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Abstract
Autonomous space rendezvous (RDV) is gaining increasing significance in tandem with the advancement

of on-orbit services and operations, such as refueling, debris removal, in-orbit assembly, and transportation.
Several of these applications require the ability to navigate around non-prepared clients, where specific
navigation aids are unavailable.
In this context, vision-based navigation approaches present cost-effective solutions. Furthermore, the recent
strides in deep learning methodologies have enhanced the robustness and performance of image processing.
The considerable advances in on-board computation capabilities, coupled with the concurrent development of
deep learning deployment chains, allows the on-board integration of such approaches. These progresses open
up the opportunity of incorporating deep learning-based vision approaches in navigation solutions for satellite
rendezvous missions.
This paper presents a navigation solution developed with the objective of conceiving an on-board sub-system
able to plan and realize autonomously a rendezvous mission. The conceived end-to-end navigation approach
combines the use of an Artificial Neural Network (able to estimate the positions of keypoints in the processed
images) and of an Unscented Kalman filter (able to bring the knowledge of both geometry and dynamics to
provide relative pose estimation). Particular attention has been paid to develop a robust solution suitable for
an operational use and on-board processor deployment.
Exhaustive efforts have been made to formulate a robust initialization algorithm to ensure the convergence of
navigation. This processing step is indeed critical in an operational environment and constitutes the most
important contribution of this deep learning solution. To improve precision and detect outliers, a specialized
interface between the Artificial Neural Network and the Unscented Kalman filter is proposed. Finally, the
performance of the solution has been thoroughly evaluated using a realistic dataset of approach sequences.

Keywords: Space rendezvous, Image based navigation, Pose estimation, GNC

Nomenclature

∆z
i,k Filter measurement innovation at timestep k

for keypoint i
Ω Client rotation matrix with respect to Local

Orbital Frame
ω Client rotation velocity vector in client frame
ωorb Orbital pulsation
Σ Covariance matrix for keypoints (2× 2)
H Heatmaps estimated by the neural network
Mi Keypoint coordinates in client 3D model
p Modified Rodrigues parameters representa-

tion
PCAM Camera projection matrix
q Quaternion representation
R Rotation matrix from client frame to camera

frame given in camera frame

Sk Filter measurement covariance at time step k
t Translation client frame to camera frame given

in camera frame

Acronyms/Abbreviations
ADR Active Debris Removal. 2
AOCS Attitude and Orbit Control System. 6, 8
CNN Convolutional Neural Networks. 2, 3, 10, 11
CWS Clohessy-Wiltshire. 6
EKF Extended Kalman Filter. 2
IOS In-Orbit Servicing. 2
IP Image Processing. 9
LOF Local Orbital Frame. 5, 6, 8
NAC Narrow Angle Camera. 3
PnP Perspective-n-Points. 3
PSD Power Spectral Density. 9
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Copyright © 2024 by IRT Saint-Exupéry. Published by the IAF, with permission and released to the IAF to publish in all forms.

UKF Unscented Kalman Filter. 2, 3, 8, 10, 11

1. Introduction
With the rise of In-Orbit Servicing (IOS) missions

focused on Active Debris Removal (ADR), satellite
lifespan extension, refueling, and repairing, mastering
space rendezvous has become essential. Space ren-
dezvous demands both high safety standards to meet
stringent debris limitation requirements as well as
autonomy due to limited ground-to-satellite commu-
nication. Consequently, developing safe, standardized,
and cost-effective solutions is crucial. Visual based
pose estimation and tracking for relative navigation
seems promising but remains challenging for a unpre-
pared client. By ”unprepared”, it is meant that the
client satellite has no specific mechanical, communica-
tion or navigation interface for rendezvous. However,
its 3D model is known. The main difficulties related
to visual based navigation are:

• To provide a robust solution compliant with col-
lision risk mitigation requirements.

• To demonstrate capability to manage domain
gap between laboratory or simulated environment
and real space environment that affects image
content.

• To offer a solution that does not require direct
communication between servicer and client satel-
lites.

• To develop algorithms compatible with real time
execution on on-board computer

Historically, most efficient conventional algorithms
for pose estimation relied on Model-to-image match-
ing architectures [1] where handcrafted features were
extracted from image and matched with model repre-
sentations [2, 3]. Many of these solutions are iterative
tracking approaches that require a good prior. Al-
though tracking approaches yield good results, they
are difficult to initialize and are prone to drift or di-
vergence when the initial estimate is incorrect. Addi-
tionally, handcrafted features lack robustness against
variations in background or lighting conditions.

Over the last years, Convolutional Neural Net-
works (CNN) architectures have demonstrated their
advantages for image interpretation. They offer state
of the art performances for pose estimation problems
with good robustness properties [4, 5]. However, their
behaviour can be hardly predicted and their integra-
tion into a real time and critical close loop system

is still a challenge to demonstrate proper robustness
and fault identification.

Initially, research focused on directly estimating
the relative pose of the client as a 6D vector at the
network’s output [6, 7]. However, the behavior of
these architectures is difficult to interpret, and image
processing does not benefit from the information that
would be provided by a navigation filter to improve
pose estimation. State-of-the-art pose estimation gen-
erally relies on dense maps for pixel matching [8–10],
but this typically requires a significant computational
load.

Allowing tighter coupling between image process-
ing and navigation filter, solutions with a reduced
number of 2D keypoints at the output of the network
have been proposed. These works have been inspired
by architectures initially developed for human pose
estimation [11–13].

Image processing outputs need to be filtered out
taking into account temporal dynamic to reach the
proper level of precision and to improve robustness.
As suggested in [14, 15], tightly coupled approaches
that directly interface with 2D localized features in
the image plane are more performant and robust.
These methods are also more versatile, allowing for
potential fusion with other measurements at the filter
level. The main challenge with this approach is the
non linearity of the image measurement model, which
requires the use of Extended Kalman Filter (EKF) or
Unscented Kalman Filter (UKF).

Having a robust estimator of measurement un-
certainty is one of the most important features to
construct a robust solution. In [15, 16], the authors
have developed a post-processing method to estimate
keypoint covariance from heatmaps at the output of
the CNN. However, such handcrafted method can
suffer from limitations when heatmap shapes derive
from learnt gaussian model.

This work is focused on the integration of a CNN
image processing solution for keypoint estimation with
a Kalman navigation filter applied to the last force
manoeuvres before docking (last 200 meters). The
main contributions are the following:

1. The development of a specific image processing
solution based on CNN for keypoint regression

2. The implementation of a tightly coupled Un-
scented Kalman Filter (UKF) integrating image
measurements for collaborative rendezvous

3. The development of a specific CNN head at the
interface with UKF to estimate the measurement
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covariance

4. The demonstration of the end-to-end navigation
solution performances over a dedicated dataset
of sequences

2. Navigation overall architecture
The proposed architecture combines a deep neural

network and a UKF filter. The CNN takes the gray
level image of fixed dimensions 512 × 512 as input
and outputs keypoints coordinates associated to their
covariance estimates.

The navigation filter propagates the kinematic and
orbital dynamics and updates its state based on the
the output from the CNN. The filter is designed for
cooperative rendezvous scenarios where the client atti-
tude is supposed to be controlled close to its nominal
position.

Since keypoint measurement model and kinematic
propagation model are non linear with respect to state
parameters, an Unscented Kalman Filter implemen-
tation is used.

A thightly coupled approach is chosen to interface
the output of the image processing with the naviga-
tion filter. Such an approach, as compared with a
Perspective-n-Points (PnP) (see [17]) algorithm di-
rectly at the output of the image processing has the
following advantages:

• Possibility to fuse complementary information
from other sensors such as range measurements
at filter level

• An increased robustness at Kalman filter level
by identifying bad keypoints. This filtering can
benefit from the dynamic and kinematic model
knowledge or other sensors redundant informa-
tion.

To get optimal performances, the input image is
cropped around the estimated position of the client
(see diagram 1). This crop is initialized at first image
through an iterative process, and then propagated by
the navigation filter to resize the next image samples.

3. Image processing architecture
3.1 Image dataset

The navigation solution has been trained, tuned
and tested using two high fidelity datasets. A first
dataset of singleton images was dedicated to the train-
ing of the image processing neural network. It consists
of a 120000 samples dataset generated with Thales
Alenia Space ©SPICaM software. It is specifically
designed for spacecraft pose estimation ensuring fine

statistical balancing and realistic dynamic ranges us-
ing a complete camera model. The camera model
contains a physically based ray-tracer coupled with a
complete sensor model taking into account key cam-
era limitations. An additional test split is provided
for testing the robustness of the proposed solution.
This dataset has been released and more details are
discussed in the related publication [18].

A second dataset of 160 random approach se-
quences has been generated to test the full navigation
solution. The simulations cover trajectories from 200
to 30m, corresponding to the force motion domain.
The limitation at 30m is due to the simulated Narrow
Angle Camera (NAC), but a similar behaviour is ex-
pected at lower distance. Image generation uses the
SPICaM based rendering tool chain coupled with a
high fidelity numerical orbit propagator. The orbit
propagation is handled using a fine orbit propagator
based on Orekit (Orbit Extrapolation Kit) and takes
into account non linear effects and higher order pertur-
bations such as J2. Spacecraft actuators limitations
and uncertainties are also modelled.

The figure 2 shows the servicer directions viewed
from the client frame for all the generated sequences.

Fig. 2. Servicer directions expressed in client frame

3.2 Deep learning architecture

Keypoints placed on the spacecraft are detected
on the images using a Convolutional Neural Networks
(CNN). The figure 3 summarizes its architecture. This
model has been designed to be compatible with real
time applications. The backbone is composed of a
MobileNet [19] network coupled with a bi-directional
features pyramidal network [20]. The prediction head
is built with few successive convolutional layers, and
delivers for each keypoint an intermediate output that
can be considered as a heatmap H.
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Fig. 1. Diagram of overall navigation architecture

Fig. 3. Image processing architecture overview

3.3 Keypoint estimation

The resulting heatmap H is viewed as the prob-
ability for the keypoint to be present at each pixel.
The keypoint coordinate is regressed as the mean of
the resulting distribution.

[
x̂
ŷ

]
=

1∑N
{i,j}=1 H(i, j)

[∑N
{i,j}=1 H(i, j)i∑N
{i,j}=1 H(i, j)j

]
[1]

3.4 Covariance estimation

Estimating uncertainty at the output of the net-
work is key for providing a robust solution and identi-
fying erroneous measurements at the entrance of the
navigation filter. Uncertainty can be either epistemic,
refering to model uncertainty or aleatoric when as-
sociated to database uncertainty distributions. This
work is focused at estimating epistemic uncertainty
at the output of the network.

Similarly to keypoint head, covariance can be re-
gressed from heatmap by the following differentiable
function (equation 2) where: H(i, j) represents the
heatmap value at position (i, j).

Σ̂ =

1∑N
{i,j}=1 H(i, j)

[
ΣN

{i,j}=1H(i, j)i2 ΣN
{i,j}=1H(i, j)ij

ΣN
{i,j}=1H(i, j)ij ΣN

{i,j}=1H(i, j)j2

]
[2]

Inspired by [21], the covariance is estimated at the
output of the neural network in addition to keypoint
regressed coordinates through negative log likelyhood
formulation under gaussian hypothesis. Recall that
under gaussian assumption, the probability of having
x assuming mean µ and covariance Σ is written as
per equation 3.
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f(x,µ,Σ) =
exp

(
− 1

2 (x− µ)
T
Σ−1 (x− µ)

)
√
(2π)k|Σ|

[3]

Then, the heatmap loss can be expressed as the
negative log-likelyhood as per equation 4.

Lhm(x, x̂, Σ̂) = − log f
(
x, x̂, Σ̂

)
=

1

2
(x− x̂)

T
Σ̂−1 (x− x̂) + log

(
|Σ̂|

)
+const.

[4]

Through this loss, the shape of the heatmap is
constrained to model both the uncertainty and the
average value (see figure 4). This approach has demon-
strated good results even under severe domain gap.

Fig. 4. Example of heatmaps and covariance estimation.
Heatmaps are plotted in blue while covariance are su-
perimposed in green.

The accuracy and the covariance estimation are
studied jointly to evaluate the performances of the
image processing neural network. Figure 5 shows
the consistency between the error and its estimated
covariance. Outliers represent less than 1% of the
estimated data.

Fig. 5. Scatter plot of keypoint error norms, sorted by
ascending estimated standard deviation

3.5 Crop initialization
The model is trained to take a cropped image as

input, with the spacecraft covering the majority of
the image. Nevertheless, without an initial guess of
the bounding box on the full image, it is possible to
use the region enclosing all of the keypoints uncer-
tainties ellipses as a gross prediction of the spacecraft
bounding box.

The initialization process is performed using a sim-
ple loop, where each iteration adjusts the cropping
area. Keypoint estimated covariances reduce thanks
to cropping. Typically, the loop requires three itera-
tions to identify an approximate cropping box that
aligns with the training domain. Figure 6 shows an
example of initialization sequence.

4. Kalman filter
4.1 Orbit propagation model

All further equations are derived in the Local Or-
bital Frame (LOF) defined as in figure 7.

Fig. 7. Definition of Local Orbital Frame (extract from
[22])
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Fig. 6. Initialization sequence, from the left to the right, the yellow box represents the estimated cropping box used on
the next frame

For the presented cooperative usecase, during the
last step of the approach in force motion, client and
servicer are very close to each other (below 200m)
and assumed on an circular orbit. Therefore one can
consider that the traditionnal first order approach
corresponding to Clohessy-Wiltshire (CWS) will be
sufficient to capture the orbital dynamic neglecting
minor perturbations such as J2 and drag. Indeed,
the CWS approximation holds under the following
hypotheses:

• The distance between the servicer and the client
is small compared to the orbital radius

• The orbit is nearly circular

ẍ = 2ωorbż +
1

mc
Fx

ÿ = −ω2
orby +

1

mc
Fy

z̈ = −2ωorbẋ+ 3ω2
orbz +

1

mc
Fz [5]

ωorb =
2π
T is the orbit angular frequency and Fx,

Fy, Fz are the forced applied to the servicer.
Works have also been proposed to tackle the prob-

lem of elliptical orbits by linearizing the equations
around the nominal elliptical orbit. These equations,
as derived by Tschauner and Hempel [23] can be easily
adapted to the proposed filter architecture.

Close form solutions can be obtained for this set
of linear equations. The derived state transition ma-
trices are used to propagate orbit parameters taking

input on-board knowledge of thrust forces applied on
servicer (see [22]).

4.2 Attitude propagation model
The client being cooperative, only small attitude

deviations with respect to its nominal orientation in
the LOF are estimated to increase filter robustness
and detect any client AOCS failure. For what regards
servicer attitude knowledge, star-trackers inertial in-
formation will be one order of magnitude more precise
than image processing information. It is therefore
used as an input to the filter.

Since only small deviations are assumed with re-
spect to nominal client attitude, modified Rodrigues
Parameters (MRP) are used as a 3 dimension represen-
tation. A good overview of these parameterizations,
their advantages and drawbacks is given in [24]. MRP
is singular for rotations of +/-360°, far enough to be
used in the update of the filter with small increments.

p =
1

1 + q0
q1:3 [6]

Note that in [16] and [25] p is defined as 4p so that for
small angles, MRP converges towards Euler angles.
In this work, a factor 1 is kept as per 6.

The time derivative of orientation is non linear
(multiplicative) due to the nature of rotations.

q̇ =
1

2
Ω(ω)q [7]

=
1

2

[
0
w

]
⊗ q [8]
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Where ⊗ denotes the quaternion product and Ω is
defined as:

Ω(ω) =


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 [9]

The propagation equations can be derived when
using MRP expression for attitude, as per [24]:

ṗ = f(p, ω) =
1

2

[
I

(
1− pp⊤

2

)
+ [p×] + pp⊤

]
ω

[10]
For the attitude, the system being non linear, the

state vector is propagated by numerical schemes. A
Runge-Kutta propagation model of order 4 is used.

4.3 Measurement model
Measurements from the image processing corre-

spond to 2D keypoints directly extracted in the image.
Each keypoint in the image is associated to its coordi-
nates in the 3D satellite model. These measurements
are integrated in a ”tightly coupled” way since they
are directly ingested in the Kalman filter.

Fig. 8. A pinhole camera model is implement to project
keypoints from client 3D model to image coordinates.

Image measurements are modeled as following the
pin hole camera model (see figure 8) in the camera
frame:

mx = fx
xc

zc
+ Ux and my = fy

yc
zc

+ Uy [11]

where xc, yc and zc are the keypoints coordinates in
the camera frame, and f and U are camera parame-
ters.

As a generic formulation, each 3D keypoint coor-
dinates can be expressed as:

MS =

xc

yc
zc

 = RMC + t [12]

where MC corresponds to the keypoint coordinates

in client object reference frame.

mi =
Pcam(RMCi + t)

1TZ(RMCi + t)
[13]

Where:

• mi are the 2D positions of 3D points when pro-
jected to the image frame

• R is corresponds to the rotation matrix between
object frame to camera frame

• t is the translation from object reference frame
to camera frame

• MCi is any 3D point corresponding to the object
3D model

• 1TZ corresponds to the projection operator to Z
camera axis

• Pcam is the camera projection matrix:

Pcam =

[
fx 0 Ux

0 fy Uy

]
The previous measurement equations are expressed

in the servicer camera frame and must be related to
the respective attitudes and positions of the servicer
and client. For any coordinates given in the client
frame MC , the quantity is computed in the servicer
camera frame as MS :

MS = q−1
C/S ⊗MC ⊗ qC/S + tSC/S [14]

with

qC/S = qC/LOF ⊗ qLOF/I ⊗ q−1
S/I [15]

and
tSC/S =

− qS/I ⊗ q−1
LOF/I ⊗

X
LOF
S/C

Y LOF
S/C

ZLOF
S/C

⊗ qLOF/I ⊗ q−1
S/I

[16]

qS/I represents the inertial attitude of the servicer
and is given by the on-board inertial filter. qLOF/I =
Ωorbital is the rotation between LOF frame and iner-
tial frame.

4.4 Retained architecture

Finally, the state vector representation is the fol-
lowing:
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Xpos =



XLOF
S/C

Y LOF
S/C

ZLOF
S/C

ẊLOF
S/C

Ẏ LOF
S/C

ŻLOF
S/C


Xattitude =

[
pLOF
C/LOF

ωLOF
C/LOF

]
[17]

X =

[
Xpos

Xattitude

]
[18]

Where XLOF
S/C corresponds to the servicer posi-

tion given in the LOF frame centered on the client.
pLOF
C/LOF are the Modified Rodrigues Parameters rep-
resenting the client orientation with respect to the
Local Orbital Frame (LOF) and expressed in the LOF.
ωLOF
C/LOF is the rotational velocity of the client with

respect to the inertial frame and expressed in the
inertial frame. This representation is suitable for a
kinematic filter. Inertial attitude information from
servicer is easily integrated into the measurement
model through equation 14.

At small client attitude angles and kinematics, the
attitude propagation model is close to being linear.
However, the measurement model is clearly non-linear
and more difficult to being approximated by a linear
function, especially at close distances. Therefore, a
Unscented Kalman Filter (UKF) implementation is
chosen to improve convergence and performance of
the filter.

4.5 Outlier rejection

Inspired by [15, 16], keypoint outliers are identified
and discarded at each filter udpate step based on
Mahalanobis distance using estimated covariances
and filter innovation.

Given the updated covariance at time k Sk, the
Mahalanobis distance of each measured keypoint i is
computed as:

Mi =
√

∆z
i,kS

−1
k ∆z

i,k
⊤ [19]

Where the innovation ∆z
i,k is defined for the measured

keypoint i from the measurement function h and best
state vector estimate at time step k x̃k:

∆z
k = z− h (x̃k) [20]

Assuming gaussian distribution with means and
covariances produced by the image processing algo-
rithm, the Mahalanobis distances of keypoints should
follow a χ law with 2 degrees of freedom. A threshold
can be given over the distance corresponding to the

Fig. 9. Distribution of keypoint Mahalanobis residuals at
the output of image processing. The outlier rejection
method allows to reduce the distribution tail at the
entrance of the navigation filter.

probability that a keypoint be part of the assumed
distribution. All keypoints above this distance are
filtered out as outliers in the sense that the innova-
tion measured does not match the covariance estimate
from the image processing. As demonstrated in figure
9 the method allows to discard measurements in the
keypoint error distribution tail.

4.6 Convergence criteria
The outlier detection based on Mahalanobis dis-

tance can only be useful when estimated covariance
from the filter is valuable. The initialization of the
filter generally relies on poorly a priori initialized co-
variances. Therefore, the outlier rejection function is
only applied after convergence of the UKF. Moreover
a convergence status is also needed at AOCS level
to decide to start the approach as soon as the filter
outputs are stable.

The proposed criteria relies on the 2 following
assertions:

1. The number of keypoints considered as outliers
(based on the criteria presented above) is below
a given threshold

2. The median innovation is below typical keypoint
measurement errors as analyzed over the test
image dataset

5. Performances
Performances are demonstrated over the dataset

of 160 sequences presented in section 3.1.
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The navigation chain performances (including im-
age processing and navigation filter) are analyzed over
the trajectory dataset with additional noises corre-
sponding to on-board knowledge errors affecting the
measurements and propagation models.

Parameter Error type Allocation

Servicer
commanded
thrust

Multiplicative
gaussian

random noise

σ = 0.1%

Servicer
attitude
knowledge

Additive
gaussian

random noise

σ = 10µrad

Initial
position
knowledge

Additive
gaussian

random noise

σ = 1% of
distance

Client
attitude
control
residuals

Additive
gaussian

random noise

σ = 1mrad

To analyze the proper behaviour of the navigation
filter, keypoint residuals are compared at the output
of the Image Processing (IP) and at the output of
the navigation filter (see 10). The navigation filter
efficiently filters out keypoint outliers and improve
residuals. The overall pipeline allows reaching sub-
pixelic keypoint residuals thanks to regression heads.

Fig. 10. Keypoint error distributions (at IP output and
after navigation filter (given in full resolution image
pixels)

The analysis of keypoint residual Power Spectral
Density (PSD) clearly demonstrates a gain of almost
20dB at high frequency.

The pose restitution performances are compared
against mission requirements (see figures 12a and 12b).

(a) Residuals over time

(b) Residual PSD

Fig. 11. Keypoint error residuals (at IP output and after
navigation filter

The most challenging estimate remains the distance
between servicer and client by the nature of image
acquisition process. However, over the other axes, the
requirements are reached.

Figure 13 illustrates that the probability of being
outside relative position requirements in X and Y is
below 1E-3 while more than 70% of the samples are
within requirements in Z axis.
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(a) Position residuals with respect to requirement (1%m of dis-
tance)

(b) Attitude residuals with respect to requirement (1/1000rad
of distance)

Fig. 12. Relative pose residuals with respect to distance
between client and servicer.

Fig. 13. Relative position error distribution with respect
to requirements (outside requirements when above 1)

Regarding the number of processing steps required
to reach the convergence criteria described in 4.6, per-
formances are satisfactory with more than 90% of the
sampled converged in less than 3 seconds (see figure
14). This again demonstrates the proper behaviour of
the UKF filter and the efficiency of the initialization
process.

Fig. 14. Distribution of convergence duration of the navi-
gation filter

6. Discussion
The work performed has demonstrated both:

• The relevance of the proposed image processing
architecture that offers both very good precision
and robustness.

• The adequacy of the UKF keypoint based navi-
gation filter for cooperative scenarios.

The primary limitations are related to the accu-
racy of estimating the relative distance between the
servicer and client satellites. Although a significant
improvement of image processing outputs has been
achieved with the use of a navigation filter, which en-
hances the observability of the range parameter, the
performance still falls short of the required standards.

This issue could be addressed by either incorpo-
rating an additional range measurement sensor or op-
timizing the navigation architecture for better range
estimation.

Regarding robustness with respect to domain gap
between image simulations and real word data, a first
analysis has been achieved in [18] demonstrating the
robustness of such CNN architecture. However, a
demonstration of the navigation chain robustness in
real world conditions, typically on a test bench is still
to be realized.

7. Conclusion
This papers introduces an end-to-end navigation

architecture for vision-based cooperative rendezvous.
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The image processing architecture is based on a light
CNN backbone with specifically designed heads al-
lowing both the regression of image keypoints and
the estimation of error covariance. The navigation
filter architecture proposed uses a UKF implementa-
tion offering proper performances in the presence of
model non linearities. The proposed filter is specifi-
cally developed for cooperative rendezvous where the
client satellite is still under control. Keypoint mea-
surements from image processing are integrated as
observables of the filter together with real time error
estimates. Performances of the end-to-end architec-
ture are demonstrated over a large set of synthetic
trajectories offering the possibility to achieve detailed
analysis of errors distribution and filter behaviour.
Finally, specific developments have been proposed to
solve for the initialization of the filter.
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