 

he first fraction corresponds to an amplitude scaling term, and the
econd fraction to the transmission factor for seismic waves going
rom the unconsolidated source material to the solid bedrock. 

We compare Lunar, Martian and simulated seismic moments by
alculating their equi v alent bedrock moment M 0, br using eq. ( 35 ).
he obtained moments M 0, br are divided by v br to obtain results

n Ns, and plotted against the impactor momentum P i in Fig. 15 .
he methods, parameters and references used to produce this plot
re further described in Appendix E . To the moments calculated
re viousl y for the 1000 m s −1 oblique and vertical impacts, we add
he results of impact simulations of Perseverance’s entry balance

asses, perfor med by Fer nando et al. ( 2021 ). The moment of this
000 m s −1 impact was calculated for a vertical impact incidence,
nd with the same material models and methods as this study. We
xclude the results of the oblique scenario in Fernando et al. ( 2021 )
ue to the differences in mesh resolution and size with the present
ork. Despite the significant discrepancies in the calculation meth-
ds for M 0 between Martian, Lunar and numerical studies, the graph
ndicates that our results are in trend with the seismic moments cal-
ulated for small Martian Impacts and with the scaling determined
or Lunar impacts, for two distinct velocities. 

Previous studies have also proposed a comparison of impact
ource duration estimates, defined as τ = 1/ f c , on the Moon and Mars
Gudkova et al. 2015 ; Garcia et al. 2022 ; Posiolova et al. 2022 ). We
ave obtained this parameter in Section 4.2.2 using the coupled
aveform spectra of our impact simulations. Ho wever , again, Gud-
ova et al. ( 2015 ) have shown that this seismic parameter is sensitive
o surface material properties, such as regolith porosity. Garcia et al.
 2022 ) also observed that Lunar impact events are characterized by
 longer source duration than similar Martian events. The authors
elate the longer Lunar impact source duration to the lower seismic
elocities of the Lunar regolith, which result in slower source dy-
amics. To be able to better compare sources properties on Mars,
he Moon and in our simulations, we propose to base our com-
arison on another useful scaling variable for seismic sources: the
stimate of the source size , ( τ v s ) , that is the product of the source
uration with the S-wav e v elocity at the source location. Just like
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Figure 14. Spectra of the coupled and point-source signals extrapolated from 400 m distance up to 100 km distance, using an attenuation and crust model 
from (Garcia et al. 2022 ). The right-hand plot represents vertical displacement and the left-hand plot vertical velocities of the S and P waves. The attenuation 
spectra is represented with dashed blue lines. 

Figure 15. Scaling of different impact seismic moments estimates with their impactor momentum, ( P i ). To reduce biases due to the difference in surface 
material on the Moon and Mars, the moments M 0 from each study are converted to a equi v alent moment M 0, br , corresponding to a source placed in a 
underground bedrock layer. M 0, br is calculated via eq. ( 35 ) with the parameters detailed in Table E1 of Appendix E . Numerical results for the two 1000 m s −1 

impact simulations of this study and for a simulation of Perseverance entry balance mass impacts (Fernando et al. 2021 ), both calculated with the stress 
glut method, are shown, respecti vel y, in red and blue. The scaling relationships for seismic moment and momentum of Gudkova et al. ( 2015 ) (GL scaling) 
and W ójcicka et al. ( 2020 ) are displayed with purple and black lines. Note that uncertainties shown for Martian impact seismic moments are taken from the 
literature, and might not represent the uncertainty in the impacted material properties. 
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the scaling of Fig. 15 , this multiplication by v s aims at reducing the 
bias associated to the difference in surface properties between each 
impact type. 

Some hypotheses must still be made when choosing the values 
of v s and τ for the Moon and Mars. In the same way, the estimation 
of the source duration is not straightforward and is affected by 
choices of methods for spectral estimates, and choices of models 
for the scattering and attenuation present in real seismic data. The 
different approaches of Martian and Lunar studies are presented 
in Appendix E . With these limitations in mind, we plot the source 
size τ v s as a function of the impactor momentum P i and impactor 
kinetic energy E i on Fig. 16 . On both scalings, we find that Martian 
and Lunar events follow a similar trend, with an overall increase 
of the source size with impactor energy or momentum. Source size 
estimates align with impactor momentum and energy with a slope 
of 0.13 and 0.11, respecti vel y. The numerical simulation estimate is 
again consistent with Lunar and Martian data. 
5  D I S C U S S I O N  

The model developed in Section 2 provides an exhaustive descrip- 
tion of the impact seismic source. Contrary to previous studies, 
which proposed models based on the seismic moment of explo- 
sions, or on the seismic impulse, we introduce an expression of 
impact-generated displacements which combines a 9-component 
moment tensor and a vector force, both varying in time. In support 
of this model, we de velop a ne w numerical method to compute the 
stress glut, an essential parameter in the seismic source. This mixed 
analytical/numerical approach is able to better represent the tempo- 
ral and mechanical complexity of the impact phenomenon. It also 
of fers dif ferent le vels of approximations, from the point source to 
the extended source representation. 

A key finding of this study is that the impact seismic source cannot 
be rigorously described with only an impulse, nor with only its 
seismic moment: in fact, its point source expression is a combination 
of both. For both vertical and oblique impacts, the deviatoric part 
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Figure 16. Scaling of the ‘Source size’ estimate, ( τ v s ) , with the impactor momentum P i on the right-hand panel and the impactor kinetic energy E i on 
the left-hand panel. The kinetic energy is computed from the impactor momentum by E i = P i × v i /2. Values of v i , v s and methods for the estimate of τ
are described in Appendix E for each impact type. Lunar impacts are separated in three groups depending on the regolith thickness function (RF) at their 
location following Gudkova et al. ( 2015 ). A power-law fit to the data is represented by dotted and dashed lines, respectively, for the momentum and the energy 
scaling. 
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f the moment tensor has amplitudes comparable to the volumetric
art. Hence, a pure isotropic explosion in not sufficient to describe
mpacts. In particular, the source of an oblique impact is complex
nd lies between isotropic, CLVD or crack and DC mechanisms. As
hown in Table 1 , the force and volumetric source components of an
blique impact are well approximated by multiplying the results of
 vertical impact by sin (45 ◦). This interesting observation suggests
hat part of the source could be proportional to the vertical projection
f the impactor momentum, as suggested for example by W ójcicka
t al. ( 2020 ). The moment and force components have different time
cales related to different stages of the cratering process: the very
ast transfer of momentum dominates the force, while the generation
f damage and escape of ejecta dominate the moments. We note that
n the impact scenarios presented here, the contribution of the vector
orce to far-field motion is limited, and the signal appears dominated
y the dipole of the source. 

The method proposed in this study relies on non-linear impact
imulations to compute the seismic source terms. As such, the def-
nition of the stress glut in the numerical model is key to properly
etrieve the source. At low frequency, the seismic signal obtained
sing this stress glut model agrees with the prolongated non-linear
ignal to within an order of magnitude. Ho wever , at high frequency,
e note strong discrepancies between the spectra obtained from the

tress glut and from the coupling. Point source signals (and gen-
rally, speaking, extended-source signals) sum the convolutions of
ifferent source time functions with the Green’s function of an ideal-
lastic half-space medium. The Green’s function of a half-space is
he solution to Lamb’s problem (Johnson 1974 ) with impulse or
tep sources. If the source and receiver are both close to the surface,
esulting displacements contain discontinuities and are dominated
y a strong Rayleigh wave (see SI-5.2). The source time functions
btained from the stress glut are not presently able to damp this high-
requency energy and suppress the Rayleigh wave. We pinpoint next
he current limitations of the stress glut model and possible causes
or the lack of damping. 

A first limitation lies in assumptions and approximations made in
he calculation of the stress glut. In Section 3 , we note that element
nite rotation in space affects stress glut measurements significantly.
he problem of rotation effects ties in to a fundamental question in
aterial mechanics, which is the definition of stress and strain for
nite deformation. The classical stress measure in seismology is the
auchy Stress Tensor, which describes the forces applied to a vol-
me element in its deformed configuration. Other stress measures,
ike the Second Piola–Kirchhoff stress tensor, can also be used to
etter describe pre-stressed media (see e.g. Dahlen & Tromp 1998 ).
o wever , these stress measures are onl y v alid in cases where de-

ormation can be considered infinitesimal, with the infinitesimal
train tensor defined as ε i j = 

1 
2 ( 

∂u i 
∂x j 

+ 

∂u j 
∂x i 

) (Dahlen & Tromp 1998 ;

ki & Richards 2002 ). In impact simulations, deformations can
ave a scale comparable to the typical size of the volume element,
nd infinitesimal strain theory is no longer applicable. Instead, finite
train theory describes deformations using the deformation gradient
ensor introduced in Section 3.3 , which relates the current configu-
ation of a volume element to its initial configuration. It is unclear
t this time whether the difference in stress and strain definition in
lassical seismology and HOSS numerical simulation could intro-
uce some errors in the definition of equi v alent forces, and how the
nite rotation of the elastic material at the source might influence

he seismic signal. 
Secondly and more importantly, a limit of this study lies in the

undamentall y dif ferent mathematical frame works used in classical
eismology, with respect to the FDEM used in HOSS. Indeed, while
qui v alent forces deri ved in eq. ( 8 ) are v alid in a purel y contin-
ous world, the reality of material deformation and the approach
ollowed by HOSS includes discontinuities. In Section 3.1.2 , we
xplained that we purposely left out the effect of inter-element frac-
ure and friction in our description of the source. This is a strong
pproximation, as we know that friction mimics a plastic process at
lay within granular geomaterials. Moreover, friction is a damping
echanism, or energy sink, that might contribute to the reduction

f high-frequency energy within the source region. Its absence in
he point-source model could explain the excess of high-frequency
nergy in the signals of Figs 11 , 12 and 13 . To measure its effect
n the source, inter-element friction should be accounted for in the
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expression of equi v alent forces. Howe ver, gi ven that this process is 
considered to be a surface action in HOSS’ numerical framework, 
it cannot be simply represented in the form of an additional stress 
glut tensor. In fact, the action of friction forces would be better un- 
derstood b y re writing the equations of Section 2.1.2 in the form of 
a mass-spring system rather than with the equations of continuum 

mechanics. Due to the e xtensiv e reformulation required to include 
this additional frictional and discrete processes in our description 
of the source, we leave it for a future study. 

We also want to emphasize the discrepancy in vertical displace- 
ment between the coupled and point-source signals. Such difference 
hints at the fact that our analytical model might need to be refined 
in order to accommodate a permanent vertical force. Further testing 
of the point-source representation could involve including higher- 
order moments, such as quadrupoles, in the Green’s function ex- 
pansion of eq. ( 10 ). Higher-order moments have indeed a strong 
potential to investigate finite-source effects and mechanism com- 
plexity (Stump & Johnson 1982 ; Jordan & Juarez 2019 ). We also 
point out the limitation of the Green’s function representation itself. 
Indeed, this method applies to ideal elastic media with well known 
boundary conditions. The definition used here assumes a plane and 
stable free surface at z = 0. But the impact cratering process involves 
a significant disruption of the true free surface. The approximation 
we make of a plane and constant boundary could explain why a 
strong impulsive Rayleigh wave is observed in synthetic Green’s 
function or point source signals, and not in coupled signals. 

To insist on analytical developments, we recall that in Sec- 
tion 4.2.2 , an ω 

−3 seismic source spectrum was used to model the 
high-frequency content of the displacement spectra. Although this 
model is intuiti vel y appealing for a 3-D seismic source, it does not 
directly relate to impact dynamics or to their equations of motion. 
Another possible improvement of the source model, mentioned in 
Section 2.3 , would be to anal yticall y deri ve the ef fect of the source 
extension on the spectrum, in a similar way as Savage ( 1966 ) or 
Haskell ( 1966 ). A first order solution could use analytical expres- 
sions of the Green’s function for Lamb’s problem as developed 
for example by Johnson ( 1974 ), Kausel ( 2013 ) or Feng & Zhang 
( 2018 ). 

Another example of possible limitations is the omission of gravity 
in the analytical expressions of moments (Section 2 ) and in simu- 
lations (Section 3 ). Gravity is known to have an influence on the 
dynamics of crater and ejecta formation (Holsapple 1993 ; Froment 
et al. 2020 ): for example, it limits the duration of the crater growth 
and collapse (e.g., Melosh 2011 ). Thus, the inclusion of gravity 
might affect the long-term decay of the source time functions in 
Fig. 7 . In Appendix D , we propose a modification of equi v alent 
forces γ V and γ S to include the non-linear effects of gravity in the 
stress glut theory. It is also possible to include gravity in HOSS 

simulations, although at an increased computational cost. Indeed, 
adding a constant vertical acceleration requires giving the simulated 
material enough time to relax to its lithostatic equilibrium, and we 
leave this study for future in vestigations. Ho wever , even without 
gravity, simulation initial and boundary conditions influence long- 
term dynamics, as evidenced by the slow drift in our modelled 
source time function. 

Despite the frequency content differences between modelled and 
prolongated signals, we show that some key parameters of the mod- 
elled impact seismic source match global trends observed on Mars 
and the Moon. We emphasize that comparisons between Lunar, Mar- 
tian and simulation data is challenging, due to the absence of direct 
measurements of impactor or material properties. For example, in 
the data presented above, impactor momentum was inferred from 
crater measurements (Collins et al. 2022 ) or from signal amplitudes 
(Gudkova et al. 2011 ) using different models. Seismic velocities 
are estimated from a variety of Martian and Lunar seismic models, 
which at this time cannot account for local variations on different 
parts on the planetary surface. Still, we note that the scaled seismic 
moments and source size estimates obtained with HOSS are in trend 
with Lunar and Martian results. 

This is to our knowledge the first time that a trend is evidenced 
between the impactor energy and momentum and the estimated 
source size. Fig. 16 indicates that the source size estimate for Lu- 
nar and Martian impacts scales as the impactor momentum and 
kinetic energy to the power 0.13 and 0.11, respecti vel y. This result 
can be connected to existing scaling laws for impact cratering. It 
is known that impact crater size or depth does not scale directly 
with energy ( E i = r 3 i ρi v 

2 
i / 2) or momentum ( p i = r 3 i ρi v i ) : instead,

the pi-scaling introduced by Holsapple ( 1993 ) proposes that crater 
dimensions scale with a mixed point-source measure C = r i v 

μ

i ρ
ν
i , 

with 1/3 < μ < 2/3 and ν ≈ 1/3. For an impact in the strength regime 
in Lunar regolith or a dry soil, crater size scales with energy to the 
power 3 μ/6 = 0.2. This is a power greater than the one observed in 
Fig. 16 , which suggests that our source size estimate is not directly 
proportional to crater size. This observation, although preliminary, 
shows that further investigations of the impact seismic source on 
planetary bodies is needed to be able to relate it to classical scaling 
laws for impacts, or for seismic sources on Earth. 

In particular, this study focused on only two impact scenarios with 
a common impactor velocity of 1000 m s −1 . This impact velocity is 
in the lower than the mean Martian impact velocity by a factor of 
∼10, and than the mean lunar impact velocity by a factor of ∼20 
(Le Feuvre & Wieczorek 2011 ). To be applicable to real impact 
scenarios, our model will need to be tested for a range of target 
materials, impactor velocities and angles closer to the observed 
range, as was initiated with the modelling of Perseverance entry 
sequence (Fernando et al. 2021 ). 

6  C O N C LU S I O N  

We introduce an analytical model relating the mechanical fields of 
the meteorite impact phenomena (i.e. velocity field, plastic and elas- 
tic stress fields in the shocked material) to the seismic displacements 
recorded at any distance from the formed crater using the seismic 
Representation Theorem and the stress glut theory. A point-source 
model of the impact is obtained, which associates a time-varying 
vector force and a time-varying moment tensor exerted at the impact 
point. We subsequentl y de velop a numerical method to estimate the 
different terms involved in the seismic source. One of these terms, 
the stress glut field, is calculated from the plasticity measured in 3D 

non-linear impact simulations performed with the HOSS software. 
We test this numerical model by comparing signals produced by 

the point source in an elastic medium, with signals obtained by solv- 
ing the non-linear equations of motion with HOSS and coupling the 
solution to SPECFEM3D. The comparison reveals that the modelled 
P - and S -wave signals agree with the coupled signal to within an 
order of magnitude at low frequency. Point source signals present 
significantly higher amplitudes at high frequency. This discrepancy 
is due, in part, to the impulsive Ra yleigh wa ve present in the ideal 
elastic response of a half-space. 

This coupling method allows us to study the respective contribu- 
tion of various source terms on the impact seismic signal. We show 

that the source is mostly dominated by the moment tensor compo- 
nents, and that the deviatoric part of the moment tensor contributes 
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ignificantly to the impact seismic signal. Hence, an isotropic (ex-
losive) source does not provide a complete description of the im-
act source mechanism. Numerical results make it possible to study
he effect of source spatial extension on the signal spectra. We show
hat, for a vertical, 1000 m s −1 impact simulation generating a 2 m
rater, finite source effects are not sufficient to explain the lack of
igh-frequency energy in the coupled spectrum compared to the
odelled point-source spectrum. We hypothesize the absence of

ome stress glut terms in our numerical description, in particular
erms associated to the specificities of the FDEM implemented in
OSS. Deviations from the elasto-dynamic equations due to nu-
erical damping, interelement friction and dislocation, or the finite

train theory may be viewed as additional equi v alent forces whose
mportance should be assessed in the future. 

Despite these discrepancies, we have shown with a simple prop-
gation model that the properties of the impact generated P wave
00 km away from the source is in line with spectral properties of
mall impact recorded seismically during the InSight mission. We
lso showed that, once scaled with the material seismic properties,
he measured seismic moment and source duration agree well with

easurements made on Lunar and Martian data. The comparison
lso reveals a possible scaling relationship between seismic source
ize and impactor energy and momentum. In the future, we hope
o conduct a more complete validation study of the seismic source
arameters, and to further investigate the scaling of these key source
arameters. 

The proposed model is here applied to impact phenomena, which
re a rather exotic source from the point of view of Earth seismology,
ut the developments remain true for any other type of source, such
s explosions, volcanoes or of course the earthquake sources, for
hich the stress glut was initially invented by Backus & Mulcahy
 1976a ). In fact, the stress glut field and equi v alent forces can be
omputed for any mechanical disruption in a solid medium, as long
s the right initial and boundary conditions are provided. 
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inson , S.E. , Dreger, D.S., B ürgmann, R., Kanamori, H. & Larson, K.M.,
2007. Seismically and geodetically determined nondouble-couple source
mechanisms from the 2000 Miyakejima volcanic earthquake swarm, J.
geophys. Res., 112 (B10), doi:10.1029/2006JB004847. 
inster , J.-B. , 1974. Elastodynamics of failure in a continuum, PhD thesis ,
California Institute of Technology. 
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I T H  S U R FA C E  M A S S  L O S S E S  

generalized form of the Reynolds Transport Theorem. This theorem was 
nly known in a restricted form applicable to material volumes, that is 
rface moves together with the outermost particles. The generalized form 

ow through the surface: the surface thus moves at a velocity v � , distinct 
 ( 2004 ) (eq. 4.6), the generalized Reynolds Transport Theorem writes: 

(A1) 

time t and V designates the instantaneous material volume composed of 

 

d � 
d t 

means that the measure of the total momentum within V 

t takes into 

 ati ve 
d 

d t 
simpl y considers v ariation of momentum of the set of particles 

 on this material volume, the following expression of the conservation of 

v ) · d � . (A2) 

 shocked medium. It is different from the ideal elastic stress � of eq. ( 3 ) 
 for the non-linear volume forces applied to V 

t . This global expression of 
n an mesoscopic volume element. To this aim, we make use of eq. (2.3d) 

(A3) 

 

� 

� t 

ρv ( v � − v ) · d � 

� 

� t 

( ρv ) v · d � . 

(A4) 

 the surface integrals of eq. ( A4 ) and projecting in direction i , this yields: 

(A5) 

(A6) 

 and n j is the normal to surface � projected in direction j . 

E I S M I C  WAV E F I E L D  I N  A  V O LU M E  W I T H  

ment field generated by surface tractions � ( u , τ ) · n = f � on surface � 

ond displacement field, produced by different tractions � ( v , τ ) · n = g � 

d v are: 

(B1) 

arranges the elastic equations of motion for u and v as: 

(B2) 
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A P P E N D I X  A :  E Q U  A  T I O N S  O F  M O T I O N  W

The equation of motion of a variable-mass system is given by the 
introduced by Osborne Re ynolds (Re ynolds 1903 ), and is commo
volumes surrounding a constant set of particles in motion, whose su
accounts for cases where mass (and thus particles) is allowed to fl
from the particle velocity v . Using the formalism of Irschik & Holl

d � 
d t 

[ �  

V t 

ρv d V 

] 

= 

d 

d t 

[ �  

V 

ρv d V 

] 

+ 

� 

� t 

ρv ( v � − v ) · d � . 

In eq. ( A1 ), V 

t and � 

t refer to the variable volume and surface at 

the particles of V 

t . Following Irschik & Holl ( 2004 ), the deri v ati ve

account the inflow and outflow of mass through � 

t , while the deri v

instantaneously present in V . Using Cauch y’ s momentum equation
momentum is obtained: 

d � 
d t 

[ �  

V t 

ρv d V 

] 

= 

� 

� t 

S · n · d � + 

�  

V t 

h 

V d V + 

� 

� t 

ρv ( v � −

Here, S represents the true, non-linear stress exerted in the strongly
and does not follow Hooke’s law of elasticity . Similarly , h 

V stands
the conservation of momentum can be completed by a local form o
of Irschik & Holl ( 2004 ): 

d � 
d t 

[ �  

V t 

ρv d V 

] 

= 

�  

V t 

∂ 

∂t 
( ρv ) d V + 

� 

� t 

ρv v � · d � , 

and write: �  

V t 

∂ 

∂t 
( ρv ) d V + 

� 

� t 

ρv � · d � = 

� 

� t 

S · n · d � + 

�  

V t 

h 

V d V +
�  

V t 

∂ 

∂t 
( ρv ) d V = 

� 

� t 

S · n · d � + 

�  

V t 

h 

V d V −

Upon using the Gauss–Green–Ostrogradsky divergence theorem on

∂ 

∂t 
( ρv i ) = ∂ j S i j + h 

V 
i − ∂ j ( ρv i v j ) . 

Finally, true non-linear tractions on the surface � 

t now write: 

S i j n j = f � i + ρv i ( v j − v � j ) n j , 

where f � i denote external forces applied to surface � in direction i

A P P E N D I X  B :  R E P R E S E N TAT I O N  O F  A  S
C O N S TA N T  M A S S  

Let V be a volume with surface �. Let u ( ξ , τ ) be an elastic displace
with normal n , and volume forces f V within V . Let v ( ξ , τ ) be a sec
on � and volume forces g V in V . The equations of motion for u an

ρ0 ∂ 
2 u 

∂τ 2 
= ∇ · � ( u , τ ) + f V 

ρ0 ∂ 
2 v 

∂τ 2 
= ∇ · � ( v , τ ) + g V . 

Betti’s Reciprocal Relation, which is valid everywhere within V , re

�  

V 

(
f V − ρ

∂ 2 u 

∂τ 2 

)
· v d V ( ξ ) + 

� 

� 

� ( u , τ ) · n · v d �( ξ ) 

= 

�  

V 

(
g V − ρ

∂ 2 v 

∂τ 2 

)
· u d V ( ξ ) + 

� 

� 

� ( v , τ ) · n · u d �( ξ ) . 
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N n time. Classically, the next step consists in integrating both part of the 
e the condition that u , ∂ u 

∂τ
, v and ∂ v 

∂τ
are all everywhere zero before a certain 

t is a fixed time. In the case where V and � are fixed volumes and surfaces, 
t u cancel each other, and the following expression of Betti’s theorem is 
o

) 

d �( ξ ) . 

(B3) 

N arying in time, the simplification of the acceleration terms must be carried 
m pear, which were derived by Minster ( 1974 ) and Archambeau & Scales 
(  mass and volume, as we will find them to be negligible for the studied 
i ation for variab le v olumes and surfaces in the Appendix C below. 

ropagation medium, v i ( x , t) = G in ( x , t − τ, ξ , 0) . It represents the i th 
c within V by an impulse volume force located at position ξ and time 0 and 
d oundary conditions associated to v are: 

(B4) 

R  Representation Theorem, here written in the n th direction of motion and 
f

u

 (B5) 

A tions can be found in Aki & Richards ( 2002 ). In the case considered here, 

� verywhere on � and cancels the first part of the last term of eq. ( B5 ). We 

r lume forces γ V and γ � which are the non-linear sources of motion (see 
e n V is then given by eq. ( B6 ): 

u

(B6) 

A E M  F O R  A  VA R I A B L E - M A S S  S Y S T E M  

A ntation Theorem as found in Aki & Richards ( 2002 ) does not account for 
c d by Minster ( 1974 ) and Archambeau & Scales ( 1989 ). The starting point 
i

(C1) 

I een time τ = −∞ and time τ = +∞ . We add the condition that u , ∂ u 
∂τ

, 
v st, and e v aluate field v at a time t − τ , where t is a fixed time. This time, 
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ote that this relationship is also true when both V and � vary i
quation from time τ = −∞ to time τ = +∞ . We can further add 
ime τ 0 in the past, and e v aluate the field v at a time t − τ , where t 
he time integrals over the acceleration terms ρ ∂ 2 u 

∂τ2 · v and ρ ∂ 2 v 

∂τ2 ·
btained: 
∞ ∫ 

−∞ 

d τ
�  

V 

[
u ( ξ , τ ) · g V ( ξ , t − τ ) − v ( ξ , t − τ ) · f V ( ξ , τ ) 

]
d V ( ξ

= 

∞ ∫ 
−∞ 

d τ
� 

� 

[ v ( ξ , t − τ ) · � ( u , τ ) · n − u ( ξ , τ ) · � ( v , t − τ ) · n ] 

ote ho wever , that if volume V and surface � are considered to be v
ore carefully. For this special case, additional analytical terms ap

 1989 ). In this study, we do not account for the effects of variable
mpact. Ho wever , the reader can find an e xact v ersion of Betti’s rel

In a last step, v is chosen to be the Green’s function of the p
omponent of displacement produced at time t − τ and position x 
irected towards the n th direction of space. The volume force and b

g V i ( ξ , t − τ ) = δin δ( x − ξ ) δ( t − τ ) in V 

g � i ( ξ , t − τ ) = C i jkl 
∂G kn 

∂ξl 
on �. 

eintroducing this new expression of v in eq. ( B2 ) gives rise to the
or a constant volume V : 

 n ( x , t) = 

+∞ ∫ 
−∞ 

d τ
�  

V 

f V i ( ξ , τ ) G in ( ξ , t − τ, x , 0) d V ( ξ ) 

+ 

+∞ ∫ 
−∞ 

d τ
� 

� 

G in ( ξ , t − τ, x , 0) f � i ( ξ , τ ) d �( ξ ) 

−
+∞ ∫ 

−∞ 

d τ
� 

� 

u i ( ξ , τ ) n j C i jkl 
∂G kn 

∂ξl 
( ξ , t − τ, x , 0) d �( ξ ) .

 list of several special-case depending on various boundary condi

 is chosen to be a free surface, which leads to C i jkl n j 
∂G kn 

∂ξl 
= 0 e

eplace the generic forces f V and f � b y equi v alent surface and vo
q. 7 of Section 2.1.2 ). The expression of displacements anywhere i

 n ( x , t) = 

+∞ ∫ 
−∞ 

d τ
�  

V 

γ V 
i ( ξ , τ ) G in ( ξ , t − τ, x , 0) d V ( ξ ) 

+ 

+∞ ∫ 
−∞ 

d τ
� 

� 

G in ( ξ , t − τ, x , 0) γ � 
i ( ξ , τ ) d �( ξ ) . 

P P E N D I X  C :  R E P R E S E N TAT I O N  T H E O R

s mentioned in the previous section (appendix B ), Betti’s Represe
hanges in volume and surfaces. We report here on the form obtaine
s Betti’s Reciprocal Relation (eq. B2 ), which we copy here: 

�  

V 

( f − ρ
∂ 2 u 

∂τ 2 
) · v d V ( ξ ) + 

� 

� 

� ( u ) · n · v d �( ξ ) 

= 

�  

V 

( g − ρ
∂ 2 v 

∂τ 2 
) · u d V ( ξ ) + 

� 

� 

� ( v ) · n · u d �( ξ ) . 

n the following step, both parts of the equation are integrated betw
 and ∂ v are all everywhere zero before a certain time τ 0 in the pa
∂τ
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evelop the time integral of momentum over a time-varying volume, V 

τ : 

(C2) 

−

∂ v 

∂τ
· u 

)
− ρ

∂ v 

∂τ
· ∂ u 

∂τ

 · v 

)
+ ρ

∂ v 

∂τ
· ∂ u 

∂τ

]
d V 

τ ( ξ ) . 

(C3) 

proposed by several authors (Minster 1974 ; Archambeau & Scales 1989 ), 
f Appendix A . Following eq. (2.3d) of Irschik & Holl ( 2004 ), this gives: 

−

(
ρ

∂ v 

∂τ
· u − ρ

∂ u 

∂τ
· v 

)
d V 

τ ( ξ ) 

 v 

τ
· u − ρ

∂ u 

∂τ
· v 

)
· v � · n d � 

τ ( ξ ) 

] 

. 

(C4) 

imilarly to the case of fixed volume and surfaces (see Appendix B ), the 
nitial conditions on u and v and their deri v ati ves, and e v aluating v at time 
ich now writes: 

( ξ ) 

 � 

τ ( ξ ) 

 τ ) · n d � 

τ ( ξ ) . 

(C5) 

ndix B , we obtain the exact version of the Representation Theorem, here 
 

) n j 

]
d � 

τ ( ξ ) 

G in 

∂τ
( ξ , t − τ, x , 0) v � j ( ξ , τ ) 

]
d � 

τ ( ξ ) . (C6) 

v i v 
� 
j ( ξ , τ ) n j and an artificial surface stress ˜ � i j ( ξ , τ ) = ρ

∂G in 
∂τ

( ξ , t −

- G R AV I TAT I N G ,  RO TAT I N G  P L A N E T  

nd rotation requires us to adapt the equations of motion of Section 2.1.1 . 
ate of hydrostatic equilibrium, which implies the existence of a pre-stress. 
ich the traditional Cauchy stress tensor cannot appropriately describe. 
stribute mass and perturb the gravitational field, which in return acts on 
 and rotating body were presented in a number of works. Lognonn é & 

, starting from the gravito-elastic equations of motion. Dahlen & Tromp 
continuum mechanics, as well as the deri v ation of appropriate linearized 
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instead of adopting the simplification of eq. ( B3 ), we must further d

∞ ∫ 
−∞ 

d τ
�  

V τ

(
ρ

∂ 2 v 

∂τ 2 
· u − ρ

∂ 2 u 

∂τ 2 
· v 

)
d V 

τ ( ξ ) . 

We modify the double deri v ati ves on the right and write: 

∞ ∫ 
∞ 

d τ
�  

V τ

(
ρ

∂ 2 v 

∂τ 2 
· u − ρ

∂ 2 u 

∂τ 2 
· v 

)
d V 

τ ( ξ ) = 

∞ ∫ 
−∞ 

d τ
�  

V τ

[
∂ 

∂τ

(
ρ

− ∂ 

∂τ

(
ρ

∂ u

∂τ

Only two terms are left- on the right-hand side of eq. ( C3 ). As was 
eq. ( C2 ) can be developed using the Reynolds Transport Theorem o

∞ ∫ 
∞ 

d τ
�  

V τ

∂ 

∂τ

(
ρ

∂ v 

∂τ
· u − ρ

∂ u 

∂τ
· v 

)
d V 

τ ( ξ ) = 

∞ ∫ 
−∞ 

d τ

[ 

d s 
d τ

�  

V τ

−
� 

� τ

(
ρ

∂

∂

In eq. ( C4 ), v � represents the velocity of the moving surface � 

τ . S
first integral on the right-hand side cancels upon applying the right i
t − τ . We are left with a supplementary term to Betti’s theorem, wh

∞ ∫ 
−∞ 

d τ
�  

V τ

[
u ( ξ , τ ) · g V ( ξ , t − τ ) − v ( ξ , t − τ ) · f V ( ξ , τ ) 

]
d V 

τ

= 

∞ ∫ 
−∞ 

d τ
� 

� τ

[ v ( ξ , t − τ ) · � ( u , τ ) · n − u ( ξ , τ ) · � ( v , t − τ ) · n ] d

−
� 

� τ

[
ρ

∂ v 

∂τ
( ξ , t − τ ) · u ( ξ , τ ) − ρ

∂ u 

∂τ
( ξ , τ ) · v ( ξ , t − τ ) 

]
· v � (

Introducing the Green’s function in eq. ( C5 ), as in eq. ( B5 ) of Appe
written in the n th direction of motion and for a varying volume V 

τ :

u n ( x , t) = 

+∞ ∫ 
−∞ 

d τ
�  

V τ

f V i ( ξ , τ ) G in ( ξ , t − τ, x , 0) d V 

τ ( ξ ) 

+ 

+∞ ∫ 
−∞ 

d τ
� 

� τ

G in ( ξ , t − τ, x , 0) 
[

f � i ( ξ , τ ) + ρv i v 
� 
j ( ξ , τ

−
+∞ ∫ 

−∞ 

d τ
� 

� τ

u i ( ξ , τ ) n j 

[
C i jkl 

∂G kn 

∂ξl 
( ξ , t − τ, x , 0) + ρ

∂

We note that an additional artificial surface force ˜ f � i ( ξ , τ ) = ρ

τ, x , 0) v � j ( ξ , τ ) appear in the Representation Theorem. 

A P P E N D I X  D :  S T R E S S  G LU T  O N  A  S E L F

Modelling wave propagation in a planet subject to its own gravity a
Under the effect of gravity and rotation, the planet is initially in a st
Elastic deformations represent perturbations of this pre-stress, wh
Moreover, material put in motion by a seismic wave can itself redi
the wave dynamics. The equations of motions of a self-gravitating
Cl év éd é ( 2002 ) presented a re vie w of the theory of normal modes
( 1998 ) e xhaustiv ely address the issue of the definition of stress in 
equations of motion and boundary conditions. 
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static, or quasi-hydrostatic. This implies a distribution of density which is 
r onship exists between the equilibrium stress, gravitational and centrifugal 
p om the previous history of stresses. 

 hydrostatic equilibrium, the planet has a density field ρ0 , an initial static 
C tion, for the sake of concision, we adopt vector notations. At equilibrium, 
t

(D1) 

w ing the gravitational constant G: 

∇  . (D2) 

T

ψ (D3) 

F

∇ (D4) 

cles. Using a Lagrangian description of the motion, this perturbation can 
b

(D5) 

w ent vector. In reaction to the motion, we consider that other physical fields 
e q L 1 ( x , t) in the Lagrangian description and q E ( r , t) = q 0 ( r , t) + q E1 ( r , t) 
i ation of quantity q L , and is related to the first order Eulerian perturbation 
b ted material deri v ati ve. With these notations, the conservation of mass in 
V

ρ (D6) 

T : 

φ (D7) 

a 1 = −∇ φE1 . The full, non-linearized equation of motion is more easily 
w

ρ (D8) 

U her-order terms, it becomes: 

ρ (D9) 

T T 

E1 in continuum mechanics as it is directly related to the gradient of 
d chy stress, which in linearized form writes T 

L 1 = C : 1 
2 

[∇ u + ( ∇ u ) T 
]

w ess � ij defined in the main text. Upon applying the relationship between 
L uilibrium, we can finally rewrite eq. ( D9 ) as: 

ρ E1 − ρE1 ∇ 

(
φ0 + ψ 

)
. (D10) 

I

ρ 1 − ρE1 ∂ i ( φ + ψ) . (D11) 

 version of the equation of motion proposed in eq. ( 3 ) of Section 2.1.1 . 
I sed as a function of displacements u : f V i = ρ0 g E1 

i − 2 ρ0 εi jk � j 
∂u k 
∂t −

∂ u i means that the definition of the Green’s function changes with re- 
s n of motion. The ne wl y defined Green’s function depends on a symmetric 
o iolis forces (see e.g. Lognonn é & Cl év éd é 2002 ). A demonstration of the 
R  of motion can be found in Dahlen & Tromp ( 1998 , section 5.3). 

 equi v alent forces. As in Section 2.1.2 , using ρE = ρ, γ V becomes: 

γ  v 

− ρ0 ∇ ψ. (D12) 

W
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In most applications, the studied planet is considered to be hydro
oughl y laterall y homo geneous. Within such approximation, a relati
otentials, and the equations of motion can be made independent fr

Let us consider a planet of volume V and surface �. In its initial
auchy stress tensor T 

0 and rotation vector �. In the following sec
he equilibrium gravitational field is: 

g 0 = −∇ φ0 , 

ith φ0 the gravitational potential defined by Poisson’s equation us

 

2 φ0 = 4 πG ρ0 and φ0 ( x ) = −G 

�  

V 

ρ0 ′ 

‖ x − x ′ ‖ d V ( x ′ )

he centrifugal potential ψ of the rotating planet is defined by: 

( r ) = −1 

2 

[
�2 r 2 − ( � · r ) 2 

]
. 

inally, the equations of the hydrostatic equilibrium is: 

 · T 

0 = ρ0 ∇ 

(
φ0 + ψ 

)
. 

The onset of a seismic wave perturbs the initial position of parti
e written: 

r ( x , t) = x + u ( x , t) , 

ith x the initial position of particles and u the Lagrangian displacem
xperience first order perturbations, such that q L ( x , t) = q 0 ( x , t) + 

n the Eulerian description. q L 1 is the first order Lagrangian perturb
y q L 1 = q E1 + u · ∇ q 0 , which is a form of linearized and integra
 is written: 

E1 = −∇ ( ρ0 u ) . 

he first order Eulerian perturbation of the gravitational potential is

( x ) = −G 

�  

V 

ρ0 ′ u 

′ · ( x − x ′ ) 
‖ x − x ′ ‖ 3 d V ( x ′ ) , 

ssociated to a first order perturbation of the gravitational field g E

ritten in the Eulerian form: 

E 
(
D t v 

E + 2 � × v E 
) = ∇ 

E · T 

E − ρE ∇ 

E 
(
φE + ψ 

)
. 

pon linearizing each field as above, and neglecting second and hig

0 
(
∂ 2 t u + 2 � × ∂ t u 

) = ∇ · T 

E1 − ρ0 ∇ φE1 − ρE1 ∇ 

(
φ0 + ψ 

)
. 

he Lagrangian perturbation in stress, T 

L 1 , is more useful than 
eformation ∇ u . Precisely, T 

L 1 is the incremental Lagrangian Cau
ith C is the stiffness tensor. T L 1 i j is thus equi v alent to the ideal str
agrangian and Eulerian perturbations and using the hydrostatic eq

0 
(
∂ 2 t u + 2 � × ∂ t u 

) = ∇ · T 

L 1 − ∇ 

[
ρ0 u · ∇ 

(
φ0 + ψ 

)] − ρ0 ∇ φ

n tensor notation, eq. ( D10 ) becomes: 

0 

(
∂ 2 u i 

∂t 2 
+ 2 εi jk � j 

∂u k 

∂t 

)
= ∂ j T 

L 1 
i j − ∂ i 

(
ρ0 u j ∂ j ( φ + ψ) 

) + ρ0 g Ei 

The previous developments bring a few additional terms to the
n fact, the simple volume force f V i of eq. ( 3 ) is now expres
 i 

(
ρ0 u j ∂ j ( φ + ψ) 

) − ρE1 ∂ i ( φ + ψ) . This dependance of f V i on 
pect to Appendix B , as G in in no longer solution to the same equatio
perator of gravito-elasticity and an antisymmetric operator for Cor
epresentation Theorem using this form of the linearized equations
Changes in the equations of motion transpose to the definition of

V = ∂ t 
[
( ρ0 − ρ) v 

] − ∇ · ( T 

L 1 − S + ρv ⊗ v ) + 2 � × ( ρ0 − ρ)

+ ∇ 

[
ρ0 u · ∇ 

(
φ0 + ψ 

)] + ρ0 ∇ φE1 − ( ρ0 − ρ) ∇ φ0 − ρ∇ φ

e identify in this expression the stress glut � = T 

L 1 − S . 
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Table E1. Parameters used for the scaling of seismic moments and source size estimates (Figs 15 and 16 ). Seismic moments 
of Fig. 15 are all scaled to a reference bedrock material with density ρbr and velocity v p , br , following a method similar to 
Daubar et al. ( 2018 ) (see also Posiolova et al. 2022 ). The value of ρ and v p in eq. ( 35 ) are chosen so as to best match the seismic 
models used in the determination of M 0 in the corresponding literature. For the scaling of the source size τ v s in Fig. 16 , we 
use estimates of v s at source depth, that is about ∼10 m for small impacts and ∼20 m for the large impact of S1094b on Mars. 
The last column gives v i , the typical impactor velocity on each surface types used to compute the kinetic energy. 

Impact type References 
v p 

(m s −1 ) 
ρ

( kg m 

−3 ) 
v s (at source depth) 

(m s −1 ) v i (km s −1 ) 

Lunar impacts Daubar et al. ( 2018 ) ( v p , ρ) ( v s ) 330 2000 100 (10 m) 2 (artificial) 
Gudkova et al. ( 2011 ) ( v i ) 20 (natural) 
Tanimoto et al. ( 2008 ) 

Mars, small impacts Garcia et al. ( 2022 ) ( v p , ρ, v i ) 744 1800 300 (10 m) 6 
Larmat et al. ( 2020 ) ( v s ) 

Mars, S1094b Posiolova et al. ( 2022 ) ( v i ) 2045 2150 400 (20 m) 10 
(bedrock) W ójcicka et al. ( 2020 ); 

Raj ši ́c et al. ( 2021b ) ( v p , ρ) 
Larmat et al. ( 2020 ) ( v s ) 

Mars, S1094b Posiolova et al. ( 2022 ) ( v i ) 1088 1589 400 (20 m) 10 
(regolith) W ójcicka et al. ( 2020 ); 

Raj ši ́c et al. ( 2021b ) ( v p , ρ) 
Larmat et al. ( 2020 ) ( v s ) 

Simulation This work 1090 1589 583 1 
Bedrock (Reference) Daubar et al. ( 2018 ) 1000 2700 - - 

O D S  F O R  T H E  S C A L I N G  O F  S E I S M I C  

E S  

 0 obtained by several studies to a common reference M 0, br measured in 
stimate based on the product of the source duration and the source shear 
 used to produce Figs 15 and 16 . 
onverted to an equi v alent bedrock moment M 0, br , considering a bedrock 
 m s −1 . The material properties ρ and v p of the source layer are chosen 
ting M 0 . For example, the Lunar impacts are assumed to have occurred 

ubar et al. ( 2018 ). Other values of v p and ρ for Martian impacts and our 
1 , with associated references. 
5 were obtained in multiple ways by previous studies. The momentum of 
led seismic moment M 0 is calculated from M 0 = v p S ( P i ) , with S = 1.5 
 of Martian impact events S0793a, S0981c and S0986c were estimated 

y (Collins et al. 2022 ). Their seismic moment was estimated by scaling 
rformed in a reference model with a surface sedimentary layer given by 
ated by Posiolova et al. ( 2022 ) in two different materials using a scaling 

jcicka et al. ( 2020 ). In Fig. 15 , the scaling relationship found by W ójcicka 
 Lunar seismic velocities using a multiplication by a factor 330/1088. 
 choice of seismic velocities. For Lunar and Martian impacts, we adopt 
ly 10 m, and 20 m for the largest Martian impact S1094b. Corresponding 
 does not account for variation of v s with depth, or the variation of source 

n or cut-off frequency is not straightforw ard. Indeed, its v alue depends on 
indows will contain a mixture of P and S waves with potentially different 

ering and attenuation phenomena at regional distances. In Gudkova et al. 
 long time windows using a fit to a function ˆ s ( ω, τ ) which included an 

atch these results, we use the fit of the �3 model to the coupled S wave 
n events (Garcia et al. 2022 ), the source duration was estimated from a fit 
the P -wave information and limit contamination from seismic scattering. 

ntum estimate, E i = P i × v i /2, with typical values of v i given in Table E1 . 
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A P P E N D I X  E :  PA R A M E T E R S  A N D  M E T H
M O M E N T S  A N D  S O U RC E  S I Z E  E S T I M AT

In Section 4.3.2 , we proposed a method to scale seismic moments M
bedrock. We also proposed a definition of the impact source size e
wav e v elocities. We report here the references and parameter values

Moment scaling: Simulation, Martian and Lunar moments are c
with density ρbr = 2700 kg m 

−3 and P -wav e v elocity v p , br = 1000
so as to match the seismic models used in each study when compu
in a material with v p = 330 m s −1 and ρ = 2000 kg m 

−3 , as in Da
simulations are reported in the third and fourth columns of Table E

The momentum of Lunar and Martian events displayed in Fig. 1
Lunar impact events is given by Gudkova et al. ( 2015 ). Their unsca
the ejecta amplification factor and v p = 330 m s −1 . The momentum
by Garcia et al. ( 2022 ) using a statistical model of meteoroid entr
the amplitude of simulated waveforms. These simulations were pe
Table E1 . The seismic moment of the large event S1094b was estim
relationship between seismic moment and crater diameter from W ó
et al. ( 2020 ) for a material with v p = 1088 m s −1 is converted to the

Source size scaling : The estimate of source size also requires a
values of v s found in the literature for a source depth of approximate
values are reported in Table E1 ). This is a first order estimate, which
depth with the size of the crater. 

When using real seismic data, the estimation of the source duratio
the time window chosen to compute the source spectra: long time w
source time scales. The determination of τ is also affected by scatt
( 2015 ), source durations of large Lunar events were computed on
attenuation model and an ω 

−3 roll-off at high frequency. To better m
as our estimate of the source duration τ S = 1/ f c , S . For small Martia
of a �3 model to the first ∼5 s of signal arri v al, in order to isolate 
We suppose that these Martian results have a ±2 Hz uncertainty. 

Finally, the kinetic energy of Fig. 16 is calculated from the mome
C © The Author(s) 2024. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access 
article distributed under the terms of the Creative Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/ ), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 
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