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Abstract—This review emphasizes the fascinating convergence of
Neuro-Symbolic Al (NeSy) and Compositional Generalization
(CoGe), examining how these models might potentially transform Al
by enabling real human-like intelligence. This research contends that
NeSy's capacity to combine the advantages of neural and symbolic
techniques has enormous potential for addressing the CoGe dilemma.
CoGe necessitates the ability to learn and use information in
unexpected settings through the flexible assembly of existing
building components. NeSy architectures, with their distinct
combination of symbolic reasoning and flexible learning, provide a
viable option for overcoming this critical hurdle. In this paper, we
highlighted some of the most important concepts of both NeSy and
CoGe, showecasing the cutting-edge research trends shaping these
fields, we delve into their diverse techniques and methods. Drawing
upon cognitive science studies and concrete Al-based works, we
illustrate the multitude of possibilities for implementing CoGe within
NeSy. Finally, we discuss the results performed by these studies, their
commonalities, we then present our proposition and address the open
challenges that lie ahead on the path towards true CoGe with NeSy.

Keywords—Inductive Learning - Compositional Generalization -
Neuro-Symbolic Al - Knowledge Representation.

L INTRODUCTION

The fundamental concept of generalization in Al is the ability
to transfer gained knowledge and learning from previous
experiences to deal with novel scenarios and guide actions.
This necessary mechanism reflects the underlying character of
human intellect, notably in terms of CoGe. Our knowledge
representation is naturally compositional [1]. Human cognitive
abilities to solve complex problems and represent abstract
concepts rely significantly on it by applying common and
simpler components learned in a particular context and
attempting to generalize (transfer) them to novel and related
settings via composition functions. Smolensky described this
as “the Central Paradox of Cognition” [2]. The human brain's
limited physical resources have been shown to develop
powerful and versatile cognitive capacities, posing a
well-known issue in neuroscience study. Adopting a CoGe
architecture is critical for machine learning systems looking to
improve their performance and dependability. Pure
connectionist models, although effective, have numerous
significant problems. These include an insatiable desire for
enormous datasets to learn and extract meaningful patterns,
the famed black-box effect, which impairs reasoning

transparency, and the ongoing challenge of efficiently
generalizing to unexpected scenarios. The human brain's
limited physical resources have been shown to develop
powerful and versatile cognitive capacities, posing a
well-known issue in neuroscience study. Adopting a
CoGe architecture is critical for machine learning systems
looking to improve their performance and dependability.
Pure connectionist models, although effective, have
numerous significant issues. These include an insatiable
desire for enormous datasets to learn and extract
meaningful patterns, the famed black-box effect, which
impairs reasoning transparency, and the ongoing
challenge of efficiently generalizing to unexpected
scenarios. Introducing NeSy AI systems, which are
positioned as promising answers to the foregoing
difficulties in practical domains such as healthcare, brain
and behavior modeling, natural language processing [7],
cybersecurity, and privacy [8], but their integration is not
without obstacles. Challenges remain in seamlessly
blending symbolic reasoning with neural networks,
properly encoding information and embedding, and
building models that balance learning and reasoning
skills. Despite these obstacles, the increased curiosity in
the field of NeSy systems is significant. The change from
a single study published before 2016 to about 40
publications published between 2017 and 2021 illustrates
the increasing enthusiasm and changing environment of
NeSy research [3]. The aim of this paper is to reveal the
active research still being conducted to determine how
NeSy Al systems may fit and adopt successfully using the
compositionality —structure, focusing on particular
strategies for greater generalization. It is divided as
follows: Section 2 introduces the NeSy Al, its
categorization, knowledge representation and embedding,
and active research directions. Section 3 discusses the
CoGe, starting ~ with  definitions,  knowledge
representation, highlighting the relation between CoGe,
context-understanding and transfer learning, finishing
with recent researches. Section 4 emphasizes the
combination of NeSy and CoGe by presenting our
classification and relevant works, a cognitive science
research and Al based studies, we also discuss theirs
results and commonalities, we present the future research
directions, our proposition and upcoming implementation



model. Finally, Section 5, holds the paper’s conclusion.

II. NEURO-SYMBOLIC Al

A. Categorization

NeSy Al architecture aims to unify the best of the both
worlds, the neural and symbolic. There are mainly two
principal propositions, the first one was a survey presented by
P Hitzler and S.Bader [6] in 2005 giving to NeSy integration
according to eight dimensions, grouped into three aspects:
Interrelation, Language and Usage, and recently, Henry Kautz
at AAAI 2022 Robert S. Engelmore Memorial Award Lecture
has presented his categorization [5] as six different modes of
integrating symbolic and connectionist approaches:

e Symbolic Neuro Symbolic: the inputs and outputs are
symbols, NLP systems including LLMs like GPT-3.

e Symbolic [Neuro]: neural modules are internally used in a
symbolic problem solver.

e Neuro | Symbolic: neural and symbolic parts focus on
different but complementary tasks.

e Neuro:Symbolic = Neuro: symbolic rules/knowledge are
compiled into the architecture of neural networks.

e NeuroSymbolic: turning symbolic knowledge into
additional soft-constraints in the loss functions of DNNs
(Deep Neural Networks).

e Neuro[Symbolic]: fully integrated systems that embed a
symbolic reasoning system inside a neural engine.

B. Knowledge Representation and Embedding

We have to emphasize how the knowledge is represented
and embedded in pure connectionist, symbolic and NeSy Al
systems, Table 1 summarizes these two aspects of NeSy Al
system.

TABLE 1.
Knowledge Representation and Embedding in NeSy Al
Models Knowledge Knowledge Embedding
Representation
— Representing features.
- continuous  vector
embeddings in a
Connectionist | Sub-Symbolic high-dimensional space.
Models Representations'. — capturing semantic
relationships among
entities.
— Explicit symbols and |- Transforming discrete
Symbolic formal rules. symbols and formal rules,
Models — Represent knowledge into  continuous vector
structurally. representations.

! The internal formats used by Al models to encode information about the
world, they’re more abstract and hidden within the model's internal structure.

NeSy Al Combining symbolic and | Depending on  the
Models sub-symbolic knowledge | model’s architecture and
representation techniques | type.

C. Open Challenges

The author in [1] has presented the upcoming challenges
to overcome in NeSy realm, here are the main ones:

1) Scalability: NeSy systems are still struggling with
large-scale symbolic/logic reasoning.

2) Compositional Generalization: a central aspect of
human intelligence, among the most desirable
characterizations that NeSy systems are expected to offer.

3) Automated Knowledge Acquisition: closely related to
the concept of ‘Learning to Reason’ [4]. NeSy systems
are ignoring two crucial issues: i) how to acquire
contextual knowledge ? ii) how to ensure that the
acquired knowledge is the most suitable for the system’s
functionality ?

1. COMPOSITIONAL GENERALIZATION

A. Definitions

CoGe represents the ability to utilize a finite set of
known components to understand and generate a vast
array of novel combinations in different but related
contexts [9]. These components can be represented as
learned knowledge or concepts relying on methods like
symbolic techniques.

N. Chomsky, in his book “Aspects of the Theory of
Syntax”, defined it as “infinite use of finite means” [17] in
the context of language, grammar, and linguistics. The
combination process is performed systematically and
most of the time hierarchically to keep a comprehensive
meaning and to fit well with the novel contexts.

R. Montague [18] has worked on the compositionality
principle in language, and he claimed that
compositionality requires a relationship between
expressions of a language and the meaning of those
expressions. He introduced the concept of collective and
global compositionality. The human cognitive system's
ability to perform CoGe and transfer learning’ is a
complex interplay of neural mechanisms, inductive
learning processes, and cognitive biases®. These elements
work  together to enable adaptive learning,
problem-solving, and the application of knowledge across
diverse contexts.

B. Knowledge Representation and Key Aspect

2 ML technique that involves leveraging the knowledge gained from
solving one problem and applying it to a different but related problem.

3 Deviation from rationality in judgment, often influenced by subjective
factors that can distort the decision-making.



According to [l], “Our knowledge is naturally
compositional”, in fact, it’s a multifaceted topic that has been
studied in cognitive science. The prevailing view is that the
human brain employs a compositional and distributed
representation of knowledge, depending on the performed task
and the executed context. Table 2 summarize it.

TABLE 2.
Compositional and Distributed Aspects
Aspects Compositional Distributed
Distributed Representation X 4
Sparse Coding* X &
Hierarchy and Compositionality 4 *
Symbolic Representation 4 *
Combination of Features V4 X
Shared Representations 4 X

C. Relation between CoGe, Transfer Learning and
Context-Understanding

The author in [29] unveils the comparison between a
general model that was trained using all contexts against a
system that is composed of a set of specialized models that
was trained for each particular operating context. Authors
proposed a local learning approach based on
context-awareness by training two distinct tasks: classification
and control task, this method uses contextual information to
separate the input space, train and select the suitable ML
models. This solution has showed significant results, it
alleviates bias (domain-specific knowledge) to an approach
that uses a unique general and versatile model.

W. Battaglia and his colleagues [10] highly supported the
idea that “The question of how to build artificial systems
which exhibit combinatorial generalization has been at the
heart of Al since its origins”. Their work focuses on how
graph networks can support relational reasoning’ and
combinatorial generalization. They’ve also explored how
using relational inductive biases® within DL architectures can
facilitate learning about entities, relations, and rules for
composing them. The relational inductive biases are a kind of
transfer learning technique that aim to enhance a model's
ability to understand and reason about relationships. Another
useful example of recent researches that clearly demonstrates

4 Involves representing information using a subset of active neurons for a
given concept or representation.

5 Models that can reason and draw conclusions based on the relationships
between different elements in a given context.

6 Refer to biases that encourage models to consider and exploit relationships
between elements in the data.

the impact of in-context examples on CoGe performance
[11], they carried on with the raising question: “what are
the key factors that can make good in-context examples
for CoGe?”, they studied three potential factors:
Similarity, diversity, and complexity. The experiments
indicate that in-context examples should be structurally
similar to the test case, diverse from each other, and
individually simple.

In essence, this relationship can be summarized as the
following: context-understanding shapes the
compositionality of representations in a specific context,
and leveraging this gained knowledge then acts as an
inductive bias (transfer learning) guiding the model to
generalize compositional rules to new contexts. Figures 1
and 2 provide two distinguish examples about it:

- From words to sentence:
a. Learning Isolated Words:

(she ) [ Red ][ Drive ) [ Car ] [ Slowly ]

Grammar Rules &
Sentence Structure

Subject + Verb + Complement

b. Generalizing to more “She drives a red car slowly™
complex sentence

Figure 1. CoGe Ability in Human Cognitive System

= OOFP Programing Paradigm:
a. Generalization and Inheritance:

T extends class Engineer
i el N \,—l subclass inheritance
nuanm class [I]'DPEI'IIES X ) \'\-'U'Tk U'—
:’::; 3 extends sleep ()
Broep Lt C:‘ | think {);
thimk (J;

“extends” implies
specialization and it
faeilitates the
generalization process
from subelasses to main

main class represents
the general concept and
i's composed from
different subclasses

class Doctor

subclass inheritance
work (;
sleep ()
think (J;

Figure 2. CoGe Ability in Software Engineering

D. Upcoming Challenges

The main question is: “why connectionist and modern
models lack of CoGe ability” 7 1t is mainly due to:
1) Limited Symbolic Representations: struggle with
incorporating symbolic representations and explicit rules,
which are crucial for capturing the compositionality.
2) Lack of Hierarchical Abstraction: CoGe often requires
hierarchical abstraction, where simple concepts combine
to form more complex ones.
3) Implicit Representations: ANNs encode information in
the weights and connections between neurons, leading to
distributed and implicit representations for efficient
learning, it also makes it difficult to interpret what a
specific neuron or group of neurons represent.



IV. COGE THROUGH NESY Al

A. Classification

In this section, we have proposed a classification for

CoGe approaches based on recent works:

1) Neural based CoGe: neural networks are used to learn

compositional structures directly from data:

o Attention Mechanisms: mechanisms like Transformers focus
on specific parts of the data that are most relevant for a
particular task (identify and learn compositional structures).

e Hierarchical Neural Networks: models like CNNs for image
or RNNs for text data process at different levels of
granularity, allowing them to capture both individual
elements and their relationships within a composition.

2) Symbolic based CoGe: encoding compositional knowledge

using symbolic representations like rules or logic:

o Knowledge Graph Embedding: incorporating knowledge
graphs (KGs) to represent domain knowledge symbolically
(entities + relationships), techniques like TransE or RotatE.

e Logical Reasoning Rules: incorporating logic rules into
NeSy models, derived from domain knowledge or expert
insights, guiding it towards compositional structures.

3) NeSy Integration Techniques:

e Neural Modules Augmentation: integrating a symbolic
reasoning module into ANN to guide the learning process,
to ensure it adheres to the symbolic knowledge.

e NeSy Co-Learning: training the ANN and the symbolic
module simultaneously. The symbolic module guides the
ANN towards relevant compositional structures, and the
ANN potentially refine the symbolic knowledge base.

B.  Cognitive Science Research

Starting with some insights drawn from a psychological and
cognitive sciences article released on August 2022 [13], the
authors conducted an experience on 605 subjects (293 female
and 312 male) to discover the determinants and limits of
human transfer learning ability using curriculum learning for
CoGe. They also explored how it might be modeled in a
neural network. They did this by designing a task that required
participants to learn and generalize a mapping function from
symbolic cues to spatial locations. Furthermore, they also find
that adult humans tend to learn composable functions
asynchronously’, and the human ability to handle novelty
(generalization) seems to depend on transfer distance:
near-transfer is when old problems and new ones share
physical features, and it’s the most successful method,
far-transfer is when problems share common structure yet are
superficially distinct, and it’s less successful. In this paper
[12], the authors studied the computational properties
associated with CoGe in both humans and ANNSs on a highly
compositional tasks. Here are the steps:

"Discontinuities in learning that resemble those seen in child development.

e Characterizing the behavioral signatures of CoGe in a
task that varied rule conditions across 64 contexts.

e Analyzing fMRI data® gained from the experience

e Designing pretraining paradigm aided by primitives to
endow compositional task elements into ANNs.

The conclusions derived from this experience are:

e Humans generalize better to tasks with greater
similarity structure to previous tasks (related contexts).

e Pretrained ANNs models exhibit more abstract
representations, excellent generalization performance,
and efficient learning.

C. Recent AI Works

In this section, we’ll present four recent works, in the
first paper. The authors [14] tackled the limitations issue
of DL models when dealing with CoGe, the capability to
learn compositional rules and apply them to unseen cases
systematically, by introducing the Neural-Symbolic Stack
Machine (NeSS)). NeSS combines the expressive power
of neural sequence models with the recursion supported
by the symbolic stack machine. The results have shown
100% generalization performance in four domains: the
SCAN’ benchmark, the task of few-shot learning of
compositional instructions, the compositional machine
translation benchmark, and context-free grammar parsing
tasks. Curriculum Training technique scheme is used
during the training process.

The second research [25] concerns the learning of
compositional rules via neural program synthesis
techniques. The authors propose a NeSy model that can
learn entire rule systems from a small set of examples by
combining neural networks and symbolic program
representations. They demonstrate that their model
achieves human-level performance on a few-shot artificial
language learning task, improves over existing
benchmarks on the SCAN challenge for CoGe, and can
learn to interpret number words across natural languages.

The third paper has been carried out in May 2023 [15],
the two authors addresses the CoGe challenge with
respect to the two specific tasks of word problem-solving
and visual relation recognition and propose a NeSy
solution, using DeepProbLog'’ facing the issue of neural
models and their inability to generalize compositionally,
unless, by providing it with more data that has a sufficient
number of instances of every combination of concepts,
they are interested in. Incorporating task specific
knowledge into purely neural models help address its
inability to generalize compositionally.

§ Functional Magnetic Resonance Imaging, it, provides insights into
which regions of the brain are active during specific tasks.

® Benchmark to assess model's ability in compositional tasks.

!?Neural probabilistic logic programming language that integrates deep
learning through neural predicates.



The fourth paper research has been conducted in last Jan
2024 [16], the authors have proposed a novel approach based
on NeSy architecture called the Compositional Program
Generator (CPG). CPG has three key features: modularity,
type abstraction, and recursive composition, that enable it to
generalize systematically to new concepts in a few-shot
manner. It uses context-free grammar rules to generate a
hierarchical, abstract parse of the input, and generates
rule-specific ~ probability  distribution  parameters  for
probabilistic copy or substitution programs, using curriculum
learning and evaluate on SCAN and COGS benchmarks.

D. Discussion

In the last section, we have listed some recent studies
about the possibility of applying NeSy architecture to handle
the CoGe issue, faced by the current neural network models.
The first scientific research we’ve presented, shows that the
human learns and generalize well compositionally. The second
research confirms this, and follow by attesting that humans
generalize better to tasks with greater similarity structure to
previous tasks (related contexts). They have also compared
how abstract representations are distributed across the entire
cortex in a content-specific way during the execution of the
compositional task with pretrained ANNS.

The recent Al works have showed many commonalities:

e Using NeSy as a foundation architecture to handle the
different components from the input data.

e Curriculum Learning technique used during the training
process for an incremental and structured learning.

e Leveraging pretrained NeSy models like DeepProbLog.

e Relying on specific knowledge as an input data to enhance
the compositionality learning and context-understanding.

e The evaluation task is usually done on two popular
compositionality benchmarks, SCAN and COGS.

e Common application domains: NLP (Natural Language
Processing), semantic parsing, translation and language
understanding, because of its natural compositionality (the
meaning of the sentence equals to the sum of its words).

E. Proposition and Upcoming Implementation

Our contribution lies on a novel NeSy architecture applied
in a new domain field, to tackle the CoGe challenge.

1) Generalization Through Contexts-Representation: Authors
in [21] have defined context based on a corpus of 150
definitions: The context acts like a set of comstraints that
influence the behavior of a system (a user or a computer)
embedded in a given fask. In [22], authors have made a
comparison between contextual and non-contextual features in
ANNs for recommender system, they find out that adding
dynamic environment features (day-time, location, season,
etc...) outperforms the classical model based only on user’s
preferences.

In addition to ANNs , context can be handled relying
on symbolic rules, knowledge graphs or First-Order Logic
(FOL). Example: Rule-based representation: IF (location
= loffice’ AND time = 'weekday' AND device = 'work
computer') THEN (context = 'work'). Using FOL: VX, y
(location(x, 'office') A time(y, 'weekday') A device(z,
'work computer') — context(x, y, z, 'work")).

2) Compositionality through MTL Architecture: Our
model is based on a Multi-Tasks Learning (MTL)
architecture, It consists of training one main task model
(usually a DL one) and a set of related tasks in the output
layer. We try to improve the generalization on the main
task by using the related tasks as an inductive signal
[19][20]. Figure 3 shows this architecture with details.

Task-specific
Layers

> Task 1

" } T ek 2
> Task 3

Figure 3. The MTL Architecture

Shared
Layers

3) Application: Computerizing of Habit-Forming Process:
This 2023 research paper [23] emphasizes the
introduction of ML method that discovers which of many
context variables are associated with behavior and
predicts how quickly habits form (Predicting Context
Sensitivity), applied in two different large panels datasets.

Authors in this 2022 article [24] have proposed a
method to enable intelligent systems to compute habit
strength based on observable behavior, the advantage of
using computed habit strength for behavior prediction was
tested using data from two intervention studies on dental
behavior change.

Comparing to these recent researches, our aim lies on
classifying behaviors into: Sporadic or Habitual ones
(Main Task), another way for analyzing consumer’s
behaviors. In neuroscience. “Habits” are defined as a set
of hierarchical steps: context, cues, action, and reward. To
succeed their modeling, we have summarized it as
follows: Habits = Context [Behaviors (Repetition +
Positive Reinforcement)].

4) Hard Parameters Sharing Approach: it is the most
commonly used approach to MTL in neural Networks.
Following the figure 3 and the habit’s equation, here are
the implementation details:

e Shared Layers: Contextual-Embeddings: Context can



be modeled relying on symbolic rules, knowledge graphs or

First-Order Logic (FOL). Example: Rule-based representation:

IF (location = 'office’ AND time = 'weekday' AND device =

‘work computer') THEN (context = 'work’). Using FOL: Vx,y

(location(x, 'office') A time(y, 'weekday') A device(z, 'work

computer') — context(x, y, z, 'work")).

e Task 01: Sequential Behavior Analysis: leveraging LSTM
algorithm for sequential analysis, Relying on Symbolic
Rules concerning the temporal patterns and recurring
sequences of behaviors (daily or weekly repetition rate).

e Task 02: Positive Reinforcement: relying on Q-Learning
algorithm to support the positive behaviors.

e Task 03: Habit Detection: binary classification algorithm,
classifying behaviors into Habitual or Sporadic ones.

e Hierarchical Training: according to neuroscience, habits
are a natural hierarchical process, curriculum learning is a
promising method to mimic effectively the natural process.

e Loss Functions (LF): e.g., for M tasks, LF = 2 Wi Li, i=1
to M, Li represents each task’s LF, Wi is an assigned weight.

V. CONCLUSION

CoGe is definitely a game-changer characteristic for novel Al
models. To reach this challenge, the NeSy Al systems are
presented as promising methods, and to foster its
implementation, future researches must focus primarily on
integrating reasoning ability into ANNs, and then designing
well suited AI models architectures to handle CoGe. At the
end, regarding its importance, CoGe must be applied in
impactful domains like healthcare, NLP, and computer vision.
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