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 Abstract—  This  review  emphasizes  the  fascinating  convergence  of 
 Neuro-Symbolic  AI  (NeSy)  and  Compositional  Generalization 
 (CoGe),  examining  how  these  models  might  potentially  transform  AI 
 by  enabling  real  human-like  intelligence.  This  research  contends  that 
 NeSy's  capacity  to  combine  the  advantages  of  neural  and  symbolic 
 techniques  has  enormous  potential  for  addressing  the  CoGe  dilemma. 
 CoGe  necessitates  the  ability  to  learn  and  use  information  in 
 unexpected  settings  through  the  flexible  assembly  of  existing 
 building  components.  NeSy  architectures,  with  their  distinct 
 combination  of  symbolic  reasoning  and  flexible  learning,  provide  a 
 viable  option  for  overcoming  this  critical  hurdle.  In  this  paper,  we 
 highlighted  some  of  the  most  important  concepts  of  both  NeSy  and 
 CoGe,  showcasing  the  cutting-edge  research  trends  shaping  these 
 fields,  we  delve  into  their  diverse  techniques  and  methods.  Drawing 
 upon  cognitive  science  studies  and  concrete  AI-based  works,  we 
 illustrate  the  multitude  of  possibilities  for  implementing  CoGe  within 
 NeSy.  Finally,  we  discuss  the  results  performed  by  these  studies,  their 
 commonalities,  we  then  present  our  proposition  and  address  the  open 
 challenges that lie ahead on the path towards true CoGe with NeSy. 

 Keywords—  Inductive Learning  - Compositional Generalization  - 
 Neuro-Symbolic AI - Knowledge Representation. 

 I.  INTRODUCTION 

 The  fundamental  concept  of  generalization  in  AI  is  the  ability 
 to  transfer  gained  knowledge  and  learning  from  previous 
 experiences  to  deal  with  novel  scenarios  and  guide  actions. 
 This  necessary  mechanism  reflects  the  underlying  character  of 
 human  intellect,  notably  in  terms  of  CoGe.  Our  knowledge 
 representation  is  naturally  compositional  [  1  ].  Human  cognitive 
 abilities  to  solve  complex  problems  and  represent  abstract 
 concepts  rely  significantly  on  it  by  applying  common  and 
 simpler  components  learned  in  a  particular  context  and 
 attempting  to  generalize  (transfer)  them  to  novel  and  related 
 settings  via  composition  functions.  Smolensky  described  this 
 as  “the  Central  Paradox  of  Cognition”  [  2  ].  The  human  brain's 
 limited  physical  resources  have  been  shown  to  develop 
 powerful  and  versatile  cognitive  capacities,  posing  a 
 well-known  issue  in  neuroscience  study.  Adopting  a  CoGe 
 architecture  is  critical  for  machine  learning  systems  looking  to 
 improve  their  performance  and  dependability.  Pure 
 connectionist  models,  although  effective,  have  numerous 
 significant  problems.  These  include  an  insatiable  desire  for 
 enormous  datasets  to  learn  and  extract  meaningful  patterns, 
 the famed black-box effect, which impairs reasoning 

 transparency,  and  the  ongoing  challenge  of  efficiently 
 generalizing  to  unexpected  scenarios.  The  human  brain's 
 limited  physical  resources  have  been  shown  to  develop 
 powerful  and  versatile  cognitive  capacities,  posing  a 
 well-known  issue  in  neuroscience  study.  Adopting  a 
 CoGe  architecture  is  critical  for  machine  learning  systems 
 looking  to  improve  their  performance  and  dependability. 
 Pure  connectionist  models,  although  effective,  have 
 numerous  significant  issues.  These  include  an  insatiable 
 desire  for  enormous  datasets  to  learn  and  extract 
 meaningful  patterns,  the  famed  black-box  effect,  which 
 impairs  reasoning  transparency,  and  the  ongoing 
 challenge  of  efficiently  generalizing  to  unexpected 
 scenarios.  Introducing  NeSy  AI  systems,  which  are 
 positioned  as  promising  answers  to  the  foregoing 
 difficulties  in  practical  domains  such  as  healthcare,  brain 
 and  behavior  modeling,  natural  language  processing  [  7  ], 
 cybersecurity,  and  privacy  [  8  ],  but  their  integration  is  not 
 without  obstacles.  Challenges  remain  in  seamlessly 
 blending  symbolic  reasoning  with  neural  networks, 
 properly  encoding  information  and  embedding,  and 
 building  models  that  balance  learning  and  reasoning 
 skills.  Despite  these  obstacles,  the  increased  curiosity  in 
 the  field  of  NeSy  systems  is  significant.  The  change  from 
 a  single  study  published  before  2016  to  about  40 
 publications  published  between  2017  and  2021  illustrates 
 the  increasing  enthusiasm  and  changing  environment  of 
 NeSy  research  [  3  ].  The  aim  of  this  paper  is  to  reveal  the 
 active  research  still  being  conducted  to  determine  how 
 NeSy  AI  systems  may  fit  and  adopt  successfully  using  the 
 compositionality  structure,  focusing  on  particular 
 strategies  for  greater  generalization.  It  is  divided  as 
 follows:  Section  2  introduces  the  NeSy  AI,  its 
 categorization,  knowledge  representation  and  embedding, 
 and  active  research  directions.  Section  3  discusses  the 
 CoGe,  starting  with  definitions,  knowledge 
 representation,  highlighting  the  relation  between  CoGe, 
 context-understanding  and  transfer  learning,  finishing 
 with  recent  researches.  Section  4  emphasizes  the 
 combination  of  NeSy  and  CoGe  by  presenting  our 
 classification  and  relevant  works,  a  cognitive  science 
 research  and  AI  based  studies,  we  also  discuss  theirs 
 results  and  commonalities,  we  present  the  future  research 
 directions, our proposition and upcoming implementation 
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 model. Finally,  Section 5  , holds the paper’s conclusion. 

 II. NEURO-SYMBOLIC AI 

 A. Categorization 

 NeSy  AI  architecture  aims  to  unify  the  best  of  the  both 
 worlds,  the  neural  and  symbolic.  There  are  mainly  two 
 principal  propositions,  the  first  one  was  a  survey  presented  by 
 P.Hitzler  and  S.Bader  [  6  ]  in  2005  giving  to  NeSy  integration 
 according  to  eight  dimensions,  grouped  into  three  aspects: 
 Interrelation  ,  Language  and  Usage  ,  and  recently,  Henry  Kautz 
 at  AAAI  2022  Robert  S.  Engelmore  Memorial  Award  Lecture 
 has  presented  his  categorization  [  5  ]  as  six  different  modes  of 
 integrating symbolic and connectionist approaches: 

 ●  Symbolic  Neuro  Symbolic:  the  inputs  and  outputs  are 
 symbols, NLP systems including LLMs like GPT-3. 

 ●  Symbolic  [Neuro]:  neural  modules  are  internally  used  in  a 
 symbolic problem solver. 

 ●  Neuro  |  Symbolic:  neural  and  symbolic  parts  focus  on 
 different but complementary tasks. 

 ●  Neuro:Symbolic  ⇒  Neuro:  symbolic  rules/knowledge  are 
 compiled into the architecture of neural networks. 

 ●  NeuroSymbolic:  turning  symbolic  knowledge  into 
 additional  soft-constraints  in  the  loss  functions  of  DNNs 
 (Deep Neural Networks). 

 ●  Neuro[Symbolic]:  fully  integrated  systems  that  embed  a 
 symbolic reasoning system inside a neural engine. 

 B. Knowledge Representation and Embedding 

 We  have  to  emphasize  how  the  knowledge  is  represented 
 and  embedded  in  pure  connectionist,  symbolic  and  NeSy  AI 
 systems,  Table  1  summarizes  these  two  aspects  of  NeSy  AI 
 system. 

 TABLE 1. 
 Knowledge Representation and Embedding in NeSy AI 

 Models  Knowledge 
 Representation 

 Knowledge Embedding 

 Connectionist 
 Models 

 Sub-Symbolic 
 Representations  1  . 

 — Representing features. 
 -  continuous  vector 
 embeddings  in  a 
 high-dimensional space. 
 — capturing semantic 
 relationships  among 
 entities. 

 Symbolic 
 Models 

 —  Explicit  symbols  and 
 formal rules. 
 — Represent knowledge 
 structurally. 

 -  Transforming  discrete 
 symbols  and  formal  rules, 
 into  continuous  vector 
 representations. 

 1  The  internal  formats  used  by  AI  models  to  encode  information  about  the 
 world, they’re more abstract and hidden within the model's internal structure. 

 NeSy AI 
 Models 

 Combining  symbolic  and 
 sub-symbolic  knowledge 
 representation techniques 

 Depending  on  the 
 model’s  architecture  and 
 type. 

 C. Open Challenges 

 The  author  in  [  1  ]  has  presented  the  upcoming  challenges 
 to overcome in NeSy realm, here are the main ones: 
 1)  Scalability:  NeSy  systems  are  still  struggling  with 
 large-scale symbolic/logic reasoning. 
 2)  Compositional  Generalization:  a  central  aspect  of 
 human  intelligence,  among  the  most  desirable 
 characterizations that NeSy systems are expected to offer. 
 3)  Automated  Knowledge  Acquisition:  closely  related  to 
 the  concept  of  ‘  Learning  to  Reason  ’  [  4  ].  NeSy  systems 
 are  ignoring  two  crucial  issues:  i)  how  to  acquire 
 contextual  knowledge  ?  ii)  how  to  ensure  that  the 
 acquired  knowledge  is  the  most  suitable  for  the  system’s 
 functionality ? 

 III.   COMPOSITIONAL GENERALIZATION 

 A.   Definitions 

 CoGe  represents  the  ability  to  utilize  a  finite  set  of 
 known  components  to  understand  and  generate  a  vast 
 array  of  novel  combinations  in  different  but  related 
 contexts  [  9  ].  These  components  can  be  represented  as 
 learned  knowledge  or  concepts  relying  on  methods  like 
 symbolic techniques. 

 N. Chomsky  , in his book “  Aspects of the Theory of 
 Syntax”  , defined it as “  infinite use of finite means  ”  [  17  ] in 
 the context of language, grammar, and linguistics. The 
 combination process is performed systematically and 
 most of the time   hierarchically to keep a comprehensive 
 meaning and to fit well with the novel contexts. 

 R. Montague  [  18  ] has worked on the compositionality 
 principle  in  language,  and  he  claimed  that 
 compositionality  requires  a  relationship  between 
 expressions  of  a  language  and  the  meaning  of  those 
 expressions.  He  introduced  the  concept  of  collective  and 
 global  compositionality.  The  human  cognitive  system's 
 ability  to  perform  CoGe  and  transfer  learning  2  is  a 
 complex  interplay  of  neural  mechanisms,  inductive 
 learning  processes,  and  cognitive  biases  3  .  These  elements 
 work  together  to  enable  adaptive  learning, 
 problem-solving,  and  the  application  of  knowledge  across 
 diverse contexts. 

 B. Knowledge Representation and Key Aspect 

 3  Deviation  from  rationality  in  judgment,  often  influenced  by  subjective 
 factors that can distort the decision-making. 

 2  ML  technique  that  involves  leveraging  the  knowledge  gained  from 
 solving one problem and applying it to a different but related problem. 



 According  to  [  1  ],  “  Our  knowledge  is  naturally 
 compositional  ”,  in  fact,  it’s  a  multifaceted  topic  that  has  been 
 studied  in  cognitive  science.  The  prevailing  view  is  that  the 
 human  brain  employs  a  compositional  and  distributed 
 representation  of  knowledge,  depending  on  the  performed  task 
 and the executed context.  Table 2  summarize it. 

 TABLE 2. 
 Compositional and Distributed Aspects 

 Aspects  Compositional  Distributed 

 Distributed Representation  ❌  ✔  

 Sparse Coding  4  ❌  ✔  

 Hierarchy and Compositionality  ✔   ❌ 

 Symbolic Representation  ✔   ❌ 

 Combination of Features  ✔   ❌ 

 Shared Representations  ✔   ❌ 

 C.   Relation between CoGe, Transfer Learning and 
 Context-Understanding 

 The  author  in  [  29  ]  unveils  the  comparison  between  a 
 general  model  that  was  trained  using  all  contexts  against  a 
 system  that  is  composed  of  a  set  of  specialized  models  that 
 was  trained  for  each  particular  operating  context.  Authors 
 proposed  a  local  learning  approach  based  on 
 context-awareness  by  training  two  distinct  tasks:  classification 
 and  control  task,  this  method  uses  contextual  information  to 
 separate  the  input  space,  train  and  select  the  suitable  ML 
 models.  This  solution  has  showed  significant  results,  it 
 alleviates  bias  (domain-specific  knowledge)  to  an  approach 
 that uses a unique general and versatile model. 

 W.  Battaglia  and  his  colleagues  [  10  ]  highly  supported  the 
 idea  that  “  The  question  of  how  to  build  artificial  systems 
 which  exhibit  combinatorial  generalization  has  been  at  the 
 heart  of  AI  since  its  origins  ”.  Their  work  focuses  on  how 
 graph  networks  can  support  relational  reasoning  5  and 
 combinatorial  generalization.  They’ve  also  explored  how 
 using  relational  inductive  biases  6  within  DL  architectures  can 
 facilitate  learning  about  entities,  relations,  and  rules  for 
 composing  them.  The  relational  inductive  biases  are  a  kind  of 
 transfer  learning  technique  that  aim  to  enhance  a  model's 
 ability  to  understand  and  reason  about  relationships.  Another 
 useful example of recent researches that clearly demonstrates 

 6  Refer  to  biases  that  encourage  models  to  consider  and  exploit  relationships 
 between elements in the data. 

 5  Models  that  can  reason  and  draw  conclusions  based  on  the  relationships 
 between different elements in a given context. 

 4  Involves  representing  information  using  a  subset  of  active  neurons  for  a 
 given concept or representation. 

 the impact of in-context examples on CoGe performance 
 [  11  ], they carried on with the raising   question:  “  what are 
 the key factors that can make good in-context examples 
 for CoGe?”  , they studied three potential factors: 
 Similarity, diversity, and complexity. The experiments 
 indicate that in-context examples should be structurally 
 similar to the test case, diverse from each other, and 
 individually simple. 

 In  essence,  this  relationship  can  be  summarized  as  the 
 following:  context-understanding  shapes  the 
 compositionality  of  representations  in  a  specific  context, 
 and  leveraging  this  gained  knowledge  then  acts  as  an 
 inductive  bias  (transfer  learning)  guiding  the  model  to 
 generalize  compositional  rules  to  new  contexts.  Figures  1 
 and  2  provide two distinguish examples about it: 

 Figure 1  .  CoGe Ability in Human Cognitive System 

 Figure 2.  CoGe Ability in Software Engineering 

 D. Upcoming Challenges 

 The  main  question  is:  “  why  connectionist  and  modern 
 models lack of CoGe ability  ” ? It is mainly due to: 
 1)  Limited  Symbolic  Representations:  struggle  with 
 incorporating  symbolic  representations  and  explicit  rules, 
 which are crucial for capturing the compositionality. 
 2)  Lack  of  Hierarchical  Abstraction:  CoGe  often  requires 
 hierarchical  abstraction,  where  simple  concepts  combine 
 to form more complex ones. 
 3)  Implicit  Representations:  ANNs  encode  information  in 
 the  weights  and  connections  between  neurons,  leading  to 
 distributed  and  implicit  representations  for  efficient 
 learning,  it  also  makes  it  difficult  to  interpret  what  a 
 specific neuron or group of neurons represent. 



 IV. COGE THROUGH NESY AI 

 A. Classification 

 In  this  section,  we  have  proposed  a  classification  for 
 CoGe approaches based on recent works: 
 1)  Neural  based  CoGe:  neural  networks  are  used  to  learn 
 compositional structures directly from data  : 
 ●  Attention  Mechanisms:  mechanisms  like  Transformers  focus 

 on  specific  parts  of  the  data  that  are  most  relevant  for  a 
 particular task (identify and learn compositional structures). 

 ●  Hierarchical  Neural  Networks:  models  like  CNNs  for  image 
 or  RNNs  for  text  data  process  at  different  levels  of 
 granularity,  allowing  them  to  capture  both  individual 
 elements and their relationships within a composition. 

 2)  Symbolic  based  CoGe:  encoding  compositional  knowledge 
 using symbolic representations like rules or logic: 
 ●  Knowledge  Graph  Embedding:  incorporating  knowledge 

 graphs  (KGs)  to  represent  domain  knowledge  symbolically 
 (entities + relationships), techniques like  TransE  or  RotatE. 

 ●  Logical  Reasoning  Rules:  incorporating  logic  rules  into 
 NeSy  models,  derived  from  domain  knowledge  or  expert 
 insights, guiding it towards compositional structures. 

 3)  NeSy Integration Techniques: 
 ●  Neural  Modules  Augmentation:  integrating  a  symbolic 

 reasoning  module  into  ANN  to  guide  the  learning  process, 
 to ensure it adheres to the symbolic knowledge. 

 ●  NeSy  Co-Learning:  training  the  ANN  and  the  symbolic 
 module  simultaneously.  The  symbolic  module  guides  the 
 ANN  towards  relevant  compositional  structures,  and  the 
 ANN potentially refine the symbolic knowledge base. 

 B.     Cognitive Science Research 

 Starting  with  some  insights  drawn  from  a  psychological  and 
 cognitive  sciences  article  released  on  August  2022  [  13  ],  the 
 authors  conducted  an  experience  on  605  subjects  (293  female 
 and  312  male)  to  discover  the  determinants  and  limits  of 
 human  transfer  learning  ability  using  curriculum  learning  for 
 CoGe.  They  also  explored  how  it  might  be  modeled  in  a 
 neural  network.  They  did  this  by  designing  a  task  that  required 
 participants  to  learn  and  generalize  a  mapping  function  from 
 symbolic  cues  to  spatial  locations.  Furthermore,  they  also  find 
 that  adult  humans  tend  to  learn  composable  functions 
 asynchronously  7  ,  and  the  human  ability  to  handle  novelty 
 (generalization)  seems  to  depend  on  transfer  distance: 
 near-transfer  is  when  old  problems  and  new  ones  share 
 physical  features,  and  it’s  the  most  successful  method, 
 far-transfer  is  when  problems  share  common  structure  yet  are 
 superficially  distinct,  and  it’s  less  successful.  In  this  paper 
 [  12  ],  the  authors  studied  the  computational  properties 
 associated  with  CoGe  in  both  humans  and  ANNs  on  a  highly 
 compositional tasks. Here are the steps: 

 7  Discontinuities in learning that resemble those seen in child development. 

 ●  Characterizing  the  behavioral  signatures  of  CoGe  in  a 
 task that varied rule conditions across 64 contexts. 

 ●  Analyzing  fMRI data  8  gained from the experience 
 ●  Designing  pretraining  paradigm  aided  by  primitives  to 

 endow compositional task elements into ANNs. 
 The conclusions derived from this experience are: 
 ●  Humans  generalize  better  to  tasks  with  greater 

 similarity structure to previous tasks (related contexts). 
 ●  Pretrained  ANNs  models  exhibit  more  abstract 

 representations,  excellent  generalization  performance, 
 and efficient learning. 

 C. Recent AI Works 

 In  this  section,  we’ll  present  four  recent  works,  in  the 
 first  paper.  The  authors  [  14  ]  tackled  the  limitations  issue 
 of  DL  models  when  dealing  with  CoGe,  the  capability  to 
 learn  compositional  rules  and  apply  them  to  unseen  cases 
 systematically,  by  introducing  the  Neural-Symbolic  Stack 
 Machine  (NeSS)  ).  NeSS  combines  the  expressive  power 
 of  neural  sequence  models  with  the  recursion  supported 
 by  the  symbolic  stack  machine.  The  results  have  shown 
 100%  generalization  performance  in  four  domains:  the 
 SCAN  9  benchmark,  the  task  of  few-shot  learning  of 
 compositional  instructions,  the  compositional  machine 
 translation  benchmark,  and  context-free  grammar  parsing 
 tasks.  Curriculum  Training  technique  scheme  is  used 
 during the training process. 

 The  second  research  [  25  ]  concerns  the  learning  of 
 compositional  rules  via  neural  program  synthesis 
 techniques.  The  authors  propose  a  NeSy  model  that  can 
 learn  entire  rule  systems  from  a  small  set  of  examples  by 
 combining  neural  networks  and  symbolic  program 
 representations.  They  demonstrate  that  their  model 
 achieves  human-level  performance  on  a  few-shot  artificial 
 language  learning  task,  improves  over  existing 
 benchmarks  on  the  SCAN  challenge  for  CoGe,  and  can 
 learn to interpret number words across natural languages. 

 The  third  paper  has  been  carried  out  in  May  2023  [  15  ], 
 the  two  authors  addresses  the  CoGe  challenge  with 
 respect to the two specific tasks of word problem-solving 
 and  visual  relation  recognition  and  propose  a  NeSy 
 solution, using  DeepProbLog  10  facing the issue of neural 
 models and their inability to generalize compositionally, 
 unless, by providing it with more data that has a sufficient 
 number  of  instances  of  every  combination  of  concepts, 
 they  are  interested  in.  Incorporating  task  specific 
 knowledge into purely neural models help address its 
 inability to generalize compositionally. 

 10  Neural  probabilistic  logic  programming  language  that  integrates  deep 
 learning through neural predicates. 

 9  Benchmark to  assess  model's ability in compositional  tasks. 

 8  Functional  Magnetic  Resonance  Imaging,  it,  provides  insights  into 
 which regions of the brain are active during specific tasks. 



 The  fourth  paper  research  has  been  conducted  in  last  Jan 
 2024  [  16  ],  the  authors  have  proposed  a  novel  approach  based 
 on  NeSy  architecture  called  the  Compositional  Program 
 Generator  (CPG).  CPG  has  three  key  features:  modularity, 
 type  abstraction,  and  recursive  composition,  that  enable  it  to 
 generalize  systematically  to  new  concepts  in  a  few-shot 
 manner.  It  uses  context-free  grammar  rules  to  generate  a 
 hierarchical,  abstract  parse  of  the  input,  and  generates 
 rule-specific  probability  distribution  parameters  for 
 probabilistic  copy  or  substitution  programs,  using  curriculum 
 learning and evaluate on SCAN and COGS benchmarks. 

 D. Discussion 
 In  the  last  section,  we  have  listed  some  recent  studies 

 about  the  possibility  of  applying  NeSy  architecture  to  handle 
 the  CoGe  issue,  faced  by  the  current  neural  network  models. 
 The  first  scientific  research  we’ve  presented,  shows  that  the 
 human  learns  and  generalize  well  compositionally.  The  second 
 research  confirms  this,  and  follow  by  attesting  that  humans 
 generalize  better  to  tasks  with  greater  similarity  structure  to 
 previous  tasks  (related  contexts).  They  have  also  compared 
 how  abstract  representations  are  distributed  across  the  entire 
 cortex  in  a  content-specific  way  during  the  execution  of  the 
 compositional task with pretrained ANNs. 

 The recent AI works have showed many commonalities: 
 ●  Using  NeSy  as  a  foundation  architecture  to  handle  the 

 different components from the input data. 
 ●  Curriculum  Learning  technique  used  during  the  training 

 process for an incremental and structured learning. 
 ●  Leveraging pretrained NeSy models like DeepProbLog. 
 ●  Relying  on  specific  knowledge  as  an  input  data  to  enhance 

 the compositionality learning and context-understanding. 
 ●  The  evaluation  task  is  usually  done  on  two  popular 

 compositionality benchmarks, SCAN and COGS. 
 ●  Common  application  domains:  NLP  (Natural  Language 

 Processing),  semantic  parsing,  translation  and  language 
 understanding,  because  of  its  natural  compositionality  (the 
 meaning of the sentence equals to the sum of its words). 

 E. Proposition and Upcoming Implementation 

 Our  contribution  lies  on  a  novel  NeSy  architecture  applied 
 in a new domain field, to tackle the CoGe challenge. 

 1)  Generalization  Through  Contexts-Representation:  Authors 
 in  [  21  ]  have  defined  context  based  on  a  corpus  of  150 
 definitions:  The  context  acts  like  a  set  of  constraints  that 
 influence  the  behavior  of  a  system  (a  user  or  a  computer  ) 
 embedded  in  a  given  task  .  In  [  22  ],  authors  have  made  a 
 comparison  between  contextual  and  non-contextual  features  in 
 ANNs  for  recommender  system,  they  find  out  that  adding 
 dynamic  environment  features  (day-time,  location,  season, 
 etc…)  outperforms  the  classical  model  based  only  on  user’s 
 preferences. 

 In  addition  to  ANNs  ,  context  can  be  handled  relying 
 on  symbolic  rules,  knowledge  graphs  or  First-Order  Logic 
 (FOL).  Example:  Rule-based  representation:  IF  (location 
 =  'office'  AND  time  =  'weekday'  AND  device  =  'work 
 computer')  THEN  (context  =  'work').  Using  FOL:  ∀x,  y 
 (location(x,  'office')  ∧  time(y,  'weekday')  ∧  device(z, 
 'work computer') → context(x, y, z, 'work')). 

 2)  Compositionality  through  MTL  Architecture:  Our 
 model  is  based  on  a  Multi-Tasks  Learning  (MTL) 
 architecture,  It  consists  of  training  one  main  task  model 
 (usually  a  DL  one)  and  a  set  of  related  tasks  in  the  output 
 layer.  We  try  to  improve  the  generalization  on  the  main 
 task  by  using  the  related  tasks  as  an  inductive  signal 
 [  19  ][  20  ]  .  Figure 3  shows this architecture with details. 

 Figure 3.  The MTL Architecture 

 3)  Application:  Computerizing  of  Habit-Forming  Process: 
 This  2023  research  paper  [  23  ]  emphasizes  the 
 introduction  of  ML  method  that  discovers  which  of  many 
 context  variables  are  associated  with  behavior  and 
 predicts  how  quickly  habits  form  (Predicting  Context 
 Sensitivity), applied in two different large panels datasets. 

 Authors in this 2022 article [  24  ] have proposed  a 
 method  to  enable  intelligent  systems  to  compute  habit 
 strength  based  on  observable  behavior,  the  advantage  of 
 using  computed  habit  strength  for  behavior  prediction  was 
 tested  using  data  from  two  intervention  studies  on  dental 
 behavior change. 

 Comparing  to  these  recent  researches,  our  aim  lies  on 
 classifying  behaviors  into:  Sporadic  or  Habitual  ones 
 (Main  Task),  another  way  for  analyzing  consumer’s 
 behaviors.  In  neuroscience.  “Habits”  are  defined  as  a  set 
 of  hierarchical  steps:  context,  cues,  action,  and  reward.  To 
 succeed  their  modeling,  we  have  summarized  it  as 
 follows:  Habits  =  Context  [Behaviors  (Repetition  + 
 Positive Reinforcement)]. 
 4)  Hard  Parameters  Sharing  Approach:  it  is  the  most 
 commonly  used  approach  to  MTL  in  neural  Networks. 
 Following  the  figure  3  and  the  habit’s  equation,  here  are 
 the implementation details: 
 ●  Shared Layers:  Contextual-Embeddings:  Context can 



 be  modeled  relying  on  symbolic  rules,  knowledge  graphs  or 
 First-Order  Logic  (FOL).  Example:  Rule-based  representation: 
 IF  (location  =  'office'  AND  time  =  'weekday'  AND  device  = 
 'work  computer')  THEN  (context  =  'work').  Using  FOL:  ∀x,  y 
 (location(x,  'office')  ∧  time(y,  'weekday')  ∧  device(z,  'work 
 computer') → context(x, y, z, 'work')). 
 ●  Task  01:  Sequential  Behavior  Analysis:  leveraging  LSTM 

 algorithm  for  sequential  analysis,  Relying  on  Symbolic 
 Rules  concerning  the  temporal  patterns  and  recurring 
 sequences of behaviors (daily or weekly repetition rate). 

 ●  Task  02:  Positive  Reinforcement:  relying  on  Q-Learning 
 algorithm to support the positive behaviors. 

 ●  Task  03:  Habit  Detection:  binary  classification  algorithm, 
 classifying behaviors into Habitual or Sporadic ones. 

 ●  Hierarchical  Training:  according  to  neuroscience,  habits 
 are  a  natural  hierarchical  process,  curriculum  learning  is  a 
 promising method to mimic effectively the natural process. 

 ●  Loss  Functions  (LF):  e.g.,  for  M  tasks,  LF  =  Σ  Wi  Li,  i=1 
 to M, Li represents each task’s LF, Wi is an assigned weight. 

 V. CONCLUSION 

 CoGe  is  definitely  a  game-changer  characteristic  for  novel  AI 
 models.  To  reach  this  challenge,  the  NeSy  AI  systems  are 
 presented  as  promising  methods,  and  to  foster  its 
 implementation,  future  researches  must  focus  primarily  on 
 integrating  reasoning  ability  into  ANNs,  and  then  designing 
 well  suited  AI  models  architectures  to  handle  CoGe.  At  the 
 end,  regarding  its  importance,  CoGe  must  be  applied  in 
 impactful domains like healthcare, NLP, and computer vision. 
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