
HAL Id: hal-04705395
https://hal.science/hal-04705395v1

Submitted on 21 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Multi-Robot Navigation among Movable Obstacles:
Implicit Coordination to Deal with Conflicts and

Deadlocks
Benoit Renault, Jacques Saraydaryan, David Brown, Olivier Simonin

To cite this version:
Benoit Renault, Jacques Saraydaryan, David Brown, Olivier Simonin. Multi-Robot Navigation among
Movable Obstacles: Implicit Coordination to Deal with Conflicts and Deadlocks. IROS 2024 -
IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct 2024, Abu DHABI,
United Arab Emirates. pp.1-7. �hal-04705395�

https://hal.science/hal-04705395v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Multi-Robot Navigation Among Movable Obstacles:
Implicit Coordination to Deal with Conflicts and Deadlocks

Benoit Renaulta, Jacques Saraydaryanb, David Browna and Olivier Simonina

Abstract— How to coordinate multiple robots moving in
modifiable cluttered environments? In this paper, we introduce
the multi-robot version of the NAMO problem (Navigation
Among Movable Obstacles). In MR-NAMO, robots must not
only plan for the possibility of displacing obstacles as needed to
facilitate their navigation, but also solve conflicts that may arise
when trying to simultaneously access a location or obstacle.
After identifying all different types of conflicts, we define and
compare variants of an implicit coordination strategy allowing
the use of existing NAMO algorithms [1] in a Multi-Robot
context. We also show how our previously introduced social
occupation cost model [2] can improve the efficiency of multi-
robot plans with better obstacle placement choices, and how it
can be applied in a novel way to find relevant robot placement
choices to solve deadlock situations.

I. INTRODUCTION
To accomplish their tasks, humans do not hesitate to move

objects out of their way. It has been established that providing
robots with the same capability is a necessity, leading to the
formulation of the Navigation Among Movable Obstacles
(NAMO) problem: computing a single robot’s collision-
free path from a start to a goal configuration, allowing
the manipulation of movable obstacles and minimizing a
displacement cost (e.g. travel distance, time, energy) [1].

In a previous state-of-the-art on NAMO, we have shown
that existing approaches have never considered the presence
of humans or other robots in the environment [3]. As such,
current NAMO algorithms cannot trivially be applied to
multi-robot problems, because they do not provide any coor-
dination mechanisms that would preserve their fundamental
no-collision guarantee. Beyond this main concern, we have
found that the single-robot focus of existing NAMO algo-
rithms led them to only minimize the robot’s displacement
cost. Thus, the robot would always move obstacles to the
nearest place that opens its path, regardless of the impact
on the overall environment structure: this can be observed
in Fig. 1.a-c, where the blue robot leaves the obstacle in the
entryway, forcing the pink robot to move it again (Fig. 1d).

To address this second issue, we previously introduced a
Social Occupation Costmap [2], illustrated in Fig. 1e. We
modified an existing NAMO planner [1] to find compro-
mises between the robot’s displacement cost and the social
occupation cost, as to reduce space accessibility disturbance
for humans/robots, regardless of their actual presence in the
environment at plan-time.

aB. Renault, O. Simonin and D. Brown are with INSA Lyon, CITI Lab
and INRIA Chroma Team benoit.renault@insa-lyon.fr,
olivier.simonin@inria.fr, david.brown@inria.fr

bJacques Saraydaryan is with CPE Lyon, CITI Lab and INRIA Chroma
Team jacques.saraydaryan@cpe.fr

(a) Initial
configuration

(b) NAMO plans
at start

(c) NAMO plans
at conflict

(d) NAMO plans
at end,

t = 101 steps

(e) Social
Occupation Cost

(f) S-NAMO
plans at start

(g) S-NAMO
plans at conflict

(h) S-NAMO
plans at end,
t = 81 steps

Fig. 1: Simple Multi-Robot scenario and resolution by our Implicit
Coordination Strategy without (1st line) and with (2nd line) the
Social-NAMO Model [2].

In this paper, we define the Multi-Robot NAMO problem
(MR-NAMO) and present a generic implicit coordination
strategy to use existing NAMO algorithms in multi-robot
settings. To deal with deadlocks, we propose two local
strategies to decide which robots move, and where, as to
give way to the others. These strategies are respectively
based on distance and social-cost optimization criteria. Then
we conduct experiments, using our open source simulator
extended for MR-NAMO, to evaluate these approaches. We
show how a better space organization positively affects multi-
robot NAMO performance criteria, such as the number of
obstacle transfers and the total distance traveled. This is
illustrated in Fig. 1.f-h, where the pink robot no longer moves
the obstacle, reducing travel distance and execution time.
We also analyze the efficiency and limits of the implicit
coordination strategy, especially in relation to the number
of robots in the environment.

This paper is organized as follows. Section II provides an
overview of related work, with a short reminder of our Social
Placement Cost Model. Section III formalizes a definition
of the MR-NAMO problem and the inherent conflicts. Sec-
tion IV introduces an implicit coordination algorithm with
variations capable of detecting and avoiding conflicts while
dealing with deadlocks. Finally, we compare and analyze the
proposed approaches with simulated scenarios in Section V.



We conclude and discuss future work in Section VI.

II. RELATED WORK

A. NAMO: a single-robot problem

NAMO algorithms usually solve the problem by interleav-
ing an obstacle choice strategy with existing motion planners
(e.g. A*, Dijkstra, RRT,...) to compute non-colliding navi-
gation and manipulation paths [3]. Few offer completeness
guarantees : only Stilman’s Select-Connect algorithm [1] is
resolution complete for the common class of L1, “Linear”
problems where free space components can be connected
independently by moving a single obstacle.

From the problem’s inception [1], to the most recent
papers [4], [5], NAMO has only ever been formulated as
a single-robot problem. The only relative exception would
be Mueggler et al.’s paper [6], where a drone hovers over,
localizes and remotely controls a ground robot that executes
a single-robot NAMO plan, but the algorithm could not
trivially compute a collision-free path for multiple agents
sharing a same space.

In a previous work, we introduced Social NAMO (S-
NAMO) where the robot is additionally required to minimize
a newly defined social occupation cost, representing the
disturbance to the environment’s accessibility affordance for
humans, caused by transferred obstacles [2]. With only the
binary occupancy grid of static obstacles (e.g. walls, heavy
furniture), a social occupation costmap is derived, based on
two heuristics: avoiding narrow areas, and the middle of
space, yielding higher costs there (Fig. 1e). Our S-NAMO
planner modifies Stilman’s (2005) reference algorithm, so
that it seeks a compromise cost between the weighted
euclidean distance traversed by the robot and the social cost.

B. Multi-Robot related problems

While Multi-Robot NAMO has not been specifically ad-
dressed, related problems combining robot navigation and
obstacle manipulation, do have multi-agent extensions.

One close problem is Multi-Robot Manipulation Planning
and its simpler variant, the Multi-Agent Object-Pushing
Problem [7]. Robots must move a single object together
to a given position, focusing on cooperative manipulation.
However, this is different from finding individual paths that
move different objects.

Another interesting problem is Multi-Robot Rearrange-
ment/Assembly Planning [8][9], a superset of the previous
problem, where multiple movable objects are considered and
must reach given target positions. Both problems however
differ from the NAMO problem, since the final position is
known and so reduce drastically the search space. Indeed,
they do not compute the best final arrangement, which is
where a large part of the NAMO problem’s difficulty lies.

A third close problem of NAMO is Multi-Robot Combined
Task and Motion Planning (TMP/TAMP). TMP is actually
a superset of the NAMO problem [10]. However, current
solutions to the overarching MR-TMP problem [11] do not
actually confront movable obstacles the way NAMO does.
For instance, Motes et al [11] only introduce navigation and

handover tasks where handed objects do not use physical
space.

Finally, Multi-Robot Coordination and Multi-Agent Path
Finding (abb. MAPF) literature mainly focuses on static
environments where agents are the only re-configurable
entities [12] [13]. The only exceptions we could find are
Bellusci [14] and Vainshtain [15] recent C-MAPF and TF-
MAPF problem extensions, where the environment contains
movable shelves in warehouses. However, in Bellusci’s work,
shelves are in fact moved by humans before robots only
navigate in the environment. On the other hand, in Vainsh-
tain’s work, only specific robots can move shelves by passing
below them ; also both problems are firmly limited to cell-
sized robots and objects in grids.

In this paper we introduce the Multi-Robot NAMO prob-
lem and propose reactive strategies to manage conflicts
and deadlocks, some of them exploiting the Social-NAMO
approach.

III. PROBLEM DEFINITION

Before defining the Multi-Robot NAMO problem, we in-
troduce entities and structures common to NAMO problems
considered in this paper :

• W is the physical representation of the world. In this
paper, entities Ei ∈ W are considered undeformable
polygons in a 2D plane. Their center and orientation at
time t is denoted as their configuration :
qtEi

= (xt
Ei
, ytEi

∈ R2, θtEi
∈ [0, 2π[).

• R is the set of mobile robots, considered as identical
in this paper. R =< R1, ..., Rr >⊂ W , for which we
only consider the 3 degrees of freedom of their base.

• S is the set of static obstacles, ie. that cannot move nor
be moved. S =< S1, ..., Ss >⊂ W , defining the layout
of the environment (eg. walls and heavy furniture like
desks),

• M is the set of movable obstacles that can be moved by
robots. M =< M1, ...,Mm >⊂ W , F ∩M = ∅ (they
can have different shapes).

A navigation plan pRi followed by a robot is made of
path components. A path component is a sequence of robot
configurations qtRi

where the robot moves along. A path
component is of two types :

• (transfer path), where the robot moves with a single
object (with a fixed transform)

• (transit path), where the robot moves alone between two
configurations.

Definition 1 (MR-NAMO problem): Given an initial
workspace configuration W with a set of robots R and a set
of movable obstacles M , the MR-NAMO problem consists
in computing, if they exist, for each robot Ri a collision-
free plan pRi from its initial configuration qtinit

Ri
to a goal

configuration q
tg
Ri

, where moving obstacles in M is allowed.
An optimal NAMO plan would first minimize the number

of transferred obstacles, then the transferred distance by the
robot, according to Stilman [1]. In MR-NAMO, minimiz-



ing these costs remains of course of primary interest, but
optional.

The inherent problem of multi-robot coordination is of
resource conflicts [12]. These conflicts arise when a pair
of single-agent plans (pRi

, pRj
) require concurrent access to

resources that cannot be shared. In the MR-NAMO problem,
two resource types are shared: space and movable obstacles.

Space Conflicts arise when plans (pRi
, pRj

) require the
robots or the transferred obstacles to reach intersecting
configurations (qtEk

, qtEl
) where Ek

t ∩ El
t ̸= ∅.

Movable Obstacles Conflicts, arise when plans (pRi , pRj )
require the robots to manipulate a same obstacle Mk.

In the next section we examine how to detect and avoid
such conflicts while defining implicit approaches to deal with
deadlock situations.

IV. IMPLICIT COORDINATION

A. Overview

As Yan et al. explain in [12], implicit coordination only
relies on the robot’s perceived knowledge about the world,
and takes reactive/local action to adapt its plan of execution
in response to other robots’ actions. It thus avoids the
exponential complexity of searching the space of all robot
configurations during planning. Moreover, implicit coordina-
tion does not require direct communication between robots,
it provides solutions in any environment, even with poor
communication conditions. These advantages come at the
cost of completeness and optimality, but make the problem
tractable, even with limited computational resources.

We present an implicit coordination strategy for MR-
NAMO which is summarized in pseudo-code in Algorithm
1. The algorithm requires robots to independently plan and
locally react to conflicts, ensuring that planning time linearly
increases with the number of robots. It can use any of
the existing single-robot NAMO planners as a subroutine
(in our case, either NAMO or S-NAMO). We now provide
a summary of the algorithm before describing two of its
key features, conflict avoidance and deadlock resolution, in
greater detail in sections IV-C and IV-D.

B. Algorithm Summary

Algorithm 1 draws inspiration from the Fixed-path Coor-
dination described by S. Lavalle in his reference book on
Motion Planning [16]. This involves planning for each robot
using a single-robot algorithm, then scheduling the motion
of robots as to prevent conflicts, by either tuning motion
speed or introducing pauses. In our case, explicit scheduling
is replaced with reactive conflict avoidance and deadlock
resolution strategies.

Algorithm 1 is executed by each robot at each time step.
First, the robot checks if the goal has been reached (L2).
Then it checks if the current plan is empty, and if so,
it computes a new plan (REPLAN L3). Next, the robot
calls DETECT CONFLICTS (L4) which returns a set of
conflict objects encapsulating the type of conflict and entities
involved. The robot caches all conflicts seen while pursuing

Algorithm 1 Overall Strategy - Determines the next agent
action based on the current world state and updates the
agent’s plan as needed. In blue, deadlock resolution.
Input: The current world state W , robot pose qr , goal pose qg ,

current plan p (if any), and number of look ahead steps h.
Output: The next agent action and the updated plan.

1: procedure OVERALL STRATEGY(W , qr , qg , p, h)
2: if qr = qg then return SUCCESS, p
3: if p = ∅ then return REPLAN(W , qr , qg , h)
4: C ← DETECT CONFLICTS(p, W , h)
5: if C then
6: D ← DETECT DEADLOCKS(C)
7: if D then
8: p← EVADE OR WAIT(D, p, W , qg)
9: else if REQUIRES REPLAN(C) then

10: return REPLAN(W , qr , qg , h)
11: else
12: p← POSTPONE(p)
13: return NEXT ACTION(p), p
14: end procedure
15:
16: procedure REPLAN(W , qr , qg , h)
17: W ′ ← copy of W with all agents removed.
18: p← BASE NAMO PLANNER(W ′, qr , qg)
19: if p = ∅ then return FAIL, p
20: C ← DETECT CONFLICTS(p, W , h)
21: if C then
22: W ′′ ← copy of W ′ with conflicting agents

added as static obstacles.
23: p′ ← BASE NAMO PLANNER(W ′′, qr , qg)
24: C ← DETECT CONFLICTS(p′, W , h)
25: if p′ = ∅ OR C then p← POSTPONE(p)
26: else p← p′

27: return NEXT ACTION(p), p
28: end procedure

the same goal for later deadlock detection. If conflicts are de-
tected, the robot calls DETECT DEADLOCKS to examine
them for deadlocks, and if any are found, it either evades
or postpones (L8). If conflicts are detected without any
deadlocks, the robot either postpones or replans immediately
(L9-12). Finally, the robot executes the next action in its plan
(L13).

In the REPLAN subroutine (L16-28), the single-robot
NAMO planner is first called to find a plan ignoring all
other robots (L17-18). If no plan is found, the goal must fail
because the problem is unsolvable for the NAMO planner. If
the plan has conflicts (L20), we try to recompute a plan
by considering the conflicting entities as static obstacles
(L22). If that plan is empty or has conflicts, then the plan
that ignored other robots is chosen and postponed for a
random duration (POSTPONE L25). Finally, to avoid infinite
replanning, a BASE NAMO PLANNER call counter is kept
for each goal and causes goal failure at a threshold.

C. Conflict Avoidance (CA)
As stated in Section III, conflicts represent incompatibil-

ities between robots’ plans. In implicit coordination, since
plans are not shared, detecting actual conflicts is not possible;
but they can be predicted with more-or-less accuracy. This
is why we first define Potential Conflicts, or observable situ-
ations that could become actual Space or Movable Obstacle



conflicts, if no action is taken to avoid them. But for the sake
of readability, we will henceforth refer to potential conflicts
as conflicts.

This results in a total of six types of conflicts, as shown
in Fig. 2. Robot-Robot conflicts occur when the robot’s
plan intersects with another robot (or the obstacle it is
transferring), within a horizon of a fixed number of steps h.
Object in Path conflicts occur when a movable obstacle is
left intersecting with the robot’s plan. Simultaneous Space
Access conflicts are a particular case of Robot-Robot conflict
where two or more robots are close enough they could collide
within the next time step. Stealing Object occurs when the
robot planned to move an obstacle, but another is currently
transferring it. Stolen Object occurs when the robot planned
to move an obstacle, but it has already been moved and
released by another robot. Simultaneous Grab occurs when
the robot is within one step from manipulating an obstacle
as planned, but another robot is close enough it could also
grab within the same time step.

Fig. 2: Potential conflicts classification in MR-NAMO

Upon detecting potential conflicts, Algorithm 1 proceeds
with conflict avoidance which amounts to either replanning
or postponing the robot’s plan for a random number of
steps. The randomization breaks symmetrical conflicts like
Simultaneous Space Access and Simultaneous Grab. For
Robot-Robot conflicts, postponement allows the crossing
robot to clear the path, whereas for Stealing Obstacle, it
provides time for the thief to move the obstacle. Immediate
replanning is necessary for conflicts where no other robot is
directly involved, such as Object in Path and Stolen Object
which are unlikely to be resolved after waiting (Alg. 1
REQUIRES REPLAN L9).

D. Deadlock Resolution (DR)

Implicit coordination can not guarantee the resolution
of all deadlock situations, defined as dependency cycles
between robots’ actions [17]. These typically result in robots
freezing or oscillating between two configurations indef-
initely. Similarly to conflicts, detecting actual deadlocks
requires the sharing of robot plans. Thus, without explicit
communication, robots can only detect potential deadlocks.

We define a potential deadlock as the repetition of a robot-
robot potential conflict over time: more precisely, if a robot

detects a conflict with all involved robots in the exact same
configurations, within a single goal navigation’s time span,
a potential deadlock is detected (Alg. 1 L6). To break the
cycle, the robots must decide which of them should move
to give way to the others, without explicitly communicating
(Alg. 1 EVADE OR WAIT L8).

Our first method of deadlock resolution, which we call
Repulsive Deadlock Resolution (Repulsive DR), seeks to
maximize distance between robots in an attempt to break the
cycle. In Repulsive DR, we operate an arbitrary selection :
the robot with the smallest position vector (i.e. x2 + y2)
chooses to postpone (postponer) while the others evade
(evaders). The evaders perform an A* grid search for an
evasion cell that is maximally distant from the other robots.
The search ends after a fixed number of cells have been
visited. This value is a hyper-parameter which we set to
1000 in experiments. The postponer robot waits for a random
number of steps within a predefined interval.

As we will show in section V, Repulsive DR, while simple
and effective, greatly increases the average distance traveled
and fails to take advantage of map topology. Fig. 3a shows
an example where it fails to resolve a deadlock which could
be solved by the lower-cost (closer) evasion position shown
in Fig. 3b. Moreover, the choice of evader is crucial when
robots are unequally constrained in space. The wrong evader
selection will fail to end deadlocks that require a certain
robot to move first. For example, in Fig. 3c, Robot 2 will
fail to reach its goal after evading.

Fig. 3: Repulsive DR failure cases1: a) highlights a robot’s repulsive
evasion away from the other robot, b) illustrates an ideal evasion
behavior on this configuration. c) illustrates a bad evader selection
resulting in an evasion failure, where d) shows an ideal behavior
with a correct evader choice.

To improve the selection of evaders and evasion configu-
rations, we propose a second evasion strategy called Social
Deadlock Resolution (Social DR). This is used exclusively
with the S-NAMO base planner because it takes advantage
of the social costmap [2] (illus. Fig. 4.a). In Social DR, an
A* grid search is performed to find an evasion cell with
minimum compromise-cost, which is a weighted average of
the normalized distance and social cost. More precisely, the
distances and social costs of all explored evasion cells are
normalized to range between 0 and 1 and the compromise-

1Video of our work : https://youtu.be/oi3iM8AmpuY



cost g(x, y) is given by:

g(x, y) =
wd · d(x, y) + wsc · sc(x, y)

wd + wsc

Where d(x, y) is the normalized distance, sc(x, y) is the
normalized social-cost, and wd and wsc are hyper-parameters
respectively weighing the travel distance against the so-
cial cost at the evasion configuration. When wd > wsc,
the algorithm will favor nearby evasion configurations, and
conversely, when wd < wsc, it will favor better evasion
configurations with regards to social cost.

The robot with the highest social cost evasion cell becomes
the postponer, while the others become evaders. The search
limit hyper-parameter remains the same as in Repulsive DR.
Fig. 4 illustrates this process.

Fig. 4: Social DR: The social costmap (a) is pre-computed and
cached by each robot at the start of the simulation. During deadlock
resolution, each involved robot independently computes A* grid
searches to find an evasion cell with the lowest compromise-cost
for themselves and for the others. The robot with the highest social-
cost evasion cell postpones while the others evade. (b) Compromise
cost for robot A. (c) Compromise cost for robot B. In (d), each
robot’s evasion goal is evaluated, robot A chooses the evasion cell
of lower social-cost and executes its evasion plan while robot B
postpones.

V. EXPERIMENTAL EVALUATION
A. Experimental Context

We implement the implicit coordination strategy by ex-
tending our open-source simulator2, which considers only
2D-polygonal geometry for interaction (no kinematics nor
dynamics) akin to the one used by Stilman et al. in [1]. The
simulator provides an integration layer with ROS for visual-
ization in Rviz and synchronizes timesteps across robots such
that varying planning times and randomized postponement
durations do not affect the determinism of planning. This
makes experiments reproducible, given that the random seed
is saved as a scenario parameter.

2All code and data is available at:
https://gitlab.inria.fr/chroma/namo/namosim

We perform a set of experiments on the implicit coordina-
tion strategy with and without Conflict Avoidance (CA) and
Deadlock Resolution (DR) enabled in order to analyze their
impact. We also evaluate both the NAMO (Stilman baseline)
and S-NAMO base algorithms to highlight the advantages
and disadvantages of the social cost model and social evasion
method of deadlock resolution. When DR is enabled, the
NAMO algorithm uses repulsive evasion (Repulsive DR) and
S-NAMO uses social evasion (Social DR). Note that if DR
is activated then so is CA, but not the inverse. Thus, there
are three variants each for NAMO and S-NAMO, for a total
of six algorithms, as shown in Fig. 5f.

In total, we evaluate all six algorithm variants across
twenty randomized simulations on the two environments
depicted in Fig. 6. Experiments are repeated with a static
number of robots ranging from 1 to 10, where each robot
has a sequence of 50 navigation goals. The total number
of simulations per environment is thus 6 · 20 · 10 = 1200.
The results of these experiments are visualized in Fig. 5
and summarized numerically in Table I. All simulations
were executed on a single machine with an AMD Ryzen
9 7950X 16-Core Processor (4.5GHz) and 64GB of RAM,
and distributed evenly across CPU cores for fair comparison
of planning times.

B. Scenarios

We compare our approaches on the two scenarios il-
lustrated in Fig. 6. The “Intersections” scenario (abb. Int)
is designed specifically with multiple intersections next to
each other, since we have identified in [2] that they are
particularly challenging for NAMO algorithms. The “Willow
Garage” scenario (abb. WG) is based on a subsection of
the well-known Willow Garage map. It demonstrates the
potential use of our NAMO algorithms in a real office
environment with a combination of small rooms. In this
scenario, we also highlight the ability of the simulator to
deal with heterogeneous movable obstacles of varying shape
and orientation.

Variations of these two scenarios are generated by ran-
domizing the initial robot poses and goal poses. Because
objects must be placed in relevant locations to create actual
NAMO problems, their positions are not randomized but
set manually and irregularly. The maximum number of
BASE NAMO PLANNER calls is set to 20 and a random
timer duration for postponements is picked within an interval
of 5 to 20 steps.

For social DR, we set wsc = 3 and wsc = 2, as to
relevantly favor social evasion configurations. h is set to
10 (simulation steps), as to allow sufficient spatial clearance
around robots to efficiently solve conflicts. Freezing these
parameters allows us to focus our experiments on the number
of robots.

C. Evaluation

Statistics are accumulated for each robot at each simu-
lation step. Among them, we count the number of obstacle
transfers (each time an obstacle is released), the goal success



(a) Success Rates (b) Total Distance (c) Number of Obstacle Transfers

(d) Makespan (e) Total Planning Time (f) Legend

Fig. 5: Simulation Results on the “Intersections” Scenario - Each point represents an average per agent per simulation over 20
randomized simulations. An agent either succeeds or fails its current goal before moving on to the next and repeats until all are 50 goals
finished. The x-axis represents the number of agents in the simulation, all of which are identical.

(a) Intersections
(abb. Int, ∼9.5x9.5m)

(b) Willow Garage center
(abb. WG, ∼9x15m)

Fig. 6: Base environments for scenarios. Static obstacles in black,
movable in yellow.

rate (succeeded / total), total planning time (in seconds),
and the total distance traveled throughout the simulation (in
meters). We also calculate the makespan metric which is
the number of simulation steps before all robots complete
(or fail) all of their objectives. These results are plotted for
the Intersections scenario in Fig. 5 and summarized for both
environments in Table I. All values provided in the graphs
and table represent a per-robot average over 20 randomized
simulations.

D. Results and Analysis

Results from the Intersections scenario provide the most
relevant information on “worst case” behavior in MR-
NAMO, because the presence of many intersecting passages
and movable obstacles increases the probability of conflicts.
These results are plotted in Fig. 5. We find similar trends on
all other scenarios tested, suggesting that data from the In-
tersections scenario is representative of general performance.
The results on the Willow Garage scenario, which is more
realistic, are available in Table I.

a) Algorithm performance in MR-NAMO: Fig. 5a
shows the average goal success rate per agent in the In-
tersections environment for each algorithm variant. Here,

Scen.
nb.

Rob. Method
Succ.
Rate Dist.

nb.
Transf. makesp.

Plan.
time

Int.

1
NAMO

0.97
±0.10

36292
±10248

23.3
±4.9

2908
±744

111
±18

S-NAMO
0.98
±0.02

29988
±4352

19.6
±2.6

2429
±316

252
±16

5

NAMO
Repulsive DR

0.71
±0.13

55797
±28791

18.2
±5.6

9620
±2202

520
±124

S-NAMO
Social DR

0.71
±0.12

39871
±12394

11.4
±4.1

9066
±1843

807
±186

10

NAMO
Repulsive DR

0.32
±0.12

38705
±18316

8.4
±4.2

11009
±1746

837
±144

S-NAMO
Social DR

0.37
±0.15

34685
±15010

5.6
±3.1

11596
±1868

1166
±344

WG

1
NAMO

0.97
±0.03

44013
±8393

29.6
±5.75

3645
±626

201.69
±52.16

S-NAMO
0.97
±0.03

49611
±10951

18.8
±2.00

3887
±783

348.27
±48.13

5

NAMO
Repulsive DR

0.81
±0.11

100770
±35176

15.43
±4.88

13574
±3187

625.46
±144.16

S-NAMO
Social DR

0.73
±0.15

61100
±19603

8.31
±3.21

9159
±1524

784.83
±417.34

10

NAMO
Repulsive DR

0.42
±0.14

74430
±29139

8.19
±3.65

14746
±2615

988.50
±176.96

S-NAMO
Social DR

0.42
±0.17

53215
±26582

4.67
±2.52

13595
±3452

1145.21
±544.19

TABLE I: Average robot performance metrics over 20 randomized
simulations on two environments. Results are shown for NAMO
and S-NAMO, each with CA and DR activated, on Intersections
(Int.) and Willow Garage (WG).

we can clearly see the benefit of using CA and DR. With
a simple CA, algorithms managed to improve the success
rate by 44%, on average. Moreover adding DR to CA
algorithms drastically increases the success rate by 43%
on average and up to 67% for 10 robots. Indeed, as the
number of robots increases, dealing with complex cyclic
robot behaviour becomes mandatory to reach robot goals.

As expected, since only implicit coordination is used, the
success rate decreases as the number of robots increases, for
all variants. Furthermore, as the number of conflicts and their
resolution increases, the robots need more steps to complete
their task (makespan, Fig. 5d). The makespan values for



algorithms with CA and DR remain close regardless of the
scenario type (Table I). On the other hand, for algorithms
without CA, the makespan remains stable with the number
of robots. This is mainly due to the low success rate of such
algorithms. These trends hold in both environments.

b) Total Distance: Minimizing energy expenditure re-
mains a key objective in most robot navigation problems.
Resolving conflicts and deadlocks requires additional dis-
placement cost, which explains why the blue and yellow
curves of Fig. 5b with CA+DR show the highest average
total distance traveled per agent. Note that as the success
rate decreases so do the number of goals reached and thus
also the total distance covered. We also observe that using
Social DR yields on average a 25% (29% in WG, see Table I)
reduction in distance traveled relative to Repulsive DR. This
is mainly due to Social DR relying on the compromise-cost
to select an evasion position, whereas Repulsive DR seeks
to evade as far as possible from the other robot.

c) Obstacle Transfers: A robot’s ability to reliably
move obstacles is assumed in our simulations. However, ob-
stacle manipulation remains a challenging and risky task for
real robots, as it can lead to unrecoverable failures and dam-
age to the robot, obstacle, and environment. Consequently,
for the task of navigation, obstacle transfers should generally
be avoided, depending on the cost of alternative paths. We
find that S-NAMO significantly reduces the average number
of obstacle transfers per agent and that this benefit holds as
the number of robots increases. This is true with all variants,
and shows up to a 40% reduction from Repulsive DR to
Social DR. This important advantage is a direct result of S-
NAMO seeking to place obstacles in positions of low social-
cost where they are less likely to degrade space connectivity,
thereby keeping passageways clear.

d) Planning Time: CA and DR incur additional com-
putation and hence planning time, as is evident in Fig. 5e
where the two curves with CA+DR (blue and yellow) are
higher than the others. They also have the steepest slopes,
as more robots leads to more conflicts and deadlocks, which
cause more frequent calls of CA and DR subroutines. On the
other hand, the two curves with neither CA nor DR (purple
and brown) remain nearly constant with increasing numbers
of robots. We further observe that S-NAMO incurs a constant
increase in planning time relative to NAMO, as is evident
from the fact that the group of S-NAMO curves appears
offset by a constant amount from the NAMO curves.

VI. CONCLUSION

We have introduced the novel problem of MR-NAMO
which merges NAMO and Multi-Robot Coordination. We
have also presented a generic implicit coordination algo-
rithm which can be used to extend any single-robot NAMO
planner with minimal requirements. To break deadlocks, we
introduced a simple repulsive strategy and a more elaborate
social-cost compromise strategy (based on S-NAMO [2]).
We have evaluated the coordination strategy using both a
Stilman baseline NAMO algorithm and the S-NAMO variant.
The simulated experiments indicate that 1) our coordination

strategy effectively resolves conflicts and deadlocks, and 2)
the S-NAMO approach maintains a comparable goal success
rate as plain NAMO while exhibiting notable advantages, in-
cluding fewer obstacle manipulations, reduced total distance,
and decreased makespan, albeit with a constant increase in
computation time. Furthermore, our open-source simulator,
scenarios, and data constitute a first benchmark for the MR-
NAMO problem.

For further work, our research will concentrate on inte-
grating or developing additional NAMO algorithms, such as
Wu&Levihn’s [18], to handle partial environmental knowl-
edge, thereby enhancing real-world applicability. Addition-
ally, we aim to establish local optimality in simple NAMO
cases and explore machine learning methodologies.

REFERENCES

[1] M. Stilman and J. J. Kuffner, “Navigation among movable obstacles:
real-time reasoning in complex environments,” International Journal
of Humanoid Robotics, vol. 02, no. 04, pp. 479–503, 2005.

[2] B. Renault, J. Saraydaryan, and O. Simonin, “Modeling a Social Place-
ment Cost to Extend Navigation Among Movable Obstacles (NAMO)
Algorithms,” in IROS 2020 - IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, Las Vegas, US, 2020, pp. 11 345–11 351.

[3] Renault, Benoit, Saraydaryan, Jacques, and Simonin, Olivier, “To-
wards S-NAMO: Socially-aware Navigation Among Movable Obsta-
cles,” in Robot World Cup XXIII, ser. LNCS. Sydney: Springer, 2019.

[4] K. Ellis, H. Zhang, et al., “Navigation among movable obstacles with
object localization using photorealistic simulation,” in IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2022, pp. 1711–1716.

[5] J. Muguira-Iturralde, A. Curtis, et al., “Visibility-aware navigation
among movable obstacles,” in 2023 IEEE International Conference
on Robotics and Automation (ICRA), 2023, pp. 10 083–10 089.

[6] E. Mueggler, M. Faessler, et al., “Aerial-guided navigation of a
ground robot among movable obstacles,” in IEEE Int. Symp. on Safety,
Security, and Rescue Robotics (2014), Oct. 2014, pp. 1–8.

[7] L. Lindzey, R. A. Knepper, et al., “The Feasible Transition Graph:
Encoding Topology and Manipulation Constraints for Multirobot Push-
Planning,” in Algorithmic Foundations of Robotics XI: Sel. Contrib. of
the 11th Int. Workshop on the Algo. Found. of Robotics, ser. Springer
Tracts in Advanced Robotics. Springer Int. Pub., 2015, pp. 301–318.

[8] M. Levihn, T. Igarashi, and M. Stilman, “Multi-robot multi-object
rearrangement in assignment space,” in 2012 IEEE/RSJ International
Conf. on Intel. Robots and Systems, Oct. 2012, pp. 5255–5261.

[9] K. Brown, O. Peltzer, et al., “Optimal Sequential Task Assignment and
Path Finding for Multi-Agent Robotic Assembly Planning,” in IEEE
Int. Conf. on Robotics and Automation (ICRA), 2020, pp. 441–447.

[10] C. R. Garrett, R. Chitnis, et al., “Integrated Task and Motion Planning,”
Annual Review of Control, Robotics, and Auto. Systems, vol. 4, 2021.

[11] J. Motes, R. Sandström, et al., “Multi-Robot Task and Motion Planning
With Subtask Dependencies,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 3338–3345, Apr. 2020.

[12] Z. Yan, N. Jouandeau, and A. A. Cherif, “A Survey and Analysis
of Multi-Robot Coordination,” International Journal of Advanced
Robotic Systems, vol. 10, no. 12, p. 399, 2013.

[13] R. Stern, N. R. Sturtevant, et al., “Multi-Agent Pathfinding: Defini-
tions, Variants, and Benchmarks,” SOCS, 2019.

[14] M. Bellusci, N. Basilico, and F. Amigoni, “Multi-Agent Path Finding
in Configurable Environments,” in Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems.
Richland, SC: International Foundation for Autonomous Agents and
Multiagent Systems, May 2020, pp. 159–167.

[15] D. Vainshtain and O. Salzman, “Multi-agent terraforming: Efficient
multi-agent path finding via environment manipulation,” Proc. of the
Int. Symp. on Combinatorial Search, vol. 12, no. 1, pp. 239–241, 2021.

[16] S. M. LaValle, Planning Algorithms. Cambridge Univ. Press, 2006.
[17] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artifi-

cial Intelligence. Addison-Wesley Longman Pub. Co., Inc., 1999.
[18] M. Levihn, M. Stilman, and H. Christensen, “Locally optimal naviga-

tion among movable obstacles in unknown environments,” in IEEE-
RAS, 2014, pp. 86–91.


