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Abstract

We introduce a new graph sparsification method that targets the neighborhood information available
for each node. Our approach is motivated by the fact that neighborhood information is used by several
mining and learning tasks on graphs as well as reachability queries. The result of our sparsification
technique is a sparsified graph that can be used instead of the original graph in the above tasks while still
ensuring fairly good approximations for the results. Moreover, our sparsification method allows users to
control the size of the resulting sparsified graph by adjusting the amount of information loss tolerated
by the targeted applications. Our extensive experiments conducted on various real and synthetic graphs
show that our sparsification considerably reduces the size of the graphs by achieving 40% sparsification
rate on average on several input graphs. Furthermore, in the experimental study we show the utility and
efficiency of our sparsification algorithm for notable data-driven tasks, such as node classification, graph
classification and shortest path approximations.

1 Introduction

Graphs are data modeling abstractions consisting of a set of vertices, also called nodes, and a set of edges
connecting the vertices. Vertices represent objects, while edges represent relationships between them. Graphs
are widely used in data modeling because of their ability to represent, in a simple and intuitive way, complex
processes in both nature and technology, such as social interactions, protein-protein interactions, chemical
molecules, transport networks and fraud detection networks, to name a few [38]. However, most of these
graphs are very large or grow exponentially as new data arrives. This makes graph querying and analysis a
very challenging task.

To tackle scalability and performance issues when dealing with large graph data, plenty of algorithms
are devised to simplify graphs in several domains and applications related to graph analysis [30]. The aim
is to construct simpler or smaller representations for large graphs mainly to save storage space but also to
use the obtained representations, instead of the original graphs, in applications where using the entire large
original graphs is not possible or is time consuming [27]. Sparsification is one of these approaches aiming
to construct a subgraph of the original graph by removing insignificant edges. The resulting graph is called
a skeleton or a backbone. Sparsification is generally application-dependent because the significance of an
edge may vary from one application to another. The main idea is obtaining a smaller graph while preserving
some properties, even approximately, of the original graph such as the results of distance, and reachability
queries [16, 29]. We note that graph sparsification is a lossy graph simplification technique that differs
from lossless approaches such as graph compression [5] or graph summarisation and contraction methods
[27, 13, 25, 7, 15, 8], where the output structure is not always a graph. These methods also require partial
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(a) Input Graph (b) p(1) = 50% t = 2 (c) p(1) = 50% t = 3

Figure 1: (p, t)−sparsification and neighborhood information.

or total decompression to query the output summary. Several sparsification methods are proposed in the
literature [31] but there is no generic approach that can target several applications at once. An attempt to
build a fairly general approach is provided in [44], relying on reinforcement learning. However, this method
does not exempt us from computing the application task on the original graph; on the contrary, this step is
mandatory during the training process that needs to be achieved on each graph to be sparsified. This makes
it less useful for real-world applications and hard to use for graphs that the algorithm has not used during
training.

In this paper, we fill the gap by proposing a general sparsification method, called (p, t)−Sparsification,
that focuses on preserving the neighborhood information available around each vertex. This kind of local
information is a key property for many graph algorithms but it has never been exploited for the graph
sparsification problem. For instance, in graph learning tasks such as node classification, knowing a node’s
immediate connections is crucial for accurately categorizing it based on the characteristics of its neighbors.
Similarly, for reachability queries, where the goal is to find whether there is a path between two nodes,
neighborhood information speeds up the process and makes it more efficient. Computing shortest paths in
a graph also needs the information about each node’s local surroundings to identify the most efficient and
least costly paths.

Each node in a graph may have several connections, and handling all of them is time and space consuming.
Hence, our approach allows us to finely control how much locality we keep in the obtained sparsified graph.
The key idea is to remove some edges while ensuring that, for each node u, a certain amount of its neighbors,
determined by a function p(), is kept within at most t-hops from u in the resulting sparsified graph, with
t ≥ 1 and p() being the input parameters.

Figure 1 shows how the neighborhood information is preserved with (p, t)-sparsification. In the original
graph (cf. Figure 1 (a)), node u1 has 6 direct neighbors (highlighted in blue): nodes u2, u3, u6, u8, u9 and
u10. Figure 1 (b) shows a (p, t)−sparsification of G where p(1) = 50% of the neighbors of node u1 remain
reachable at t = 2 hops. We can observe that node u2 is no longer directly connected to node u1 in the
sparsified graph but remains reachable within 2 hops from it. Figure 1 (c) shows another sparsification of
G this time with p(3) = 100% of the neighbors of node u1 remaining reachable within t = 3 hops. We can
also see that nodes u2 and u9 are no longer directly connected to node u1 in the sparsified graph but remain
reachable within 3 hops from it. By varying the (p, t) parameters, specified as input, one can see that the
obtained sparsification can be accordingly tuned, thus explaining its generalizability to any input graph.

Figure 1 also provides an intuition of how the preserved neighborhood information in the sparsified
graph can be used when computing shortest paths. If we consider the case where for each vertex v, all the
neighborhood of v can be found within t-hops of v in the sparsified graph, one can easily check that for each
path of size k in the original graph, there is a corresponding path of size at most k · t in the sparsified graph.
For instance, in Figure 1(a) the shortest path u1u2u5 from u1 to u5 is of size 2 thus, we know that in Figure
1(b), the shortest path from u1 to u5 is of size at most 2 · 2, which is u1u10u7u5 of size 3. The example
of Figure 1 also shows that parameters p and t allow to have a generic approach that can produce various
sparsifications by using different values for p and t and therefore adapt to multiple applications and needs.
To show this, we use our resulting sparsified graphs in four main tasks: reachability queries, shortest paths
computation, node classification and graph classification. The results we obtained on these four different
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tasks have proven to be effective approximations of the exact results of these tasks obtained on the full
original graphs. This validates our method as producing useful sparsified graphs reducing the size of the
input graph, and allowing to leverage the sparsified graphs, instead of the original ones, without sacrificing
the accuracy of the outcomes. This efficient approximation is crucial in computational environments where
resource savings are imperative, yet the integrity of the results must be maintained. It is also interesting in
several applications where a quickly delivered approximate result is more useful than an accurate result that
takes a long time to obtain.

Summarizing, the main contributions of this paper are as follows:
• We introduce a new general graph sparsification method that targets the preservation of the neighbor-
hood information available for each node in the graph. The key idea is to create a graph skeleton that
can replace the original graph in various applications and for arbitrary graph datasets.

• Our method allows the fine-tuning of the size of the resulting sparsified graph by adjusting the amount
of preserved neighborhood information.

• Our method allows efficient graph algorithm approximations. Our approach improves the efficiency
of various graph algorithms, particularly those that depend on node neighborhood information, such
as node/graph classification and shortest path computation. This results in faster and more robust
approximations for larger graphs.

• Our techniques allow us to strike a user-driven balance between sparsification ratio and information
loss through its parameters p and t. The user-driven customization makes our technique versatile for
different applications with varying needs.

• We conduct extensive experiments using real-world datasets in different application domains to assess
the effectiveness and efficiency of the proposed method. The source code and the data used in our
paper are publicly available at https://gitlab.liris.cnrs.fr/coregraphie/ptspar.

The remainder of this paper is organized as follows: Section 2 defines the basic concepts and notation
used in the paper and reviews related work on graph sparsification methods. Section 3 formally defines
the problem of neighborhood-preserving graph sparsification and studies its complexity. Then, Section 4
provides a description of the algorithms that we propose to compute this sparsification and analyses their
time complexity. Section 5 presents the results obtained through the extensive experiments we undertook
to evaluate our sparsification approach, as well as the usefulness of the obtained sparsified graphs. Finally,
Section 6 concludes the paper and points out some research perspectives.

2 PRELIMINARIES AND RELATED WORK

2.1 Preliminary

A graph G = (V,E) is a 2-component structure comprising a set V of vertices and a set E ⊆ V × V of edges
connecting the vertices. Edges can be directed, and both vertices and edges can have attributes or weights.
In this paper, we consider unweighted and undirected graphs. Thus, an edge connecting vertices u and v is
interchangeably denoted by uv or vu.

Two vertices connected by an edge are said to be adjacent. A vertex adjacent to v is called a direct
neighbor of v or a 1-hop neighbor of v. The set of all the direct neighbors of a vertex v in G is denoted as
N1

G(v) or simply N(v) when there is no ambiguity. The degree of a vertex v, denoted deg(v), is the number
of its 1-hop neighbors, i.e., deg(v) = |N(v)|.

A path in a graph is a sequence of edges which joins a sequence of vertices which are all distinct. A vertex
v is reachable from a vertex u if there exists a path from u to v. A q-hop neighbor of a vertex v is a vertex
that can be reached from v with a path of exactly q edges. We will denote by Nh

G(v) the set of all q-hop
neighbors, q ∈ {1, . . . , h}, of vertex v in G.

The distance between two vertices u and v is the length, i.e., number of edges, of the shortest path
connecting them. We will denote by W the set of all paths in G, by Wuv the set of all paths from node u to
node v, and by Wuvi, the set of paths from node u to node v of length at most i.

Graph sparsification stands for the methods that compute a sparse subgraph of the input graph. Given
a graph G = (V,E), a sparsified graph of G is a graph Gs = (Vs, Es) defined generally on the same set of
vertices as G but with less edges, i.e., Vs = V and Es ⊂ E. In practice, we want the sparsified graph Gs to
retain certain properties of G such as the distance between vertices, reachability queries, etc.
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When sparsifying a graph, the order in which the edges are processed is generally important. We will
denote this order with a bijective function, i.e., permutation, π : E → {1, . . . , |E|} that associates to each
edge e ∈ E its processing rank π (e). We will denote by Eπ the edges of G in the order defined by π.

Let G(V,E) be the input graph and Gs(Vs, Es) be the sparsified graph, the sparsification ratio measures
how well Gs reduces the graph G and is given by the ratio of the number of deleted edges over the total
number of edges:

Sr =
|E| − |Es|

|E|
(1)

Note that the higher is the sparsification ratio the better is the storage space gain ensured by the sparsi-
fication.

Table 1 summarizes these notations.

Table 1: Notation.

Symbol Description

G(V,E) an undirected unweighted graph with V
the set of vertices and E the set of edges.

Nh
G(v) the set of all q-hop neighbors, q ∈ {1, . . . , h}, of vertex v in G

N(v) the set of direct neighbors of v, i.e., N1
G(v)

deg(v) number of direct neighbors of v
d average node degree of G

Gs = (Vs, Es) a sparsified graph of G
π an ordering function defined on E
Eπ the edges of G in the order defined by π
W the set of all paths in G

Wuv the set of all paths in W from u to v
Wi

uv the set of all paths of Wuv of length at most i
that pass through the edge e

Sr the sparsification ratio given by
|E|−|Es|

|E|

2.2 Related Work

Graph sparsification is a lossy graph simplification technique that allows to compute a subgraph of the original
graph preserving some of its properties. As such, it differs from lossless approaches such as graph contraction
methods [27, 13, 25, 7, 15, 8]. The latter methods allow exact computations on the output structure but
require partial or total decompression to achieve these computations. Therefore, the two approaches are
inherently different. In the remainder of this section, we focus on discussing graph sparsification approaches.
Graph sparsification methods can be classified into two main categories: statistical methods and structural
methods.
Statistical methods: These methods extract the backbone of graphs by removing edges based on vari-
ous properties of graph vertices and edges such as degree distribution or betweenness centrality distribu-
tion [23, 48]. They rely mainly on edge weights to sparsify the graph. Hence, they perform poorly on
unweighted graphs. As an example, we can cite methods that apply a filter on the edges such as the Noise
Corrected filter [11] that keeps only the edges with weight greater than a given threshold. High salience
backbone filter [16] extracts the graph backbone based on the link (i.e., edge) salience property. The salience
of an edge e is a score s(e) that represents a consensus estimate from all nodes of the importance of the edge
e. An edge e having a salience score equal to 1.0 is an essential edge for all nodes. If s(e) = 0, the edge e has
no role and if, s(e) = 0.5 then it is important for only half of the nodes [16]. The salient backbone extracts
the skeleton by keeping only the edges that have a salience score greater than a certain threshold.
Structural methods: These methods differ based on the structural properties of the input graph they aim
to preserve in the constructed backbone. In [36], a backbone, called a spanner, preserves distances between
vertices, within a multiplicative or an additive factor. The method in [3] sparsify graphs to preserve cuts,
which are partitions of the vertices of a graph into two disjoint subsets. Given any weighted undirected graph
G = (V,E), the authors show that one could construct a new graph Gε = (V,Eε ⊆ E), 0 < ε < 1, with
|Eε| = O(n log n/ε2) edges such that the value of every cut in G is within a multiplicative factor of 1±ε of its
value in Gε. Similarly, we can find sparsification algorithms that preserve graph Laplacian [41], determinant
of matrices [14], etc.
In [33] and [6], the authors tackle the problem of sparsifying a graph, while maintaining the connectivity
recorded in a given set of observed activity traces represented by a set of trees with specified roots. In [44],
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the authors attempt to address several sparsification objectives. They propose SparRL, a graph sparsification
approach based on graph neural networks (GNNs) and reinforcement learning. However, SparRL requires
executing the downstream task algorithm on the original graph to calculate rewards for the reinforcement
learning part. This raises questions about the practical utility of this sparsification method and limits its
generalization to unseen graphs. Also, the method applies a task-specific optimization which is difficult to
apply to some tasks such as learning and classification.

By targeting neighborhood information and allowing to control the amount of information loss in the
computed sparsified graph, we aim to be able to use our skeletons in a variety of graph applications. In fact,
several graph algorithms, such as node embedding, node classification, shortest paths, etc. are based on the
availability of node neighborhood information. In the remainder of the paper, we show that controlling the
amount of this information in the computed skeleton allows a good trade-off between algorithm speed-up and
precision loss when using the skeleton as input instead of the original graph in the targeted applications.

3 A Neighborhood-preserving graph sparsification

In this section, we introduce a new graph sparsification method that targets the amount of neighborhood
information available for each node in the graph. The main idea is to sparsify the input graph by removing
edges, while ensuring that, for all 1 ≤ i ≤ t, a proportion p(i) of the neighbors of each node v is included in the
set of the i-hops neighbors of v in the resulting sparsified graph, where t ≥ 1. We denote such sparsification
by (p, t)-sparsification where:

• p : N∗ → [0, 1] is a monotonically increasing function, which represents the proportion of each node’s
input neighbors that must be available in its i-hops neighborhood in the sparsified output graph.

• t : is the minimum integer value for which p reaches its maximal value i.e., p(i) = p(t),∀i ≥ t.

More formally, given an undirected graph G = (V,E), a (p, t)-sparsification of G is defined as follows:

Definition 1 Given a positive integer t and a monotonically increasing function p : N∗ → [0, 1] satisfying
p(i) = p(t) for all i > t, a (p, t)-sparsification of a graph G = (V,E) involves finding a subgraph Gs = (Vs, Es)
of G. Gs must have the same set of vertices Vs = V , a subset of edges Es ⊆ E, and must satisfy the condition
that for each integer 0 < i ≤ t and each vertex v ∈ V , the set N i

Gs
(v) includes at least a proportion p(i) of

the set N1
G(v) of immediate neighbors of v in G.

The definition implies that the subgraph Gs retains fewer edges than the original graph G, but still
captures a specified proportion of the original neighborhood structure.

With (p, t)-sparsification, the function p aims to control the loss of neighborhood information at varying
depths. Naturally, a smaller value of p results in a higher sparsification ratio and vice versa.

For any (p, t)-sparsification, the number of edges |Es| of the sparsified graph satisfies the inequality
|E|p(1) ≤ |Es|.

The proof is straightforward and follows from the handshaking lemma [19] which states that in any graph,
the sum of the degrees of all the vertices is twice the number of edges.

Theorem 1 Finding an optimal (smallest) graph satisfying the (p, t)-sparsification constraints for t ≥ 2 is
an NP-Hard problem.

1

The proof of the theorem follows directly from the hardness of finding k-spanners which is known to be
NP-complete [37].

4 Computing (p, t)-sparsifiers

In this section, we present two main algorithms for finding (p, t)-sparsifiers of an input graph G. The
first algorithm is an exact algorithm based on an integer linear programming (ILP) formulation of (p, t)-
sparsification. The second algorithm is an approximation whose result depends on the order on which the
edges are processed, thus we provide several solutions to this ordering problem.

1The detailed proofs are provided in the supplementary material [24].
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4.1 Exact Algorithm

Our exact algorithm is obtained by solving an Integer Linear Programming (ILP) formulation of (p, t)-
sparsification. This formulation is aimed at finding an optimal (smallest) sparsified graph that meets the
(p, t)-sparsification definition. It consists of a set of linear inequalities that constrains the minimization of
an objective function. In our case, the objective function counts the number of edges of the sparsified graph
(cf. Equation 4.1) and the constraints are expressed by Inequalities 4.1 to 4.1 and domain definition of our
variables (cf. Equation 4.1).
Given a graph G = (E, V ) and a (p, t)-sparsification, the following ILP formulation computes a smallest
sparsified graph as follows:

minimize
∑

e∈E xe

subjectto∑
v∈N(u)

∑
w∈Wi

uv
xw ≥ p(i) · |N(u)|∀u ∈ V, i ≤ t∑

w∈Wuv
xw ≤ 1∀uv ∈ E

xw ≤ xe∀w ∈ W, e ∈ w
xe, xw ∈ {0, 1}e ∈ E,w ∈ W
where a binary variable xe is defined for every edge e ∈ E such that xe = 1 if and only if the edge e is selected
to be part of the sparsified graph, otherwise xe = 0. Thus, the objective function

∑
e∈E xe aims at minimizing

the number of selected edges in the final solution. The first constraint (cf. Equation 4.1) ensures that for every
vertex u of the graph, the property of (p, t)-sparsification is satisfied i.e., for every distance i ≤ t, the number
of neighbors still connected to u via a path of length at most i is at least p(i) · |N(u)|. This is enforced by the
binary variables xw such that for every neighbor v of u, the set of all paths w between u and v is denoted by
Wuv and by Wi

uv when considering paths of length i, hence
∑

v∈N(u)

∑
w∈Wi

uv
xw ≥ p(i) · |N(u)|∀u ∈ V, i ≤ t.

The second constraint (cf. Equation 4.1) makes sure that the obtained sparsified graph has no cycles i.e.,
there is at most one path between any pair of vertices. This is enforced by setting the xw to 1 to at most one
path w among all possible paths Wuv between two adjacent vertices u and v in G. The constraint given by
Equation 4.1 ensures that all edges belonging to a selected path w are selected in the sparsified graph. The
last constraint (cf. Equation 4.1) sets the definition domain of xe, xw variables which are defined as binary
variables.

4.2 Approximation Algorithm: ptSpar

We propose ptSpar (see Algorithm 1) an approximation algorithm that implements (p, t)-sparsification. It
takes as input a graph G = (V,E) to sparsify, the sparsification parameters p and t and an ordering Eπ for
processing the edges of the input graph.

The algorithm starts with an empty sparsified graph Gs (see line 1) and grows it incrementally by going
through all the edges of the input graph G, in the order Eπ (see the loop on lines 3 to 18). G′ is a
working variable initialized to the empty graph and serves to check that an edge inserted in Gs verifies the
neighborhood conditions of the (p, t)- sparsification. Each iteration of the loop (lines 3 to 18) corresponds to
the processing of a new edge e in the ordering Eπ. A processed edge e, is first inserted into G′ (line 4) but
its inclusion in the sparsified graph Gs depends on whether it verifies the condition of (p, t)-sparsification.
This is done by setting the variable insert to false (line 5).

To see whether edge e = uv needs to be included in Gs, we simply check if Gs without the edge e remains
a (p, t)-sparsification for G′. To do so, we check the neighborhood preservation constraints for nodes u and
v as they are the only nodes whose neighborhood set is impacted by the arrival of edge e. For such purpose,
we need to compute the set of all neighbors of u and v located in a radius <= i, i.e., N i

Gs
(u) and N i

Gs
(v)

(see lines 9-10). To compute N i
Gs

(u), respectively N i
Gs

(v), we traverse the graph within radius i starting
from u, respectively v. Then, we check if the non-insertion of e in Gs violates the neighborhood preservation
constraints (line 11), if this is the case e must be inserted in Gs (lines 12-16).

Theorem 2 The subgraph Gs = (Vs, Es) output of Algorithm ptSpar is a (p, t)-sparsification, of the input
graph G = (V,E).

We proceed by induction and show that if Gs(k) is a (p, t)-sparsification of G′(k), then Gs(k + 1) must
also be a (p, t)-sparsification of G′(k + 1), where k denotes the iteration step in the algorithm, representing
the stage at which the edges are processed. This is demonstrated by showing that an assumption of the
contrary leads to a contradiction with the induction hypothesis, thereby confirming the theorem’s claim
through induction.

6



Algorithm 1: ptSpar(G = (V,E), p, t, Eπ)

Input : G = (V,E) a simple Graph, t an integer, p : N → [0, 1], Eπ an ordering of E
Output : Gs = (Vs, Es) a sparsified graph

1 Gs = (Vs, Es)← (V, ∅);
2 G′ = (V ′, E′)← (V, ∅);
3 for e = uv ∈ Eπ do
4 E′ ← E′ ∪ {uv};
5 insert ← False;
6 N1

G′(u)← direct neighbors of node u in G′;
7 N1

G′(v)← direct neighbors of node v in G′;
8 for i = 1 to t do
9 N i

Gs(u)← neighbors of node u in Gs within at most i-hops;

10 N i
Gs(v)← neighbors of node v in graph Gs within at most i-hops;

11 if |N i
Gs(u) ∩N1

G′(u)| < p(i)|N1
G′(u)| or |N i

Gs(v) ∩N1
G′(v)| < p(i)|N1

G′(v)| then
12 insert ← True;
13 Break;

14 end

15 end
16 if insert then
17 Es ← Es ∪ {uv};
18 end

19 end

The performance of the ptSpar algorithm is significantly impacted by the order in which edges are pro-
cessed. Different edge orderings can lead to varying efficiencies in achieving (p, t)-sparsification. Optimizing
the (p, t)-sparsification for a graph G fundamentally involves finding the most effective edge ordering, Eπ∗,
of the edges as stated in Theorem 3.

Theorem 3 Let G = (V,E) be a graph. There exists a permutation function π∗ of the edge set E for which
algorithm ptSpar, gives an optimal (i.e., a minimum size (p, t)-sparsification) of G.

The proof begins by asserting that if at any iteration k, the current output Gs(k) is a (p, t)-sparsification
of G, subsequent edges processed will be rejected, maintaining Gs(k) unchanged until the final iteration.
This is based on the observation that once a graph meets the (p, t)-sparsification criteria, all its vertices
have their neighborhood constraints satisfied, making any additional edge unnecessary. To demonstrate the
theorem, we consider G∗

s, a minimum size (p, t)-sparsification of G, and construct π∗ such that edges in E∗
s

are processed before those in E − E∗
s . Under this ordering, once ptSpar processes all edges in E∗

s , it will
reject any remaining edges, resulting in G∗

s as the output, proving the theorem.
To improve the sparsification performance of the ptSpar algorithm, we propose three sub-optimal orders

in the following subsections. Our aim is to approximate the ideal edge processing order thereby enhancing
the sparsification effectiveness of the ptSpar algorithm. By exploring various edge ordering strategies, we seek
to balance computational efficiency with the quality of the resultant sparsified graph. The first sub-optimal
order is a random order, the second one is based on edge centrality and the third one relies on a meta-heuristic
to find the best order.
Random edge order: This algorithm takes a graph as input and outputs an ordered edge set as illustrated
by Algorithm 2. The order is determined by randomly selecting edges (cf. line 4).

Algorithm 2: Random order

Input : G = (V,E) input Graph
Output : A randomly ordered edge set Erd

1 Erd ← ∅ ;
2 E′ ← E;
3 while E′ ̸= ∅ do
4 pick randomly an edge e from E′ ;
5 E′ ← E′ − {e};
6 Erd ← Erd ∪ {e};
7 end

8 return Erd;

7



Edge centrality based order: In this ordering, we first process the edges with a high centrality value.
Centrality is a common measure for the importance of a node or an edge in a graph. The centrality we
consider here is a relaxation of local edge betweenness defined in [17]. An edge with a high edge betweenness
centrality represents a bridge-like connector between two parts of a graph, the removal of which may affect
the shortest paths between these parts. The local edge betweenness of an edge e is the number of shortest
paths running along e, the length of which is less than or equal to some constant t. In our proposed metric,
We consider all paths with a length at most t, not just the shortest paths. Furthermore, we focus only on
paths directly associated with an edge in the edge set E. For every edge e, we calculate a centrality score
s(e) using Equation 2. In this equation, σt(u, v|e) denotes the number of paths of length at most t that
traverse edge e, and connect two nodes u and v that are directly linked by the edge uv. This approach
ensures that the centrality score, we propose, accurately reflects the significance of each edge in connecting
directly adjacent nodes within the network.

Once all scores are computed, we sort the edges in descending order according to their score s(e) to obtain
an edge ordering. Algorithm 3 formalizes the computation of this ordering.

s(e) =
∑
uv∈E

σt(u, v|e) ∀uv ∈ E (2)

Algorithm 3: Edge centrality based order

Input : G = (V,E) input Graph
Output : Centrality based edge order Ec

1 for e ∈ E do
2 compute the score s(e) using Equation 2;
3 end
4 Ec ← sort the edges of G in descending order according to s(e);

Simulated-Annealing based order: We use Simulated Annealing (SA) [42] as a meta-heuristic to
explore the different possible edge orderings. The SA-based ordering is detailed in Algorithm 4. Basically,
the algorithm tries several edge orderings and keeps the best one, i.e., the one that produces the smallest
sparsified graph. The simulated annealing process starts with a temperature value Tmax (cf. line 1) that
will keep decreasing at each iteration. This temperature is crucial in the SA technique, as it allows the
acceptance of suboptimal solutions, particularly in the early stages when the temperature is high, to ensure
a comprehensive exploration of the solution space (cf. lines 17-19). Then, the algorithm begins by a random
order of the edges Oinit of the input graph (line 2). It constructs an initial solution, i.e., a temporary
sparsified graph Ginit using the ptSpar algorithm (line 3) with this initial order. The number of edges in
this initial solution |Einit| is recorded in COSTbest (cf. line 4), tracking the best (i.e., smallest) edge count
found in the sparsified graph so far. In the main iterative loop of the algorithm (lines 7-23), running for N
iterations, each iteration modifies the current solution slightly by creating a new edge order Onew from Oinit

by swapping two randomly selected edges (cf. lines 6 and 7). Then, it evaluates this new edge ordering (cf.
lines 8 to 16) by calling the ptSpar algorithm again to decide whether to accept this new order based on the
size of the resulting sparsified graph. If the new ordering does not produce a better sparsified graph, it can
still be accepted based on the current temperature (cf. lines 16-19). This will allow a broad exploration of
the search space especially in the first stages where the value of T is high. The current temperature T is
decreased at each iteration with a factor α, gradually lowering the likelihood of accepting worse solutions as
the algorithm progresses (cf. line 17). Finally, the algorithm returns Obest, the best edge order found within
the given number of iterations (cf. line 18).

Figure 2 illustrates the results of the (p, t)-sparsification algorithms on our running example (cf. Figure 2
(a)) with parameters t = 2, p(1) = 50% and p(2) = 100%. For each algorithm, the retained edges are in blue
and the removed ones in dashed grey. The exact algorithm produces the smallest possible sparsified graph
with exactly 13 edges (cf. Figure 2 (b)). The ptSpar algorithm used with the random edge ordering (cf.
Figure 2 (c)) and with the centrality-based ordering (cf. Figure 2 (d) ) produces a near-optimal sparsification
with 14 edges, which is very close to the theoretical optimal of 13 edges. It is important to note that although
both orderings yield sparsifications with the same number of edges, the actual edges retained in each method
are not always the same resulting in different sparsified graphs. Additionally, see that the SA algorithm
succeeds to produce the optimal sparsification with 13 edges (cf. Figure 2 (e) and Figure 2 (f)) if it is used
with a sufficient number of iterations. Therefore, the SA algorithm is a promising approach for obtaining
high-quality results that are close to the exact solution, although it does not scale well, as demonstrated in
the following sections.
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Algorithm 4: Computing the best order with simulated annealing

Input : G = (V,E) a Graph, t an integer, p : N → [0, 1], N an integer (Number of iterations), Tmax a
double (Initial temperature), α a double (decreasing factor of the temperature)

Output : Obest the best edge ordering with N iterations
1 T ← Tmax;
2 Oinit ← Random order of E;
3 Ginit(V,Einit)← ptSpar( G,t,p,Oinit);
4 COSTinit ← |Einit|;
5 COSTbest ← COSTinit;
6 Obest ← Oinit;
7 for i = 1 to N do
8 Onew ← Perturbing Oinit by swapping the order of two random edges;
9 Gnew(V,Enew)← ptSpar(G,t,p,Onew);

10 COSTnew ← |Enew|;
11 if COSTnew < COSTbest then
12 Obest ← Onew;
13 COSTbest ← COSTnew;

14 end
15 else
16 r ← random number between 0 and 1;

17 if exp(COSTbest−COSTnew

T
) > r then

18 Obest ← Onew;
19 COSTbest ← COSTnew;

20 end

21 end
22 T ← α ∗ T ;
23 end

24 return Obest;

4.3 Complexity analysis

In this section, we analyze the time complexity of all the algorithms presented in the previous section. The
theorems and their detailed proofs are provided in the supplementary material [24].
The time complexity of the ptSpar algorithm is O(|E|dt), where d represents the average degree in the graph
G. In scenarios where every node is connected to every other node, forming a complete graph, this complexity
escalates significantly, reaching O(|E||V |t).
The time complexity of the random edge ordering algorithm is O(|E|). This complexity involves parsing the
edge set E.
The average time complexity of the centrality based-ordering is O(|E|(dt + log(|E|))). This complexity
involves computing the score s(e) for each edge e and sorting them. The complexity of computing the edge
scores is equal to the complexity of listing all paths of length ≤ t for each pair of connected nodes, i.e., for
each edge in E. The average number of paths of length ≤ t between two connected nodes u and v and starting
from u is of order O(dt), where d is the average degree. The number of edges is |E|. Therefore, the time
complexity of computing all the scores s(e) is O(|E|dt). In addition, the complexity of sorting all the scores
costs O(|E| log |E|). In the worst case (complete graph), the time complexity would be O(|E|(V t+log(|E|))).
The time complexity of the Simulated Annealing (SA)-based ordering is influenced by the number of iterations
N , the initial temperature T0, and the temperature decreasing factor α. Each iteration involves a perturbation
of the edge order and a re-evaluation of the sparsification, leading to a complexity that is also dependent on
the efficiency of the ptSpar algorithm used within it.

This analysis clearly shows that the random order algorithm is the fastest. This explains its scalability
when compared to the other edge orderings.

5 Experimental Analysis

In this section, we present an experimental analysis of our sparsification approach. First, we evaluate the
performance of the ptSpar algorithm provided to compute the sparsification. Then, we provide an analysis
of the sensitivity of this sparsification to parameters p and t. Finally, we evaluate its effectiveness on several
tasks such as shortest paths and reachability queries computation, node embedding and whole graph em-
bedding. We also compare our sparsification with several baselines and state of the art methods to show its
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(a) input graph
(22 edges)

(b) Exact algorithm
(13 edges)

(c) Random order
(14 edges)

(d) Centrality order
(14 edges)

(e) SA 500 iterations
(14 edges) (f) SA 1000 iterations (13 edges)

Figure 2: Results of the (p, t)-sparsification algorithms on the running example.

effectiveness. All experiments are carried out on an AMD 32 cores CPU with 768GB of memory. The source
code of our algorithms is available at https://gitlab.liris.cnrs.fr/coregraphie/ptspar.

Algorithms. We used the following baselines in our comparative study. To guarantee a fair comparison
with all the baselines, we have adopted the default configuration for each of them.

• Random Edge (RE): RE randomly eliminates a given percentage of edges.

• Local Degree (LD) [20]: LD retains the top deg(v)α edges for each node v ∈ V , where α ∈ [0, 1]

• Edge Forest Fire (EFF) [20]: EFF is based on the Forest Fire node sampling algorithm [28]. It initiates
a fire at a random node and burns approximately p/(1−p) neighbors, where p represents the probability
threshold for burning a neighbor. Burnt neighbors are enqueued for subsequent fire initiation. EFF
prunes edges based on the frequency of edge visits.

• Algebraic Distance (AD) [10]: AD uses random walk distance to compute the algebraic distance α(u, v)
between two nodes. A low algebraic distance implies a high likelihood that a random walk starting
from u will reach v within a small number of steps. It assigns an edge score of 1− α(u, v) to prioritize
short-range edges.

• L-Spar (LS) [39]: LS employs the Jaccard similarity function on the adjacency lists of nodes u and v to
determine the edge score of (u, v). It ranks edges locally (with respect to each node) and prunes them
based on their ranks.

• Simmelian Backbone (SB) [34] : SB calculates weights by counting how many triangles each edge is part
of, and then retains only those edges that form the most triangles, indicating strong and interconnected
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relationships in the graph. During sparsification, SB removes the lower-ranked edges of each node using
a specified edge-prune ratio.

• Quadrilateral Simmelian Backbone (QSB) [35]: QSB measures the Simmelianness weight of each edge
(u, v) by taking into account the shared quadrangles of u and v. It follows the same pruning strategy
as SB.

• Salient backbone (SLB) [16] : SLB sparsifies a graph using the disparity filter which consists in calcu-
lating a statistical significance (p-value) for each edge based on its weight and the total weight of all
edges connected to the same node. Edges with p-values below a certain threshold are retained, forming
the ”backbone” of the graph. The rest, considered less important, are discarded.

• SparRL [44], a deep reinforcement learning-based method, sparsifies a graph by formulating the process
as a Partially Observable Markov Decision Process (POMDP). It starts with a graph and at each step,
chooses an edge to prune based on a policy learned from a Double DQN network. The policy is trained
to maximize a reward function that encourages the preservation of certain graph properties.

Datasets. Table 2 summarizes the properties of the various datasets that we use in our extensive experiments.
We use 20 datasets from various domains. In fact, for each application of our sparsification, we use the most
used datasets for its evaluation. For scalability issues, we used two social networks TWITTER [1] and
FRIENDSTER [46], and a Web graph GSH-HOST[2]. The COLLAB, ENZYMES, IMDB-BINARY, MSRC-
21C, and PROTEINS datasets [22] contain several graphs and are labeled for graph classification use cases.
The CORA, CITESEER, PUBMED, and FLICKR datasets [4, 47] have ground truth for node classification
use cases. The synthetic graphs are used mainly to study the different ordering solutions we provided for the
ptSpar algorithm.

Table 2: Characteristics of datasets used in our experiments.

Name #graphs |V | |E| Use case

BLOG-CATALOG 1 10.31K 333.98K MLNC/SP/EO/EL
CA-ASTROPH 1 18.77K 198.11K SP/EO/EL
CA-HEPTH 1 9.8K 25.9K SP/EO/EL
CITESEER 1 3.2K 4.5K NC/SP/EO/EL
COLLAB* 5000 372.5K 49.1M GC
CORA 1 2.7K 5.4K NC/SP/EL/EO
ENZYMES* 600 19.5K 74.6K GC
FLICKR 1 89K 899K NC/SP/EO
FLICKR-Large 1 80.51K 5.89M MLNC
FRIENDSTER 1 65.6M 1.8B AC/SP/EL
GSH-HOST 1 68.6M 1.8B EO/SP/EL
IMDB-BINARY* 1000 19.77K 96.53K GC/EL
MSRC-21C* 209 8.4K 20.2K GC/EL
LIVEJOURNAL 1 3.99M 34.68M EO/SP/EL
PROTEINS* 1113 43.5K 162.1K GC/EL
PUBMED 1 19.7K 44.3K EO/NC/SP/EL
SYNTH1 30 20 60 EO
SYNTH2 30 50 350 EO
SYNTH3 30 100 1.4K EO
TWITTER 1 41.6M 1.4B EO/SP/EL

MLNC: Multi-label Node Classification, SP: Shortest Paths, NC: Node Classification, GC: Graph Classification, EO: Edge
ordering choice, EL: Entropy loss

This dataset contains several labeled graphs for graph classification use cases.

Metrics. We use the following metrics:

• Sparsification runtime measured in seconds,

• Sparsification ratio that represents the ratio of the number of deleted edges over the total number of
edges (see Equation 1), and

• Entropy loss to measure the information loss after the sparsification. The graph entropy is a measure of
the structural information of a graph and serves as a complexity measure [12]. Given a graph G(V,E),
the Shanon entropy of G (i.e., I(G)) is computed as follows [12]:

I (G) = −
∑
u∈V

deg(u)∑
u∈V deg(u)

log

(
deg(u)∑

u∈V deg(u)

)
(3)
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The entropy loss is the normalized difference between the entropy of the original graph and the entropy
of the sparsified graph. Let G be the original graph and Gs be the sparsified graph, we compute the
entropy loss as follows:

Eloss =
|I (G)− I (Gs) |

I (G)
(4)

Note that the lower is the entropy loss the better is the sparsification.

For all the experiments, TO means that the algorithm has been timed out after a total time spent on the
first terminating algorithm plus 3 hours.

5.1 Evaluating the edge ordering methods

In this subsection, we present a comparative experimental study of the edge orderings we considered for
optimizing the ptSpar algorithm. These orderings are: random ordering, centrality based ordering and the
Simulated-annealing (SA) ordering. The aim of these experiments is to show that the performance in term
of sparsification ratio can be improved by considering different edge orderings. For this experiment, we use
all the datasets except the labeled ones dedicated to classification only (indicated with a * in Table 2),
and the following sparsification parameters t = 2 , p(1) = 0.0 and p(2) = 0.5. For a reliable and accurate
comparison, we carried-out around thirty tests on each dataset for each edge ordering solution. The results
of the comparison are depicted in Table 3.

Note that the user configuration of the SA is T0 = 10, N = 1000 and α = 0.99. We notice that
the centrality and the SA orderings outperform the random ordering of edges in terms of sparsification
performance. The results clearly show that the centrality and the SA orderings are the best algorithms
compared to the exact algorithm, which only finished to run on the two smallest datasets and timed out
for all the remaining datasets. The centrality ordering seems really interesting and offers the best trade-off
between sparsification performance and runtime. However, we can see that the ptSpar algorithm with a
random order of edges is much faster than with the other orderings methods and can also be used on large
datasets. Therefore, we will be using it in the rest of the experiments.

Table 3: Evaluation of the ptSpar algorithm with different edge orderings.

Dataset
Random Edge centrality Simulated annealing Exact

|Es| Time |Es| Time |Es| Time |Es| Time

SYNTH1 28 0.001s 23.55 0.01s 21.56 0.5s 20.15 2m10s
SYNTH2 121.6 0.008s 105.66 0.02s 105.9 5.2s 100.14 4h41m
SYNTH3 367 0.05s 323.2 0.09s 340.4 40s TO TO

CITESEER 3180 0.014s 3277 0.027s 3070 8.15s TO TO
CORA 3358 0.019s 3441 0.038s 3237 12.86s TO TO

PUBMED 28094 0.283s 28977 0.501s 25167 1m50s TO TO
BLOG 169897 4min8s 171104 5m6s TO TO TO TO

CA-CATALOG 15623 0.124s 15976 0.239s 15416 2m29s TO TO
CA-HEPTH 104249 9.257s 104785 12.46s 104785 2h39m TO TO

LIVE JOURNAL 25.95 M 2h17min 24.64 M 22h10m TO TO TO TO
FRIENDSTER 1.38 B 23h14min TO TO TO TO TO TO

FLICKR 251525 16.14s 255524 35.92s 251003 4h33m TO TO
GSH-HOST 1.17 B 21h9min TO TO TO TO TO TO
TWITTER 816.3M 18h37min TO TO TO TO TO TO

5.2 Evaluating the impact of the sparsification parameters p and t

In this series of experiments, we study the effect of parameters p and t on the sparsification performance.
As mentioned before, our sparsification allows users to control the trade-off between information loss and

sparsification ratio (i.e., space gain). To do so, the user varies the parameters p and t according to its needs
(available memory and the targeted use case) to find the configuration that suits him. The ideal scenario is to
minimize the information loss (entropy loss) while maximizing the sparsification ratio. To this end, we define

an utility function, which allows to compute the above trade-off as follows: Tr = e
−Eloss

Sr . This function
allows us to select the best p values for a fixed t value. Once different t values have been computed, the final
t value is chosen by ranking based on the utility function. Table 4 gives the sparsification ratio and entropy
loss obtained by our sparsification on the CA-AstroPh dataset, while varying the neighborhood preservation
proportion p. We set p(t) = 1 in all experiments, which means that the whole initial neighborhood of each
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node can be retrieved in a neighborhood of radius r = t at maximum. This ensures that reachability queries
are fully preserved for all vertices. As expected, the sparsification ratio decreases (and the entropy loss
increases) as the preserved proportion of neighborhood increases and vice-versa. Some of the values of the
sparsification ratio obtained with the various combinations of parameters are very satisfactory. The same
holds for the entropy loss (max value < 5%). In addition, we remark that the sparsification ratio range
is wide (from 7% to 75%) which confirms the possibility of effectively controlling the trade-off information
loss/sparsification ratio using parameters p and t. The choice of the best configuration of parameters depends
essentially on the nature of the graph to be sparsified and the user needs. Particularly, for this example, the
configurations (t = 2, p = (0.5, 1)) and (t = 3, p = (0.5, 0.7, 1)) seem interesting and are a good trade-off
between sparsification ratio and entropy loss with a sparsification ratio > 45% and an entropy loss < 1%.

Table 4: Sparsification ratio vs entropy loss with different combinations of parameters p and t.

CA-ASTROPH PUBMED FLICKER

t p(1) p(2) p(3) Sr Eloss Tr Sr Eloss Tr Sr Eloss Tr

2

0.2 1.0 - 58.13% 1.71% 0.971 11% 0.73% 0.935 5.3% 0.23% 0.958
0.5 1.0 - 45.82% 0.90% 0.980 10.0% 0.70% 0.935 5.2% 0.25% 0.953
0.7 1.0 - 26.39% 0.66% 0.975 8.2% 0.70% 0.918 4.5% 0.23% 0.950
0.9 1.0 - 7.43% 0.31% 0.959 2.2% 0.26% 0.888 1.4% 0.17% 0.885

3

0.0 0.2 1.0 75.00% 4.61% 0.940 29.0% 1.70% 0.943 30.2% 1.64% 0.947
0.2 0.5 1.0 71.50% 2.57% 0.964 27.9% 1.68% 0.941 25.7% 1.44% 0.945
0.5 0.7 1.0 46.73% 0.85% 0.981 19.5% 1.15% 0.942 19.1% 1.05% 0.946
0.7 0.9 1.0 26.43% 0.66% 0.975 9.3% 0.85% 0.913 6.5% 0.47% 0.930

5.3 Evaluation the distribution of the shortest path lengths with (p, t)-Sparsification

In this experiment, we show that (p, t)-sparsification allows to approximate distances (shortest path lengths)
between nodes. To do so, we sparsify three unweighted undirected graphs with the following combination of
parameters t = 2, p(1) = 0.5, and p(2) = 1.0. Then, we compute all shortest paths between all nodes.

Figure 3 shows the distribution of the shortest path lengths in the original and sparsified graphs for the
three datasets. We note that the two curves have almost the same pace. This shows that our sparsification
preserves the distribution of the lengths of the shortest paths on the 3 datasets. However, the curves of the
sparsified graphs are slightly stretched and shifted from the original curves. This is due to the stretching of
the paths as a result of sparsification. This stretch is not really considerable because of the preservation of
50% of the direct neighbors of each vertex in the graph.
It is important to note here that we cannot draw a similar distribution for the shortest paths of other baseline
methods, as they do not preserve the connectivity of the graph. However, we have evaluated the increase in
the length of the shortest paths and the loss of reachability queries for these methods in Section 5.5.
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Figure 3: Distribution of shortest path lengths of the original and sparsified graphs.

5.4 Evaluating the information loss

In this series of experiments, we focus on evaluating the quality of the obtained sparsified graphs by measuring
the loss of entropy for each method. Table 5 gives the information loss rates measured by the loss in entropy
for all the sparsification methods on all datasets. For a rigorous comparison, we have selected datasets that
have different densities and contain hundreds of graphs. It’s worth noting that SparRL, which is a deep
reinforcement learning-based method, was not applied in this context due to two main reasons: (1) It is
computationally intensive and requires individual training for each graph. This is inefficient for datasets
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containing hundreds of graphs. (2) It has a reward function with a limited scope that does not consider
entropy – a key factor in this case.

We can observe that none of the baselines excels on all datasets. However, on average (p,t)-sparsification
outperforms all the baselines. The reasons for that are due to compressibility properties of networks [32],
such as transitivity and degree heterogeneity, that are leveraged by our sparsification technique. Graphs
with higher transitivity and degree heterogeneity are generally more compressible. This explains why the
results are favorable for our sparsification method compared to baselines that do not affect those properties.
The (p, t)-sparsification method proves to be effective and high-quality across multiple datasets, including
large-scale ones. Indeed, it shows, on average, the least entropy loss compared to the baselines. This indicates
that the (p, t)-sparsification method is capable of preserving most of the graph’s original information, proving
it to be the best choice for various use cases.

Table 5: Effect of the sparsification on the entropy loss

Dataset ptSpar SLB AD LS QSB SB EFF LD RE

COLLAB 1.00% 20.80% 11.80% 7.70% 2.90% 1.70% 7.40% 21.30% 6.80%
IMDB-BINARY 1.50% 22.70% 3.70% 6.40% 1.20% 1.10% 6.60% 19.40% 5.90%
MSRC 21C 0.60% 4.40% 1.50% 0.60% 1.70% 1.80% 2.90% 6.40% 2.70%
PROTEINS 1.50% 4.10% 4.90% 1.30% 5.30% 4.40% 3.80% 4.80% 2.50%
PUBMED 0.71% 0.29% 0.52% 0.07% 0.60% 0.63% 0.78% 0.57% 0.88%
CITESEER 0.65% 0.77% 0.27% 0.17% 1.00% 1.08% 1.87% 0.56% 1.50%
CA-HEPTH 0.62% 4.28% 1.43% 0.63% 1.75% 1.77% 3.07% 6.57% 2.66%
CORA 0.40% 0.51% 0.14% 0.21% 1.12% 1.18% 1.48% 1.30% 1.58%
FLICKR 0.26% 0.48% 0.07% 0.24% 0.07% 0.07% 0.47% 0.44% 0.72%
LIVE JOURNAL 0.78% OT 2.70% 1.09% 0.31% 0.64% 2.48% 0.46% 1.73%
CA-ASTROPH 0.90% 0.94% 2.89% 1.56% 0.75% 0.98% 3.15% 2.84% 1.85%
BLOG-CATALOG 1.67% TO 0.10% 1.28% 1.60% 4.45% 3.76% 6.74% 7.26%
ENZYMES 1.58% 21.80% 4.00% 6.70% 1.50% 1.45% 8.30% 17.93% 5.87%
FRIENDSTER 0.71% TO 0.62% 0.48% 0.60% 0.63% 0.78% 1.26% 0.68%
GSH-HOST 0.69% TO 0.78% 0.61% 0.84% 0.92% 0.99% 1.13% 0.79%
TWITTER 1.13% TO 0.90% 0.83% 0.87% 1.1% 1.37% 1.85% 1.65%

Average 0.91% - 2.48% 1.95% 1.56% 1.57% 3.11% 5.68% 2.9%

5.5 Evaluating the usefulness of the sparsified graphs

We have applied many graph algorithms on the sparsified graphs. Our first motivation is to be able to
use these algorithms directly on the sparsified graphs with acceptable performance So, the purpose of the
following experiments is to show the effectiveness of our sparsification in terms of handling large graphs
and providing good approximations of the original results of the considered tasks. For this, and for all the
following experiments, we compute a new metric in addition to the sparsification ratio namely:
Performance Preservation: This metric measures the degree to which the performance of the considered
task on the sparsified graph approaches the one obtained on the original graph. In contexts like classification,
it gauges the relative preservation of accuracy from the original graph to its sparsified counterpart. It
is computed as the ratio between the accuracy on the sparsified graph and the accuracy on the original
graph. A higher value of this metric signifies that the sparsified graph has effectively retained, or closely
approximated, the properties of the original graph.
For the graph kernel task, we also observed a speed-up of the algorithm. We measure this by the ratio
between the algorithm run-time on the original graph and its run-time on the sparsified graph. The higher
the speed-up factor, the faster the graph kernel algorithm on the sparsified graph. For the remaining tasks,
the speed-up is always equal to 1.
Shortest Paths and Reachability Queries: To assess the impact of sparsification on shortest paths, we
calculated two metrics: (1) the average increase in shortest path length between 10,000 randomly selected
node pairs. A lower value indicates that the sparsification method more effectively preserves the original
graph’s shortest path lengths. (2) the failure rate, which represents the percentage of node pairs that became
disconnected (i.e., unreachable from each other) in the sparsified graph. This metric reflects the success rate
of reachability queries in the sparsified graph, with lower values indicating better performance.
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The results are presented in Table 6. For each baseline, the first given value shows the average increase
in shortest path lengths, while the value in parentheses represents the failure rate of reachability queries. We
can clearly observe that the (p, t)-sparsification technique demonstrates consistent and effective performance
across all datasets, including large-scale ones. Indeed, it shows, on average, the best result in terms of
preserving the shortest paths between randomly chosen pairs of nodes, thus maintaining the structural
integrity of the original graphs to a great extent. Furthermore, it achieves a zero percent failure rate on all
datasets, which shows that the sparsified graphs generated using (p, t)-sparsification are highly connected,
preserving the reachability between nodes effectively. The LD method also performs competitively on shortest
path preservation but fails to maintain the connectivity of the obtained sparsified graphs leading to a high
failure rates in reachability queries. The SLB method, which has the lowest increase on shortest paths for
small datasets, does not scale on large ones. The other baselines exhibit a higher increase in path length and
a higher failure rate across most datasets, implying a greater degree of distortion in the sparsified graphs.
Graph kernels: Graph kernels predominantly rely on local neighborhood information of nodes. Such
methods derive graph representations by delving deep into node neighborhoods and extracting pertinent fea-
tures, encompassing walks, shortest paths, and other local substructures. Given that our (p, t)-sparsification
meticulously retains the local neighborhood up to a radius t, a pertinent question arises: can graph kernels
algorithms accelerate on sparsified graphs without significant compromise on performance? To answer this in-
quiry, we run a graph classification task on graph classification datasets, namely COLLAB, IMDB-BINARY,
MSRC-21C, and PROTEINS. Here, we set t = 3, p(1) = 0.0 , p(2) = 0.5 and p(3) = 1.0. On these sparsified
datasets, we executed various graph embedding algorithms, including the Shortest Path graph kernel (SP) [9],
Weisfeiler-Lehman Optimal Assignment WL-OA graph kernel [40, 26], The Neighborhood Hash NH graph
kernel [21] and deep Renyi entropy graph kernel (REK) [45]. We gauged the efficacy of these algorithms on
both input graph and sparsified graphs. We used the SVM algorithm as a classifier, with a 10-fold cross-
validation, serving as our performance metric. For the sake of fairness, all baseline methods maintained an
identical sparsification ratio. The SparRL method was omitted from this evaluation due to its innate latency
and the requisite training for each graph, proving inefficient given the multiplicity of graphs in our datasets.
Table 7 shows the performance of graph kernels on the sparsified graphs. We notice that all kernels run
faster on sparsified graphs in most cases. This Kernel computation speed-up is more noticeable on denser
datasets such as COLLAB. Since the sparsified graphs produced by all methods are of the same size (same
sparsification ratio for fair comparison), the speed up factors are the same for all methods. However, the
performance preservation of graph kernel methods on sparsified graphs provides pivotal insights into the ro-
bustness and efficacy of different sparsification approaches, particularly emphasizing our (p, t)-sparsification
method. Across a diverse range of datasets, our method’s performance, in many instances, either leads the
cohort or remains competitively in line with the best-performing methods. For example, in the COLLAB
dataset with the Shortest Path (SP) graph kernel, our method reaches a performance preservation of 100%, a
performance matched only by SLB and LD, while outperforming other benchmarks such as SB, EFF, and LS.
This level of consistency in preserving the integrity of the original graph structure continues across various
kernels like WL, NH, and REK. What is particularly notable is the general out-performance of our method
when contrasted against SB in datasets like MSRC 21C using the REK kernel, where our method achieves a
perfect score of 100% versus SB’s 20%. Yet, our method proves its mettle even in situations where it doesn’t
lead but exhibits comparable performance, such as in the case of the WL kernel in the same dataset. While
LD achieved the top score of 92%, our method’s 88% was closely aligned, demonstrating its competitiveness.
However, it’s worth noting that while our method isn’t always the definitive leader across all datasets and
kernels, it consistently ranks among the top contenders, rarely deviating far from the highest scores. The
associated speed-up rates also underscore the computational advantages of our sparsification approach. To
sum up, the (p, t)-sparsification method we propose serves as a powerful tool, often leading in performance
preservation and, when not, still staying well ranked within the top performing methods across a wide range
of datasets and graph kernels.
Node embedding: In this series of experiments, we use sparsified graphs to compute node embedding.
Then, to see if the obtained embeddings are as relevant as the ones computed on the full graph, we evaluate
their efficacy in two tasks: node classification and multi-label classification. We leveraged two predomi-
nant algorithms for this endeavor: the Graph Attention Network (GAT) [43] for node classification, and
Node2vec [18] for multi-label classification. The experiments are conducted on graphs with distinct spar-
sification ratios: 45% for the multi-label task and 20% for the graph classification task. It’s worth noting
that, for multi-label classification on the Flickr-large dataset, we have not included the results of the Salient
Backbone (SLB) method because it failed to sparsify this large graph within the time limit of 24 hours.
Additionally, the SparRL method is not present in evaluations for both tasks because it is not possible to
express classification within its objective function.
Table 8 presents the outcomes of the different sparsification methods. Across all datasets, we can see that
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Table 7: Graph kernel performance on the sparsified graphs.

Dataset
Sr Kernel Speed up

Performance Preservation

EFF LD LS ptSpar SB SLB

COLLAB
91.4%

SP 2.75 97% 100% 90% 100% 95% 100%
WL 1.23 86% 92% 87% 88% 88% 85%
NH 1.54 83% 88% 84% 87% 84% 83%
REK 1.86 83% 78% 86% 88% 87% 65%

IMDB-
BINARY
72.2%

SP 1.14 96% 100% 81% 100% 93% 99%
WL 1 93% 96% 90% 95% 89% 89%
NH 1.11 91% 92% 83% 94% 89% 87%
REK 1.46 91% 81% 93% 95% 97% 68%

MSRC 21C
46.8%

SP 1.04 97% 97% 89% 100% 89% 99%
WL 1.24 98% 100% 93% 100% 95% 24%
NH 1.34 97% 95% 91% 100% 94% 24%
REK 1.15 95% 96% 99% 100% 99% 20%

PROTEINS
36.1%

SP 1.39 98% 100% 92% 100% 96% 100%
WL 1.2 96% 96% 89% 97% 95% 94%
NH 1.12 98% 99% 94% 99% 98% 95%
REK 1.86 97% 96% 99% 99% 97% 80%

(p, t)sparsification consistently excelled. On datasets such as ’PROTEINS’, (p, t)sparsification achieves an
almost impeccable accuracy preservation rate of 99.68%. Similarly, in the ’Cora’ and ’Flickr’ datasets, it
achieves the impressive rates of 96.97% and 99.16%. These figures attest to the technique’s proficiency in
preserving critical graph structures essential for GAT. Local Degree Sparsifier and Local Similarity also deliv-
ered interesting outcomes in certain datasets but Quadrilateral Simmelian and Simmelian Sparsifier reported
suboptimal results, further underscoring the significance of (p, t)-sparsification’s results.

Table 9 presents the results of multi-label node classification using node2vec embedding on the sparsified
graphs. We can clearly see the out-performance of (p, t)-Sparsification. In the Blog Catalog dataset, (p, t)-
Sparsification achieves 93.03% for Micro F1 and 90.75% for Macro F1 metrics. Its excellent performance is
further underscored in the Flickr dataset, where it registers a perfect 100% in both metrics preservation. This
clearly shows the robustness of (p, t)-Sparsification in retaining crucial graph properties vital for node2vec
embedding. The other methods have much less effective results.

Table 8: Performance of Node classification on sparsified graphs.

Method CORA CITESEER PUBMED FLICKR

AD 90.47% 87.07% 89.32% 92.15%
EFF 71.17% 55.51% 81.87% 99.01%
LD 96.80% 96.75% 99.65% 99.58%
LS 94.81% 96.26% 97.94% 97.42%

ptSpar 96.97% 94.53% 99.68% 99.16%
QSB 46.66% 36.90% 52.59% 93.08%
RE 90.47% 85.10% 88.31% 94.02%
SB 47.27% 37.34% 53.76% 93.56%
SLB 87.3% 78.40% 88.83% 92.72%

6 Conclusion and future work

In this paper, we presented a graph sparsification approach designed to produce a graph skeleton that can
be used instead of the original large graph as input in many graph analysis algorithms. To do so, our
sparsification controls the amount of neighborhood information preserved in the resulting sparsified graph
with two parameters: a function p that gives the proportion of each node’s original neighbors to be preserved
in its i-hops neighborhood in the sparsified graph, and a threshold t for which p reaches its maximal value.
We also presented several algorithms to compute this sparsification with the minimum cost, and showed their
effectiveness in sparsifying input graphs through an extensive experimental evaluation on multiple real-life
as well as synthetic graph datasets. Furthermore, we showed that the skeletons computed by the proposed
approach can be used without any addition or de-sparsification as input to multiple graph applications, such
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Table 9: Performance of multi-label node classification on sparsified graphs.

Method
BLOG-CATALOG FLICKR-LARGE

Micro F1 % Macro F1 % Micro F1 % Macro F1 %

AD 35.84 % 15.23 % 43.11 % 28.6 %
EFF 36.48 % 16.61 % 44.01 % 29.6%
LD 37.74 % 14.56 % 44.22 % 28.2%
LS 35.46 % 16.69 % 44.43 % 29.6 %

ptSpar 93.03 % 90.75 % 100% 100%
QSB 36.54 % 14.31 % 45.86 % 31.5 %
RE 35.37 % 13.05% 44.70 % 45%
SB 38.35 % 14.35 % 44.49% 24.9%

as node embedding, graph classification, and shortest path approximations.As for future work, we consider
a more thorough analysis of (p, t)-sparsification impact on walk based graph learning algorithms such as
Node2vec and DeepWalk. In fact, we observed some situations where the learning accuracy increased when
the graph was sparsified. This was a quite unexpected observation. While we guess that walks are biased in
the right direction by removing edges, characterizing such edges remains an open question. Another important
open question is to find an efficient method to order graph edges. This would allow us to significantly improve
the time complexity of the approach. In addition, we aim to design an incremental version of our sparsification
to deal with dynamic graphs or graph streams.
We note also that our approach can be used on both directed and undirected graphs.
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