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Abstract

We introduce a new graph sparsification method that targets the neighborhood information available
for each node. Our approach is motivated by the fact that neighborhood information is used by several
mining and learning tasks on graphs as well as reachability queries. The result of our sparsification
technique is a sparsified graph that can be used instead of the original graph in the above tasks while still
ensuring fairly good approximations for the results. Moreover, our sparsification method allows users to
control the size of the resulting sparsified graph by adjusting the amount of information loss tolerated
by the targeted applications. Our extensive experiments conducted on various real and synthetic graphs
show that our sparsification considerably reduces the size of the graphs by achieving 40% sparsification
rate on average on several input graphs. Furthermore, in the experimental study we show the utility
and efficiency of our sparsification algorithm for notable data-driven tasks, such as node classification,
graph classification and shortest path approximations. The obtained results exhibit interesting trade-offs
between the runtime speed-up and the precision loss.

1 Introduction

Graphs are data modeling abstractions consisting of a set of vertices, also called nodes, and a set of edges
connecting the vertices. Vertices represent objects, while edges represent relationships between them. Graphs
are widely used in data modeling because of their ability to represent, in a simple and intuitive way, complex
processes in both nature and technology, such as social interactions, protein-protein interactions, chemical
molecules, transport networks and fraud detection networks, to name a few [26]. However, most of these
graphs are very large or grow exponentially as new data arrives. This makes graph querying and analysis a
very challenging task.

To tackle scalability and performance issues when dealing with large graph data, plenty of algorithms
are devised to simplify graphs in several domains and applications related to graph analysis [19]. The aim
is to construct simpler or smaller representations for large graphs mainly to save storage space but also to
use the obtained representations, instead of the original graphs, in applications where using the entire large
original graphs is not possible or is time consuming [16]. Sparsification is one of these approaches aiming to
construct a subgraph of the original graph by removing insignificant edges. The resulting graph is called a
skeleton or a backbone. Sparsification is generally application-dependent because the significance of an edge
may vary from one application to another. The main idea is obtaining a smaller graph while preserving some
properties, even approximately, of the original graph such as the results of distance, and reachability queries
[9, 18].

Several sparsification methods are proposed in the literature [20] but there is no generic approach that
can target several applications at once. An attempt to build a fairly general approach is provided in [32],
relying on reinforcement learning. However, this method does not exempt us from computing the application
task on the original graph; on the contrary, this step is mandatory during the training process that needs to

∗This is a preprint: the final reviewed paper will appear in the proceedings of the 51st International Conference on Very
Large Data Bases (https://vldb.org/2025/)
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(a) Input Graph (b) p(1) = 50% t = 2 (c) p(1) = 50% t = 3

Figure 1: (p, t)−sparsification and neighborhood information.

be achieved on each graph to be sparsified. This makes it less useful for real-world applications and hard to
use for graphs that the algorithm has not used during training.

In this paper, we fill the gap by proposing a general sparsification method, called (p, t)−Sparsification,
that focuses on preserving the neighborhood information available around each vertex. This kind of local
information is a key property for many graph algorithms but it has never been exploited for the graph
sparsification problem. For instance, in graph learning tasks such as node classification, knowing a node’s
immediate connections is crucial for accurately categorizing it based on the characteristics of its neighbors.
Similarly, for reachability queries, where the goal is to find whether there is a path between two nodes,
neighborhood information speeds up the process and makes it more efficient. Computing shortest paths in
a graph needs also the information about each node’s local surroundings to identify the most efficient and
least costly paths.

Each node in a graph may have several connections, and handling all of them is time and space consuming.
Hence, our approach allows to finely control how much of locality we keep in the obtained sparified graph.
The key idea is to remove some edges while ensuring that for each node u, a certain amount of its neighbors,
determined by a function p(), is kept within t-hops at most from u in the resulting sparsified graph, with
t ≥ 1 and p() being the input parameters.

Figure 1 shows how the neighborhood information is preserved with (p, t)-sparsification. In the original
graph (cf. Figure 1 (a)), node u1 has 6 direct neighbors (highlighter in blue): nodes u2, u3, u6, u8, u9 and
u10. Figure 1 (b) shows a (p, t)−sparsification of G where p(1) = 50% of the neighbors of node u1 remain
reachable at t = 2 hops. We can observe that node u2 is no longer directly connected to node u1 in the
sparsified graph but remains reachable within 2 hops from it. Figure 1 (c) shows another sparsification of
G this time with p(3) = 100% of the neighbors of node u1 remaining reachable within t = 3 hops. We can
also see that nodes u2 and u9 are no longer directly connected to node u1 in the sparsified graph but remain
reachable within 3 hops from it. By varying the (p, t) parameters, specified as input, one can see that the
obtained sparsification can be accordingly tuned, thus explaining its generalizability to any input graph.

The example of Figure 1 also shows that parameters p and t allow to have a generic approach that
can produce various sparsifications by using different values for p and t and therefore adapt to multiple
applications and needs. To show this, we use our resulting sparsified graphs in four main tasks: reachability
queries, shortest paths computation, node classification and graph classification. The results we obtained
on these four different tasks have proven to be effective approximations of the exact results of these tasks
obtained on the the full original graphs. This validates our method as producing useful sparsified graphs
reducing the size of the input graph, and allowing to leverage the sparsified graphs, instead of the original ones,
without sacrificing the accuracy of the outcomes. This efficient approximation is crucial in computational
environments where resource savings are imperative, yet the integrity of the results must be maintained. It
is also interesting in several applications where a quickly delivered approximate result is more useful than an
accurate result that takes a long time to obtain.

Summarizing, the main contributions of this paper are as follows:
• We introduce a new general graph sparsification method that targets the preservation of the neighbor-
hood information available for each node in the graph. The key idea is to create a graph skeleton that
can replace the original graph in various applications and for arbitrary graph datasets.
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• Our method allows the fine-tuning of the size of the resulting sparsified graph by adjusting the amount
of preserved neighborhood information.

• Our method allows efficient graph algorithm approximations. Our approach improves the efficiency
of various graph algorithms, particularly those that depend on node neighborhood information, such
as node/graph classification and shortest path computation. This results in faster and more robust
approximations for larger graphs.

• Our techniques allows to strike a user-driven balance between sparsification ratio and information
loss through its parameters p and t. The user-driven customization makes our technique versatile for
different applications with varying needs.

• We conduct extensive experiments using real-world datasets in different application domains to assess
the effectiveness and efficiency of the proposed method. The source code and the data used in our
paper are publicly available at https://gitlab.liris.cnrs.fr/coregraphie/ptspar.

The remainder of this paper is organized as follows: Section 2 defines the basic concepts and notation
used in the paper and reviews related work on graph sparsification methods. Section 3 formally defines
the problem of neighborhood-preserving graph sparsification and studies its complexity. Then, Section 4
provides a description of the algorithms that we propose to compute this sparsification and analyses their
time complexity. Section 5 presents the results obtained through the extensive experiments we undertook
to evaluate our sparsification approach, as well as the usefulness of the obtained sparsified graphs. Finally,
Section 6 concludes the paper and points out some research perspectives.

2 PRELIMINARY AND RELATED WORK

2.1 Preliminary

A graph G = (V,E) is a 2-component structure comprising a set V of vertices and a set E ⊆ V × V of edges
connecting the vertices. Edges can be directed, and both vertices and edges can have attributes or weights.
In this paper, we consider unweighted and undirected graphs. So, an edge connecting vertices u and v is
interchangeably denoted by uv or vu.

Two vertices connected by an edge are said to be adjacent. A vertex adjacent to v is called a direct
neighbor of v or a 1-hop neighbor of v. The set of all the direct neighbors of a vertex v in G is denoted as
N1

G(v) or simply N(v) when there is no ambiguity. The degree of a vertex v, denoted deg(v), is the number
of its 1-hop neighbors, i.e., deg(v) = |N(v)|.

A path in a graph is a sequence of edges which joins a sequence of vertices which are all distinct. A
vertex v is reachable from a vertex u if there exists a path from u to v. A q-hop neighbor of a vertex v is
a vertex that can be reached from v with a path of exactly q edges. We will denote by Nh

G(v) the set of all
(1 ≤ q ≤ h)-hop neighbors of vertex v in G.

The distance between two vertices u and v is the length, i.e., number of edges, of the shortest path
connecting them. We will denote by W the set of all paths in G, by Wuv the set of all paths from node u to
node v, and by Wuvi, the set of paths from node u to node v of length at most i.

Graph sparsification stands for the methods that compute a sparse subgraph of the input graph. Given
a graph G = (V,E), a sparsified graph of G is a graph Gs = (Vs, Es) defined generally on the same set of
vertices as G but with less edges, i.e., Vs = V and Es ⊂ E. In practice, we want the sparsified graph Gs

to retain certain properties of G such as the distance between vertices, reachability queries, etc. A graph
sparsifier that preserves distances between nodes is generally called a k-spanner.

When sparsifying a graph, the order in which the edges are processed is generally important. We will
denote this order with a bijective function, i.e., permutation, π : E → {1, . . . , |E|} that associates to each
edge e ∈ E its processing rank π (e). We will denote by Eπ the edges of G in the order defined by π.

Let G(V,E) be the input graph and Gs(Vs, Es) be the sparsified graph, the sparsification ratio measures
how well Gs reduces the graph G and is given by the ratio of the number of deleted edges over the total
number of edges:

Sr =
|E| − |Es|

|E|
(1)

Note that the higher is the sparsification ratio the better is the storage space gain ensured by the sparsi-
fication.

Table 1 summarizes these notations.
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Table 1: Notation.

Symbol Description

G(V,E) an undirected unweighted graph with V
the set of vertices and E the set of edges.

Nh
G(v) the set of all (1 ≤ i ≤ h)-hop neighbors

of vertex v in G
N(v) the set of direct neighbors of v, i.e., N1

G(v)
deg(v) number of direct neighbors of v

d average node degree of G
Gs = (Vs, Es) a sparsified graph of G

π an ordering function defined on E
Eπ the edges of G in the order defined by π
W the set of all paths in G
Wuv the set of all paths in W from u to v
Wi

uv the set of all paths of Wuv of length at most i
that pass through the edge e

Sr the sparsification ratio given by |E|−|Es|
|E|

2.2 Related Work

The first graph sparsifiers are graph spanners introduced in [24] and motivated by the problem of distance
similarity of two graphs. Graph sparsification is also used in [1] to speed-up algorithms computing graph
cuts, which are partitions of the vertices of a graph into two disjoint subsets. Given any weighted undirected
graph G = (V,E), the authors show that one could construct a new graph Gε = (V,Eε ⊆ E), 0 < ε < 1,
with |Eε| = O(n log n/ε2) edges such that the value of every cut in G is within a multiplicative factor of 1±ε
of its value in Gε.

Nowadays, several other properties are preserved through graph sparsification such as spectral similarity
of graph Laplacians [29], determinant-preservation of matrices [8], to reduce the number of constraints in the
binary constraint satisfaction problem (CSP)[4], etc.

Given a social graph and a log of past traversals of this graph, the authors of [21] prune the graph to
a prefixed extent, while maximizing the likelihood of generating the traversal traces in the log. A similar
work is described in [2]. It tackles the problem of simplifying a graph, while maintaining the connectivity
recorded in a given set of observed activity traces represented by a set of trees with specified roots. The
problem consists in selecting a subset of edges in the graph so as to maximize the number of nodes reachable
in all trees by the corresponding tree roots. Many works have also been proposed to extract the backbone of
graphs by removing edges based on various properties of graph vertices and edges such as degree distribution
or betweenness centrality distribution [14, 34]. These methods rely mainly on edge weights to sparsify the
graph. So, they perform poorly on unweighted graphs. As examples, we can cite statistical methods that
apply a filter on the edges such as the Noise Corrected filter [6] that keeps only the edges that have a weight
greater than a given threshold. High salience backbone filter [9] extracts the graph skeleton based on the link
(i.e., edge) salience property. The salience of an edge e is a score s(e) that represents a consensus estimate
from all nodes of the importance of the edge e. An edge e having a salience score equal to 1.0 is an essential
edge for all nodes. If s(e) = 0, the edge e has no role and if, s(e) = 0.5 then it is important for only half
of the nodes [9]. The salient backbone extracts the skeleton by keeping only the edges that have a salience
score greater than a certain threshold.

More recently, Wickman et al. [32] propose SparRL a graph sparsification approach based on graph neu-
ral networks (GNNs) and reinforcement learning. However, SparRL requires executing the downstream task
algorithm on the original graph to calculate rewards for the reinforcement learning part. This raises questions
about the practical utility of this sparsification method and limits its generalization to unseen graphs. Also,
the method applies a task-specific optimization which is difficult to apply to some task such as learning and
classification.

Graph sparsification methods are generally designed for specific applications because it is difficult to
have sparsified graphs that can be used in several kind of graph applications. By targeting neighborhood
information and allowing to control the amount of information loss in the computed sparsified graph, we aim
to be able to use our skeletons in a variety of graph applications. In fact, several graph algorithms, such as
node embedding, node classification, shortest paths, etc. are based on the availability of node neighborhood
information. In the remainder of the paper, we show that controlling the amount of this information in the
computed skeleton allows to reach good trade-off between algorithm speed-up and precision loss when using
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the skeleton as input instead of the original graph in the targeted applications.

3 A Neighborhood-preserving graph sparsification

In this section, we introduce a new graph sparsification method that targets the amount of neighborhood
information available for each node in the graph. The main idea is to sparsify the input graph by removing
edges, while ensuring that, for all 1 ≤ i ≤ t, a proportion p(i) of the neighbors of each node v is included in the
set of the i-hops neighbors of v in the resulting sparsified graph, where t ≥ 1. We denote such sparsification
by (p, t)-sparsification where:

• p : N∗ → [0, 1] is a monotonically increasing function, which represents the proportion of each node’s
input neighbors that must be available in its i-hops neighborhood in the sparsified output graph.

• t : is the minimum integer value for which p reaches its maximal value i.e., p(i) = p(t),∀i ≥ t.

More formally, given an undirected graph G = (V,E), a (p, t)-sparsification of G is defined as follows:

Definition 1 Given a positive integer t and a monotonically increasing function p : N∗ → [0, 1] satisfying
p(i) = p(t) for all i > t, a (p, t)-sparsification of a graph G = (V,E) involves finding a subgraph Gs = (Vs, Es)
of G. Gs must have the same set of vertices Vs = V , a subset of edges Es ⊆ E, and must satisfy the condition
that for each integer 0 < i ≤ t and each vertex v ∈ V , the set N i

Gs
(v) of includes at least a proportion p(i) of

the set N1
G(v) of immediate neighbors of v in G.

The definition implies that the subgraph Gs retains fewer edges than the original graph G, but still
captures a specified proportion of the original neighborhood structure.

With (p, t)-sparsification, the function p aims to control the loss of neighborhood information at varying
depths. Naturally, a smaller value of p results in a higher sparsification ratio and vice versa.

For any (p, t)-sparsification, the number of edges |Es| of the sparsified graph satisfies the inequality
|E|p(1) ≤ |Es|.

The proof is straightforward and follows from the handshaking lemma which states that in any graph,
the sum of the degrees of all the vertices is twice the number of edges.

Theorem 1 Finding the optimal (smallest) graph satisfying the (p, t)-sparsification constraints for t ≥ 2 is
an NP-Hard problem.

1 The proof of the theorem follows directly from hardness of finding k-spanners which is known to be
NP-complete [25].

4 Computing (p, t)-sparsifiers

In this section, we present two main algorithms for finding (p, t)-sparsifiers of an input graph G. The
first algorithm is an exact algorithm based on an integer linear programming (ILP) formulation of (p, t)-
sparsification. The second algorithm is an approximation whose result depends on the order on which the
edges are processed, thus we provide several solutions to this ordering problem.

4.1 Exact Algorithm

Our exact algorithm is obtained by solving an Integer Linear Programming (ILP) formulation of (p, t)-
sparsification. This formulation is aimed at finding an optimal (smallest) sparsified graph that meets the
(p, t)-sparsification definition. It consists of a set of linear inequalities that constrains the minimization of
an objective function. In our case, the objective function counts the number of edges of the sparsified graph
(cf. Equation 4.1) and the constraints are expressed by Inequalities 4.1 to 4.1 and domain definition of our
variables (cf. Equation 4.1).
Given a graph G = (E, V ) and a (p, t)-sparsification, the following ILP formulation computes a smallest
sparsified graph as follows:

minimize
∑

e∈E xe

subjectto∑
v∈N(u)

∑
w∈Wi

uv
xw ≥ p(i) · |N(u)|∀u ∈ V, i ≤ t

1The detailed proofs are provided in the supplementary material also available at
https://gitlab.liris.cnrs.fr/coregraphie/ptspar/-/blob/main/Supplementarymaterial.pdf
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∑
w∈Wuv

xw ≤ 1∀uv ∈ E
xw ≤ xe∀w ∈ W, e ∈ w
xe, xw ∈ {0, 1}e ∈ E,w ∈ W
where a binary variable xe is defined for every edge e ∈ E such that xe = 1 if and only if the edge e is selected
to be part of the sparsified graph, otherwise xe = 0. Thus, the objective function

∑
e∈E xe aims at minimizing

the number of selected edges in the final solution. The first constraint (cf. Equation 4.1) ensures that for every
vertex u of the graph, the property of (p, t)-sparsification is satisfied i.e., for every distance i ≤ t, the number
of neighbors still connected to u via a path of length at most i is at least p(i) · |N(u)|. This is enforced by the
binary variables xw such that for every neighbor v of u, the set of all paths w between u and v is denoted by
Wuv and by Wi

uv when considering paths of length i, hence
∑

v∈N(u)

∑
w∈Wi

uv
xw ≥ p(i) · |N(u)|∀u ∈ V, i ≤ t.

The second constraint (cf. Equation 4.1) makes sure that the obtained sparsified graph has no cycles i.e.,
there is at most one path between any pair of vertices. This is enforced by setting the xw to 1 to at most one
path w among all possible paths Wuv between two adjacent vertices u and v in G. The constraint given by
Equation 4.1 ensures that all edges belonging to a selected path w are selected in the sparsified graph. The
last constraint (cf. Equation 4.1) sets the definition domain of xe, xw variables which are defined as binary
variables.

4.2 Approximation Algorithm: ptSpar

We propose ptSpar (see Algorithm 1) an approximation algorithm that implements (p, t)-sparsification. It
takes as input a graph G = (V,E) to sparsify, the sparsification parameters p and t and an ordering Eπ for
processing the edges of the input graph.

The algorithm starts with an empty sparsified graph Gs (see line 1) and grows it incrementally by going
through all the edges of the input graph G, in the order Eπ (see the loop on lines 3 to 18). G′ is a
working variable initialized to the empty graph and serves to check that an edge inserted in Gs verifies the
neighborhood conditions of the (p, t)- sparsification. Each iteration of the loop (lines 3 to 18) corresponds to
the processing of a new edge e in the ordering Eπ. A processed edge e, is first inserted into G′ (line 4) but
its inclusion in the sparsified graph Gs depends on whether it verifies the condition of (p, t)-sparsification.
This is done by setting variable insert to false (line 5).

To see whether edge e = uv needs to be included in Gs, we simply check if Gs without the edge e remains
a (p, t)-sparsification for G′. To do so, we check the neighborhood preservation constraints for nodes u and
v as they are the only nodes whose neighborhood set is impacted by the arrival of edge e. For such purpose,
we need to compute the set of all neighbors of u and v located in a radius <= i, i.e., N i

Gs
(u) and N i

Gs
(v)

(see lines 9-10). To compute N i
Gs

(u), respectively N i
Gs

(v), we traverse the graph within radius i starting
from u, respectively v. Then, we check if the non-insertion of e in Gs violates the neighborhood preservation
constraints (line 11), if this is the case e must be inserted in Gs (lines 12-16).

Theorem 2 The subgraph Gs = (Vs, Es) output of Algorithm ptSpar is a (p, t)-sparsification, of the input
graph G = (V,E).

We proceed by induction and show that if Gs(k) is a (p, t)-sparsification of G′(k), then Gs(k + 1) must
also be a (p, t)-sparsification of G′(k + 1), where k denotes the iteration step in the algorithm, representing
the stage at which the edges are processed. This is demonstrated by showing that an assumption of the
contrary leads to a contradiction with the induction hypothesis, thereby confirming the theorem’s claim
through induction.

The performance of the ptSpar algorithm is significantly impacted by the order in which edges are pro-
cessed. Different edge orderings can lead to varying efficiencies in achieving (p, t)-sparsification. Optimizing
the (p, t)-sparsification for a graph G fundamentally involves finding the most effective edge ordering, Eπ∗,
of the edges as stated in Theorem 3.

Theorem 3 Let G = (V,E) be a graph. There exists a permutation function π∗ of the edge set E for which
algorithm ptSpar, gives an optimal (i.e., a minimum size (p, t)-sparsification) of G.

The proof begins by asserting that if at any iteration k, the current output Gs(k) is a (p, t)-sparsification
of G, subsequent edges processed will be rejected, maintaining Gs(k) unchanged until the final iteration.
This is based on the observation that once a graph meets the (p, t)-sparsification criteria, all its vertices
have their neighborhood constraints satisfied, making any additional edge unnecessary. To demonstrate the
theorem, we consider G∗

s, a minimum size (p, t)-sparsification of G, and construct π∗ such that edges in E∗
s
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Algorithm 1: ptSpar(G = (V,E), p, t, Eπ)

Input : G = (V,E) a simple Graph, t an integer, p : N → [0, 1], Eπ an ordering of E
Output : Gs = (Vs, Es) a sparsified graph

1 Gs = (Vs, Es)← (V, ∅);
2 G′ = (V ′, E′)← (V, ∅);
3 for e = uv ∈ Eπ do
4 E′ ← E′ ∪ {uv};
5 insert ← False;
6 N1

G′(u)← direct neighbors of node u in G′;
7 N1

G′(v)← direct neighbors of node v in G′;
8 for i = 1 to t do
9 N i

Gs(u)← neighbors of node u in Gs within at most i-hops;

10 N i
Gs(v)← neighbors of node v in graph Gs within at most i-hops;

11 if |N i
Gs(u) ∩NG′1(u)| < p(i)|N1

G′(u)| or |N i
Gs(v) ∩N1

G′(v)| < p(i)|N1
G′(v)| then

12 insert ← True;
13 Break;

14 end

15 end
16 if insert then
17 Es ← Es ∪ {uv};
18 end

19 end

are processed before those in E − E∗
s . Under this ordering, once ptSpar processes all edges in E∗

s , it will
reject any remaining edges, resulting in G∗

s as the output, proving the theorem.
To improve the sparsification performance of the ptSpar algorithm, we propose three sub-optimal orders

in the following subsections. Our aim is to approximate the ideal edge processing order thereby enhancing
the sparsification effectiveness of the ptSpar algorithm. By exploring various edge ordering strategies, we seek
to balance computational efficiency with the quality of the resultant sparsified graph. The first sub-optimal
order relies on the ILP formulation of (p, t)-sparsification, the second one is based on edge centrality and the
third one relies on a meta-heuristic to find the best order.
Linear programming based edge order: To obtain this order, we rely on our ILP formulation of (p, t)-
sparsification to compute a weight for each edge that will reflect the importance of keeping it or not in the
resulting sparsified graph. For this, we relax the ILP problem into an LP problem, solvable in polynomial
time, by allowing variables xe, e ∈ E, and xw, w ∈ W, to be any real values between 0 and 1. The
interpretation we give to the resolution of this LP problem is that the higher the value of xe, the more likely
we want to keep e in our solution. In reverse, the lower the value of xe, the more likely we want to remove
the edge e. Thus, we can use the values of xe, e ∈ E, as a weight and obtain an ordering for the edges.
Algorithm 2 formalizes the computation of this order.

Algorithm 2: LP Ordering

Input : G = (V,E) a Graph, t an integer, p : N → [0, 1]
Output : Linear Programming based edge order ELP

1 Solve the LP Relaxed problem to compute the edge scores xe;

2 ELP ← sort edges E in descending order according to xe;

Edge centrality based order: In this section, we propose another edge ordering that can be computed
much faster than the LP order. The idea is to first process the edges with a high centrality value. Centrality
is a common measure for the importance of a node or an edge in a graph. The centrality we consider here
is a relaxation of local edge betweenness defined in [10]. An edge with a high edge betweenness centrality
represents a bridge-like connector between two parts of a graph, the removal of which may affect the shortest
paths between these parts. The local edge betweenness of an edge e is the number of shortest paths running
along e, the length of which is less than or equal to some constant t. In our proposed metric, We consider
all paths with a length at most t, not just the shortest paths. Furthermore, we focus only on paths directly
associated with an edge in the edge set E. For every edge e, we calculate a centrality score s(e) using
Equation 2. In this equation, σt(u, v|e) denotes the number of paths of length at most t that traverse edge
e, and connect two nodes u and v that are directly linked by the edge uv. This approach ensures that the
centrality score, we propose, accurately reflects the significance of each edge in connecting directly adjacent
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nodes within the network.
Once all scores are computed, we sort the edges in descending order according to their score s(e) to obtain

an edge ordering. Algorithm 3 formalizes the computation of this ordering.

s(e) =
∑
uv∈E

σt(u, v|e) ∀uv ∈ E (2)

Algorithm 3: Edge centrality based order

Input : G = (V,E) input Graph
Output : Centrality based edge order Ec

1 for e ∈ E do
2 compute the score s(e) using Equation 2;
3 end
4 Ec ← sort the edges of G in descending order according to s(e);

Meta-heuristic based order: In the previous two subsections, we have proposed two greedy edge orderings
to improve the sparsification performance of the ptSpar algorithm. However, the drawback of these two
solutions is that they are more time-consuming than a random edge ordering, as we will reveal in the next
section with the experimental evaluation. Moreover, the computation time cannot be controlled by the user
since the computation of both orderings, i.e., the LP ordering and the edge centrality based ordering, deliver
the edge ordering at the end of the computation and no-intermediary results is obtained if the computation
is stopped before it terminates. To overcome this problem, we explore the potential of meta-heuristics as
a powerful tool for searching large solution spaces, which is essential when dealing with complex graph
structures and the various constraints of the sparsification problem. Simulated Annealing (SA) [30] is one of
these meta-heuristics that has the ability to escape local optima by probabilistically accepting worse solutions,
thus allowing a broader exploration of the solution space. This feature makes SA an ideal candidate for
finding near-optimal edge orderings. Another advantage of this solution is that the computation time can be
controlled by the user by adjusting the number of SA iterations.

The Simulated Annealing(SA)-based ordering is detailed in Algorithm 4. The algorithm begins by ini-
tializing a sequence S with a random arrangement of the edges from the graph G = (V,E) (cf. line 1). This
sequence is the starting point for the simulated annealing process. Then, it sets the initial ’temperature’
T to a predefined value T0 (cf. line 2). This temperature is crucial in the SA technique, as it allows the
acceptance of suboptimal solutions, particularly in the early stages, to ensure a comprehensive exploration
of the solution space. Then, we call the ptSpar algorithm on G using the current edge order S, resulting in a
temporary sparsified graph Gt = (Vt, Et) (cf. line 3). The number of edges in Et is recorded in COSTbest (cf.
line 4), tracking the best (i.e., smallest) edge count found in the sparsified graph so far. COSTS is initialized
with the size of Et, representing the cost of the current solution (cf. line 5). In the main iterative loop of the
algorithm, running for N iterations, each iteration modifies the current solution slightly by creating a new
edge order S2 from S by swapping two randomly selected edges (cf. lines 6 and 7). Then, we evaluate the new
edge order S2 (cf. lines 8 to 16) by calling the ptSpar algorithm again to decide whether to accept this new
order based on the size of the resulting sparsified graph and the current temperature T . The temperature T
is updated by multiplying it with a decreasing factor α, gradually lowering the likelihood of accepting worse
solutions as the algorithm progresses (cf. line 17). Finally, the algorithm returns Ebest, the best edge order
found within the gien number of iterations (cf. line 18).

Figure 2 illustrates the results of the (p, t)-sparsification algorithms on our running example (cf. Figure 2
(a)) with parameters t = 2, p(1) = 50% and p(2) = 100%. For each algorithm, the retained edges are in blue
and the removed ones in dashed grey. The exact algorithm produces the smallest possible sparsified graph
with exactly 13 edges (cf. Figure 2 (b)). The ptSpar algorithm used with the LP-based ordering (cf. Figure
2 (c)) and with the centrality-based ordering (cf. Figure 2 (d) ) produces a near-optimal sparsification with
14 edges, which is very close to the theoretical optimal of 13 edges. It is important to note that although
both orderings yield sparsifications with the same number of edges, the actual edges retained in each method
are not the same resulting in different sparsified graphs. Additionally, see that the SA algorithm succeeds
to produce the optimal sparsification with 13 edges (cf. Figure 2 (e) and Figure 2 (f)) if it is used with a
sufficient number of iterations.

4.3 Complexity analysis

In this section, we analyze the time complexity of all the algorithms presented in the previous section. The
theorems and their detailed proofs are provided in the supplementary material.

8



Algorithm 4: Computing the best order with simulated annealing

Input : G = (V,E) a Graph, t an integer, p : N → [0, 1], N an integer (Number of iterations), T0 a double
( Initial temperature), α a double ( decreasing factor)

Output : Ebest the best edge ordering with N iterations
1 S ← Random order of E;
2 T ← T0;
3 Gt(Vt, Et)← ptSpar( G,t,p,S);
4 COSTbest ← |Et|;
5 COSTS ← |Et|;
6 for i = 1 to N do
7 S2 ← Perturbing S by swapping the order of two random edges;
8 Gt(Vt, Et)← ptSpar(G,t,p,S2);
9 if |Et| < COSTbest then

10 Ebest ← S;
11 COSTbest ← |Et|;
12 end
13 if |Et| < COSTS then
14 S ← S2;
15 CS ← |Et|;
16 end
17 else
18 r ← random number between 0 and 1;

19 if exp(COSTS−|Et|
T

) > r then
20 S ← S2;
21 COSTS ← |Et|;
22 end

23 end
24 T ← α ∗ T ;
25 end

26 return Ebest;

The time complexity of the ptSpar algorithm is O(|E|dt), where d represents the average degree in the
graph G. In scenarios where every node is connected to every other node, forming a complete graph, this
complexity escalates significantly, reaching O(|E||V |t).

The time complexity of the LP-based Edge Ordering algorithm is primarily derived from its linear pro-
gramming (LP) problem formulation. This formulation encompasses variables representing each edge, de-
noted as xe, and path variables influenced by the number of paths up to length t − 1 starting from each
vertex. Given a graph with an average degree d, the total number of these path variables scales with |V |dt−1,
where |V | is the number of vertices. Consequently, the LP problem consists of O(|E| + |V |dt−1) variables,
leading to a time complexity of O(poly(|E| + |V |dt−1)) for the algorithm, where |E| signifies the number of
edges.

The average time complexity of the Centrality based-Ordering is O(|E|(dt + log(|E|))). This complexity
involves computing the score s(e) for each edge e, which is equal to the complexity of listing all paths of
lengths ≤ t for each pair of nodes (u, v) ∈ E. The average number of paths of length ≤ t between two nodes
(u, v) and starting from u is of order O(dt), where d is the average degree. The number of edges is |E|.
Therefore, the time complexity of computing all the scores s(e) is O(|E|dt). We add to this, the complexity
of sorting all the scores which is O(|E|log|E|). In the worst case (i.e., complete graph), the time complexity
would be O(|E|(V t + log(|E|))).

The average time complexity of the centrality based-Ordering is O(|E|(dt + log(|E|))). This complexity
involves computing the score s(e) for each edge e and sorting them. The complexity of computing the edge
scores is equal to the complexity of listing all paths of length ≤ t for each pair of connected nodes, i.e., for
each edge in E. The average number of paths of length ≤ t between two connected nodes u and v and starting
from u is of order O(dt), where d is the average degree. The number of edges is |E|. Therefore, the time
complexity of computing all the scores s(e) is O(|E|dt). In addition, the complexity of sorting all the scores
costs O(|E| log |E|). In the worst case (complete graph), the time complexity would be O(|E|(V t+log(|E|))).

The time complexity of the Simulated Annealing (SA)-based ordering is influenced by the number of
iterations N , the initial temperature T0, and the temperature decreasing factor α. Each iteration involves a
perturbation of the edge order and a re-evaluation of the sparsification, leading to a complexity that is also
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(a) input graph
(22 edges)

(b) ILP optimal
(13 edges)

(c) LP order
(14 edges)

(d) Centrality order
(14 edges)

(e) SA 500 iterations
(14 edges) (f) SA 1000 iterations (13 edges)

Figure 2: Results of the (p, t)-sparsification algorithms on the running example.

dependent on the efficiency of the ptSpar algorithm used within it.

5 Experimental Analysis

In this section, we present an experimental analysis of our sparsification approach. First, we evaluate the
performance of the ptSpar algorithm provided to compute the sparsification. Then, we provide an analysis
of the sensitivity of this sparsification to parameters p and t. Finally, we evaluate its effectiveness on several
tasks such as shortest paths and reachability queries computation, node embedding and whole graph em-
bedding. We also compare our sparsification with several baselines and state of the art methods to show its
effectiveness. All the experiments are carried-out on an Intel core i7 processor with 64 Gigabytes of memory.
The source code of our algorithms is available at https://gitlab.liris.cnrs.fr/coregraphie/ptspar.

Algorithms. We used the following baselines in our comparative study:

• Random Edge (RE): RE randomly eliminates a given percentage of edges.

• Local Degree (LD) [12]: LD retains the top deg(v)α edges for each node v ∈ V , where α ∈ [0, 1]

• Edge Forest Fire (EFF) [12]: EFF is based on the Forest Fire node sampling algorithm [17]. It initiates
a fire at a random node and burns approximately p/(1−p) neighbors, where p represents the probability
threshold for burning a neighbor. Burnt neighbors are enqueued for subsequent fire initiation. EFF
prunes edges based on the frequency of edge visits.

• Algebraic Distance (AD) [5]: AD uses random walk distance to compute the algebraic distance α(u, v)
between two nodes. A low algebraic distance implies a high likelihood that a random walk starting
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from u will reach v within a small number of steps. It assigns an edge score of 1− α(u, v) to prioritize
short-range edges.

• L-Spar (LS) [27]: LS employs the Jaccard similarity function on the adjacency lists of nodes u and v to
determine the edge score of (u, v). It ranks edges locally (with respect to each node) and prunes them
based on their ranks.

• Simmelian Backbone (SB) [22] : SB calculates weights by counting how many triangles each edge is part
of, and then retains only those edges that form the most triangles, indicating strong and interconnected
relationships in the graph. During sparsification, SB removes the lower-ranked edges of each node using
a specified edge-prune ratio.

• Quadrilateral Simmelian Backbone (QSB) [23]: QSB measures the Simmelianness weight of each edge
(u, v) by taking into account the shared quadrangles of u and v. It follows the same pruning strategy
as SB.

• Salient backbone (SLB) [9] : SLB sparsifies a graph using the disparity filter which consists in calculating
a statistical significance (p-value) for each edge based on its weight and the total weight of all edges
connected to the same node. Edges with p-values below a certain threshold are retained, forming the
”backbone” of the graph. The rest, considered less important, are discarded.

• SparRL [32], a deep reinforcement learning-based method, sparsifies a graph by formulating the process
as a Partially Observable Markov Decision Process (POMDP). It starts with a graph and at each step,
chooses an edge to prune based on a policy learned from a Double DQN network. The policy is trained
to maximize a reward function that encourages the preservation of certain graph properties.

Datasets. Table 2 summarizes the properties of the various datasets that we use in our extensive experiments.
The synthetic graphs are used mainly to study the different ordering solutions we provided for the ptSpar
algorithm. The real graphs are chosen according to the use cases on which we evaluated the usefulness of the
obtained sparsified graphs. In fact, for each application of our sparsification, we use the most used datsets
for its evaluation.

Table 2: Characteristics of datasets used in our experiments.

Name #graphs |V | |E| Use case

BLOG-CATALOG 1 10.31K 333.98K MLNC/SP
CA-ASTROPH 1 18.77K 198.11K SP
CA-HEPTH 1 9.8K 25.9K SP
CiteSeer 1 3.2K 4.5K NC/SP
COLLAB 5000 372.5K 49.1M GC
Cora 1 2.7K 5.4K NC/SP
ENZYMES 600 19.5K 74.6K GC
FLICKR 1 89K 899K NC/SP
FLICKR-Large 1 80.51K 5.89M MLNC
IMDB-BINARY 1000 19.77K 96.53K GC
MSRC-21C 209 8.4K 20.2K GC
PROTEINS 1113 43.5K 162.1K GC
PubMed 1 19.7K 44.3K NC/SP
SYNTH1 30 20 60 RT
SYNTH2 30 50 350 RT
SYNTH3 30 100 1.4K RT

MLNC: Multi-label Node Classification, SP: Shortest Paths,
NC: Node Classification, GC: Graph Classification, RT: Running Time.

Metrics. We use the following metrics:

• Sparsification runtime measured in seconds,

• Sparsification ratio that represents the ratio of the number of deleted edges over the total number of
edges (see Equation 1), and

• Entropy loss to measure the information loss after the sparsification. The graph entropy is a measure of
the structural information of a graph and serves as a complexity measure [7]. Given a graph G(V,E),
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the Shanon entropy of G (i.e., I(G)) is computed as follows [7]:

I (G) = −
∑
u∈V

deg(u)∑
u∈V deg(u)

log

(
deg(u)∑

u∈V deg(u)

)
(3)

The entropy loss is the normalized difference between the entropy of the original graph and the entropy
of the sparsified graph. Let G be the original graph and Gs be the sparsified graph, we compute the
entropy loss as follows:

Eloss =
|I (G)− I (Gs) |

I (G)
(4)

Note that the lower is the entropy loss the better is the sparsification.

5.1 Evaluating the edge ordering methods

In this subsection, we present a comparative experimental study of the edge orderings we considered for
optimizing the ptSpar algorithm. These orderings are: LP ordering, centrality based ordering and the
Simulated-annealing (SA) ordering. We compare them with a random ordering of the edges. The aim
of these experiments is to show that the performance in term of sparsification ratio can be improved by
considering different edge orderings. For this experiment, we use 3 families of synthetic graphs and the
following sparsification parameters t = 2 , p(1) = 0.0 and p(2) = 0.5. For a reliable and accurate comparison,
we carried-out around thirty tests on each family of graphs for each edge ordering solution. The results of
the comparison are depicted in Table 3. Note that the user configuration of the SA is T0 = 10, N = 1000 and
α = 0.99. We notice that the two greedy orderings, LP and centrality, and the SA algorithm outperform the
random ordering of edges in terms of sparsification performance. The results clearly show that the centrality
and the SA orderings are the best algorithms. The centrality ordering seems really interesting and offers
the best trade-off between sparsification performance and runtime. However, we can see that the ptSpar
algorithm with a random order of edges is much faster than with the other orderings methods. Therefore,
we will be using it in the rest of the experiments.

Table 3: Evaluation of the ptSpar algorithm with different edge orderings.

SYNTH1 SYNTH2 SYNTH3

Random
avg |Es| 28 121.6 367
avg time 0.001 0.008 0.05

LP
avg |Es| 25.24 113.26 354.3
avg time 0.02 2.5 212

Centrality
avg |Es| 23.55 105.66 323.2
avg time 0.01 0.02 0.09

SA
avg |Es| 21.56 105.9 340.4
avg time 0.5 5.2 40

5.2 Evaluating the impact of the sparsification parameters p and t

In this series of experiments, we study the effect of parameters p and t on the sparsification performance.
As mentioned before, our sparsification allows users to control the trade-off between information loss and

sparsification ratio (i.e., space gain). To do so, the user varies the parameters p and t according to its needs
(available memory and the targeted use case) to find the configuration that suits him. The ideal scenario
is to minimize the information loss (entropy loss) while maximizing the sparsification ratio. Table 4 gives
the sparsification ratio and entropy loss obtained by our sparsification on the CA-AstroPh dataset, while
varying the neighborhood preservation proportion p. We set p(t) = 1 in all experiments, which means that
the whole initial neighborhood of each node can be retrieved in a neighborhood of radius r = t at maximum.
This ensures that reachability queries are fully preserved for all vertices. As expected, the sparsification ratio
decreases (and the entropy loss increases) as the preserved proportion of neighborhood increases and vice-
versa. Some of the values of the sparsification ratio obtained with the various combinations of parameters
are very satisfactory. The same holds for the entropy loss (max value < 5%). In addition, we remark that the
sparsification ratio range is wide (from 7% to 75%) which confirms the possibility of controlling effectively the
trade-off information loss/sparsification ratio using parameters p and t. The choice of the best configuration
of parameters depends essentially on the nature of the graph to be sparsified and the user needs. Particularly,
for this example, the configurations (t = 2, p = (0.5, 1)) and (t = 3, p = (0.5, 0.7, 1)) seem interesting and
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are a good trade-off between sparsification ratio and entropy loss with a sparsification ratio > 45% and an
entropy loss < 1%.

Table 4: Sparsification ratio vs entropy loss of the Ca-AstroPh dataset with different combinations of pa-
rameters p and t.

t p(1) p(2) p(3) sparsification ratio Entropy loss

2

0.2 1.0 - 58.13% 1.71%
0.5 1.0 - 45.82% 0.90%
0.7 1.0 - 26.39% 0.66%
0.9 1.0 - 7.43% 0.31%

3

0.0 0.2 1.0 75.00% 4.61%
0.2 0.5 1.0 71.50% 2.57%
0.5 0.7 1.0 46.73% 0.85%
0.7 0.9 1.0 26.43% 0.66%

5.3 Evaluation the distribution of the shortest path lengths with (p, t)-Sparsification

In this experiments, we show that (p, t)-sparsification allows to approximate distances (shortest path lengths)
between nodes. To do so, we sparsify three unweighted undirected graphs with the following combination of
parameters t = 2, p(1) = 0.5, and p(2) = 1.0. Then, we compute all shortest paths between all nodes.

Figure 3 shows the distribution of the shortest path lengths in the original and sparsified graphs for the
three datasets. We note that the two curves have almost the same pace. This shows that our sparsification
preserves the distribution of the lengths of the shortest paths on the 3 datasets. However, the curves of the
sparsified graphs are slightly stretched and shifted from the original curves. This is due to the stretching of
the paths as a result of sparsification. This stretch is not really considerable because of the preservation of
50% of the direct neighbors of each vertex in the graph.
It is important to note here that we cannot draw a similar distribution for the shortest paths of other baseline
methods, as they do not preserve the connectivity of the graph. However, we have evaluated the increase in
the length of the shortest paths and the loss of reachability queries for these methods in Section 5.5.
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Figure 3: Distribution of shortest path lengths of the original and sparsified graphs.

5.4 Evaluating the information loss

In this series of experiment, we focus on evaluating the quality of the obtained sparsified graphs by measuring
the loss of entropy for each method. Table 5 gives the information loss rates measured by the loss in entropy
of all the sparsification methods on four datasets. For a rigorous comparison, we have selected datasets that
have different densities and contain hundreds of graphs. It’s worth noting that SparRL, which is a deep
reinforcement learning-based method, was not applied in this context due to two main reasons: (1) It is
computationally intensive and requires individual training for each graph. This is inefficient for datasets
containing hundreds of graphs. (2) It has a reward function with a limited scope that does not consider
entropy – a key factor in this case. The obtained results are as follows:

• On the COLLAB Dataset, the (p, t)-sparsification method proves to be the most effective, achieving
the least entropy loss of 0.99%. This means that it best preserves the structure of the original graph.
In contrast, the Local Degree (LD) method experiences the greatest entropy loss with 21.3%, implying
substantial information loss during the sparsification.
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• On the IMDB-BINARY Dataset, the Simmelian Backbone (SB) method records the smallest entropy
loss with 1.1%, indicating the most successful preservation of the original graph’s structure. (p, t)-
sparsification is almost as good with an entropy loss of 1.45%. The LD method, once again, shows the
worst entropy loss with 19.36%.

• On the MSRC 21C Dataset, the (p, t)-sparsification method excels over all the other methods by achiev-
ing the lowest entropy loss (0.6%) which denotes the best preservation of the original graph’s structure.
The method with the worst entropy loss is again LD, with a value of 6.4%.

• On the PROTEINS Dataset, the L-Spar (LS) method and the (p, t)-sparsification demonstrate the best
performance, each achieving the best entropy loss (1.3% and 1.5% respectively).

To summarize, the (p, t)-sparsification method demonstrates consistent and effective performance across
multiple datasets, showing the least entropy loss in most cases. This indicates that the (p, t)-sparsification
method is capable of preserving most of the graph’s original information, proving it to be the best choice for
various use cases.

Table 5: Effect of the sparsification on the graph entropy

COLLAB IMDB-BINARY MSRC 21C PROTEINS

ptSpar 1.00% 1.50% 0.60% 1.50%
SLB 20.80% 22.70% 4.40% 4.10%
AD 11.80% 3.70% 1.50% 4.90%
LS 7.70% 6.40% 0.60% 1.30%
QSB 2.90% 1.20% 1.70% 5.30%
SB 1.70% 1.10% 1.80% 4.40%
EFF 7.40% 6.60% 2.90% 3.80%
LD 21.30% 19.40% 6.40% 4.80%
RE 6.80% 5.90% 2.70% 2.50%

5.5 Evaluating the usefulness of the sparsified graphs

We have applied many graph algorithms on the sparsified graphs. Our first motivation is to be able to
use these algorithms directly on the sparsified graphs to reduce memory space and speed up running times.
So, the purpose of the following experiments is to show the effectiveness of our sparsification in terms of
speeding-up such graph algorithms, while handling large graphs and providing good approximations of the
original results. For this, and for all the following experiments, we compute two new metrics in addition to
the sparsification ratio namely:

• Speed-up factor: the ratio between the algorithm run-time on the original graph and its run-time on
the sparsified graph. The higher the speed-up factor, the faster the graph algorithm on the sparsified
graph.

• Performance Preservation: This metric measures the degree to which the performance on the
sparsified graph approaches the one obtained on the original graph. In contexts like classification, it
gauges the relative conservation of accuracy from the original graph to its sparsified counterpart. A
higher Performance Preservation value signifies that the sparsified graph has effectively retained, or
closely approximated, the properties of the original graph

Shortest Paths and Reachability Queries: To evaluate how shortest paths are impacted with sparsi-
fication, we computed the average increase in shortest path length between 10,000 pairs of nodes, chosen
randomly, for various graph sparsification methods. A smaller increase is better as it indicates the sparsifi-
cation process preserves the shortest path lengths in the original graph more accurately. Table 6 illustrates
the obtained results. Values in parentheses represent the failure rate which is the percentage of node pairs
that became disconnected (unreachable from each other) in the sparsified graph. It is worthy to note that
the SparRL method couldn’t be executed on the Flickr dataset due to time constraints, indicating potential
scalability issues with this approach.

In terms of preserving the shortest path between randomly chosen pairs of nodes, the proposed (p, t)-
sparsification technique consistently performs well across all datasets. It achieves the lowest average increase
in path length for all datasets, indicating that it maintains the structural integrity of the original graphs
to a great extent. Furthermore, it achieves a zero percent failure rate for three out of four datasets, which
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suggests that the sparsified graphs generated using (p, t)-sparsification are highly connected, preserving the
reachability of nodes effectively. The Salient Backbone method also performs competitively, producing a
low increase in path length and relatively low failure rates. This suggests that it also does a good job of
maintaining the structure and connectivity of the original graphs during the sparsification process. On the
other hand, methods such as Algebraic Distance, Local Similarity, Quadrilateral Simmelian, and Simmelian
Sparsifier exhibit a higher increase in path length and a higher failure rate across most datasets, implying a
greater degree of distortion in the sparsified graphs.

Table 6: Performance on shortest paths and reachability queries.

Cora Citeseer pubmed Flickr

AD 14.1% (55.6%) 2.4% (92.8%) 19.6% (61.0%) 4.7% (36.0%)
LS 46.3% (19.6%) 44.5% (51.2%) 23.5% (5.0%) 6.3% (0.0%)
QSB 15.1% (41.4%) 15.1% (46.9%) 7.8% (39.6%) 9.2% (0.3%)
SB 15.9% (41.1%) 12.4% (46.0%) 7.3% (39.9%) 9.0% (0.3%)
EFF 8.0% (22.8%) 1.6% (22.0%) 5.5% (41.7%) 19.3% (6.0%)
LD 7.0% (2.7%) 13.9% (20.0%) 4.7% (0.4%) 4.4% (0.0%)
RD 14.1% (18.1%) 12.0% (28.9%) 8.3% (25.6%) 10.7% (0.0%)
Our 2.7% (0.0%) 1.7% (0.1%) 2.2% (0.0%) 2.8% (0.0%)

SparRL 3.3% (4.8%) 1.1% (12.8%) 1.8% (4.5%) out of time
SLB 2.3%(4.1%) 1.5%(5.9%) 1.3%(5.2%) 1.9%(0.5%)

Graph kernels: Graph kernels predominantly rely on local neighborhood information of nodes. Such
methods derive graph representations by delving deep into node neighborhoods and extracting pertinent fea-
tures, encompassing walks, shortest paths, and other local substructures. Given that our (p, t)-sparsification
meticulously retains the local neighborhood up to a radius t, a pertinent question arises: can graph kernels
algorithms accelerate on sparsified graphs without significant compromise on performance? To answer this in-
quiry, we run a graph classification task on graph classification datasets, namely COLLAB, IMDB-BINARY,
MSRC-21C, and PROTEINS. Here, we set t = 3, p(1) = 0.0 , p(2) = 0.5 and p(3) = 1.0. On these sparsified
datasets, we executed various graph embedding algorithms, including the Shortest Path graph kernel (SP) [3],
Weisfeiler-Lehman Optimal Assignment WL-OA graph kernel [28, 15], The Neighborhood Hash NH graph
kernel [13] and deep Renyi entropy graph kernel (REK) [33]. We gauged the efficacy of these algorithms on
both input graph and sparsified graphs. We used SVM algorithm as classifier, with a 10-fold cross-validation,
served as our performance metric. For the sake of fairness, all baseline methods maintained an identical
sparsification ratio. The SparRL method was omitted from this evaluation due to its innate latency and the
requisite training for each graph, proving inefficient given the multiplicity of graphs in our datasets.
Table 7 shows the performance of graph kernels on the sparsified graphs. We notice that all kernels run
faster on sparsified graphs in most cases. This Kernel computation speed-up is more noticeable on denser
datasets such as COLLAB. Since the sparsified graphs produced by all methods are of the same size (same
sparsification ratio for fair comparison), the speed up factors are the same for all methods. However, the
performance preservation of graph kernel methods on sparsified graphs provides pivotal insights into the ro-
bustness and efficacy of different sparsification approaches, particularly emphasizing our (p, t)-sparsification
method. Across a diverse range of datasets, our method’s performance, in many instances, either leads the
cohort or remains competitively in line with the best-performing methods. For example, in the COLLAB
dataset with the Shortest Path (SP) graph kernel, our method reaches a performance preservation of 100%, a
performance matched only by SLB and LD, while outperforming other benchmarks such as SB, EFF, and LS.
This level of consistency in preserving the integrity of the original graph structure continues across various
kernels like WL, NH, and REK. What is particularly notable is the general out-performance of our method
when contrasted against SB in datasets like MSRC 21C using the REK kernel, where our method achieves a
perfect score of 100% versus SB’s 20%. Yet, our method proves its mettle even in situations where it doesn’t
lead but exhibits comparable performance, such as in the case of the WL kernel in the same dataset. While
LD achieved the top score of 92%, our method’s 88% was closely aligned, demonstrating its competitive.
However, it’s worth noting that while our method isn’t always the definitive leader across all datasets and
kernels, it consistently ranks among the top contenders, rarely deviating far from the highest scores. The
associated speed-up rates also underscore the computational advantages of our sparsification approach. To
sum up, the (p, t)-sparsification method we propose serves as a powerful tool, often leading in performance
preservation and, when not, still staying well ranked within the top performing methods across a wide range
of datasets and graph kernels.
Node embedding: In this series of experiment, we use sparsified graphs to compute node embedding. Then,
to see if the obtained embedding are as relevant as the ones computed on the full graph, we evaluate their
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Table 7: Graph kernel performance on the sparsified graphs.

Dataset Kernel Sr Speed up
Performance Preservation

EFF LD LS ptSpar SB SLB

COLLAB

SP

91.4%

2.75 97% 100% 90% 100% 95% 100%
WL 1.23 86% 92% 87% 88% 88% 85%
NH 1.54 83% 88% 84% 87% 84% 83%
REK 1.86 83% 78% 86% 88% 87% 65%

IMDB-d

SP

72.2%

1.14 96% 100% 81% 100% 93% 99%
WL 1 93% 96% 90% 95% 89% 89%
NH 1.11 91% 92% 83% 94% 89% 87%
REK 1.46 91% 81% 93% 95% 97% 68%

MSRC 21C

SP

46.8%

1.04 97% 97% 89% 100% 89% 99%
WL 1.24 98% 100% 93% 100% 95% 24%
NH 1.34 97% 95% 91% 100% 94% 24%
REK 1.15 95% 96% 99% 100% 99% 20%

PROTEINS

SP

36.1%

1.39 98% 100% 92% 100% 96% 100%
WL 1.2 96% 96% 89% 97% 95% 94%
NH 1.12 98% 99% 94% 99% 98% 95%
REK 1.86 97% 96% 99% 99% 97% 80%

efficacy in two tasks: node classification and multi-label classification. We leveraged two predominant algo-
rithms for this endeavor: the Graph Attention Network (GAT) [31] for node classification, and Node2vec [11]
for multi-label classification. The experiments are conducted on graphs with distinct sparsification ratios:
45% for the multi-label task and 20% for the graph classification task. It’s worth noting that, for multi-label
classification on the Flickr-large dataset, we have not included the results of the Salient Backbone (SLB)
method because it failed to sparsify this large graph within the time limit of 24 hours. Additionally, the
SparRL method is not present in evaluations for both tasks because it is not possible to express classification
within its objective function.
Table 8 presents the outcomes of the different sparsification methods. Across all datasets, we can see that
(p, t)sparsification consistently excelled. On datasets such as ’PROTEINS’, (p, t)sparsification achieves an
almost impeccable accuracy preservation rate of 99.68%. Similarly, in the ’Cora’ and ’Flickr’ datasets, it
achieves the impressive rates of 96.97% and 99.16%. These figures attest to the technique’s proficiency in
preserving critical graph structures essential for GAT. Local Degree Sparsifier and Local Similarity also deliv-
ered interesting outcomes in certain datasets but Quadrilateral Simmelian and Simmelian Sparsifier reported
suboptimal results, further underscoring the significance of (p, t)-sparsification’s results.

Table 9 presents the results of multi-label node classification using node2vec embedding on the sparsified
graphs. We can clearly see the out-performance of (p, t)-Sparsification. In the Blog Catalog dataset, (p, t)-
Sparsification achieves 93.03% for Micro F1 and 90.75% for Macro F1 metrics. Its excellent performance is
further underscored in the Flickr dataset, where it registers a perfect 100% in both metrics preservation. This
clearly shows the robustness of (p, t)-Sparsification in retaining crucial graph properties vital for node2vec
embedding. The other methods have much less effective results.

Table 8: Performance of Node classification on sparsified graphs.

Method Cora Citeseer pubmed Flickr

AD 90.47% 87.07% 89.32% 92.15%
EFF 71.17% 55.51% 81.87% 99.01%
LD 96.80% 96.75% 99.65% 99.58%
LS 94.81% 96.26% 97.94% 97.42%

ptSpar 96.97% 94.53% 99.68% 99.16%
QSB 46.66% 36.90% 52.59% 93.08%
RE 90.47% 85.10% 88.31% 94.02%
SB 47.27% 37.34% 53.76% 93.56%
SLB 87.3% 78.40% 88.83% 92.72%
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Table 9: Performance of multi-label node classification on sparsified graphs.

Method
Blog Catalog Flickr

Micro F1 % Macro F1 % Micro F1 % Macro F1 %

AD 35.84 % 15.23 % 43.11 % 28.6 %
EFF 36.48 % 16.61 % 44.01 % 29.6%
LD 37.74 % 14.56 % 44.22 % 28.2%
LS 35.46 % 16.69 % 44.43 % 29.6 %

ptSpar 93.03 % 90.75 % 100% 100%
QSB 36.54 % 14.31 % 45.86 % 31.5 %
RE 35.37 % 13.05% 44.70 % 45%
SB 38.35 % 14.35 % 44.49% 24.9%

6 Conclusion and future work

In this paper, we presented a graph sparsification approach designed to produce a graph skeleton that can
be used instead of the original large graph as input in many graph analysis algorithms. To do so, our
sparsification controls the amount of neighborhood information preserved in the resulting sparsified graph
with two parameters: a function p that gives the proportion of each node’s original neighbors to be preserved
in its i-hops neighborhood in the sparsified graph, and a threshold t for which p reaches its maximal value.
We also presented several algorithms to compute this sparsification with the minimum cost, and showed their
effectiveness in sparsifying input graphs through an extensive experimental evaluation on multiple real-life
as well as synthetic graph datasets. Furthermore, We showed that the skeletons computed by the proposed
approach can be used without any addition or de-sparsification as input to multiple graph applications,
such as node embedding, graph classification, and shortest path approximations, with interesting trade-offs
between algorithm runtime speed-up and precision loss.

As for future work, we consider a more thorough analysis of (p, t)-sparsification impact on walk based
graph learning algorithms such as Node2vec and DeepWalk. In fact, we observed some situations where the
learning accuracy increased when the graph was sparsified. This was a quite unexpected observation. While
we guess that walks are biased in the right direction by removing edges, characterizing such edges remains
an open question. Another important open question is to find an efficient method to order graph edges. This
would allow us to significantly improve the time complexity of the approach. In addition, we aim to design
an incremental version of our sparsification to deal with dynamic graphs or graph streams.
We note also that our approach can be used on both directed and undirected graphs.
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[22] Bobo Nick, Conrad Lee, Pádraig Cunningham, and Ulrik Brandes. Simmelian backbones: Amplifying
hidden homophily in facebook networks. In Proceedings of the 2013 IEEE/ACM international conference
on advances in social networks analysis and mining, pages 525–532, 2013.

[23] Arlind Nocaj, Mark Ortmann, and Ulrik Brandes. Untangling hairballs: From 3 to 14 degrees of
separation. In International symposium on graph drawing, pages 101–112. Springer, 2014.

[24] L. Paul Chew. There are planar graphs almost as good as the complete graph. Journal of Computer
and System Sciences, 39(2):205 – 219, 1989.
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Joshua Shinavier, Gábor Szárnyas, Riccardo Tommasini, Antonino Tumeo, Alexandru Uta, Ana Lucia
Varbanescu, Hsiang-Yun Wu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. The future is big graphs: a
community view on graph processing systems. Commun. ACM, 64(9):62–71, 2021.

[27] Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan. Local graph sparsification for scalable clus-
tering. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data,
pages 721–732, 2011.

[28] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

[29] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on Computing,
40(4):981–1025, 2011.

[30] Peter JM Van Laarhoven and Emile HL Aarts. Simulated annealing. In Simulated annealing: Theory
and applications, pages 7–15. Springer, 1987.

[31] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio,
et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

[32] R. Wickman, X. Zhang, and W. Li. A generic graph sparsification framework using deep reinforce-
ment learning. In 2022 IEEE International Conference on Data Mining (ICDM), pages 1221–1226, Los
Alamitos, CA, USA, dec 2022. IEEE Computer Society.

[33] Lixiang Xu, Lu Bai, Xiaoyi Jiang, Ming Tan, Daoqiang Zhang, and Bin Luo. Deep rényi entropy graph
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