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By superposing and gluing models, the Arlequin method offers an extended modelling framework 
for the design of engineering structures. This paper aims at developing the numerical aspects of the 
approach and at showing how it can be used with great flexibility and in a consistent manner to change 
locally a global mechanical model. The capabilities of the Arlequin method and the effectiveness of the 
implemented numerical tools are exemplified by 1-D, 2-D and 3-D numerical applications. 
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1. INTRODUCTION

Changing locally a globally defined mechanical or numerical model while saving human and
machine resources is essential in the designing and analysing of engineering structures. Indeed,
it is of primary importance to be able

• to introduce with great flexibility local defects (such as cracks, holes or inclusions) in a
global existing coarse model,

• to change the local behaviour in a globally simplified modelling of a given material (e.g.
to substitute a large deformation elastoplastic behaviour for a linearized elastic one),

• to relax hypotheses like classical continuum mechanics ones in the neighbourhood of
some critical points in order to better fit physical phenomena of interest, ...

From the computational standpoint, one of the main difficulties to achieve this task lies in the
lack of flexibility of classical numerical tools such as the finite element method (FEM) and
more precisely to cumbersome technical aspects related to local refinement.
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Paris, Châtenay-Malabry, France.
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Important innovative and efficient numerical methods have been developed during the last
decade to improve the flexibility of the FEM. Let us mention in particular the diffuse and
meshless methods [1, 2], the mixing FEM/MLS [3], the volume correction multiscale approaches
[4–7], the partition of unity method [8, 9], the GFEM [10], the X-FEM [11–13], and very
recently the IEM [14] which is closely related to the mixing FEM/MLS. These approaches are
basically monomodel and may either lack flexibility or relevance to address the above issues.
The s-method of Fish [15] (see also References [16–19]) stands for another numerical tool of
local–global type that is relevant in practice. It superimposes additional local and refined meshes
to an existing global one, thus allowing different modelling in the superimposed meshes.

Like the s-method, the Arlequin method [20, 21] aims at creating a multimodel framework.
However the models are not added but crossed and glued to each others. More precisely, it
consists in

1. a superposition of mechanical states in a subzone, denoted as S (and here assumed to be
known), of the whole domain � occupied by the mechanical system;

2. an energy distribution between the mechanical states in S, by using weight functions
(building a partition of unity) in order to conserve the local mechanical energies;

3. a weak and compatible gluing of these states in S, or more generally in a subzone of S

we call the gluing zone.

When compared to the s-method, the Arlequin method requires higher costs due to both (i) the
treatment of the gluing of the superimposed mechanical states and the possible introduction of a
Lagrange multiplier field associated to an interface coupling operator as in hybrid formulations
[22] or dual domain decomposition methods (e.g. References [23, 24]), and (ii) the distribution
of energies in the superposition zone which locally affects the stiffness matrices even in the
linear framework. However it has no redundancy problem and is definitely multimodel since
not only displacement fields but also complete mechanical states are potentially allowed to
concurrently exist in the superposition zone.

Since based on superposition of models, the Arlequin method may recall the overset grid
methods (also known as Chimera methods) introduced by the computational fluid community
(e.g. Reference [25]) to improve the efficiency of the finite difference method in solving fluid
problems in complex geometries. As a matter of fact, these methods are closely related to the
overlapping Schwarz methods [26] stemming from the classical alternating Schwarz algorithm.
The latter, originally designed to establish existence results for partial differential equations,
has been extended in the form of a relevant substructuring method to solve large-sized discrete
mechanical problems in parallel machines. However, the overlapping Schwarz method may not
seem to be in essence the most appropriate tool to address the above multimodel or multiscale
issues.

Domain superposition and energy averaging have been also used within the applied mathe-
matics community to derive models for joined multi-structures through asymptotic approaches
([27, 28] and the reference therein) and within the computational physics community by Abra-
ham et al. [29] to couple atomistic, molecular and continuum mechanics scales. Incidently, the
methodology developed in Reference [29] is quite similar to the Arlequin methodology [20]
though the couplings of models or scales are significantly different. The two methodologies
seem to have been developed concurrently.

In the Arlequin framework, the mechanical states in the superposition subzone are defined
as the partition of the superimposed states. The partitioned fields are labelled as Arlequin
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Figure 1. Modelling actions.

fields. In addition, the fact that models are locally crossed with each others theoretically allows
the coexistence of substantially different mechanical and numerical models. Iteration of the
crossing process [21] (by taking care of multiple gluings) can potentially lead to some relevant
multiscale models.

The Arlequin method hence offers a framework to mix and glue different models with others.
Three different modelling actions can be combined (see Figure 1 where the darkest areas stand
for the gluing zones):

• Locally refine models (zoom)
• Link structure models (substructuring or external junction)
• Introduce an essential local modification in models (internal junction)

The possible discrepancy between the scales of the local and global models in the gluing
zone need to be addressed with sufficient care. Many coupling operators have been suggested in
previous papers by Ben Dhia [20, 21]. Some of these operators have been theoretically proved
in References [30, 31] to be particularly well-suited, in the sense that they lead to well-posed
continuous and discrete problems (at least in the linear elasticity framework), the latter being
also well-conditioned.

A second aspect of the approach is related to the fact that by construction, the Arlequin
framework allows the coexistence of incompatible models, sharing the energies of the system
in the superposition regions and linked to each other in an appropriate way in the gluing
subregions. These unusual energy distributions, both with a more common introduction of
coupling of incompatible models (e.g. References [15, 18, 32, 33]), require special numerical
and technical developments.

In the present paper, we focus on these last aspects. We first recall the continuous and the
discrete mixed Arlequin equations for a model elasticity problem and some theoretical results
stating the well-posedness of these formulations. In Section 3, the discretization by means of the
finite element method and the related implementation concerns are investigated. The capabilities
of the Arlequin method and the effectiveness of the choices of some of its components and
their numerical integration are exemplified by selected 1-D, 2-D and 3-D numerical applications
given in the last section.

2. A MIXED ARLEQUIN FORMULATION

The Arlequin formulations and some related theoretical results are recalled for completeness.
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2.1. Continuous formulations

In order to introduce Arlequin equations, we consider a static linearized elasticity problem
defined in a polyhedral domain �. We let �, f , �(v) and �(v), respectively, denote the clamped
part of the boundary ��, the applied density of body forces, the linearized strain and stress
tensors associated to the displacement field v. Without restriction, the complementary part of �

in �� is assumed to be free. We also assume that the constitutive material follows a Hooke’s
law, which reads using usual convention of summation over repeated indices:

�ij (v) = Rijkl�kl(v) (1)

The elasticity moduli Rijkl are supposed to satisfy the classical symmetry, coercitivity and
regularity hypotheses (see e.g. Reference [34]).

The classical displacement problem of the considered mechanical system then reads

min
v∈W

E(v) (2)

where, using classical notations,

W = {v ∈ H1(�); v = 0 on �} (3)

E(v) = 1

2

∫

�

�(v) : �(v) d� −
∫

�

f .v d� (4)

To rewrite (2) according to the Arlequin vision, we consider that � is partioned into two
overlapping polyhedral domains �1 and �2. The clamped part � is assumed to be, say, in
��1. We let Sg denote the gluing zone supposed to be a non-zero measured polyhedral subset
of S = �1 ∩ �2. It is assumed that the boundary of the superposition zone is contained in the
boundary of the gluing zone (see Figure 2). To model the gluing forces, we use the choices
analysed in Reference [30], for which we have good mathematical and numerical properties.
As a matter of fact, the natural way to treat the volume gluing of displacement fields consists
in activating Lagrange multiplier field belonging to the dual of the space of the admissible
displacement fields restricted to Sg . This leads to a coupling operator based on a duality
bracket between H1(Sg) and its dual space [21]. At the discrete level, this duality bracket can
be approximated by an L2(Sg) scalar product. Another strategy is adopted hereafter and the
two strategies will be compared for a 1-D test (see example 4.1).
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By using the Riesz representation theorem, a natural scalar product of H1(Sg) can be
substituted (in an isomorphic way) to the duality bracket (e.g. Reference [35]). This choice
generates both a well-posed mathematical problem and an easy-to-implement numerical operator.
By the way, we notice that this last numerical aspect stands for an advantage of the volume

coupling operator (intimately related to the structure of the Arlequin method) when compared
to more usual surface couplings used for instance in mortar finite element methods [36–38].

Baring these elements in mind, the mixed Arlequin problem can be written as follows:

min
(v1,v2)∈W1×W2

max
�∈Wg

{E1(v1) + E2(v2) + C(�, v1 − v2)} (5)

where

W1 = {v1 ∈ H1(�1); v1 = 0 on �} (6)

W2 = H1(�2) (7)

Wg = H1(Sg) (8)

Ei(vi) = 1

2

∫

�i

�i �(vi) : �(vi) d� −
∫

�i

�if .vi d� (9)

C(�, v) =
∫

Sg

�.v + ℓ2�(�) : �(v) d� (10)

and where �i , �i and ℓ, respectively, denote two weight parameter functions and a strictly
positive parameter homogeneous to a length. The weight parameter functions �i and �i are
required not to count the energy in the overlap twice. They are assumed to be positive piecewise
continuous functions in �i and they satisfy the following equalities:

�1 + �2 = �1 + �2 = 1 in S (11)

�i = �i = 1 in �i \ S (12)

Remark 1

In the superposition zone, distinct mechanical states concurrently exit. The stress tensor field
actually satisfying the mechanical equilibrium is defined as the weighting of the stress tensor
fields associated to both models through the � functions pair:

�arl =















�(u1) in �1 \ S

�(u2) in �2 \ S

�1�(u1) + �2�(u2) in S

(13)

As mentioned in the introduction, this field is labelled as Arlequin stress tensor field.
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Remark 2

The coupling operator C(., .), defined by (10), is equivalent to the H1(Sg) natural scalar product.
The above mentioned L2(Sg) scalar product is obtained by setting ℓ = 0 in (10). In the sequel,
it will be denoted by CL2 .

2.2. Discrete formulations

The discrete formulations are derived from the continuous one by means of the finite element
method. To this end, the domains �1 and �2 are, respectively, meshed by two sets of trian-
gulations, denoted (Th1) and (Th2). The gluing zone is described by a set of triangulations,
(Thg ), and we let Whi

⊂ Wi denote the related conforming finite element spaces, for i varying
in {1, 2, g} (e.g. Reference [39]). That way, the discrete problems read:

min
(vh1 ,vh2 )∈Wh1×Wh2

max
�hg ∈Whg

{E1(vh1) + E2(vh2) + C(�hg , vh1 − vh2)} (14)

The related Euler equations read

Find (uh1, uh2 , �hg ) ∈ Wh1 × Wh2 × Whg

∀vh1 ∈ Wh1,

∫

�1

�1 �(uh1) : �(vh1) d� + C(�hg , vh1) =
∫

�1

�1f .vh1 d� (15)

∀vh2 ∈ Wh2 ,

∫

�2

�2�(uh2) : �(vh2) d� − C(�hg , vh2) =
∫

�2

�2f .vh2 d� (16)

∀�hg ∈ Whg , C(�hg , uh1 − uh2) = 0 (17)

where we note that in (15) and (16), the second member of the left hand side terms stands
for the virtual work of the gluing forces while (17) stands for the weak gluing system.

In Reference [30], we established that, under some classical hypotheses and some conditions
which are rather easy to satisfy in practice (see Remark 3), the continuous and the discrete
problems are well-posed. Moreover, the solutions of the continuous and discrete problems satisfy
an optimal a priori error estimate. Basically, if (u1, u2, �) and (uh1 , uh2 , �hg ) respectively
denote the solutions of the continuous and discrete problems and if a sufficient regularity is
assumed for the continuous fields then;

∃C > 0 indepedent of h1, h2 and hg

‖u1 − uh1‖W1 + ‖u2 − uh2‖W2 + ‖� − �hg‖Wg�C max(h1, h2, hg) (18)

Remark 3

The additional conditions ensuring the theoretical results at the discrete level are the following:

∀i ∈ {1, 2}, ∃�0 > 0; �i��0 in S (19)

Whg ⊂ Wh1 |Sg
or Whg ⊂ Wh2 |Sg

where Whi |Sg
stands for span{v|Sg ; ∀v ∈ Whi

}
(20)
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Condition (19) on the weight parameter functions �i presents no practical difficulty. Moreover,
the compatibility-like condition (20) may rather easily be satisfied in practice, as we demonstrate
in the following section.

Remark 4

The weight functions, �1 and �2, are here assumed to be given. The Arlequin solution depends
on these functions when two different numerical or mechanical models are superposed. Though
an optimal choice of these functions seems to be a rather intricate issue, an operational one
consists in relating their values to the relative local refinement of the associated models. This
choice is partially confirmed by numerical investigations (see Section 4) and by theoretical limit
results which will be published elsewhere. In addition, when considering deformable bodies,
the stability analysis of problem (5) recalled above shows that each �i must be strictly positive.
However, in the particular case where a rigid body is superimposed to a deformable one, all
the internal energy is supported by the deformable body. In these particular situations, one
can notice the similarity between the fictitious domain method with a distributed Lagrange
multiplier [40] and the (mixed) Arlequin method.

3. DISCRETIZATION AND IMPLEMENTATION ISSUE

In the previous sections, we stated that the Arlequin method offers an a priori relevant way to
the (local) approximation of multiscale mechanical problems. However, to work out a robust
and easy-to-use modelling tool, some computation issues have to be investigated.

3.1. Discretization framework

The Arlequin method can address a large number of combinations of superimposed models,
kinematics, interpolations, meshes, ... For the sake of clarity, we hence restrict the following
discussion to a minimal, but significant, framework.

As in the previous section, the overlapping of no more than two solid finite element models
is considered. For a more convenient and efficient use of this method, we also assume that
the related triangulations may be independent. Furthermore, the simplest parameterization of
the weighting functions is chosen. Namely, those functions are taken equal to 1 outside the
overlap and constant inside. The related constants are denoted by �0

1, �0
2, �0

1 and �0
2. Finally,

we begin this discussion by assuming that Thg is independent of Th1 and Th2 . Then, at the
end of this section, we consider more practical possibilities related to condition (20).

3.2. Computation key point

Given this framework, we now focus on solving the discrete problems (15)–(17). To this
end, we let (�i

1), (�
j
2) and (�k

g) denote the finite element basis functions of Wh1 , Wh2

and Whg . The vectors U1, U2 and �, respectively, stand for the co-ordinates of uh1 , uh2

and �hg in these bases. The discrete problem (15)–(17) is equivalent to the following linear

7



Acc
ep

te
d 

M
an

us
cr

ip
t

Ω2

α  = α1 1
0K1

α  = 11

Figure 3. Heterogeneities at the element scale.

system:









K1 0 C
T
1

0 K2 −C
T
2

C1 −C2 0

















U1

U2

�









=









F1

F2

0









(21)

for which we need to evaluate

• the weighted stiffness matrices

(Ki)jk =
∫

�i

�i�(�k
i ) : �(�j

i ) d� (22)

• the weighted loading vectors

(Fi)j =
∫

�i

�if .�
j

i d� (23)

• the coupling matrices

(Ci)jk =
∫

Sg

�
j
g.�

k
i + ℓ2�(�

j
g) : �(�k

i ) d� (24)

The mixed matrix in (21) is not positive definite. Many numerical strategies have been developed
to efficiently solve such systems, particularly by the domain decomposition community (see
e.g. Reference [23]). So we do not discuss this point any further.

As a matter of fact, the technical difficulty is related to geometrical incompatibilities. Indeed,
since the meshes Th1 , Th2 and Thg may be independent, they a priori do not match in the
overlap (see Figure 3). Consequently, (22)–(24) should not be computed in the finite element
classical way. The non-matching relation between the triangulations leads to heterogeneous in-
tegrands at the element scale, so that standard quadrature formulae, used in the reference finite
elements, may generate spurious numerical oscillations of the solution fields. This implementa-
tion issue is also encountered by other methods (e.g. References [15, 18, 32, 33] or Reference
[41] for incompatible contact interfaces).
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3.3. Integration issue

The adopted solution consists in elaborating more suitable integration rules for each element
of the triangulations. Hierarchical procedures can be used. In References [31, 42], we test one
such procedure. Despite its simplicity and effectiveness, the associated algorithm seems to
be CPU and memory consuming, when 3-D elements are concerned or when the geometrical
characteristics of the superimposed triangulations are quite dissimilar. The numerical integration
strategies developed by Stouboulis et al. [43, 44] could be as well updated to our problem though
to our knowledge, the 3-D version of the so-called fast remeshing quadrature algorithm is not
available.

We here test an alternative procedure based on the computation of geometric intersections
of finite elements. The approach actually consists in partitioning the integration domain into
sub-elements where the integrands of (22)–(24) are regular. In this way, (22)–(23) generically
read

∫

�1

�1f d� =
∑

K1∈Th1

(∫

K1\�2

f d� + �0
1

∫

K1∩�2

f d�

)

(25)

and the coupling matrices (24) read
∫

Sg

f d� =
∑

Kg∈Thg

∑

K1∈Th1

∫

Kg∩K1

f d� =
∑

Kg∈Thg

∑

K2∈Th2

∫

Kg∩K2

f d� (26)

The above elementary integrals are reduced to classical ones, when in (25), K1 is located on
one side of ��2 or in (26), Kg ⊂ K1 for instance. A large number of computations can hence
be saved through the identification of such configurations by elementary geometrical tests (see
Reference [42], for details).

For the remaining cases, intersections of element supports are computed. This task is achieved
by sampling and triangulating the boundary of the elements and the domains (see Figure 4). The
ensuing polyhedra intersection problems are then treated through classical algorithms developed
by the computational geometry community (see e.g. References [45, 46]).

Remark 5

When both polyhedra share perfectly coincident parts of faces, the related intersection problem
requires quite sofisticated procedures. In that cases, the intersection may indeed be reduced to
single points, segments or polygonal surfaces. Since the consideration of such zero measured
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manifolds is irrevelant for our applications, we slightly move each boundary sampling point in
a random direction so as to only treat pairs of polyhedra in general position.

3.4. Coupling matrices

We now successively consider the case of (26) then (25). First, to elaborate quadrature rules
for the evaluation of coupling matrices terms, the intersection polyhedra are tetrahedralized.
This a priori intricate geometry problem is solved by assuming that these polyhedra are
star shaped around their gravity centres (which can be located through the Green’s formula).
The tetrahedralization is then built through connecting these centres to each vertices of the
polyhedron (see Figure 5 on the left). Note that since usual finite elements are almost convex,
this assumption was always verified in our applications.

To further detail the computations, we consider (Kg, K1) ∈Thg ×Th1 such that the associated

intersection polyhedron be non-zero measured, (�i
g , �

j
1) two finite element basis functions of

Whg × Wh1 which supports, respectively, enclose Kg and K1, and we let TKg∩K1 denote the
tetrahedralization of Kg ∩K1. That way, the evaluation of (24) using (26) is generically carried
out in the following way:

∫

Kg∩K1

�i
g.�

j
1 d� ≃

∑

K∈TKg∩K1

J�K

∑

ĝ

�ĝ (�̂
I ◦ �−1

Kg
◦ �K)(ĝ) . (�̂

J ◦ �−1
K1

◦ �K)(ĝ) (27)

where �K , J�K
, �̂

I and �̂
J stand for the mapping between K and the related reference

element, its jacobian and the shape functions associated to �i
g and �

j
1 , respectively. In addition,

�ĝ and ĝ denote the weights and points of the appropriate Hammer’s integration rule.
To choose these rules when models with different interpolations are superimposed, we follow

classical results (e.g. Reference [39]) and assume that the geometric distortion of the elements
is weak. That way, the mappings �Kg , �K1 , �K2 are almost affine, so that the integrands of
(24) are close to polynomials for which we can compute degrees and that we can automatically
associate to proper quadrature schemes (e.g. Reference [47]).

3.5. Weighting strategy

While this tetrahedralization strategy is appropriate to the evaluation of the coupling matrices, it
may not be to compute the weighted virtual works. Indeed, this approach increases the number
of integration points, which may lead to prohibitive costs when non-linear or history dependent
material are used, and may be tricky with under-integrated elements such as those used for
incompressible media or for thin structures. Therefore, we choose to approximate the effect of
the weighting functions by their mean value on each finite element. This reads

∫

�1

�1�(�
j
1) : �(�k

1) d� ≃
∑

K1∈Th1

(

1 − �0
2

|K1 ∩ �2|
|K1|

) ∫

K1

�(�
j
1) : �(�k

1) d� (28)

In this equation, the volume ratio is evaluated by triangulating the boundaries of both K1 and
the polyhedron associated to the intersection of K1 with �2, and by applying the classical
Green’s formula. The relevance of this approximation is illustrated by our numerical examples,
for which we do not notice any numerical pathology such as spurious stress oscillation around
the gluing zone.
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Elements defining S
g

S
g

Figure 5. Operational definition of Thg and Sg .

3.6. Triangulation of the gluing zone

Up to now, we considered an independent mesh to describe Sg . For our applications, we use
a more convenient and theoretically founded choice for which we do not need to explicitly
triangulate the gluing zone.

It consists in considering (see Figure 5) a subset of Th1 (or Th2 ) which elements may not
be totally included in the overlap, and in describing the gluing zone by the intersection of this
subset with �2 (or �1).

No additional developments are then needed, since using (26) in the following way, only
the intersections of the elements of Th1 with �2 are considered for the evaluation of (24):

∫

Sg

f d� =
∑

Kg∈Thg (⊂Th1 )

∑

K2∈Th2

∫

Kg∩K2

f d� (29)

However, since (Thg ) is used to discretize the multiplier space, only the elements of (Thg )

which have a significant intersection with �2 are considered so as to ensure the stability of the
numerical approximation of linear system (21). Finally, note that the choice of the triangulation,
Th1 or Th2 , to define Thg affects the solution fields uh1 and uh2 . This influence is exemplified
by a 1-D numerical result in the following section.

4. NUMERICAL EXAMPLES

4.1. Clamped vertical bar loaded by its own weight

We first consider a one-dimensional mechanical problem to compare the stability of the mixed
Arlequin formulation when the gluing operator is based on either discretized L2 or H 1 inner
products (see Section 2, Remark 2). Recall that the discrete L2 inner product approximates the
continuous duality bracket between the space of fields of finite energy in the gluing zone and
its dual space. The mechanical problem consists in evaluating the vertical displacement field,
u, in an upright bar of constant section, clamped at both ends and loaded by its own weight
(see Figure 6 on the left).

Its section �, its Young’s modulus E, its density � and the gravity factor g are chosen so
that �g = E�. In addition, the Arlequin model for this problem consists in the superposition
of two equally fine meshes set in ]0, 2[ and ]1, 3[ which step is denoted by h. Since the

11
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Figure 7. Comparison of solution multiplier fields for h = 0.05.

superimposed models are of same refinement, the weight functions �i and �i are taken equal
to 1

2 in the gluing zone, coinciding here with the overlap. Continuous 1-D linear elements are
used to approximate the displacement and Lagrange multiplier fields.

In Figure 6 on the right, we first compare the influence of the mesh size h on the conditioning
of the related linear systems (21). Note that the C coupling operator leads to conditioning
numbers varying as 1/h2 (which is usual for finite element matrices), whereas the CL2 operator
leads to worse conditioning numbers, varying as 1/h4.

This deterioration can be related to the very different behaviours of the gluing multiplier
field �h in both cases. Contrary to C (see Figure 7 on the right), CL2 leads to non-smooth
multiplier fields (see Figure 7 on the left). In this case, we indeed observe that with respect
to h the gluing forces density tends to be equal to zero almost everywhere in the gluing zone,
becoming more and more oscillating in the neighbourhood of the boundary of this gluing zone,
with a numerical value on the two points of the boundary varying as 1/h. Actually it seems
to converge toward a distribution (viz. an element of the dual of the kinematical admissible
fields space).

The same numerical example is now used to illustrate the influence of the triangulation
used to descritize the Lagrange multiplier field on the solution mechanical states. This time,
different refinements of the superimposed models are considered. In Figure 8, the resulting
discrete displacement fields obtained for �2 = 99% (i.e. the � function associated to the finest
model) are plotted in the overlap. In addition, the analytical solution displacement field denoted
uref is also represented.

Notice that, depending on whether the gluing forces space is chosen to be equal to the
restriction to the glue zone of the finest or the coarsest finite element space, the finest mechanical
state is either locked to the coarsest one (left part of Figure 8), or linked to it in an average
sense (right part of Figure 8). Both choices may have practical interests.
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Figure 9. Drilled plate under tension.

4.2. Drilled plate

The next example aims at testing the soundness of the numerical approximations developed in
Section 3. We consider the classical linear elasticity problem of a circular hole in an infinite
2-D plate. The infinite plate is approximated by a 20-by-20 square for a R0 = 0.4 radius hole.
Planed stress isotropic homogeneous linearized elasticity is assumed.

The test consists in considering independent finite element models for a global plate with no
hole and a local one with a hole, and in superimposing them through the Arlequin framework.
The global square plate model is submitted to uniform traction loads (denoted �∞ and taken
here equal to 1) along its upper and lower edges. The local model for the hole consists in a
2.8 diameter circular ring and the gluing zone is defined as the annulus located between radius
1.3 and 1.4 (see Figure 9 on the left).

Here, completely different mechanical models concurrently exist in the superposition zone.
In order to obtain the solution of a plate with a hole, the weight is put on the local drilled

model. Namely the related weight function parameter �0 is set to 99.9%.
The meshes of the superimposed models are independent so as to treat non-trivial geometrical

configurations. The global one is regular and its step is denoted by h. In the sequel, several re-
finement levels are considered for both models, and parameter h is used to quantify these levels.

The right part of Figure 9 shows a zoom around the hole depicting the deformed meshes and
the related iso-major principal stress field obtained for h = 1

4 . For the superimposed meshes
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Figure 10. Comparison between the Arlequin solution and the analytical one for an infinite plate.

are quite incompatible, note that no significant spurious stresses oscillations can be observed
around the gluing zone.

This remark can be also supported through comparing the smoothed Arlequin stress tensor
component �arl

yy (see Remark 1) along segment AB (see Figure 9 on the left) to the analytically
known solution related to the infinite plate. Letting r denote the distance from the hole centre,
this solution reads:

�ana
yy = �∞

(

1 + 1

2

(

R0

r

)2

+ 3

2

(

R0

r

)4
)

(30)

Both curves are plotted in Figure 10 on the left for h = 1
16 .

First note the well known stress concentration factor 3 found on the boundary of the hole.
Secondly remark the small numerical oscillation of the stress field in the gluing zone. As a
matter of fact, this oscillation is related to the geometrical incompatibility of the meshes, to
their different finenesses and to the size of the superposition zone.

In order to consider the influence of the mesh size parameter h, a logarithmic error analysis
is plotted in Figure 10 on the right, where the considered error measures are defined as follows:

L∞error = max
AB

|�arl
yy − �ana

yy | (31)

L2error =
(

1

|AB|

∫

AB

(�arl
yy − �ana

yy )2 ds

)1/2

(32)

These results show in particular the relevance of the numerical approximations and integration
strategies developed in Section 3 for the operational implementation.
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Figure 11. Slant cracked plate under tension.

4.3. Slant cracked plate under tension

The second 2-D test aims at illustrating both the accuracy and the effectiveness of the Arlequin
approach to locally change a global model. The mechanical test consists in a plate with a
crack with length a and inclined with angle �, submitted to a uniform traction density of loads
f = 100 MPa and assumed to be in plane stress. This test is depicted in Figure 11. In this
benchmark, engineering quantities of interest are also analytically known when the plate is
infinite. Namely, the expressions of the energy release rate G and the first and second intensity
factors KI and KII are, respectively, given by (33)–(35).

G = f 2

E
�a cos2 � (33)

KI = f
√

�a cos2 � (34)

KII = f
√

�a sin � cos � (35)

This case is treated through the Arlequin framework by superimposing a very local cracked
model to the global plate one. The used meshes for the global model and the local cracked one
are depicted in Figure 12 where the tinted area stands for the chosen gluing zone. Moreover
we have taken a = 1 mm and � = 37◦, with a Young’s modulus and a Poisson ratio equal to
200 GPa and 0.3, respectively.

The resulting deformed numerical Arlequin model in local zones of interest, and the major
principal stresses field, obtained for �0

crack = 99.99%, are given in Figure 13. Notice that �0
crack

here refers to the weight function parameter associated to the local cracked model. The one
associated to the global model is denoted by �0

plate. Recall that by definition �0
crack + �0

plate = 1.
The values of energy release rates and stress intensity factors obtained with higher and higher

weight on the cracked model are compared to the analytical values holding for an infinite plate
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Figure 12. Meshes of the global and the local cracked plates.

Figure 13. Deformed meshes and major principal stress field.

and to the values obtained by a similarly refined classical finite element (mono)model (see
Figures 14 and 15). For the particular numerical test considered here, it is even possible to
take �0

plate = 0. The related values of the same mechanical quantities are also given in Figures 14
and 15 and labelled limit Arlequin solution.

Note that although only locally refined, the numerical results obtained by the Arlequin
approach (when the weight is significantly put on the local refined model) are as accurate as
the ones obtained by a similarly (but globally) refined classical finite element (mono)model.

4.4. Bending of a pipe elbow

The Arlequin framework is used in the following examples to couple a local 3-D model to a
shell one. The 3D-Shell discrete partition is derived from the continuous Arlequin problem (5)
in a rather straightforward way. Basically one has to approximate one of the two models (say
model 2, the one defined in �2) by a shell model. The obtained (still) continuous problem
can be discretized by means of solid finite elements used to approximate model 1 and of
appropriate shell finite elements for model 2. The gluing zone is described by a volume in
which the displacement shell fields are unambiguiously defined so as to be glued to the 3D
displacement fields. In addition, the space of gluing forces is taken as the restriction to the
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gluing zone of the space of kinematical shell fields. The reader is referred to References
[48, 42, 49] for more details related to this important type of coupling in the computational
mechanics field.

The mechanical problem illustrating here this aspect consists in the bending of a right-angle
pipe elbow. In the Arlequin framework, a 3-D local model is used to discretize the mechanical
states in the bend, while shell global ones are used for the right parts of the pipe. This
geometry is depicted in Figure 16. Linearized elasticity is assumed. The Young’s modulus and
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Figure 17. Bending of a right-angle pipe elbow.

the Poisson ratio are, respectively, equal to 300 GPa and 0.3. One end related to the shortest
pipe arm is clamped while the other end is submitted to uniform displacement.

In Figure 17 on the left, external iso-major principal stress field is shown on the deformed
structure. In order to assess the accuracy of the Arlequin solution, the Von-Mises field along
the inner and outer perimeter of section AB bisecting the elbow (see Figure 16) is compared to
the one obtained by a 3-D monomodel (see Figure 17 on the right). The two solutions merely
overlap.

With this test, it is believed that the geometrical tools developed in Section 3 are validated
in the 3-D space.

5. CONCLUDING REMARKS

In this paper, we worked out numerical strategies in order to mix very different finite element
models by the Arlequin method. The effectiveness of these developments have been illustrated
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through 1-, 2- and 3-D mechanical tests. That way, we show high potentialities of this modelling
framework in term of flexibility and of practical capabilities to locally integrate small defects
and low scale mechanical phenomena in numerical models of engineering structures.

The Arlequin framework has also been used to treat contact problems such as the Boussinesq
one for which the stress tensor is locally singular [41]. Other mechanical problems can be
addressed in this framework. Two of them are now being in progress, namely impact problems
[50] and the important field involving the dynamic coupling of discrete/continuum mechanics
(e.g. Reference [51]) for which at least the gluing operator has to be re-analysed.

Some aspects directly or indirectly related to the approach have however to be investigated
more deeply. We mention in particular the optimal practical choice of the weighting parameter
functions, the definition (through adaptive approaches) of optimal sizes and refinements of the
superposition and gluing zones relatively to the size and refinement of the underlying global
model and the multiple superposition procedure which is essential for a multiscale analysis.
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