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Image Reconstruction With Local Directional Total
Variation Regularization Using Tomographic

Incompleteness Maps
Matthieu Laurendeau, Frédéric Jolivet, Laurent Desbat, Guillaume Bernard, Sébastien Gorges and Simon Rit

Abstract—Limited angle acquisition is a well-known challenge
in computed tomography reconstruction because the lack of data
generates severe geometric artifacts in reconstructed images.
Recently, directional total variation (DTV) regularization has
shown promising results for this kind of problem but it requires
fine-tuning of a global directional hyperparameter in addition
to the regularization weight. In this work, we propose a new
regularization, called local directional total variation (LDTV),
which is a DTV based on local directional weights determined
from tomographic incompleteness maps. We evaluated LDTV
and compared it to state-of-the-art algorithms on simulated two-
dimensional acquisitions of the Forbild head phantom with a
source trajectory made of two orthogonal arcs of 60° each.
The reconstructed images show that the LDTV regularization
performs better in this geometry for both noiseless and noisy
data.

Index Terms—limited angle problem, tomographic incomplete-
ness, directional total variation (DTV), local DTV (LDTV)

I. INTRODUCTION

IN X-ray computed tomography (CT), some applications
require limited space which implies a reduced acquisition

angle. This situation could arise both in the medical field, with
tomosynthesis for example, and in the industrial field where
the aim is to minimize the size of the system and reduce its
scanning time.

Several image reconstruction algorithms have been devel-
oped to address the limited angle problem. Iterative methods
have demonstrated improved results compared to filtered-
backprojection (FBP) algorithms [1]. They minimize a cost
function made of a data fidelity term and a regularization term.
The latter implements an image prior compensating the lack
of data to obtain more plausible results.
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Lyon 1, UJM-Saint Étienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-
69373, Lyon, France, with Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro
Sup, Grenoble INP, TIMC, 38000 Grenoble, France and with Thales AVS,
Moirans, France (email: matthieu.laurendeau@insa-lyon.fr).

F. Jolivet is with Thales AVS, Moirans, France (email: fred-
eric.jolivet@thalesgroup.com).

L. Desbat is with Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup,
Grenoble INP, TIMC, 38000 Grenoble, France (email: laurent.desbat@univ-
grenoble-alpes.fr).

G. Bernard is with Thales AVS, Moirans, France (email: guil-
laume.bernard@thalesgroup.com).

S. Gorges is with Thales AVS, Moirans, France (email:
sebastien.gorges@thalesgroup.com).

S. Rit is with Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1,
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Recently, a new regularization, directional total variation
(DTV), was developed [2] and showed promising results for
the limited angle problem. This regularization strengthens the
image prior in the direction where data is missing. In [3], the
authors studied orthogonal arcs with limited angular range for
dual-energy CT application and showed similarly good results
using DTV.

Although DTV could improve visual image quality, it re-
quires fine-tuning of the directional parameter, which could
be time-consuming and sensitive to the acquisition geometry
and the scanned object. Moreover, the regularization applies
the same directional weight for all pixels of the image,
which may not accurately describe spatial variability of data
incompleteness due to limited angle acquisitions.

In this work, we present the local directional total variation
(LDTV) regularization based on the tomographic incomplete-
ness map previously developed in [4] which uses the incom-
pleteness metric of [5]. This regularization locally adjusts both
the strength and the directional weight parameters by taking
into account the geometry of the scanner. We simulate noise-
less and noisy projections of the Forbild head phantom [6]
with a limited angle geometry made of double orthogonal arcs
(DOA), compute the corresponding tomographic incomplete-
ness map and compare several regularizations, including state-
of-the-art DTV [1] and our LDTV method.

II. MATERIALS AND METHODS

A. Geometry and tomographic incompleteness
Similarly to [3], we used a two-dimensional (2D) fan-

beam geometry with limited angle DOA. An illustration of the
geometry is provided in Fig. 1. We used 120 source positions,
evenly distributed every degree on two orthogonal arcs of 60°
each. The source-to-object distance (SOD) and the source-
to-detector distance (SDD) were 510 mm and 1020 mm,
respectively. In addition to having an acquisition limited to
an angular range of 120°, this geometry was selected because
the direction of missing data is spatially variable with both
horizontal and vertical directions.

Monochromatic fan-beam projections were simulated from
a reference image of the Forbild head phantom [6] in the
region Ω ⊂ R2 with 256 × 256 pixels and 1 mm spacing
(Fig. 1). The linear detector was large enough (1200 mm,
1 mm spacing) to avoid lateral truncation of the projections.

We computed the tomographic incompleteness map of the
scanner geometry, as described in [4], in the source trajectory
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Fig. 1. Double orthogonal arcs (DOA) geometry. The two 60° blue dashed
arcs represents the 120 sources distributed every degree. The image of the
Forbild head phantom is placed at the center of the arcs.

plane. The tomographic incompleteness criterion [5], noted
I(p,n) ∈ R+, measures how much a 3D point fulfills Tuy’s
condition, i.e., for a continuous source trajectory Γ and
without truncations, a point p can be reconstructed if all
planes passing through p intersect Γ. One advantage of the
incompleteness criterion I is that it allows evaluation of the
tomographic incompleteness for a discrete source trajectory.
The value of I(p,n) is defined as the tangent of the minimal
angle between the plane Πp,n passing through p with co-
direction n and all the X-ray lines defined by the source points
and p [5]. When I(p,n) reaches 0, Πp,n intersects the source
trajectory and larger values of I(p,n) indicate a larger angle
between Πp,n and the closest source position. As in [4], the
tomographic incompleteness map calculates for all pixels p in
the image the most incomplete co-direction:

n∞(p) = arg max
n

I(p,n) ∀n ∈ S2
1/2, (1)

with S2
1/2 the unit hemisphere, and the corresponding incom-

pleteness value:

I∞(p) = I(p,n∞) = max
n

I(p,n) ∀n ∈ S2
1/2. (2)

Numerically, for this 2D geometry, we only evaluated 720
homogeneously distributed co-directions of S2

1/2 in the source
trajectory plane, i.e. on the unit half circle. Fig. 2 illustrates the
2D incompleteness map for our DOA geometry with colored
arrows, each giving two pieces of information: the direction
encodes the direction n∞ normal to the most incomplete line
and the color encodes the incompleteness value I∞. In Fig. 2,
the map is roughly separated in two regions: the upper half
with horizontal co-directions and tomographic incompleteness
values I∞(p) in the range [0.27, 0.34], and the lower half
with vertical co-directions and tomographic incompleteness
values of about 0.40. This is expected as the hole between
the two arcs of the source trajectory creates an incomplete
direction defined by the midpoint of the arcs (0,−510) for
pixels in the upper half, while for pixels in the lower half, the
incompleteness is larger in the horizontal direction. In sum-
mary, the studied geometry implies a significant tomographic
incompleteness I∞(p) > 0.26 ∀p ∈ Ω, the upper half is
mainly incomplete in the vertical direction while the lower
half is even more incomplete but in the horizontal direction.
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Fig. 2. Tomographic incompleteness map of the DOA geometry. The source
points are represented in blue. The arrows show the most incomplete co-
direction n∞ and their color the corresponding tomographic incompleteness
value I∞.

The aim of the proposed algorithm is to account for this
incompleteness map in the regularization of an iterative re-
construction algorithm adapted to the limited angle problem.

B. Local Directional Total Variation

Data collected by the X-ray tomography system using our
DOA geometry was modelled by the following discrete linear
system:

y = Ax + ε (3)

where x ∈ RN=Ni×Nj is the sought attenuation map, A ∈
RM×N the discrete X-ray transform of the DOA geometry,
y ∈ RM the projection data and ε ∈ RM the associated
noise. In a limited angle framework as the DOA geometry,
reconstructing x with FBP leads to poor results due to the
lack of data. In recent years, iterative reconstruction algorithms
with an image prior have given the best results by constraining
the problem to a space of plausible solutions [1]. To estimate
x, one can solve the following optimization problem:

x∗ = arg min
x

1

2
||y −Ax||22 + R(x) (4)

where the first term, the data fidelity term, ensures that the
final solution x∗ matches the projection data y and R is the
regularization term embedding the image prior.

Total variation (TV) regularization, which promotes piece-
wise constant solutions, has proven efficient for CT recon-
struction, in particular for the limited angle problem [1].
Recently, Zhang et al. [2] developed DTV regularization based
on the anisotropic version of TV, which weights differently
the regularization on the horizontal and the vertical axes of
the image. It can be written as:

RDTV(x) = λ

Ni−1∑

i=0

Nj−1∑

j=0

|β (xi,j − xi+1,j) |

+|
√

1− β2 (xi,j − xi,j+1) |
(5)

where λ ∈ R+ controls the strength of the regularization
with respect to the data fidelity term and β ∈ [0, 1] is the
directional weight. DTV is well adapted to the limited-angle
problem where the lack of data is in the same direction for
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every pixel of the reconstructed image. The parameter β is
tuned to regularize more this specific direction. However, it
is not obvious to guess the best β because it depends on the
geometry and the scanned object. Moreover, DTV defines only
one direction parameter while in some geometries, e.g. the
DOA geometry, the incompleteness direction is not the same
for every pixel in the image, as explained above.

We propose to use the tomographic incompleteness map
to locally adjust the regularization. We formulate our LDTV
regularization as follows:

RLDTV(x) =

Ni−1∑

i=0

Nj−1∑

j=0

Ĩ∞(xi,j)(|n∞2(xi,j) (xi,j − xi+1,j) |

+|n∞1(xi,j) (xi,j − xi,j+1) |)

(6)

with n∞1 and n∞2 the first and second components of the
co-direction n∞ and

Ĩ∞(x) = λmin +
λmax − λmin

max I∞
I∞(x) (7)

the tomographic incompleteness value linearly adjusted be-
tween the hyperparameters λmin ∈ R+ and λmax ∈ R+.
The regularization is stronger when the incompleteness level
is higher and the horizontal and vertical directional weights
are defined by n∞2 and n∞1 respectively as they design the
direction normal to the most incomplete line.

C. Numerical experiments

The cost function of Eq. 4 is convex but non-smooth
when dealing with TV-like regularizations. Aiming at a fair
comparison between several regularization terms, we have
used the same FISTA-TV optimization algorithm with non-
negative constraints for all iterative methods [7].

We generated noiseless projections of the Forbild head
phantom and corrupted them with pre-log Poisson noise with
106 photons per pixel in air. We reconstructed images using
the noiseless data with four algorithms: conventional FBP
with a Hamming window and three iterative reconstruction
algorithms with anisotropic TV, DTV and the proposed LDTV
regularization terms. The two last have also been used to
reconstruct images from noisy data. For the TV, DTV and
LDTV, we performed 1200 iterations of FISTA with 60 denois-
ing iterations which was enough to achieve the convergence
according to the relative error with the ground truth (GT).

Image quality was quantified with the peak signal-to-noise
ratio (PSNR). For the regularization terms, the hyperparame-
ters were automatically tuned by minimizing the normalized
root mean squared error (NRMSE) with the GT image using
600 iterations of the Nelder-Mead downhill simplex algorithm.

III. RESULTS

The reconstructed images with noiseless projections are
shown in Fig. 3. FBP reconstruction was severely impacted by
the lack of data, and neither the inner left ear nor the profile
were close to the GT. The high frequency noise in this result
demonstrated that limiting the solution to be more piece-wise

constant was relevant. TV reconstruction, with λ = 2.9×10−4,
really increased the visual quality of the image with a PSNR
score of 28 dB. The image was more piece-wise constant,
as expected, but there were residual artifacts at the border of
the head, and it had difficulty to reconstruct high frequency
information in the two ears. The best hyperparameters for DTV
regularization were λ = 2.8 × 10−4, β = 0.97 and the final
reconstruction had a PSNR score of 30 dB, notably better
than the reconstruction with TV regularization. One can see
the effect of the horizontal directional regularization on the left
ear compared to the TV result. Also, the small disks in the
right ear were closer to the GT. Finally, the reconstruction with
LDTV regularization outperformed the other reconstruction
algorithms with a high PSNR value of 36 dB confirmed by
the visual impression of a higher image quality. The best
hyperparameters for LDTV were λmin = 3.3 × 10−5 and
λmax = 2.6 × 10−4. The borders of the head were better
reconstructed, as one can notice above the left and right inner
ears or at the bottom of the phantom. Moreover, the left inner
ear showed 7 squares as the GT and the right ear was more
accurate. Lastly, the profiles show that LDTV was able to
reconstruct the two low contrast spheres at the top of the
phantom unlike the other reconstruction algorithms.

DTV and LDTV images reconstructed from noisy data
are shown in Fig. 4. DTV had a PSNR of 27 dB with
λ = 6.4×10−4 and β = 0.99. Visually, noise clearly degraded
the result. The reconstructed image with LDTV regularization
had a PSNR of 30 dB. The optimal hyperparameters were
λmin = 2.7 × 10−4 and λmax = 9.3 × 10−4 and the visual
image quality was improved compared to DTV. The right ear
and the border of the head were closer to the GT. However,
the left ear and the low contrast profile were visually degraded
compared to the result without noise.

IV. DISCUSSION

The LDTV method uses the incompleteness map (Fig. 2)
and therefore applies a stronger regularization in the lower
half of the image than the upper half, in the horizontal
directions and vertical directions respectively. DTV uses a
single parameter and cannot locally adjust the regularization
direction. The optimal directional hyperparameter of DTV
was horizontal, which is consistent with the most incomplete
direction of the incompleteness map and supports its use in
LDTV.

For this work, we did not study the dependence of the
regularization hyperparameters to the object. We have used
an optimization algorithm to find the hyperparameters that
minimize the NRMSE with the GT. The optimal hyperpa-
rameters will not only depend on the scanner geometry but
also on the scanned object. The LDTV regularization adjusts
the directional weights using the tomographic incompleteness,
but the optimal hyperparameters λmin and λmax will probably
depend on the characteristics of the scanned object.

The LDTV method gave satisfactory results in this 2D
framework. The tomographic incompleteness maps deliver
three-dimensional (3D) knowledge on the CT geometry. Com-
puting LDTV regularization for a 3D images was beyond the
scope of this work.
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Fig. 3. GT and results of the four reconstruction algorithms using noiseless
data with a gray window of [0.9, 1.2]. The left column shows the full
reconstructed image with the corresponding PSNR value at the top-right. In
the right column, the two zoom images represent the inner left and right ears,
and the orange profile is taken along the line passing through the two low
contrast spheres at the top of the phantom.
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Fig. 4. Reconstructed images using DTV and LDTV regularization from noisy
projections. The gray window is [0.9, 1.2]. As in Fig. 3, the full reconstructed
images with their corresponding PSNR values are in the left column beside
the zooms on the ears and the plot through the two low contrast spheres.

V. CONCLUSION

This article presented the LDTV, a new regularization
using local tomographic incompleteness direction and level.
To illustrate its effect, we have simulated and reconstructed
noiseless and noisy data from the Forbild head phantom in
a limited angle geometry. We have compared our method to
state-of-the-art reconstruction algorithms. The results showed
that LDTV regularization is a good solution to account for
the acquisition geometry in the regularization term. LDTV
may therefore be used to improve image quality of CT images
reconstructed from projections acquired with a limited angle
geometry.
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