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LOW-DIMENSIONAL QUADRATIC RELATIVE

CHARACTER VARIETIES FOR THE PROJECTIVE LINE

MINUS THREE POINTS

CARLOS SIMPSON

Dedicated to my friend Gang Xiao

Abstract. We show that relative character varieties having a fixed
dimension d > 0, for irreducible orthogonal or symplectic local systems
of rank r on P1−{0, 1,∞}, are isomorphic via Katz’s middle convolution
to ones with a bound on the rank r ≤ R(d).

1. Introduction

In this paper we consider the quadratic relative character varieties of local
systems over P1 − {0, 1,∞}. A quadratic local system is an irreducible local
system F such that F ∼= F∨. In this case the bilinear form ( , ) : F ⊗ F →
C is unique up to scalars, nondegenerate, and it is either symmetric or
antisymmetric.

Let r denote the rank of F and introduce the sign ε = ±1 so that the form
is ε-symmetric, i.e. if ε = 1 it is symmetric and if ε = −1 it is antisymmetric.

The monodromy representation of F is

ρ : π1(P
1 − {0, 1,∞}, x) → Gε

where x denotes a basepoint and Gε = O(r) (if ε = 1) or Gε = Sp(r) (if
ε = −1). Let C1, C2, C3 denote the conjugacy classes of the monodromy
transformations around the singular points t1, t2, t3 = 0, 1,∞.

The quadratic relative character variety X irred(r, ε, C1, C2, C3) of irre-
ducible local systems is defined to be the algebraic space quotient of
Irrep(r, ε, C1, C2, C3) by the action of Gε, where

Irrep(r, ε, C1, C2, C3) ⊂ C1 ×C2 × C3

is the variety of triples (A1, A2, A3) of matrices in the given conjugacy classes
in Gε with A1A2A3 = 1 and that generate irreducible representations of the
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fundamental group in GL(r). For the variety of irreducible points we have

dimX
irred(r, ε, C1, C2, C3) = dim(C1) + dim(C2) + dim(C3)− 2 dim(Gε).

Katz defined an operation of middle convolution on GL(r,Ql)-local sys-
tems, that was then described algebraically for GL(r,C)-local systems by
Dettweiler-Reiter [23]. We’ll show here that certain compositions of two
middle convolutions may be interpreted as middle convolution with rank 2
local systems that preserve quadraticity. This gives isomorphisms between
the quadratic relative character varieties for different ranks and conjugacy
classes. As the conjugacy classes in Gε are determined by their correspond-
ing classes in GL(r), Katz’s formulas for the variation of conjugacy classes
under middle convolution yield formulas for these operations here.

Theorem 1.1. There are a series of inequalities given in Lemmas 4.1, 4.2,
4.3, 4.4, 4.5 below, such that any quadratic local system can be brought by
quadratic middle convolution operations to one that satisfies these inequal-
ities, a condition we call numerically MC-minimal. For a given dimension
d ≥ 2 there is a bound R(d) such that any numerically MC-minimal irre-
ducible quadratic local system has rank r ≤ R(d). In particular, for a given
dimension d ≥ 2 there are up to isomorphism only finitely many families—
the parameters being the choices of eigenvalues—of quadratic relative char-
acter varieties of that dimension.

This property is relatively easy to see for the group GL(r) using an easier
version of what we will be doing here, see the discussion in [58, Section 2].
The main point is that the dimension is equal to the area left over after
removing squares whose sizes are the parts in the partitions, from a big
square of size r×r. After reduction using middle convolution the squares fit
into vertical rectangles (what we will call the non-overlapping case below).
As r becomes large, a bound saying that the leftover area is less than a fixed
constant d constrains the configuration. This is similar to our discussion in
Sections 5 and 6 below, and the reader is invited to do it as an exercise.

The difficulty to be treated in the present paper stems from the fact that
the dimensions of the orthogonal or symplectic groups G contain a linear
term, indeed

dim(O(r)) =
r2 − r

2
, dim(Sp(r)) =

r2 + r

2
.

There are similar linear corrections to the dimensions of the conjugacy
classes Ci. The leftover area after subtracting the smaller boxes from the
r × r box therefore satisfies an estimate of the form ≤ r + 2d. A more
intricate argument becomes necessary.

A similar theorem has recently been proven by Domokos for quiver rep-
resentations [27].

Before getting there, we review basic facts about middle convolution, the
parametrisation and dimensions of conjugacy classes in the orthogonal or
symplectic groups, and prove the lemmas showing that reductions using
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quadratic middle convolution operations can be used to attain the bounds
of numerical MC-minimality.

1.1. Motivation. My motivation for this project was the idea of looking
for natural constructions of algebraic surfaces within the theory of character
varieties and parabolic Higgs bundles, with a view towards gaining examples
with automorphisms.

Suppose that the monodromy transformations are semisimple with eigen-
values in the unit circle U(1) ⊂ C∗. This is compatible with the qua-
dratic condition. The paired eigenvalues have nontrivial imaginary part and
come in complex conjugate pairs, and the half-unital eigenvalues ±1 are the
real eigenvalues. The relative character variety X irred(r, ε, C1, C2, C3) has a
Hitchin-type Dolbeault version defined as the moduli space
M stab

Dol (r, ε, C1, C2, C3) of stable strictly parabolic Higgs bundles such that
the dimensions of the graded pieces in the parabolic flags are the parts of
the partitions associated to Ci, that are self-dual with type ε.

We can only mention a selection of references. For moduli spaces of
parabolic Higgs or vector bundles these include [1, 15, 40, 50, 51, 52, 55,
68]. For the theory of G-bundles and parabolic G-bundles these include
[3, 9, 10, 11, 13]. For G-local systems and connections, see for example
[16, 19, 36, 57, 60]. Parahoric structures, generalizing parabolic structures
for other groups such as Gε, are studied in [5, 7, 14, 44, 54]. The theory
of spectral varieties [37] becomes more subtle in the cases of G-bundles and
parabolic structures [4, 34, 35, 56, 64]. A few references for the Kobayashi-
Hitchin correspondence [38] in this context would include [2, 18, 21, 53].
Although we only consider complex groups in the present paper, the vast
topic of real structures [12, 17, 31] is closely related.

The relative character variety is homeomorphic to M stab
Dol (r, ε, C1, C2, C3).

In turn M stab
Dol (r, ε, C1, C2, C3) is an open subset of the moduli space

MDol(r, ε, C1, C2, C3) of S-equivalence classes of semistable objects. If we
assume that the eigenvalues are roots of unity then both the relative char-
acter variety and the Hitchin moduli space may be viewed as components of
the moduli spaces of local systems or Higgs bundles on a Deligne-Mumford
root stack over P1 with three stacky points. The theory in the compact case
then applies [59].

This bigger space has a C∗-action. The limits of orbits as t→ 0 exist, and
for starting points in a dense Zariski open subset, the limits are contained
in the component of the fixed-point set of highest dimension, one-half the
global dimension. We call this the bottom component since it is the minimum
locus of Hitchin’s energy functional.

Over smooth compact curves, the bottom component is the moduli space
of unitary local systems. Over orbifolds, or more generally in the parabolic
case, the bottom component can sometimes be a moduli space of unitary
local systems, or within the Hitchin space it is the moduli space of semistable
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parabolic bundles. The conditions for existence of a stable parabolic bundle
in the bottom component are complicated (see [8] and the references there).

But the bottom component can also be a moduli space of variations of
Hodge structure of some other type. Examples giving compact components
of real group character varieties were constructed by Tholozan and Toulisse
[62].

Natural automorphisms of the relative character variety will typically be
“motivic” in origin, and will consequently respect the full nonabelian Hodge
package. In particular, they give automorphisms of MDol(r, ε, C1, C2, C3)
respecting the C∗-action, and therefore induce automorphisms of the bottom
component. In higher genus Alfaya-Gómez show a converse [1].

These moduli spaces have hyperkähler structures [38, 29, 30, 39, 52]. In
particular, the complex dimensions of the relative character varieties are
even, thus the smallest positive dimensions are 2, 4, . . .. The bottom com-
ponents then have dimensions 1, 2, . . ..

In conclusion, for the case when X irred(r, ε, C1, C2, C3) has dimension
d = 4 we are going to get surfaces, the bottom components, that can have
groups of natural automorphisms.

Our motivation was to begin to go towards the classification of such ex-
amples. From the finiteness of Theorem 1.1, we should be able to compute
the list of possibilities with dimension d = 4 (see Problem 8.2). The ques-
tion of non-emptiness of the moduli spaces is not treated here, but one may
expect that techniques such as cyclic Higgs bundles [21, 58] the very good
property [60], quiver techniques [2, 20, 27, 65], Kostov’s explicit techniques
[42], the results of Pandey [54], Wen [65] and others, should allow to treat
the existence question to a large extent.

A next problem will be to obtain precise descriptions of the bottom com-
ponents as explicit moduli spaces of quadratic parabolic vector bundles or
Hodge bundles.

Automorphisms can come from several different places, including auto-
morphisms of the base curve—in this case P1−{0, 1,∞}, but also automor-
phisms coming from tensoring with rank 1 local systems, and automorphisms
coming from (compositions of) quadratic middle convolution operations, in
the case that those preserve the dimensions and conjugacy classes.

Although the moduli spaces do not often look to be of general type, we
note that the automorphisms will also preserve the wobbly loci [28, 46] and
the pair consisting of the bottom component together with its wobbly locus
is likely going to be of general type.

It will be interesting to see whether there are examples that come close
to Xiao’s bound [66] [67] for the number of automorphisms as a function of
the numerical properties.
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2. Quadratic local systems

We consider local systems on C = P1−{t1, . . . , tk}. For the main theorem
k = 3 but the preliminary remarks can take place for any k.

Following Pandey [54, Definition 2.0.2], say that an irreducible local sys-
tem is quadratic if it is isomorphic to its dual.

Suppose F is irreducible and quadratic. Then Hom(F ,F∨) ∼= End(F) ∼=
C so there is a unique bilinear pairing

( , ) : F × F → C.

The pairing (u, v)′ := (v, u) is therefore the same, up to a scalar, in other
words there is ε ∈ C∗ with

(v, u) = ε(u, v).

As (u, v) = ε(v, u) = ε2(u, v) we have ε2 = 1 so ε = ±1. Thus if ε = 1
the pairing is a nondegenerate symmetric bilinear form and if ε = −1 it is
a nondegenerate antisymmetric bilinear form. Fixing a standard basis over
the basepoint x ∈ C, the monodromy representation

ρ : π1(C, x) → GL(r,C)

factors through the group Gε ⊂ GL(r,C) with Gε = O(r,C) if ε = 1 and
Gε = Sp(r,C) if ε = −1. In the latter case r has to be even.

If we start with a quadratic local system and do a middle convolution
with a quadratic convolution kernel L that is MC-invertible (i.e. convolution
with L admits an inverse), then the result is again a quadratic local system
(Proposition 3.2).

Definition 2.1. We say that an irreducible quadratic local system is MC-
minimal if the rank does not decrease under middle convolution with qua-
dratic MC-invertible convolution kernels.

We are going to look for restrictions on the monodromy data of MC-
minimal local systems, in the case k = 3. Considering various kinds of
middle convolutions with local systems L will give a collection of inequalities
on the eigenvalue multiplicities. Middle convolution will be discussed in
more detail in Section 3.

2.1. The quadratic relative character varieties. Suppose CGL
i are con-

jugacy classes in the general linear group GL(r). Let C
GL
i denote their clo-

sures. Let X (r, C
GL

1 , . . . , C
GL

k ) denote the closed relative character variety,
the closed subset of the character variety of the free group π1(C, x) consist-
ing of representations whose monodromy transformations at the points ti are

in C
GL
i . This is an affine variety, defined as the GIT quotient of the closed

affine subvariety of C
GL
1 ×· · ·×C

GL
k , consisting of tuples whose product is 1,

by the action of GL(r). Recall from the theory of the character variety [47]
that there is a Zariski open subset whose points parametrize isomorphism
classes of irreducible representations. In this subset we can further take a
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Zariski open subset whose points parametrize representations such that the
monodromy transformations are in Ci. This yields a Zariski open subset

X
irred(r, CGL

1 , . . . , CGL
k ) ⊂ X (r, C

GL

1 , . . . , C
GL

k )

whose points parametrize isomorphism classes of irreducible local systems
on C = P1−{t1, . . . , tk} whose local monodromy transformations are in the
conjugacy classes Ci.

Suppose now given ε = ±1 and suppose given conjugacy clases C1, . . . , Ck

in the group Gε ⊂ GL(r) of automorphisms preserving the standard ε-
symmetric bilinear form. Let CGL

i denote the conjugacy classes they gen-
erate in GL(r). These have the property that they are self-dual. Recall
[43, 63, 32] that the specification of CGL

i and ε determines uniquely the
conjugacy class Ci ⊂ Gε.

Remark 2.2. Note that there are conditions on the CGL
i , depending on

ε, for the existence of Ci [43, Section 2.2], [63, Theorem 1.3.4] [61]. In
particular, Ci might exist for one value of ε but not for the other one.

Proposition 2.3. There is a quasiprojective variety whose points parame-
trize Gε-isomorphism classes of representations

X
irred(r, ε, C1, . . . , Ck) :=

ker
(

(C1 × · · · × Ck)
irred → Gε

)

Gε

where the superscript irred denotes representations that are irreducible in
GL(r). The map

X
irred(r, ε, C1, . . . , Ck) → X

irred(r, CGL
1 , . . . , CGL

k )

is a closed embedding. The union of the (one or two cf Remark 2.2) images
is the fixed point set of the involution F 7→ F∨ on the GL(r) character
variety.

Proof. The construction is classical in the same way as was described above
for GL(r). The points of the GIT quotient parametrize closed Gε-orbits,
and a Gε-local system whose associated GL(r)-local system is irreducible,
is in a closed Gε-orbit (the following argument may be used to show this).

Suppose given two representations ρ, ρ′ : π1(C, x) → Gε which are con-
jugate as irreducible representations into GL(r). Thus, there is g ∈ GL(r)
such that gρ′(a) = ρ(a)g for all a ∈ π1(C, x). Let g

∗ denote the adjoint with
respect to the bilinear form. Then for any vectors u, v

(u, ρ′(a)−1g∗gρ′(a)v) = (gρ′(a)u, gρ′(a)v) = (ρ(a)gu, ρ(a)gv) = (u, g∗gv)

so ρ′(a)−1g∗gρ′(a) = g∗g. This holds for any a and since ρ′ is irreducible
it implies that g∗g is a scalar λ1. Let α be a square-root of λ−1, then
(αg)∗ = (αg). Thus αg ∈ Gǫ intertwines ρ and ρ′.

This shows that the map from the Gε to the GL(r) character variety is
an inclusion on the level of points. We also know that it is a finite map
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in general (the Zariski open subset for Gε is pulled back from the one for
GL(r)), and both varieties are smooth, so it is a closed embedding.

The image is contained in the fixed point set of F 7→ F∨, and on the
other hand any point in the fixed point set is by definition a quadratic local
system of one of the two types ε = 1 or ε = −1. This gives the last statement.
Notice that there might be cases where the subset is empty for one of the
ε but not for the other one. Also, we are not making any statement here
about connectedness of these pieces of the fixed point set. �

Lemma 2.4. The dimension the quadratic relative character variety, if it
is nonempty, is

dimX
irred(r, ε, C1, . . . , Ck) = dim(C1) + . . .+ dim(Ck)− 2 dim(Gε).

Proof. We give a conceptual proof that doesn’t depend on calculations with
constructible sheaves, however one may also refer to [41]. Irreducibility of
the local systems will imply the vanishing of the obstruction space; note
that without this assumption it is not easy to get a bound on the size of the
obstruction space, see [33].

Imagine the same situation on a curve C whose compactification C has
high genus g but still with k punctures. The formula for the dimension is
the same, plus 2gdim(Gε). Also, the formula for the dimension is h1 of a
certain sheaf controlling deformations with fixed conjugacy classes, whose
local structure at the singularities is the same for curves of any genus. The
obstruction space is h2 of this sheaf. There is a Verdier duality between h2

and h0. The h0 in question is the dimension of the stabilizer of the repre-
sentation in Gε, as can be noted from the fact that both the dimension of
the stabilizer and the obstruction space are 0 when g ≫ 0, plus the fact that
whatever the relationship is between these two, it comes from local contri-
butions at the punctures so it is independent of g. We conclude that the
obstruction space vanishes for quadratic local systems over P1−{t1, . . . , tk}
that are irreducible and hence have 0-dimensional stabilizer group. Then by
the same type of argument, the h1 is equal to the Euler characteristic of this
sheaf which again decomposes as 2gdim(Gε) plus a term that depends only
on the local structure. This is therefore equal to the stated formula when
g = 0. �

2.2. Conjugacy classes in the orthogonal and symplectic groups. In
order to apply Lemma 2.4 we need to know the dimensions of the conjugacy
classes. This is classical [61], we follow the references Topley [63] and Kraft-
Procesi [43], and try to adopt a notation close to theirs.

Fix ε = ±1. Let V be an r-dimensional vector space with a nondegenerate
ε-symmetric bilinear form [43, Section 1]. The group Gǫ of automorphisms
of V preserving the form is the orthogonal group if ε = 1 and the symplectic
group if ε = −1. We have

dim(Gǫ) =
1

2

(

r2 − εr
)

.
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The group Gǫ was denoted G(V ) in [43] and K in [63].
A conjugacy class of Gǫ is determined by the conjugacy class it generates

in GL(V ) [43, Section 2.2]. This in turn is determined by a partition λ of r
and a collection of eigenvalues one for each part of the partition. Nontrivial
unipotent parts arise when there are several parts for the same eigenvalue.

The collection of eigenvalues with multiplicities is invariant under the
automorphism z 7→ z−1. It is convenient to identify two types of eigen-
values that we’ll call half-unital, preserved by inversion, and paired, when
non-preserved by inversion. The half-unital eigenvalues are either 1 or −1,
whereas any other eigenvalue a 6= ±1 is paired. When a is paired, the Jor-
dan normal forms at a and a−1 are identified. As the partitions we use are
the duals of the Jordan normal form partitions, the pieces of the partitions
at a and a−1 are identified.

In our discussion, the phenomenon of nontrivial unipotent parts at paired
eigenvalues can safely be ignored, because there will be no difference between
parts having the same paired eigenvalues and those having distinct ones in
the formulas for the dimension.

There can be two half-unital eigenvalues 1 and −1. We need to consider
the case where there are nontrivial unipotent parts at these eigenvalues,
even if we originally start with semisimple conjugacy classes, because such
unipotent parts can arise during the middle convolution reductions. We
note also that recent work in mathematical physics has a focus on nontrivial
unipotent parts [6, 64].

We are therefore interested in the dimension of the conjugacy class of a
unipotent element of Gǫ. For the −1 eigenvalue the dimension formula is
the same.

For this section let us now consider a unipotent element with partition
r = λ1 + . . .+λd with λ1 ≥ . . . ≥ λd. The partition η giving the dimensions
of the Jordan blocks is the dual of λ, so λj is the number of parts of η, i.e.
the number of Jordan block sizes, that are ≥ j. In Kraft-Procesi [43, Section
2] the notation is λ = η̂ and |η| = r.

The formula for twice1 the dimension of the centralizer Z of an element
in the conjugacy class as given in [43, Section 2.4] is

2 dim(Z) =
∑

i

(η̂i)
2 − ε#{j, ηj odd}.

Below we will replace η̂i by λi.
We can count the number of j such that ηj is odd as follows. The number

with ηj = 1 is λ1 − λ2. The number with ηj = 3 is λ3 − λ4, and so forth.
Thus, the number of indices with ηj odd is

(λ1 − λ2) + (λ3 − λ4) + . . . = −
∑

(−1)iλi.

1Dimensions will be multiplied by 2 in order to avoid too many fractions in the
notations.
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This gives

2 dim(Z) =
∑

i

(λi)
2 + ε

∑

i

(−1)iλi.

For the case of a conjugacy class Ci that is not necessarily unipotent, we

introduce the following notations. Let mj
i be the parts corresponding to

paired eigenvalues. They occur in equal pairs consisting of the eigenvalues
and their inverses. We count each pair only once, and order them so that
m0

i is the biggest one.

Let eji and f ji be the parts of the partitions corresponding to the half-
unital eigenvalues σi and −σi respectively for σi = ±1 (see below). They
start with j = 0 and are ordered by

e0i ≥ e1i ≥ . . . , f0i ≥ f1i ≥ . . . ,

and choose σi to be the eigenvalue such that e0i ≥ f0i .
In the semisimple case there are just one multiplicity e0i and f0i for each

eigenvalue, and σi is chosen as the eigenvalue with the biggest multiplicity
e0i .

The partition relation is

r =
∑

j

eji +
∑

j

f ji + 2
∑

j

mj
i

where the factor of 2 is because we use mj
i for the multiplicities of both

paired eigenvalues aji and (aji )
−1.

We have seen above the formula for the dimension of the centralizer of
each unipotent block. These add together to give the dimension of the
centralizer Zi,

2 dim(Zi) = 2
∑

j

(mj
i )

2 +
∑

(eji )
2 − ε

∑

j

(−1)jeji +
∑

(f ji )
2 − ε

∑

j

(−1)jf ji .

The change of sign for the linear term here is due to the fact that we changed
indexing so that it starts with j = 0.

Proposition 2.5. Suppose F is an irreducible quadratic local system of rank
r and of type ε. Let k denote the number of singular points. The dimension
at F of the relative character variety X irred(r, ε, C1, . . . , Ck) of type ε qua-
dratic local systems with the same local monodromy transformations as F ,
multiplied by 2, is

(k−2)r2−2
∑

i,j

(mj
i )

2−
∑

i,j

(eji )
2−

∑

i,j

(f ji )
2−ε



(k − 2)r −
∑

i,j

(−1)jeji −
∑

i,j

(−1)jeji



 .

Proof. This is Lemma 2.4 rewritten using the expressions for the dimensions
of the conjugacy classes discussed above. �

Note that there is a case where the O(r)-conjugacy class is disconnected
and splits into two SO(r)-conjugacy classes, see [43, Section 2.3]. As we are
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concerned for the moment with calculating dimensions and getting bounds,
we do not consider this distinction here and look at the O(r)-conjugacy
class that is determined by the GL(r)-conjugacy class it generates. The
disconnectedness phenomenon will of course be interesting when it comes to
computing examples.

3. Middle convolution

In this section we consider the case of local systems over C := P1 −
{t1, . . . , tk}, whereas in the remainder of the paper k = 3.

Let C := P1 with its divisor D = t1 + . . . tk of marked points.
Let X be the blow-up of C × C at the points (ti, ti) along the diagonal.

Let ∆ ⊂ X be the divisor consisting of

∆ = T + (H1 + . . .+Hk) + (U1 + . . .+ Uk) + (V1 + . . .+ Vk)

where H = H1 + . . . +Hk is the strict transform of D × C, V is the strict
transform of C ×D, T is the strict transform of the diagonal, and U is the
exceptional divisor.

Let p, q : X → C come from the first and second projections respectively.
Thus, H is horizontal for q and V is vertical for q.

Let j : X →֒ X be the complement of ∆. Let po and qo be the restrictions
of p and q to X. Let jo denote the restriction of j to the open subset
C × C ⊂ X, and let q′ denote the restriction of q to this open subset.
Suppose L is a local system on X that will be called the convolution kernel.
Define

MC(F , L) := R1q′∗(j∗(p
o,∗F ⊗ L))

for a local system F on C = C −D. Thus, MC(F , L) is a local system on
C too. Notice, in this formula, that j∗ is not derived, indeed it is the middle
extension that leads to the terminology for Katz’s construction.

We say that a convolution kernel L is MC-invertible if there is another
local system L′ such that MC(MC(F , L), L′) ∼= F . We recall that this is
the case for rank 1 local systems [41, 23].

Remark 3.1. If L is MC-invertible and if F is irreducible then MC(F , L)
is irreducible.

If the convolution kernel is quadratic then the middle convolution opera-
tion preserves quadraticity:

Proposition 3.2. The dual local systems are related by the formula

MC(F , L)∨ ∼=MC(F∨, L∨).

In particular, if F and L are quadratic then so is MC(F , L). The operation
F 7→MC(F , L) will be called a quadratic middle convolution.

Proof. This was noted for rank 1 convolution kernels in [26, Remark 3.1.3].
The same holds in general, indeed middle convolution is obtained by com-
posing together several operations on perverse sheaves over C = P1 or X
that commute with Verdier duality. �
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Katz’s book [41] and several subsequent references were mainly about
the case when the convolution kernel has rank 1. The case of higher rank
convolution kernels was of course envisioned in [41] and was studied for
example in [26, 48, 49, 25].

We start by looking at the rank 1 case, but in order to get an operation
preserving quadraticity and acting on the eigenspaces of eigenvalues different
from ±1, it will be useful to look at convolution kernels of rank 2 coming
from classical hypergeometric local systems.

3.1. Rank 1 convolution kernels. The reductions using middle convolu-
tion in our case will pass through local systems with non-semisimple mon-
odromy, even if we start with semisimple monodromy. Therefore, we need
notation for the Katz middle convolution, involving convolution kernels L
of rank 1, for local systems with general monodromy conjugacy classes as
was originally done by Katz [41], see also Dettweiler-Reiter [22, 23, 24].

Fix an integer r, the rank of the local system. A conjugacy class in GL(r)
is determined by the following data: a partition r = λ1+ . . .+λk denoted λ,
together with a collection of complex numbers a1, . . . , ak, up to simultaneous
permutations of the two. No condition of distinctness of the ai is made. This
determines a Jordan normal form in the following way. For each eigenvalue a
(one of the ai’s), let e

0(a), e1(a), . . . , ek(a)(a) be the collection of parts of the
partition λ whose associated eigenvalue is a, ordered by e0(a) ≥ e1(a) ≥ . . ..
This is a partition of r(a) := e0(a) + e1(a) + . . . which is the rank of the
a-generalized eigenspace. Take the dual partition of that, and use that to
determine the sizes of the Jordan blocks. Thus, ej(a) is the number of
Jordan blocks of size ≥ j for the eigenvalue a. We note that this is similar
to Katz’s notation in [41, Section 6.0.2].

The dimension of the conjugacy class in GL(r) is r2 − 2−
∑

λ2i . So, this
notation behaves as if we were speaking of semisimple conjugacy classes with
the λi being the multiplicity of the eigenvalues.

The operation of middle convolution with a rank 1 local system also be-
haves as if the monodromy were semisimple, with the only caveat being that
we choose the largest part of the partition corresponding to the distinguished
eigenvalue at each point.

Suppose F is a local system. Let λ(i) = (λ1(i), . . . , λr(i)) be the partition
(some of the λj(i) may be zero) and a1(i), . . . , ar(i) the eigenvalues of the
monodromy of F at ti. These numbers take on arbitrary values in case
λj(i) = 0 but by “eigenvalue” we only mean the values aj(i) for which
λj(i) > 0.

A rank 1 convolution kernel β is characterized by specifying the horizontal,
vertical and diagonal eigenvalues βHi , βVi and βT in C∗, subject to the
conditions that the product of the βHi , times βT , equals 1; and similarly
the product of the βVi , times βT , equals 1.

We call αi := (βHi)−1 the distinguished eigenvalue at the point ti. Say
that the index j is distinguished at ti if aj(i) = αi and if λj(i) is the largest
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(nonzero) part with this eigenvalue, with j being the minimal value in case
of equalities between the largest parts. There is a unique distinguished index
at each point for which αi is among the eigenvalues.

Let δi := λj(i) in case j is distinguished at i, and set δi := 0 if αi is not
an eigenvalue. Define

δ = δ(F , β) := r −
∑

i

δi.

Then the middle convolution operation sends the local system F with given
partition with notations as above, to a new local system F ′ of rank r′ = r+δ
with new partition data determined as follows. We define a new partition
by setting λ′j(i) := λj(i) if j is not distinguished at i; and λ′j(i) = λj(i)+δ if
j is distinguished at i. If there is no distinguished index at i then one notes
that δ ≥ 0; if δ > 0, we introduce a new part of size δ indexed by j = r+ 1.

The eigenvalue associated to the distinguished part at ti is β
Vi .

For any non-distinguished part j at ti, if aj(i) was the associated eigen-
value for F then the new associated eigenvalue for F ′ is

a′j(i) = βHiβViβTaj(i).

In the semisimple case and under the conventions in place in the exposition
of [58] designed to guarantee that the monodromy of F ′ is also semisimple,
it is easy to see that the middle convolution operation satisfies the above
transformation rules. In the general case, that is also true by [41] as we
shall state in the next proposition. This process may split off the top part
for the distinguished eigenvalue to give a part that no longer has the same
eigenvalues as the other parts that were associated to the distinguished
eigenvalue. And, on the other hand, it can bring together two parts that
previously were associated to different eigenvalues.

We note that if F is irreducible then the size of the new part at eigenvalue
βVi , namely λj(i) for αi = (βHi)−1, is greater than or equal to the λu(i)
for an eigenvalue au(i) such that βHiβViβTau(i) = βVi . Indeed the latter
condition means that βHiβT au(i) = 1. Say λv(i

′) = δi′ for i′ 6= i are
the largest parts associated to the eigenvalues av(i

′) = (βHi)−1. Then the
product of the av(i

′) is βTβHi , so the product of the av(i
′) with au(i) is 1.

Irreducibility thus implies that

λu(i) +
∑

i′ 6=i

λv(i
′) ≤ (k − 2)r.

We have

δ = (k − 2)r − λj(i)−
∑

i′ 6=i

λv(i
′)

so δ + λj(i) = (k − 2)r −
∑

i′ 6=i λv(i
′) ≥ λu(i). This proves the statement

claimed at the start of this paragraph.
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That means that when we add the new part as described above, it au-
tomatically goes to the first place in the ordered list of parts having the
eigenvalue βVi .

Proposition 3.3. The above process describes the modification of conjugacy
classes in all cases for which the rank 1 middle convolution is defined, that
is to say whenever βT 6= 1.

Proof. This is seen from the summary of the effect of Katz’s operation [41,
Sections 6.0.13, 6.1.7]. Dettweiler and Reiter state that the same formulation
holds for their version of the middle convolution which is the one we are using
here. �

The following principle introduced in [41] is recorded here since it will be
used often in the description of middle convolution operations.

Principle 3.4. Suppose ai are distinguished eigenvalues for an irreducible
rank r ≥ 2 local system F , of multiplicities λi at the points t1, . . . , tk. Sup-
pose δ := (k − 2)r − λ1 − . . . − λk satisfies δ < 0. Then for any rank 1
convolution kernel L with βHi = a−1

i , we have βT 6= 1 so the middle convo-
lution with L is defined.

Proof. If βT = 1 then there is a rank 1 local system M on P1 − {t1, . . . , tk}
with eigenvalues a−1

i at the points ti. The Euler characteristic of the middle
extension of M∨ ⊗ F is at least −δ > 0. Thus, either h0(M∨ ⊗ F) > 0 in
which case there is a nonzero mapM → F , or else h2c(M

∨⊗F) > 0 in which
case, by duality, there is a nonzero map F → M . Either one of these is a
contradiction to irreducibility of F . �

3.2. Hypergeometric convolution kernels. A main observation leading
to the reduction steps in the next section, is that the composition of two
middle convolutions with rank 1 convolution kernels will in general be a
middle convolution with a higher rank convolution kernel. Notice that the
composition formulas in [41, 23, 24] concern a specific choice of horizontal
and vertical eigenvalues in which case the composition corresponds again to a
rank 1 convolution kernel. In the present section we envision a case, sufficient
for our purposes, where the composition corresponds to a convolution kernel
of rank 2 coming from a classical rank 2 hypergeometric local system on
P1 − {0, 1,∞}.

In this section, the assumption k = 3 is in effect.
Suppose U is a rank 2 hypergeometric local system over P := P1 −

{0, 1,∞} such that the monodromy transformation over 1 is the identity
plus a matrix of rank 1. For the quadratic case this it is either unipotent or
it has eigenvalues ±1.

Pull it back by a map f : X → P to get the rank 2 local system L = f∗(U).
Use the map f , extending to the blown-up compactification X , that sends
the divisors H1 and V2 to 0, V1 and H2 to ∞, and T to 1. Note that L is
trivial along H3 and V3.
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Along T , it has monodromy transformation that is the identity plus a
rank 1 matrix.

The rank of F ′ is obtained by calculating the middle cohomology of the
fiber, that being the tensor product of U (moved to have singularities at t1,
t2 and the diagonally moving point) with F . The rank of cohomology on
the open curve is 4r, the factor of 4 comes from two for the cohomology on
P1 minus four points, times two for the rank of U . The rank of the middle
cohomology is then obtained by subtracting the dimensions of the local fixed
parts.

The fixed part at the diagonal point has dimension r, indeed it comes by
tensoring the nontrivial unipotent rank 2 piece by a constant vector space
of dimension r and this has r-dimensional spaces of fixed or cofixed vectors.

The fixed part at t3 is just the fixed part in the monodromy of F . Denote
by a, a′ and b, b′ the eigenvalues of the monodromy of U at 0 and ∞, thus
the eigenvalues of L along H1 are a, a′ and the eigenvalues of L along H2

are b, b′. Then the fixed part at t1 comes from the (a)−1-eigenspace and the
(a′)−1-eigenspace of the monodromy of F at t1, and similarly using (b)−1

and (b′)−1 at t2.
Introduce the following notation:

δ(L,F) := r(F)− r(MC(F , L)).

At each point ti there is a set of distinguished eigenvalues, defined as the
complex numbers α such that δ(L,F) is different from δ(L,F ⊗ A) for a
generic rank 1 local system, when F has α among its eigenvalues. The
distinguished eigenvalues are thus invariants of the middle convolution op-
eration MC(−, L). We see from the previous description that if L = f∗(U)
with U having monodromy the identity plus a rank 1 matrix at 1, and hav-
ing eigenvalues a, a′ at 0 and b, b′ at ∞, then the distinguished eigenvalues
of MC(−, L) are (a)−1 and (a′)−1 at t1, (b)

−1 and (b′)−1 at t2, and 1 at t3.

Lemma 3.5. In the above setting, the sets of distinguished eigenvalues of
the operation MC(−, L) determine the hypergeometric local system U and
hence the convolution kernel L = f∗(U).

Proof. A classical rank 2 hypergeometric system is determined by its local
monodromy transformations. It is therefore determined by its sets of local
monodromy eigenvalues, since the local monodromy has to have a nontrivial
unipotent part in case the two eigenvalues are equal. We have seen above
that the local monodromy eigenvalues of U are the inverses of the distin-
guished eigenvalues of MC(−, L) at t1 and t2. �

Proposition 3.6. Consider the composition of two middle convolution op-
erations MC(−,M) and MC(−, N) where M and N are rank 1 convolution
kernels, having trivial eigenvalues at one of the points say t3. In other words,
βH3

M = βV3

M = βH3

N = βV3

N = 1.
One possibility is that the composition is the identity up to tensoring with

a rank 1 system. Otherwise, there is either L of rank 1 or a classical rank
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2 hypergeometric local system U leading to the pullback convolution kernel
L = f∗U defined as above, such that

MC(MC(F ,M), N) ∼=MC(F , L)⊗ Σ

where Σ is a rank 1 local system on P1 − {t1, t2}.
The local monodromy transformations of U , and hence the isomorphism

class of U , are determined by the effect of the composed middle convolution
on the ranks and local monodromy data. If the local data vary in a way
compatible with quadraticity, then L was quadratic and Σ has eigenvalues
±1.

Proof. Consider the diagram

(C × C × C)′′

a

zztt
tt
tt
tt
t

b

$$❏
❏❏

❏❏
❏❏

❏❏

(C × C)′

p

{{✇✇
✇✇
✇✇
✇✇
✇ q

&&◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆

(C × C)′

r

xx♣♣
♣♣
♣♣
♣♣
♣♣
♣♣ s

##●
●●

●●
●●

●●

C C C

where C = P1 − {t1, t2, t3}, (C × C)′ is the complement of the diagonal in
C×C, and (C×C×C)′′ is the complement of the big diagonal in C×C×C.

The two convolution kernels are rank 1 local systemsM andN on (C×C)′.
The composition of the two middle convolution operators is obtained by
taking F , pulling back by p, tensoring with M , taking middle push-forward
by q, pulling back by r, tensoring by N , and taking middle push-forward
by s. Do the pullbacks, middle pushforwards, and tensor products in the
category of perverse sheaves on C = P1, C ×C and C × C × C.

By comparing with the middle extensions of the local systems on big open
subsets, the above process is the same as pulling back by pa to C × C ×C,
tensoring with a∗(M)⊗ b∗(N), and doing a middle pushforward by sb to C.
On the other hand, we may factor pa and sb into a diagram of the form

(C × C × C)′′

pa

{{①①
①①
①①
①①
①

w

��

sb

##❋
❋❋

❋❋
❋❋

❋❋

C (C × C)′
uoo v // C

where the middle vertical arrow is projection forgetting the middle factor.
The composed operation described above is the same as first pulling back
F along u, tensoring with K, and pushing forward along v, where the con-
volution kernel is

K = R1w!∗ (a
∗(M)⊗ b∗(N)) .
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The fiber of w over a general point (x, z) ∈ C × C is the curve Cx,z =
P1 − {t1, t2, t3, x, z}. The fiber of K over (x, z) is therefore the middle first
cohomology of Cx,z with coefficients in a∗(M) ⊗ b∗(N) (by which we mean
this restricted to the fiber in question, a notation that will be left out in
what follows). This latter is the tensor product of the restrictions Mx and
Nz.

Let α1, α2 and α3 = 1 be the inverse horizontal eigenvalues of M , that is
βHi

M = (αi)
−1. The vertical eigenvalues of M combine with the horizontal

ones of N so we may as well assume that βVi

M = (αi)
−1 too. We have

βTM = α1α2.
Similarly let ψ1, ψ2 and ψ3 = 1 be the inverse horizontal eigenvalues of N

so that βHi

N = (ψi)
−1. Again, the vertical eigenvalues of N may be absorbed

into Σ so we can say βVi

N = (ψi)
−1, and βTN = ψ1ψ2.

Now Mx has eigenvalues (αi)
−1 over t1, t2 and 1 over t3, with eigenvalue

α1α2 over x. Similarly, Nz has eigenvalues (ψ1)
−1 and (ψ2)

−1 over t1, t2 but
ψ3 = 1 again over t3, and ψ1ψ2 over z.

The rank 1 local system a∗(M) ⊗ b∗(N) restricted to the fiber Cx,z has
trivial monodromy at the point t3. Thus, the point t3 may now be ignored
for the middle direct image of a∗(M) ⊗ b∗(N) by w, so this middle direct
image has rank 2 and we are (usually—see below) in the classical picture of
the hypergeometric rank 2 local system obtained as a higher direct image of
a rank 1 local system along a map with four singular points in the fibers. The
monodromy at t1 is (α1)

−1(ψ1)
−1, the monodromy at t2 is (α2)

−1(ψ2)
−1, the

monodromy at x is α1α2 and the monodromy at z is ψ1ψ2. The product of
these four is 1 as is required.

Existence of MC(−,M) and MC(−, N) contains implicitly the assump-
tions that α1α2 6= 1 and ψ1ψ2 6= 1. If both α1ψ1 and α2ψ2 were equal to 1
then it would be the case considered by [23] of middle convolution by inverse
convolution kernels, where the composition is the identity. Otherwise, if one
of these is equal to 1 then the higher direct image has rank 1 and we are
in the case where U has rank 1. We may therefore assume that all four of
the eigenvalues of a∗(M)⊗b∗(N) are nontrivial, yielding the hypergeometric
picture.

Pursuing the computation would involve looking at how the hypergeomet-
ric system is tensored with rank 1 systems on the input and output sides.
This is left as an exercise.

Instead, by Lemma 3.5, the eigenvalues and hence the isomorphism class
of the hypergeometric local system U are determined by the effect of F 7→
MC(MC(F ,M), N) on local monodromy data.

If the effect on local data is compatible with quadraticity, then the sets
of distinguished eigenvalues of MC(−, L) are invariant under z 7→ z−1,
and this implies that L is quadratic. The operation MC(−, L) therefore
preserves quadraticity. The eigenvalues of Σ are seen from the effect on
local monodromy data, so if the effect of the composition of MC(−,M) and
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MC(−, N) is compatible with quadraticity then −⊗Σ must be compatible
with quadraticity, implying that the eigenvalues of Σ are ±1. �

Corollary 3.7. A pullback rank 2 local system L = f∗(U) obtained from a
classical rank 2 hypergeometric U , is an MC-invertible convolution kernel.

Proof. Any such L occurs in the situation of the proposition, for an appro-
priate choice of M,N . Each rank 1 convolution kernel is MC-invertible, so
the composition of the two middle convolution operations is invertible. �

4. The main reductions

From here on, the number of singular points is k = 3.

Lemma 4.1. Suppose given an irreducible MC-minimal quadratic local sys-

tem F of rank r > 2. Then for the multiplicities mj
i of paired eigenvalues,

i.e. those different from ±1, we have

mj
1 +mj

2 +mj
3 ≤ r.

Proof. Let m0
i be the maximum of the multiplicities mj

i at each point. Let
a0i and (a0i )

−1 be the paired eigenvalues of multiplicity m0
i over the point ti,

a0i 6= ±1. Set δ := r −m0
1 −m0

2 −m0
3. We aim to show that δ ≥ 0 so let us

assume δ < 0 and derive a contradiction. By Principle 3.4, a01a
0
2a

0
3 6= 1.

Apply Katz’s middle convolution with L a rank 1 local system having
eigenvalues βHi = βVi := (a0i )

−1 and βT = a01a
0
2a

0
3 6= 1. The resulting local

system F ′ has eigenvalues of multiplicities m0
i + δ, they are βVi = (a0i )

−1,
coming from the eigenvalues a0i in the original local system. However, the
original local system also has eigenvalues (a0i )

−1 of multiplicity mi and these
lead to eigenvalues

φi := βHiβTβVi(a0i )
−1 = (a01a

0
2a

0
3)(a

0
i )

−3

that remain of multiplicity m0
i . Middle convolution with L is invertible

hence preserves irreducibility.
However, we note that φ1φ2φ3 = 1. The new local system F ′ has rank

r + δ. There is a rank one local system U with eigenvalues φ1, φ2, φ3. Now
F ′ ⊗ U∨ has trivial eigenvalues of multiplicities mi at the points ti, but

m1 +m2 +m3 > r > r + δ = r(F ′).

As in the proof of Principle 3.4, this contradicts the irreducibility of F ′ unless
the rank r+δ = 1. In turn, that could only happen if mi+δ = 0 and mi = 1
and there are no other eigenvalues, in other words if F was a hypergeometric
rank 2 local system. This completes the proof of a contradiction unless r = 2.

An alternate proof of the lemma would be to say directly that if δ < 0
then there has to be a nontrivial morphism from the hypergeometric rank 2
local system with eigenvalues a0i and (a0i )

−1 at ti, to F . �
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Lemma 4.2. Suppose given an irreducible MC-minimal quadratic local sys-
tem F of rank > 1. Then for the highest half-unital eigenvalue multiplicities
e0i we have

e01 + e02 + e03 ≤ r.

Proof. Let σi be the half-unital eigenvalues with parts e0i , so σi = ±1. If
there are an even number of σi = −1, we may assume that all σi = 1 by
tensoring with a rank 1 local system having monodromy −1 at two points, if
necessary. Then, if e01 + e02 + e03 > r it follows that h0(F) > 0, contradicting
irreducibility. This shows the inequality when the number of negative σi is
even.

Assume the number of negative σi is odd and the inequality in question
doesn’t hold. Tensoring with a rank 1 system we may assume that σi = −1
for i = 1, 2, 3. Let L be a rank 1 convolution kernel with βHi = βVi = βT =
−1, and apply middle convolution with L. The rank changes by

δ = r − e01 + e02 + e03 < 0.

The local system L is quadratic so F ′ =MC(F , L) is again quadratic. The
new rank r′ = r + δ is strictly smaller. The rank 1 middle convolutions are
invertible [41, 23]. This contradicts MC-minimality of F , completing the
proof.

For information, we look at how the partitions change under this oper-
ation, as an illustration of the general setup. The parts of size e0i become
parts associated again to eigenvalues βVi = −1, with multiplicities e0i + δ.

Note that βHiβViβT = −1 so the remaining parts ej0 (j > 0) that were as-
sociated to the eigenvalue σi = −1 become associated to eigenvalue 1. The

parts f ji associated to eigenvalue 1 become associated to −1. We note that
e01 + e02 + f03 ≤ r by the argument of the first paragraph, and permutations
of this. It follows that f0i ≤ e0i + δ so the new parts go on top of the f0i .

Notice that even if the monodromy transformations were semisimple be-
fore the middle convolution operation, they will in general have nontrivial
unipotent parts after the operation. �

The dimension remains the same under the quadratic middle convolu-
tion operation of the previous lemma, since it is invertible, but it would be
interesting to verify that combinatorially. In particular, it is strongly sug-
gested that the type ε changes under this operation, although we didn’t do
a separate verification of that.

Lemma 4.3. Suppose given an irreducible MC-minimal quadratic local sys-

tem F . Then for the paired eigenvalue multiplicities mj
i and the highest

half-unital eigenvalue multiplicities e0i we have

mj
1 +mj

2 + e03 ≤ r,

plus permutations of this inequality.
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Proof. We may assume that the half-unital eigenvalue with multiplicity e03
over t3 is 1. Indeed if it were −1 we could modify it by tensoring with a
rank 1 local system with eigenvalues −1 at two points say t1, t3.

Letm0
i be the maximal paired multiplicities, and let δ := r−m0

1−m
0
2−e

0
3,

we would like to show δ ≥ 0 so we may assume δ < 0. Let a0i and (a0i )
−1 be

the paired eigenvalues of multiplicity m0
i over the points t1, t2.

We are going to make a reduction by middle convolution. There are two
approaches related by Proposition 3.6.

Look first at what happens upon doing two Katz middle convolutions by
rank 1 convolution kernels that are however not individually quadratic. At
the first step, use a local system M with eigenvalues βHi

M = βVi

M = (a0i )
−1

for i = 1, 2 and trivial eigenvalues for i = 3, with βTM = a01a
0
2. As usual, by

Principle 3.4 we may assume that βTM 6= 1 because F is assumed irreducible.
The resulting local system F ′ = MC(F ,M) has rank r′ = r + δ. The

eigenvalues a0i become (a0i )
−1 with multiplicities m0

i + δ. The half-unital
eigenvalue 1 at i = 3 stays as φ3 = 1 (since that was the corresponding

βV3

M ) with multiplicity e03 + δ. A half-unital eigenvalue −1 over t3 becomes
ϕ3 = −a01a

0
2 with multiplicity staying at f03 . The eigenvalues (a

0
i )

−1 become

φi = (a01a
0
2)(a

0
i )

−2(a0i )
−1 = (a01a

0
2)(a

0
i )

−3

with the same multiplicities m0
i .

We have

φ1 = a02/(a
0
1)

2, φ2 = a01/(a
0
2)

2.

Notice that the situation here is different from that of the previous proof:
we have φ1φ2φ3 = (a01a

0
2)

−1 6= 1, because the eigenvalue φ3 was modified ac-
cording to the formula for the eigenvalue whose multiplicity changes, rather
than the formula for one whose multiplicity stays the same.

We may therefore do a second middle convolution F ′′ =MC(F ′, N) with
distinguished eigenvalues φi of multiplicities m0

1,m
0
2, e3+ δ. The new invari-

ant is

δ′ = r′ −m0
1 −m0

2 − (e3 + δ) = r + δ −m0
1 −m0

2 − (e3 + δ) = δ.

The diagonal eigenvalue of the new operation is βTN = φ1φ2φ3 = (a01a
0
2)

−1,

whereas the horizontal eigenvalues are βHi

N = φ−1
i for i = 1, 2 and trivial

for i = 3. Let us use as vertical eigenvalues here βVi

N = ξi := φi(a
0
i )

2 =
(a01a

0
2)(a

0
i )

−1, (in other words ξ1 = a02 and vice-versa) noting that ξ1ξ2 is
still the inverse of the diagonal eigenvalue. Take the vertical eigenvalue to
be trivial at i = 3.

Over t3 the eigenvalue 1 of multiplicity e3+δ becomes again 1 of multiplic-

ity e3+2δ. The eigenvalue ϕ3 of multiplicities f j3 becomes ϕ3 ·(φ1φ2φ3) = −1

again of multiplicity f j3 . Similarly, the other parts of multiplicity ej3 with
j ≥ 1 return to 1.

Over t1, t2 the eigenvalues change as follows. For the ones other than those
coming from a0i and (a0i )

−1, we note that the products of the horizontal,
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vertical and diagonal eigenvalues multiplied together for the two operations,
are

(a0i )
−2 · (a01a

0
2) · φ

−1
i · ξi · (φ1φ2) = 1

so the eigenvalues that were originally different from a0i and (a0i )
−1 stay

the same, with the same multiplicities. Furthermore, any parts that have
eigenvalues a0i or (a

0
i )

−1 but that correspond to lower pieces in the partitions
at those eigenvalues, stay the same with the same multiplicities.

The eigenvalue a0i becomes first (a0i )
−1 and then

(a0i )
−1 · φ−1

i · ξi · (φ1φ2) = (a0i ) · (a
0
1a

0
2)

−1 = ξ−1
i

with multiplicity m0
i + δ. The eigenvalue (a0i )

−1 becomes first φi of mul-
tiplicity m0

i which is then transformed to the vertical eigenvalue ξi with
multiplicity m0

i + δ. Note in particular that these are again paired eigenval-
ues, we have in fact just interchanged the eigenvalues of the points t1 and
t2 and changed the multiplicities.

The second middle convolution operation yields a local system F ′′ of rank
r′′ = r+2δ. The new multiplicities are again m0

i +δ so at each point we now
have two eigenspaces of multiplicities m0

i + δ. The paired eigenvalues are

again inverses and the ones of multiplicities e03 + 2δ and ej3 (j ≥ 1) and f j3
remain half-unital. This composition of two middle convolutions therefore
respects the quadraticity condition on the local monodromy data.

As in Proposition 3.6, this composition of two middle convolutions may be
viewed as middle convolution with a single hypergeometric local system. Let
U be the rank 2 hypergeometric local system over P := P1−{0, 1,∞} having
monodromy transformations semisimple with eigenvalues a01 and (a01)

−1 at 0,
semisimple with eigenvalues a02 and (a02)

−1 at ∞, and nontrivial unipotent
over 1. Pull this back by a map X → P to get the rank 2 local system
L which is trivial over V3 and H3. Along T , it has nontrivial unipotent
monodromy. Over V1 andH1 it has semisimple monodromy with eigenvalues
a01 and (a01)

−1, and over V2 and H2 it has semisimple monodromy with
eigenvalues a02 and (a02)

−1.
Notice that U and hence L are self-dual, since a hypergeometric local

system is determined by its local monodromy eigenvalues. Thus, middle
convolution with L sends a quadratic local system F to another quadratic
local system F ′′ = MC(F , L). By the method used in the proof of Propo-
sition 3.6, this is the same as the previous F ′′. Indeed, the distinguished
eigenvalues for MC(−, L) are the same as those of the combined operation
MC(MC(−,M), N). This may be seen as in the next paragraphs.

One may calculate directly the rank of F ′′ from middle convolution with
L. This redoes a part of the proof of Proposition 3.6 but it is useful to see
how it works in the context of this application, notably in order to show
that the specification of eigenvalues of L given above was the right one.

The new rank is obtained by calculating the middle cohomology of the
fiber, that being the tensor product of U (moved to have singularities at
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t1, t2 and the diagonally moving point) with F . In turn the rank of the
middle cohomology is obtained by subtracting the dimensions of the local
fixed parts from the rank 4r of cohomology on the open curve. The fixed
part at the diagonal point has dimension r, indeed it comes by tensoring the
nontrivial unipotent rank 2 piece by a constant vector space of dimension
r and this has r-dimensional spaces of fixed or cofixed vectors. The fixed
part at t1 consists of the piece of dimension m0

1 obtained by tensoring the
a01-eigenspace of F with the (a01)

−1-eigenspace of L, plus another piece of
dimension m0

1 obtained from the dual eigenspaces. Thus the fixed part at
t1 has dimension 2m0

1. Similarly the fixed part at t2 has dimension 2m0
2.

Finally, at the point t3 the local system L is trivial of rank 2, tensoring with
F that has an e03-dimensional eigenspace of eigenvalue 1, so this has fixed
part of dimension 2e03. Altogether we get

r′ = r(MC(F , L)) = 4r − r − 2m0
1 − 2m0

2 − 2e3 = r + 2δ

with δ := r −m0
1 −m0

2 − e3 as above.
Under our hypothesis δ > 0 we get to a smaller rank quadratic local

system F ′′. By Corollary 3.7, L is MC-invertible. Thus, the decrease in rank
contradicts the hypothesis that F is MC-minimal, completing the proof. �

Lemma 4.4. Suppose given an MC-minimal irreducible quadratic local sys-

tem F of rank r > 2. Then for the paired eigenvalue multiplicities mj
i (with

m0
i being the biggest) and the half-unital parts e0i ≥ f0i we have

m0
1 + e02 + (e03 + f03 )/2 ≤ r.

Similarly for permutations of this.

Proof. As before, assume that the inequality doesn’t hold, and assume by

tensoring if necessary that the parts ej2 and ej3 correspond to eigenvalue
σ2 = σ3 = 1.

We consider first a convolution kernel M with distinguished eigenvalues
a01, 1 and 1. Precisely, βH1

M = βV1

M = (a01)
−1, βH2

M = βV2

M = βH3

M = βV3

M = 1,

and βTM = a01 6= 1. For this middle convolution operation,

δ = r −m0
1 − e02 − e03.

The product βHi

M βVi

Mβ
T
M is equal to (a01)

−1 for i = 1, and equal to a01 for
i = 2, 3.

This sends F to a new local system (no longer quadratic) F ′ of rank
r′ = r + δ with the following parts.

Over t1 we have a part of size m0
1+δ associated to βV1

M = (a01)
−1, a part of

sizem0
1 associated to βH1

M βV1

M βTM (a01)
−1 = (a01)

−2, plus the remaining parts of
the same sizes as before associated to (a01)

−1 times the previous eigenvalues.
Notice that if 1 was among the previous eigenvalues then the associated
parts are added to the new one at the eigenvalue (a01)

−1, with the remarks
from prior to Proposition 3.3 applying to say that the new part goes on top.
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Over t2 we get a part of size e02 + δ associated to the eigenvalue βV2

M = 1,
plus the other parts associated to their eigenvalues multiplied by a01.

Similarly, over t3 we get a part of size e02 + δ associated to the eigenvalue

βV2

M = 1, plus the other parts associated to their eigenvalues multiplied by
a01. In particular, this includes a part of size f03 associated to the eigenvalue
−a01.

Next do a middle convolution with distinguished eigenvalue (a01)
−2 over

t1 associated to a part of size m0
1; distinguished eigenvalue 1 associated to

the part of size e02 + δ over t1; and distinguished eigenvalue −a01 associated
to the parts of size f03 . However, we tensor appropriately the eigenvalues
after the convolution, to the effect that we use a convolution kernel N whose
eigenvalues are

βH1

N = (a01)
2, βV1

N = 1, βH2

N = 1, βV2

N = 1, βH3

N = −(a01)
−1, βV3

N = −a01,

and βTN = −(a01)
−1 6= 1. We get

βH1

N βV1

N βTN = −a01, βH2

N βV2

N βTN = −(a01)
−1 βH3

N βV3

N βTN = −(a01)
−1.

The change of rank is given by

δ′ = r′ −m0
1 − (e02 + δ)− f03 = r −m0

1 − e02 − f03 = δ + e03 − f03 .

The resulting local system F ′′ has rank r′′ = r′ + δ′. If we assume that the
inequality to be proven in the lemma is not true, then r′′ < r. Indeed,

δ′′ := δ + δ′ = 2r − 2m0
1 − 2e02 − e03 − f03

which is twice the difference of two sides of our desired inequality.
Look at the local monodromy transformations for F ′′. Over t1 we have a

new part of sizem0
1+δ

′ with eigenvalue βVi

N = 1 , and a part coming from the

new part in F ′, of size m0
1+δ with eigenvalue βH1

N βV1

N βTN (a01)
−1 = −1. There

are also the parts whose size is unchanged, corresponding to the previous
eigenvalues multiplied by −1. We note that these can combine with the new
parts to create nontrivial unipotent conjugacy classes even if we started with
semisimple ones. The previous paired eigenvalues remain paired.

Notice also here that the previous parts, corresponding to paired eigen-
values, have turned into parts corresponding to half-unital eigenvalues of
sizes that are in general different since δ and δ′ are in general different.

Over t2 the new part in F ′′ has size e02+δ
′′ and is associated to eigenvalue

βV2

N = 1. The other parts are the ones coming from the original partition,
with associated eigenvalues multiplied by −1. In particular, the parts of

sizes ej2 for j ≥ 1, become associated to −1. The ones of sizes f j2 become
associated to eigenvalue 1 and are combined with the new part, with the
new part going on top. The previous paired eigenvalues remain paired.

Over t3, the new part has size f03 + δ′, associated to eigenvalue −a01.
The previous new part of size e03 + δ that had eigenvalue 1, is now associ-
ated to eigenvalue −(a01)

−1. We note that f03 + δ′ = e03 + δ and these two
eigenvalues form a conjugate pair. Thus, the half-unital eigenvalues have
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been transformed into paired ones. The other eigenvalues get multiplied by
a01 · (−(a01)

−1) = −1.
We see that the local monodromy transformations are compatible with a

quadratic structure. Proceeding as in the proof of Lemma 4.3 using Propo-
sition 3.6, we can interpret the composition of two middle convolutions as a
middle convolution with a quadratic and MC-invertible rank 2 convolution
kernel L coming from a hypergeometric system. The hypothesis δ′′ < 0
implies that the new rank is strictly smaller than r, and this contradicts the
hypothesis that F was MC-minimal. This shows that δ′′ ≥ 0, completing
the proof. �

Lemma 4.5. Suppose given an MC-minimal irreducible quadratic local sys-

tem F of rank r > 2. Then for the paired eigenvalue multiplicities mj
i (with

m0
i being the biggest) and the half-unital parts e0i ≥ f0i we have

m0
1 + e02 + (e03 + e13)/2 ≤ r.

Similarly for permutations of this.

Proof. Proceed as in the previous proof. We’ll just indicate the changes here.
The first step is the same. At the second step, we choose as distinguished
parts the ones of sizes m0

1 over t1, of size e
0
2 + δ over t2, and of size e13 over

t3. Notice that the eigenvalue associated to the part of size e13 is a01.
Therefore, we use this time a convolution kernel N with

βH1

N = (a01)
2, βV1

N = 1, βH2

N = 1, βV2

N = 1, βH3

N = (a01)
−1, βV3

N = a01,

and βTN = (a01)
−1. We get

βH1

N βV1

N βTN = a01, βH2

N βV2

N βTN = (a01)
−1 βH3

N βV3

N βTN = (a01)
−1.

The change of rank is given by

δ′ = r′ −m0
1 − (e02 + δ)− e13 = r −m0

1 − e02 − f03 = δ + e03 − e13.

The resulting local system F ′′ has rank r′′ = r′ + δ′. If we assume that the
inequality to be proven in the lemma is not true, then r′′ < r. As before,

δ′′ := δ + δ′ = 2r − 2m0
1 − 2e02 − e03 − e13

which is twice the difference of two sides of our desired inequality.
The discussion of local monodromy transformations is similar to the previ-

ous one, with the − signs removed. Again, it preserves the quadratic prop-
erty of the local monodromy transformations, replacing the distinguished
paired eigenvalues over t1 by half-unital parts, and replacing the dinstin-
guished half-unital eigenvalue parts over t3 by a two paired ones.

Again using Proposition 3.6, we can interpret the composition of two
middle convolutions as a middle convolution with a quadratic and MC-
invertible rank 2 convolution kernel coming from a hypergeometric system.
If δ′′ < 0 then the rank decreases, contradicting MC-minimality of F , so
this completes the proof. �
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4.1. Numerical MC-minimality. Recall that k = 3. A collection of par-

tition data consists of the specification of mj
i , e

j
i and f ji for each i = 1, 2, 3

subject to the partition conditions that

2
∑

j

mj
i +

∑

j

eji +
∑

j

f ji = r

(the three sums are not over the same sets of indices j), and subject to the
order conditions e0i ≥ e1i ≥ . . . and f0i ≥ f1i ≥ . . ..

From these we let (λji )j be the full collection of parts including the eji ,

the f ji and each mj
i counted twice, so r =

∑

j λ
j
i . Define a decoration

to the partition consisting of ǫji ∈ {−1, 0, 1} defined by ǫji = 0 for parts

corresponding to mj
i , and ǫ

j
i = (−1)u if λji corresponds to eui or fui .

Recall that ε = ±1 is fixed depending on the group, ε = 1 for the orthog-
onal group and ε = −1 for the symplectic group. The dimension associated
to the partition data is

∆ = r2 −
∑

i,j

(λji )
2 − ε



r −
∑

i,j

ǫjiλ
j
i



 .

This is in fact twice the complex dimension of the quadratic relative char-
acter variety, notation being used to simplify the factors of 1/2.

The term β := r2 −
∑

i,j(λ
j
i )

2 will be called the box dimension because
it will correspond to the area left over after the collection of squares of size

λji × λji are fit into a square of size r × r. The term

ℓ := r −
∑

i,j

ǫjiλ
j
i

will be called the linear correction, so the dimension is ∆ = β − εℓ.

Definition 4.6. We say that (r,m·
·, e

·
·, f

·
· ) is numerically MC-minimal if the

inequalities of Lemmas 4.1, 4.2, 4.3, 4.4, 4.5 are satisfied.

Proposition 4.7. Any component of the relative character variety of qua-
dratic local systems with trivial determinant is isomorphic, via middle con-
volution operations, to a component of the relative character variety for a
numerically MC-minimal collection of decorated partition data.

Proof. Middle convolution with a quadratic MC-invertible convolution ker-
nel induces an isomorphism between the corresponding quadratic relative
character varieties. This is seen by using the expression of [23] for the
middle convolution as an algebraic map on tuples of matrices. Then the
combination of Lemmas 4.1, 4.2, 4.3, 4.4, 4.5, applied iteratively, gives the
reduction to a numerically MC-minimal case. �

Remark 4.8. The dimension of a component of the relative character va-
riety is even, i.e. ∆ is a multiple of 4.
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One can deform to unitary eigenvalues, then the relative character variety
has a hyperkähler structure [38, 29, 30, 39, 52]. One can also give a combi-
natorial proof of this using the formula of Proposition 2.5 and the additional
properties of unipotent conjugacy classes mentioned in Remark 2.2. That is
left as an exercise.

We can now state the main theorem.

Theorem 4.9. Given d ≥ 2, there is a constant R(d) such that for r ≥ R(d)
there are no numerically MC-minimal decorated partition data for rank r
quadratic local systems with ∆ = 2d.

Using Proposition 4.7, this implies Theorem 1.1.

5. Computations: general considerations

Start now the proof of Theorem 4.9. The dimension d will be considered as
fixed, and R is chosen successively large enough so that the various bounds
hold for any numerically MC-minimal monodromy data of rank r ≥ R and
having ∆ = 2d.

Recall that ei := e0i denotes the biggest of the half-unital (cf §2.2) eigen-
value parts at the point ti, then fi := f0i is the largest for the other half-

unital eigenvalue. Andmj
i denote the multiplicities of the paired eigenvalues

aji 6= ±1 and their duals (aji )
−1. Let m0

i be the biggest of these. Thus for
each i,

r = e0i + . . .+ f0i + . . .+ 2m0
i + . . . .

5.1. Fitting into a square.

Proposition 5.1. Any numerically MC-minimal collection of partitions

(eji , f
j
i ,m

j
i ) (Definition 4.6) has the property that the union of squares of

sizes eji × eji , f
j
i × f ji and mj

i ×mj
i fits into a square of size r × r in one of

two ways. In the non-overlapping case each collection of squares fits into a
rectangle of size qi × r with q1 + q2 + q3 = r. In the overlapping case (see
Figure 1) there are two of the half-unital blocks that overlap; up to permuta-
tions of the points we may assume that these are e02 and e03, then the squares
for i = 1 fit into the rectangle of size q1 × r while the squares for i = 2 are
either the e02 part, or fit into a rectangle of size q2 × r2 with r2 = r− e02 and
similarly the squares for i = 2 are either the e03 part, or fit into a rectangle
of size q3 × r3 with r3 = r − e03. The e02 and e03 squares have an horizontal
overlap of µ ≥ 1 so that r = q1 + e02 + e03 − µ. We let ν := r − e02 − e03 (it is
≥ 0) and there is a leftover rectangle of size µ× ν in the middle.

Proof. We have the inequalities

e01 + e02 + e03 ≤ r

m0
1 +m0

2 +m0
3 ≤ r

m0
1 +m0

2 + e03 ≤ r and permutations.
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In the case where m0
i ≥ e0i for zero, two, or three of the columns, these lead

to the non-overlapping case.
Assume therefore (up to a permutation of the i’s if necessary) that m0

1 >
e01, e

0
2 > m0

2 and e03 > m0
3 . Let

µ := r −m0
1 − e02 − e03.

If µ ≤ 0 then we are back in the non-overlapping case, so assume µ ≥ 1. Set
q1 := m0

1, q2 := e02 − µ and q3 := e03 − µ. Set r2 := r − e02 and r3 := r − e03.
Divide the r × r square into a rectangle of size q1 × r, the e02 × e02 square at
the bottom with a rectangle of size q2 × r2 over it, and the e03 × e03 square
at the top next to the previous rectangle, with the q3 × r3 rectangle below
it. In the middle of all that is a rectangle of size µ× ν with ν = r− e02 − e03,
note that ν ≥ 0.

The MC inequalities for two m’s and an e imply that the squares of

size mj
i ×mj

i fit into their corresponding rectangles of width qi. Recall the
additional MC inequalities

m0
1 + e02 + (e03 + f j3 )/2 ≤ r,

and similarly for f j2 . These imply that the squares of sizes f j2 × f j2 and

f j3 × f j3 also fit into the rectangles of size q2 × r2 and q2 × r2 respectively.
Similarly the inequalities

m0
1 + e02 + (e03 + ej3)/2 ≤ r (forj ≥ 1)

imply that for j ≥ 1, the boxes of sizes ej2 × ej2 and ej3 × ej3 again fit into the
rectangles of size q2 × r2 and q2 × r2 respectively. This is the overlapping
configuration. �

5.2. Dimensions. The box dimension is defined to be

β := r2 −
∑

i,j

(eji )
2 −

∑

i,j

(f ji )
2 − 2

∑

i,j

(mj
i )

2.

In other words, it is the difference of the area of the big square minus all the

smaller squares, noting that the multiplicities mj
i each occur twice. This is

the shaded area in Figure 1.
Define the linear correction to be

ℓ := r −
∑

i,j

(−1)j(eji + f ji ).

Recall that ε = ±1 determines whether we are looking at the orthogonal
case (ε = 1) or the symplectic case (ε = −1). By Proposition 2.5, twice the
dimension of the relative character variety at F is

∆ := 2dim
(

X
irred(r, ε, C1, . . . , Ck)

)

= β − εℓ.

Lemma 5.2. The linear correction satisfies −r ≤ ℓ ≤ r.
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m0
1 = 4

m0
1 = 4

m1
1 = 3

m1
1 = 3

e02 = 6

m0
2 = 4

m0
2 = 4

e03 = 6

m0
3 = 3

m0
3 = 3

e1
3
=2µ×η
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Figure 1. Overlapping e2 and e3 boxes. The box dimension
(leftover shaded part) is 20, the linear correction is ℓ = r −
e02 − e03 + e13 = 4 so the dimension in the orthogonal case is
(20−4)/2 = 8 and in the symplectic case it is (20+4)/2 = 12.

Proof. For each i the the eji are in decreasing order so

0 ≤
∑

j

(−1)jeji ≤ e0i ,

and similarly for f ji . We have e01 + e02 + e03 ≤ r by Lemma 4.2, and e0i is
defined to be bigger than f0i so f01 + f02 + f03 ≤ r. This gives

0 ≤
∑

i,j

(−1)j(eji + f ji ) ≤ 2r

so |ℓ| ≤ r. �

The following fact will be used often below. Recall that the quantities
being manipulated correspond to twice the dimension.

Corollary 5.3. If the relative character variety has dimension d then β ≤
r + 2d.

5.3. A lemma. We consider in this section partitions λ1 + . . . + λk = r
provided with the decoration of a sequence ε1, . . . , εk with εj ∈ {−1, 0, 1}.
The following lemma formulates in a general way the computation that leads
to bounds in the rectangles of size qi×ri. The letters here are different from
everywhere else.
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Lemma 5.4. Given N > 0 there exist Q > 0 and P > 0 such that the
following property holds. Suppose q, r are integers with q ≥ Q and r ≤ Nq,
and suppose given ε = ±1. Suppose given a partition r = λ1 + . . . + λk,
1 ≤ λi ≤ q, with decoration ǫ1, . . . , ǫk such that ǫi ∈ {−1, 0, 1}. Define

∆ :=

k
∑

i=1

λi(q + ǫi − λi)− εq.

Then either ∆ ≥ Nq or else there are integers n and p such that ∆ = nq−p
with 0 ≤ p ≤ P . In the second case

k
∑

i=1

min(λi, q − λi) ≤ P.

Proof. Set ξi := min(λi, q + ǫi − λi), so

λi(q + ǫi − λi) = ξi(q + ǫi − ξi),

thus

∆ =

k
∑

i=1

ξi(q + ǫi − ξi)− εq.

Assuming Q big enough, we have q + ǫi − ξi ≥ (q − 1)/2 ≥ q/3.
We have ξi ≥ −1 and if ξi = −1 then q + ǫi − ξi = λi = q. Write

∆ = ∆− +∆+ with

∆− =
∑

ξi=−1

ξi(q + ǫi − ξi)− εq

and

∆+ =
∑

ξi≥1

ξi(q + ǫi − ξi).

The terms where ξi = 0 do not contribute so they are not included here.
As ∆− is a sum of terms equal to ±q, there is an integer n− such that

∆− = n−q. Note also that if ξi = −1 then it has to be the case λi = q and
ǫi = −1. The partition relation r =

∑

j λi implies that there are ≤ r/q such

terms, to which the extra term −εq should be added. Therefore |∆−| ≤ r+q.
If ∆ ≥ Nq then it is the first case and the proof is done.
Suppose ∆ < Nq, then the previous bound implies ∆+ < (N +1)q + r ≤

(2N + 1)q. The estimate q + ǫi − ξi ≥ q/3 implies that

∆+ ≥





∑

ξi≥1

ξi



 q/3.

Combining with ∆+ < (2N + 1)q this gives
∑

ξi≥1

ξi ≤ 3(2N + 1).
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Set n+ :=
∑

ξi≥1 ξi and separate into two terms

∆+ = n+q − p = n+q −
∑

ξi≥1

ξi(ξi − ǫi).

This gives the number p for the conclusion of the lemma, whereas the number
n for the conclusion is n = n−+n+ For the terms in p we have 0 ≤ (ξi−ǫi) ≤
ξi + 1 ≤ 6N + 4, so this gives

0 ≤ p ≤ (6N + 4)
∑

ξi≥1

ξi ≤ (6N + 4)2.

For the first part of the lemma, taking any P ≥ (6N + 4)2 will therefore
suffice.

For the second statement, set ρi := min(λi, q − λi). By adjusting Q we
may assume that 3(2N + 1) < q − 2− 3(2N + 1) so ρi is either ξi or ξi − ǫi.
If ξi ≥ 1 then ρi ≤ 2ξi so

∑

ξi≥1

ρi ≤ 6(2N + 1).

We need to bound the sum of ρi where ξi = 0,−1. Since λi ≥ 1, in this case
ξi = q+ ǫi−λi so λi ≥ q− 1. There are at most r/(q− 1) ≤ 2N such terms,
and for these terms we have ρi ≤ 1. Thus

∑

ξi≤0

ρi ≤ 2N,

and combining with the other terms we get

k
∑

i=1

ρi ≤ 7(2N + 1).

Thus, as soon as P ≥ 7(2N + 1) we get the second part of the statement in
the case ∆ < Nq. �

Corollary 5.5. Suppose given N > 1 and η > 0. Then there exists Q > 0
such that the following holds. Suppose q ≥ Q and q ≤ r ≤ Nq, suppose
r = λ1 + . . .+λk is a partition with 1 ≤ λi ≤ q, and suppose ǫi ∈ {−1, 0, 1}.
Let ∆ denote the quantity of the lemma. Let B denote the number of big
parts, that is to say the number of λi ≥ q/2. If ∆ < Nq, then B ≥ 1 and

∣

∣

∣

∣

q

r
−

1

B

∣

∣

∣

∣

< η.

Proof. Let Q′ and P be the numbers given by the lemma. From the hypothe-
sis ∆ < Nq, we are in the second case of the lemma. Let ρi := min(λi, q−λi).
Decomposing into small and big parts, we have

r =
∑

i

λi =
∑

small

λi −
∑

big

(q − λi) +Bq =
∑

small

ρi −
∑

big

ρi +Bq.
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Thus

|r −Bq| ≤
∑

i

ρi ≤ P.

If Q > P , noticing the hypothesis r ≥ q ≥ Q, we get B ≥ 1. Divide the
above inequality by rB ≥ Q to get

∣

∣

∣

∣

1

B
−
q

r

∣

∣

∣

∣

≤
P

rB
≤
P

Q
.

Choose Q > P/η to get the stated estimate. �

6. Non-overlapping case

Assume in this section that we are in non-overlapping case of Proposition
5.1. Hence

r = q1 + q2 + q3

and the blocks are contained in the corresponding columns. Assume q1 ≥
q2 ≥ q3.

There are several different closely related quantities that will be needed.
For the i-th column, the various parts eui , f

u
i and twice each mu

i combine
together to give a partition denoted

r = λ1i + λ2i + . . . .

The signs occuring in the dimension formula yield a decoration of this par-

tition by ǫji ∈ {−1, 0, 1}, such that the linear correction is

ℓ = r −
∑

i,j

ǫjiλ
j
i .

Let ρji = min(λji , qi − λji ), so the box-dimension is

β =
∑

i,j

ρji (qi − ρji ).

Recall that the full dimension (multiplied by 2) is

∆ = β − εℓ =
∑

i,j

ρji (qi − ρji )− εr + ε
∑

i,j

ǫjiλ
j
i .

Decompose this as ∆ =
∑

i∆i with

∆i =
∑

j

ρji (qi − ρji )− εqi + ε
∑

j

ǫjiλ
j
i

=
∑

j

λji (qi − λji )− εqi + ε
∑

j

ǫjiλ
j
i .

The terms in the second expression may then be combined as

∆i =
∑

j

λji (qi + εǫji − λji )− εqi.
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Let ξji := min(λji , qi + εǫji − λji ). These are the quantities used in Lemma
5.4 for the i-th column of width qi, along with

∆i =
∑

j

ξji (qi + εǫji − ξji )− εqi.

We say that a part is big if λji ≥ q/2 and small otherwise. Let Bi be the

number of big parts in the partition (λji )j . If Bi ≥ 1 define

αi := r −Biqi.

Lemma 6.1. This satisfies the bound

|αi| ≤
∑

j

ρji .

Proof. If j is a big part in the ith column then λji = qi−ρ
j
i , whereas λ

j
i = ρji

otherwise. Decompose the partition relation into the sum over big and small
parts

r =
∑

j

λji =
∑

small

ρji +
∑

big

(qi − ρji )

= Biqi +
∑

small

ρji −
∑

big

ρji .

Recall that ρji are positive, so |r −Biqi| ≤
∑

ρji . �

Assume that R is large enough with respect to d, in particular R > 2d. As
in Lemma 5.2, ∆i ≥ −qi because of the alternating nature of the signs in the

decreasing block sizes of the series eji and f
j
i . Therefore ∆i = ∆−

∑

j 6=i∆j ≤
2d+ r < 2r.

Apply Lemma 5.4 and Corollary 5.5 to this situation. Notice that the
input data and the quantity ∆i are the same as there. By the order as-
sumption, q1 ≥ r/3. Taking N ≥ 6, we find that if ∆1 ≥ Nq1, then ∆1 ≥ 2r
contradicting the previous paragraph. Thus, we are in the second case for
the lemma. Taking a small η > 0 and choosing Q as in the lemma and the
corollary, assume that r ≥ 3Q so q1 ≥ Q. The number B1 of big parts at
i = 1 is ≥ 1 and we have

∣

∣

∣

∣

q1
r

−
1

B1

∣

∣

∣

∣

< η.

Proposition 6.2. Let I ⊂ {1, 2, 3} be a subset of indices such that we know
r ≤ 12qi for i ∈ I. Apply Lemma 5.4 with N = 24 and let P,Q be the
resulting bounds. For r ≥ R with R big enough with respect to d, P,Q, we
have Bi ≥ 1 for i ∈ I, and

∑

i∈I

∑

j

(ρji/Bi) ≤ 1.

Therefore
∑

i∈I |αi|/Bi ≤ 1.
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Proof. By hypothesis qi ≥ r/12, and as we have seen above ∆i < 2r. Thus
∆i < 24qi, so we are in the second case in the application of Lemma 5.4 to
the ith column (for each i ∈ I) with N = 24. We get the bounds given there
with P and Q, for example

∑

j

ρji ≤ P.

In particular, as soon as R > P it cannot be the case that all the parts are
small, so Bi ≥ 1. Also note that Bi ≤ 24.

By Lemma 6.1, |(r/Bi)− qi| ≤ P/Bi ≤ P . Also |(qi − ρji )− qi| ≤ P , so

(qi − ρji ) ≥ (r/Bi)− 2P ≥ (1− (2PBi/R))r/Bi.

Thus
∑

i∈I

∑

j

ρji/Bi ≤ (1−(2PBi/R))
−1r−1

∑

i∈I

ρji (qi−ρ
j
i ) ≤ (1−(2PBi/R))

−1r−1(r+2d).

If R is big with respect to d and 2PBi ≤ 48P (the latter being because
Bi ≤ 24), then for r ≥ R we have (1− (2PBi/R))

−1r−1(r + 2d) < 1 + η for
η small. It follows that

∑

i∈I

∑

j

ρji/Bi ≤ 1.

The bound that is needed for η depends on the lcm of the Bi which is
bounded by something big but fixed given the condition Bi ≤ 24, however
in practice the lcm in question is ≤ 6.

The last statement follows by Lemma 6.1. �

6.1. The case B1 = 1. Assume first that B1 = 1. Applying Proposition 6.2
with I = {1} gives |α1| ≤ 1 so q1 ∈ {r− 1, r, r+1}. These are all impossible
due to the relation r = q1 + q2 + q3 with qi ≥ 1. This shows that B1 ≥ 2.

6.2. The case B1 = 2 and B2 = 2. Assume B1 = 2. Applying the propo-
sition at I = {1} gives |α1| ≤ 2, and q2 + q3 = r − q1 = (r + α1)/2. From
the order assumption q2 ≥ q3 this gives q2 ≥ r/5 so the proposition may be
applied at I = {1, 2}, yielding B2 ≥ 1. But the case B2 = 1 is not possible
for the same reason as in the previous paragraph. Thus B2 ≥ 2. Assume
for the moment that B2 = 2. Then by Proposition 6.2, |α1|+ |α2| ≤ 2 so

2q3 = 2r − 2q1 − 2q2 = (r − 2q1) + (r − 2q2) = α1 + α2 ≤ 2.

As q3 ≥ 1 this implies that in fact q3 = 1 and equality holds namely α1+α2 =
2 and α1, α2 ≥ 0. The order relation q1 ≥ q2 implies α1 ≤ α2 so there are
two possibilities for (α1, α2), either (0, 2) or (1, 1). Denote q := q2.

All the parts over i = 3 have to have size λi3 = 1 so the box dimension is
0 at i = 3. The linear correction from this column has absolute value ≤ 2
since it is a sum of at most two alternating series of ±1’s.

Proposition 6.2 also gives
∑

i=1,2

∑

j

ρji ≤ 2.
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Equality must hold here and in the bound of Lemma 6.1, and looking at

the proof of that lemma, all the parts with ρji 6= 0 must be small. In other
words, the big parts have size qi.

Suppose α1 = 0 and α2 = 2. Then r = 2q + 2 and q1 = q + 1. From
the previous paragraph it follows that the partition at i = 1 is (λ1i , λ

2
i ) =

(q + 1, q + 1) and the partition at i = 2 is either (q, q, 1, 1) or (q, q, 2). The
box dimension at i = 1 is 0 and at i = 2 it is 2q − 2 or 2q − 4 respectively.

The linear correction needs to cancel out the terms of size 2q so it has to
be approximately −r. Assuming r ≥ R is big enough, this can only happen
if the big blocks of size q are not included in the linear correction, or at
least they occur with alternating signs. And it has to be the case that the
correction starts with −εr = −r so ε = 1, i.e. it is the orthogonal case.

Now the remaining part of the linear correction at i = 2 consists of a sum
of at most two alternating series among the small parts, hence it is at most
2 in absolute value. The absolute value of the term

∑

i,j(−1)u(eui + fui ) is
therefore bounded by 4. The dimension is the sum of terms, the first being
2q − 2 or 2q − 4, the second being −2q − 2, and the third being of absolute
value ≤ 4. The result is ≤ 0. This does yield a candidate possibility for the
rigid case d = 0, however it can not lead to a case of dimension d ≥ 2. This
rules out (α1, α2) = (0, 2).

Suppose α1 = α2 = 1. Then r = 2q + 1 and q1 = q2 = q. The partitions
are both of the form (q, q, 1). The box dimension is q − 1 in each column
for a total of 2q − 2. As in the previous case, the linear correction has to
start with −εr = −r so ε = 1 and the big blocks contribute 0 to the linear
correction (either because they are paired eigenvalues or because they occur
in an alternating series). The small blocks have to contribute values of 1 to
the linear correction at i = 1, 2. The contribution at i = 3 is nonzero since
there are an odd number of blocks, and the sum of the number of elements
in the two alternating series has to be odd. Thus, one series is odd and the
other is even, giving a value of 1 for the linear correction over i = 3 too.
The dimension is

2q − 2− r + 1 + 1 + 1 = 0.

This is again a candidate for a rigid solution but does not contribute to any
case of d ≥ 2. This completes the proof that the case B1 = B2 = 2 doesn’t
contribute.

6.3. The remaining cases. The two previous subsections show that B1 ≥
2 and B2 ≥ 3. Applying Lemmas 5.4 and 6.1 yields |α1| + |α2| ≤ P for P
fixed with respect to R. Thus

q3 = r − q1 − q2 = r −
r − α1

B1
−
r − α2

B2
≥

(

1−
1

B1
−

1

B2

)

r − P.
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For r ≥ R large we can say q3 ≥ r/7 and apply Proposition 6.2. This says
B3 ≥ 1, and

∑

i

|αi|/Bi ≤
∑

i,j

ρji/Bi ≤ 1.

Now

r = q1 + q2 + q3 =
r − α1

B1
+
r − α2

B2
+
r − α3

B3
so

∣

∣

∣

∣

1

B1
+

1

B2
+

1

B3
− 1

∣

∣

∣

∣

≤
∑

i

|αi|/rBi ≤ 1/r

hence
1

B1
+

1

B2
+

1

B3
= 1.

The triple (B1, B2, B3) is one of (3, 3, 3), (2, 2, 4) or (2, 3, 6), noting that the
order relation on qi implies B1 ≤ B2 ≤ B3.

Recall that we know ∆i < 2r for each column, and qi ≥ r/7 so apply
Lemma 5.4 with N = 14. Choose the appropriate Q and suppose that
r ≥ 7Q, so qi ≥ Q. The second case of this lemma holds for all three
columns.

The lemma says that the dimension is

∆ = ∆1 +∆2 +∆3 = n1q1 + n2q2 + n3q3 − p1 − p2 − p3

with ni integers and 0 ≤ pi ≤ P . The conditions ∆i ≥ −qi that come from

the alternating nature of the ǫji imply that ni ≥ −1. Also n ≤ 15.
Our condition is ∆ = 2d with d ≥ 2 fixed with respect to the choice of r.

Notice that if Q is large with respect to P , we get a relation of the form
n1
B1

+
n2
B2

+
n3
B3

= 0.

Recall that (B1, B2, B3) is in one of the following cases: (3, 3, 3), (2, 2, 4) or
(2, 3, 6). In the (2, 3, 6) case this gives 3n1+2n2+n3 = 0, so n3 = −3n1−2n2.
With ni ≥ −1 that gives n3 ≤ 5. The bounds for n1 and n2 are smaller,
as are the bounds for the ni in the other two cases. In all, this shows that
−1 ≤ ni ≤ 5.

Set ϕi := −αi/Bi so the bound is |ϕ1|+|ϕ2|+|ϕ3| ≤ 1 and qi = (r/Bi)+ϕi.
The relations r = q1 + q2 + q3 and

∑

(1/Bi) = 1 yield

ϕ1 + ϕ2 + ϕ3 = 0.

The formula of Lemma 5.4 for the dimension becomes

∆ =
n1r

B1
+
n2r

B2
+
n3r

B3
+ n1ϕ1 + n2ϕ2 + n3ϕ3 − p1 − p2 − p3.

The relation between ni and Bi makes the first terms vanish so

∆ = n1ϕ1 + n2ϕ2 + n3ϕ3 − p1 − p2 − p3.

From this, subtract twice the relation ϕ1 + ϕ2 + ϕ3 = 0 to get

∆ = (n1 − 2)ϕ1 + (n2 − 2)ϕ2 + (n3 − 2)ϕ2 − p1 − p2 − p3.
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Now |ni − 2| ≤ 3 so
∣

∣

∣

∣

∣

∑

i

(ni − 2)ϕi

∣

∣

∣

∣

∣

≤ 3
∑

i

|ϕi| ≤ 3.

The pi are positive, so ∆ ≤ 3 under the hypothesis r ≥ R. But this contra-
dicts the condition ∆ ≥ 4 (recall ∆ = 2d with d > 0 and d even by Remark
4.8). This proves that the only examples occur for r ≤ R, completing the
proof of Theorem 4.9 and hence Theorem 1.1 in the non-overlapping case.

7. The overlapping case

The overlapping case is, up to permuting i, when m0
1 ≥ e01, e

0
2 ≥ m0

2,
e03 ≥ m0

3, and

m0
1 + e02 + e03 > r.

In particular both e02 and e03 are > 0.
Let µ := m0

1 + e02 + e03 − r be the overlapping amount. We note that
m0

1 ≤ µ. Furthermore e02 + e03 ≤ r, indeed if it were strictly greater than r
then we would have a reducible system, by looking at the sum of ranks of
the monodromy matrices at t2 and t3.

Let ν := r − e02 − e03. We note that the box dimension includes a piece of
size µ× ν between the boxes. Define q1 := m0

1,

q2 := e02 − µ = r −m0
1 − e03, q3 := e03 − µ = r −m0

1 − e02.

Also set r1 := r and

r2 := e03 + ν = r − e02 = q1 + q3, r3 := e02 + ν = r − e03 = q1 + q2.

Order the points t2, t3 so that q2 ≥ q3.
By Proposition 5.1, the squares that remain after e02 × e02 and e03 × e03 fit

into the three rectangles of sizes q1 × r, q2 × r2 and q3 × r3. In particular

qi ≥ mj
i , qi ≥ f ji , and qi ≥ eui for u ≥ 1 (as well as for u = 0 if i = 1).

The leftover region whose area is the box dimension, consists of the rec-
tangle of size µ× ν, plus the leftover pieces in those three rectangles.

It is suggested to look at Figure 1 that has a picture of a typical such
arrangement. In that picture we have r = 14, q1 = q2 = q3 = 4, µ = ν = 2
and r2 = r3 = 8. The leftover region in the q1 × r rectangle has area 6,
there is no leftover region in the q2× r2 rectangle, and the leftover region in
the q3 × r3 rectangle has area 10. To these we add µν = 4 so the total box
dimension is β = 20.

Lemma 7.1. The following relations hold:

• qi ≥ 1,
• q1 = µ+ ν, thus µ, ν ≤ q1,
• q2 + µ = e02 and q3 + µ = e03,
• q1 + q2 + q3 + µ = r or equivalently q2 + q3 + 2µ+ ν = r,
• e02 + e03 + ν = r,

• ej1, f
j
1 ≤ ν,
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• µ ≤ q3 ≤ q2.

Proof. The equalities follow from the definitions. For qi ≥ 1 we note that
the partitions at each point need to have at least 2 parts, and since the
remaining ones after e02 and e03 fit into the rectangles, we can not have any

qi = 0. The conditions ej1, f
j
1 ≤ ν come from the bound of Lemma 4.2. For

the last part recall the order relation saying q2 ≥ q3. Lemma 4.4 gives the
cruder estimate m0

1 + e
0
2 +(e03/2) ≤ r, and since q1 = m0

1 and e0i = qi+µ for
i = 2, 3 we have q1 + q2 + µ+ (q3 + µ)/2 ≤ q1 + q2 + q3 + µ so µ ≤ q3. �

7.1. A numerical modification. We define a modification of the parti-
tion data that preserves the dimension and leads into the non-overlapping
case. This looks like something that could come from a middle convolution
operation involving distinguished blocks m0

1, e
0
2 and e03, see Question 8.3

below.
The rank changes from r to r̃ := r − µ.

Given partitions (λji )j with decorations ǫji , suppose λ
1
1 = m0

1 and λ1i = e0i
for i = 2, 3. Then define new partitions (λ̃ji )j and new decorations ε̃ji as

follows. If j 6= 1 put λ̃ji := λji and at j = 1 set λ̃ji := λji − µ. For any j at

i = 2, 3, set ε̃ji := ǫji . At i = 1 suppose that λ21 = m0
1 is the other part in

the conjugate pair. Recall that ǫ11 = ǫ21 = 0 since these parts correspond to

paired eigenvalues. For j 6= 1, 2 set ε̃j1 := ǫj1. Then put

ǫ21 := 1, ǫ11 := −1.

In more descriptive terms, at i = 2, 3 we replace the part e0i by ẽ
0
i := e0i−µ,

and keep the other parts whose blocks go in the rectangles of size qi × ri,
the same. Over i = 1 the pair (m0

1,m
0
1) is changed into ẽ01 := m0

1 and

ẽ11 := m0
1 − µ = ν. The other parts in the series ej1 are then added on later:

ẽj1 := ej−2
1 . For the second series f̃ ji := f ji . The picture of the result of

applying this modification to the example of Figure 1 is shown in Figure 2.

Notice that the inequalities ej1 ≤ ν imply that the new ẽj1 remain in
decreasing order.

Lemma 7.2. The box dimension and linear correction associated to the new
decorated partition data (λ̃, ǫ̃) are equal to those associated to (λ, ǫ). Hence,
the dimension associated to the new data is the same as the dimension asso-
ciated to the previous ones. The new data fit into the non-overlapping case,
and we have r̃ ≥ 2r/3.

Proof. The new blocks fit into three columns of width q1, q2, q3 and notice
that q1+ q2+ q3 = r̃. For i = 2, 3 the block dimension in the rectangle qi× r̃
is the same as that of the rectangle qi × ri since r̃ = ri + ẽ0i and the first
block of size ẽ0i = qi does not leave any leftover area. In the rectangle of size
q1 × r̃ the leftover area consists of the same configuration of leftover area as
in the rectangle of size q1 × r (which is contained in fact in a rectangle of
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ẽ01 = 4

ẽ1
1
=2

m̃0
1 = 3

m̃0
1 = 3

ẽ02 = 4

m̃0
2 = 4

m̃0
2 = 4 ẽ03 = 6

m̃0
3 = 3

m̃0
3 = 3

ẽ1
3
=2

µ×η
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✟✟
✟✟
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Figure 2. The picture after modifying the example of Fig-
ure 1.

size q1 × (r − 2m0
1)) plus a rectangle of size µ × ν that is next to the block

of size ν × ν as ν = ẽ11.
The previous linear correction was

r −
∑

i,j

(−1)j(eji + f ji ).

For the new linear correction notice that the signs of all the parts that
come from the previous one remain the same, but there are two new parts
ẽ11 = q1 = m0

1 and ẽ11 = m0
1 − µ = ν. So for the new linear correction,

∑

j

(−1)j(ẽj1+f̃
j
1 ) = (m0

1−(m0
1−ν))+

∑

j

(−1)j(ej1+f
j
1 ) = µ+

∑

j

(−1)j(ej1+f
j
1 )

whereas for i = 2, 3
∑

j

(−1)j(ẽji+f̃
j
i ) = (e0i−µ)+

∑

j≥1

(−1)jeji+
∑

j

(−1)jf ji = −µ+
∑

j

(−1)j(eji+f
j
i ).

Thus
∑

i,j

(−1)j(ẽji + f̃ ji ) = (µ − µ− µ) +
∑

i,j

(−1)j(eji + f ji )

and we get

r̃ −
∑

i,j

(−1)j(ẽji + f̃ ji ) = (r − µ) + µ−
∑

i,j

(−1)j(eji + f ji )

which is equal to the previous linear correction. The (twice) dimension is
equal to the box dimension minus ε times the linear correction, so this is
the same for the new data as for the previous data.
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In the new data we have three non-overlapping columns of widths q1, q2, q3
and all λ̃ji ≤ qi. Thus, the new data fits into the non-overlapping case. Finish
the proof by noting that q2 ≥ q3 ≥ µ and r ≥ q2 + q3 + µ so µ ≤ r/3 and
r̃ = r − µ ≥ 2r/3. �

Corollary 7.3. Let Rnon(d) be the bound of Theorem 4.9 for the non-
overlapping case, such that r ≤ Rnon(d) for any d-dimensional numerically
MC-minimal decorated partition data in the non-overlapping case. Then,
for any numerically MC-minimal decorated partition data in the overlap-
ping case we have r ≤ (3/2)Rnon(d).

Proof. The modification (r, λ, ε) 7→ (r̃, λ̃, ε̃) sends numerically MC-minimal
partition data in the overlapping case to numerically MC-minimal parti-
tion data in the non-overlapping case, preserving the dimension. Thus
r̃ ≤ Rnon(d). As r̃ ≥ 2r/3, this gives 2r/3 ≤ Rnon(d) which is the desired
bound. �

This corollary completes the proof of Theorem 4.9 in the overlapping case,
hence completing the proof of Theorem 1.1.

A remark is perhaps in order about this method of proof to treat the
overlapping case. In general, the reductions by middle convolution implicit
in the main reduction lemmas will happen in an iterative sequence. If some
inequality is not satisfied, then an MC operation is applied to reduce the
rank. Along the way, an impossible situation (i.e. partitions that contradict
irreducibility such as in the first parts of the proofs of the lemmas) may
occur, and that implies that the original relative character variety was empty.
If no such impossible situation happens along the way, eventually the result
will be numerically MC-minimal, or else a rank 1 or rank 2 hypergeometric
system, since the rank decreases at each step. This is the essence of Katz’s
algorithm [41].

Before applying the sequence of reductions, the rank could have been ar-
bitrarily big. Indeed, one could apply various quadratic middle convolutions
that increase the rank, as was used recently in [45].

In the present section, we used a sort of virtual reduction of the rank
that modifies the partition data. This construction does not provide an
isomorphism between the character varieties. Fortunately, it doesn’t need
to be applied iteratively, indeed the result directly becomes numerically MC-
minimal and non-overlapping. This gives a bound on the ratio of the ranks
before and after the modification.

8. Further questions

Remark 8.1. It seems likely that the bound R(d) should be linear in d and
explicit, for example probably R(d) = 200d will do. However, we have not
verified the details of this.

Problem 8.2. Using the bound, provide lists of the possible cases by com-
puter.
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There are clearly many other directions for further work. In the first
place, to consider an arbitrary number k ≥ 3 of singularities. Our main
reduction lemmas are tied to the case of k = 3 so more work is needed.

The existence question was discussed in Section 1.1.
Then one should consider other groups. Of course, for the simple excep-

tional groups there are only finitely many conjugacy classes to check so the
finiteness property is automatic. It might nevertheless constitute a difficult
computational question to enumerate the possibilities.

On the other hand, for different forms of the classical groups—coverings
such as the Spin groups or quotients by subgroups of the center—new tech-
niques would be necessary.

One may also fix alternate DM-stack structures over P1 with non-trivial
generic stabilizers. There are relative character varieties for local systems
on such DM-stacks but their combinatorial descriptions will be more com-
plicated.

Question 8.3. Is there a geometric transformation like middle convolution
that gives an isomorphism of moduli spaces corresponding to the modification
of decorated partition data used in Section 7.1 above?

I did not find a middle convolution operation preserving quadraticity that
did that. Recall that we had an operation giving a weaker reduction in rank,
in Lemma 4.4. One may wonder if the searched-for operation might involve
convolution with an irregular convolution kernel.

There is such an isomorphism in a closely related case. Given partition
data in the overlapping case, we can change the two paired eigenvalues of
multiplicity m0

1 into half-unital parts in the partition associated to a unipo-

tent monodromy transformation, putting them at the start of the ej1 series.
This doesn’t modify the dimension, and could probably be done in the par-
abolic Higgs setting for parabolic weights very close to 0, by forgetting the
weights on those pieces. In this case, applying twice the middle convolution
operation of Lemma 4.2 furnishes the required modification. On the sec-
ond convolution the rank does not change (the δ-invariant becomes 0) but
the second operation puts the arrangement back to the one given by the
above modification. Just doing the first operation changes some signs of the
eigenvalues ±1 leading to a slightly different configuration.

Dedication: Gang Xiao was one of the pillars of the Algebraic Geometry
group in Nice. We have missed his gentle presence and wry sense of humour.
I dedicate this paper to him.
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[12] Biquard O, Garćıa-Prada O, Mundet i Riera I. Parabolic Higgs bundles and repre-
sentations of the fundamental group of a punctured surface into a real group. Adv.
in Math., 2020, 372: 107305.

[13] Biswas I, Majumder S, Wong M. Orthogonal and symplectic parabolic bundles. J.
Geom. Phys., 2011, 61: 1462–1475

[14] Boalch P. Riemann–Hilbert for tame complex parahoric connections. Transformation
groups, 2011, 16-1: 27-50.

[15] Boden H, Yokogawa K. Moduli Spaces of parabolic Higgs bundles and parabolic K(D)
pairs over smooth curves: I. Int. J. Math., 1996, 07-05: 573-598.

[16] Bogner M, Reiter S. On symplectically rigid local systems of rank four and Calabi–Yau
operators. J. Symb. Computation, 2013, 48: 64-100.
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