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Abstract

In this article, we study the convergence of an IIPG (Incomplete Interior Penalty Galerkin) Discon-
tinuous Galerkin numerical method for the Richards equation. The Richards equation is a degenerate
parabolic nonlinear equation for modeling flows in porous media with variable saturation. The numerical
solution of this equation is known to be difficult to calculate numerically, due to the abrupt displacement
of the wetting front, mainly as a result of highly non-linear hydraulic properties. As time scales are
slow, implicit numerical methods are required and the convergence of nonlinear solvers is very sensitive.
We propose an original method to ensure convergence of the numerical solution to the exact Richards
solution, using a technique of auto-calibration of the penalty parameters derived from the Galerkin Dis-
continuous method. The method is constructed using non-linear 1D and 2D general elliptic problems.
We show that the numerical solution converges toward the unique solution of the continuous problem
under certain conditions on the penalty parameters. Then, we numerically demonstrate the efficiency
and robustness of the method through test cases with analytical solutions, laboratory test cases, and
large-scale simulations.

Keywords: Porous media, Richards Equation, Discontinuous Galerkin, Backward Differentiation Method,
Incomplete Interior Penalty Galerkin (IIPG), Broken Soboloev space, Picard’s fixed point, Minimal regularity
solution
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Introduction

The behavior of flows in variably-saturated porous media can be modeled by the Richards’ Equation (RE).
One of the key advantages of RE is its ability to represent the porous medium, incorporating both saturated
and unsaturated zones. While it doesn’t consider the air phase, RE effectively incorporates the effects
of gravity and capillarity, enabling the modeling of complex processes across various scales. Notably, RE
is a nonlinear parabolic equation that can transform into an elliptic equation under complete saturation
conditions.

The history of RE begins with Darcy’s law, which was formulated experimentally by Darcy in 1856 [12]
for saturated porous media. This result was later extended to multiphase flows by Buckingham in 1907
[6], resulting in the Darcy-Buckingham law, which serves as the cornerstone for the derivation of RE. The
equation was first established by Richardson in 1922 [33], although it was later attributed solely to Richards,
who independently published the equation in 1931 [32]. Initial attempts to numerically solve the RE date
back to the late 1960s with the works of Rubin [35] and Cooley [10]. From the 1980s, RE was extensively
studied from both theoretical and numerical perspectives.

In this paper, RE is introduced by providing its expression and constitutive laws. As the main objective
of this work is to solve RE using Discontinuous Galerkin (DG) methods, the weak problem associated
with RE is given and its discretization using the Incomplete Interior Penalty Galerkin (IIPG) formulation.
Additionally, an overview of the penalization method is provided. The fully discrete IIPG formulation is
derived through time integration using the implicit Backward Differentiation Formula (BDF) method. Due
to the non-linear nature of RE, its fully discretized non-linear formulation is linearized using the Picard’s
fixed point method. Theoretical results related to the solution of stationary non-linear elliptic problem are



produced, including existence, uniqueness, and convergence results. Furthermore, an automatic calibration
method is obtained for penalization parameters. The solution of RE using the previously mentioned ITPG
formulation is implemented in an in-house numerical code named RIVAGE which is then validated against
numerical benchmarks.

1 Governing equation

RE is a classical nonlinear parabolic equation used to describe flow in both unsaturated and saturated zones
of an aquifer (for a detailed derivation of the equation, please refer to Clement’s 2021 thesis []]).
The so-called mixed formulation of the RE, commonly used in hydrology, is

8,0(h — 2) — V - (K(h — 2)Vh) = 0 (1)

where h := 1 + z is the hydraulic head with 1 the pressure head, z the elevation, 6 is the water content and
K is the hydraulic conductivity tensor.

The tensor of hydraulic conductivity K is split, in general, into two parts, the intrinsic or saturated
hydraulic conductivity tensor K and the relative hydraulic conductivity K,:

K(¢) = KoK (). (2)

The intrinsic hydraulic conductivity tensor K, depend on the material of the porous media.
The relative hydraulic conductivity is a function of the pressure head controlling the behavior of ground-
water flow within the porous media and it is defined as

i >
R
elaw(¥)  otherwise
where K, 1. is given by empirical laws, see [Table 1] and [Figure 1} The quantity 1., corresponding to the
entry of the air pressure, the pressure head transition value between the saturated and unsaturated zones.
The saturated zone corresponds to 1) > 1), and the unsaturated zone to ¥ < .. The water table corresponds
to ¥ = 1. by definition.
The water content law is expressed in terms of the effective saturation S.:

s.(0) = G ®)

where 6, is the residual water content and 6, is the saturated water content corresponding to the minimal
and maximal saturation, respectively. The effective saturation is defined as follows

)1 if o > e,
Se() = {S&law(w) otherwise,

where Se 1w is given by empirical laws, see [Table 1| and [Figure 1}

Remark 1.1. The non-linear behavior of the constitutive laws Se jqw and Ky 14 (see|Table 1| and|Figure 1)
are responsible of the fails of the convergence of the numerical methods and a particular attention have been
done. In particular, we have

e in the saturated zone, hydraulic properties remain constant and RE becomes an elliptic equation char-
acterized by fast diffusion.

e in the unsaturated zone, hydraulic properties approach very close to zero, which halts diffusion and can
cause numerical inconvenience.



Name Expression Parameters
Gardner-Irmay Se = e « : pore-size distribution
relations (1958) [24] K, =™ m : tortuosity
g — C
Vachaud’s T CH P A, B: Empirical shape parameters
relations (1971) [41] K. — A C,D : Empirical shape parameters
T A4S

Van Genuchen-Mualen
relations (1980) [42]

Se = (1+ (ep)")™™

K, =8 (1 - (1 —Si)m)2

I = 0.5 : pore connectivity
« : linked to air entry pressure inverse

n > 1 : pore-size distribution

1
m =1 — — : pore-size distribution
n

Table 1: Hydraulic relations for hydraulic conductivity and effective saturation.
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Figure 1: Hydraulic laws for effective saturation and hydraulic conductivity.



e for a specific set of parameters, when ¢ — 07, constitutive laws may display extremely steep gradients.

To overcome, regularization techniques can be employed as in [15], for instance, which make slight modifica-
tions to the functions to avoid some types of degeneracy to improve convergence properties. In this paper, we
will see that in the framework of DG, we show that whenever some numerical parameters are well-chosen,
the modification of such constitutive laws is not necessary.

[Equation (1) together with [Equation (2)| and [Equation (3)| can be completed with Dirichlet and/or
Neumann boundary conditions as done in this work. One can also use more realistic boundary condition in

view of real life simulation, such as the seepage boundary condition (we refer to [9] for details).

2 Numerical methods

This section focus on the presentation of the numerical solution of RE using DG methods. The solution is
sought within a trial space due to the similarity of these methods to Finite Element (FE) methods, resulting
in a weak problem.

Let d € {1,2,3} be the space dimension, the porous medium can be represented by the computational
domain Q C R? of boundary 9Q = I'p U Ty for which the subscript D and N stands for, respectively,
Dirichlet and Neuman. Let T' € R be the final time.

The problem is:

Find h(x,t) : 2 x (0,T) — R such that:

0(h—z)— V- (K(h—2)Vh) =0 ,inQx (0,T),

h = hy ,in Q x {0},

(PnL)
h=hp 7OI].FD X(O,IU,
—K(h—2)Vh-n=qy ,on 'y x (0,7)

where h € L?(Q x (0,T)) represents the solution of RE. Additionally, hg € L?(2), hp € L*(T'p; (0,T)), and
gy € L?(T'y; (0,7)) correspond to the initial condition, the Dirichlet boundary condition, and the Neumann
boundary condition, respectively.

The matrix-valued function K depends monotonically on A, is symmetric positive definite, and is uniformly
bounded below and above (see [Equation (2)} [Table 1| and [Figure 1)). Similarly, the function 6, also depends
monotonically on h, is uniformly bounded below and above (see [Equation (3) [Table 1 and [Figure 1f). Both
K and 6 are continuous functions within a given porous medium but may be discontinuous at the interface
of heterogeneous materials.

2.1 Settings

The time duration (0,7) is subdivided into N time intervals such that 0 = t© < ¢! < ... < ¢tV = T.
Let n € N, 0 < n < N, if the time interval T = [t",¢t""1] is considered, the corresponding time step is
At =t —¢gn,

Let us define £™ a partition of the computational domain (2 valid for all ¢ € T™. For the sake of simplicity,
it is assumed that 2 is a polygonal domain in two space dimensions so that £™ covers {2 exactly. The mesh
E™ is composed of quadrilateral and triangular elements not necessarily conformal.

For all elements E € £, dg is its diameter defined as the ratio between its surface (sg) and perimeter
(pg) and d" := maxgeen (dp).

The set of all open faces of all elements E € £" is denoted by F. Moreover, one can define two subsets
of F, F? for the boundary faces and F™ for the interior faces:

FP= |J F and F":=F\F°
Feof
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Figure 2: Exemple of a mesh.

For a given element E € £", there exists a set of face F¥ := {F € F|F € OF} which defines boundaries
of E. Then for all interior faces of E, i.e. VF € FF N F, there exists a neighboring element F, such that
ENE, = F. Consequently the normal unit vector ng := (n,,n,)’ pointing from E to E, can be defined.
An exemple of interior face is given Moreover for all boundary faces of E, i.e. VF € FF¥n F9,
there exists Fy a fictitious element such that EN FEg = F. Consequently, the normal unit vector ng pointing
always from F to Ey can be defined.

Example 2.1. gives a graphical representation for an example mesh composed of triangles and
quadrilaterals. In this exemple the mesh is composed of 7 elements, i.e. E™ = {E;, i € 1,...,7}. Thus the
set of faces F = {Fy, i € 1,...,19} is defined. It can be split into two subsets, the first one FO = {F;, i €
1,...,9} boundary faces of F, depicted with dashed lines on . The second one F™ = {F;, i €
10,...,19} interior faces of F. gives graphical representation for two elements E5 and Er. Faces
are also depicted with their normal vectors.

Let two neighbouring elements F; and FE, sharing one face F' € F. There are two traces of a function v
on E; (v;) and on E, (v,):

v(x) := lim v(x+enp) and v,.(x):= lim v(x+enp), Vx € F.
e—0— e—0t

In addition, on any boundary faces F' € F? the trace of v is only defined on the left side of the face:

v (x) = El_i}r(r)1_ v(x+enp), Vx € F

Using these trace definitions, one can define the jump and the average on any face of the mesh (as displayed
in 1D on [Figure 3). On an interior face F' € F® the jump and the average are respectively defined as:

Vx € F, [v](x) := vr(x) — v(x) and {v]}(x) := %(vT(x) + vy(x)).

Moreover, on a boundary face F' € F?, the jump and the average are respectively defined as:

Vx € F, [v](x) := v(x) and {v]}(x) := v;(x).

The solution of [Problem (Pnr,)|is sought in a subspace of the well-known broken Sobolev space, taken to
be:

VP(E™) == {v e L*(Q) | v|p € PP(E), VE € £"}



Figure 3: Definition of the mean and jump operators for two elements E; and F, in 1D.

where PP(E) stands for the set of polynomial functions of degree less than or equal to p € N on E. It is
called the DG space. For more detailed and general definitions of this set, see [31].

2.2 Semi-discrete weak formulation

Keeping in mind that
vu,v € VE(E™),  [uo] = [u] {vl + {ub o],

assuming that the flux of RE is continuous at the interfaces of elements:
VF‘E‘F,[KXh<—z)VUz-nFMFv:(L

the Neumann boundary condition arises naturally in the weak formulation, multiplying [Problem (Pnr,)| by
a test function ¢ € VP(E™) and integrating on each element of £, we get

/at —z<pdE+Z/ (h — 2)Vh) - VodE
Ee& Eec&

- > /{[ h—2)Vh) - npl)[e]dF — / h — 2)Vh) - npedF

FeFin FeFb

(4)

+ Z /qNgodF—O ,onte (0,T)

FeFN
> / hodE =" / hopdE,
Ee& Ecg
h=hp ,onT'p x (0,T) .

To enforce the continuity of the solution and the Dirichlet boundary condition, two penalty terms are added:

i)=Y ;(g#;’;) Jagiet )

FeFin

- > 2 4 / (h— hp)pdF (6)

Fe]—'D

where, J; represents the penalization terms that constrain the continuity of the solution on the interior of
the domain, and, Jp for the Dirichlet boundary conditions. oy and 0% are the penalization parameters for

the interior and for the Dirichlet boundary condition where, we recall that, dg is the diameter of an element
E.

Remark 2.1. This method is known as the IIPG method [9,[3]|]. The role of these parameters is essential to
ensure the convergence of the method and will be studied in[Section 3 for the first time, up to our knowledge,
in the non-linear case. The linear case has been dealt in [16].



Using [Equation (5)| and [Equation (6)|in [Equation (4), the semi-discrete non-linear weak formulation of
[Problem (Pyy)|is, V¢ € T,

Find h € VP(E™) such that :
- (Pxisp)
M (010(h = 2), ) + an(h, o3 h) = In(p), Ve € VP(ET),

where m,,, a,, and [,, are given by:

=3 [ awr (7)

Ee&n
=Y / (h — 2)Vh) - VodE
Eegn
- 10K~ 2)Vh) - ne [l + ( "E> [h][e)dF 8
- (K(h — 2)Vh) - nppd F+ hodF
Z/ rolrs 3 Y
hppdF— qnpdF. 9
7= B0 freer X ®

2.3 Time discretization

The aim of this section is to present the time discretisation through the implicit BDF method for
In the following, we make use of notation: Vn € N,u"(x) := u(x,t,), for any function
u € L?(Q x (0,T)). Let us recall that the time step is defined by At" = t"*1 — " and the time interval by
" = [t t" 1.

Due to their stability properties, the BDF methods are commonly used to solve stiff differential equations
such as These linear multi-step methods allows to construct time approximation up to order
g < 6. The analysis of these methods can be found in [38]. The 1-step BDF method corresponds to the
classical backward Euler scheme. BDF methods have been used in [26] [I8] up to 6th-order. BDF methods
are well-known to balance space and time errors and particularly well-designed in combination with DG
methods. BDF methods can constructed both with a constant time step [38] or a variable [23]. The case of
variable time step is more pertinent for [Problem (Pnpsp)|concerned. The method of order ¢ is derived from
the Newton interpolation polynomial of degree g, which interpolates A7 at time ¢/ for j = n+1,...,n+1—g,
using the method of divided difference.

The backward divided difference for a given function y is defined by a recursive division process:

6Oyn+1 — [yn+1] — ynJrl7
61yn+1 — [yn+1 yn] _ 60yn+1 - 60yn — yn-i-l - y"
’ At A
ntl_ . n n__ n—1
52yn+1 _ [yn+1 yn ynfl] _ §1yn+1 - 51yn _ Y At"y N
T At + Atn—1 Atr + Agn—1
) ) 6j71 n+1 5]’71 n
j.m+1l _ ,n+l . n n+l—71 _
Ty ="y | = ST A

For a given Ordinary Differential Equation (ODE), for instance Ucll—“; = f(u,t) with initial condition, the



Order q 1 2 3 4 5 6

Maximum swing At"2/At»T1 — 2.6 1.9 1.5 1.2 1.05

Table 2: Maximum swing At"T2/At"*+! for BDF methods with variable time steps.

implicit BDF method of order ¢ is given by:

i (jl—[l (kzl Atn_l>> 5jun+1 — iaq,jun+l_j — f(un-i-17tn-|-1)7
7=0

j=1 \k=1 \I=0

qg—1

n+1 n+1l in+1\ _ n—j

= agou"T — fWVTHET) = — E agit1u” !
j=0

where oy ; are the linear combination coeflicients obtained from the divided differences of u. For instance,
for the 2-order BDF method, the coefficients are:

1 1
@20 = X T AR F AT
1 1 Atn
gl = ——— — —
PET A At AT A L(AE + A1)
At™

22 T Ap=T(Afn + A1)

Remark 2.2 (Stability). BDF methods of order 1 and 2 are A-stable, and L-stable [I1]. BDF methods of
order 3 to 6 are A(a)-stable where o decreases as the order increases [21]. BDF methods of order ¢ > 6
are unconditionally unstable. The use of variable time steps is recommended to enhance the stability of the
method. In practical applications, variations in time step sizes are limited by an upper bound known as the
swing factor to ensure stability and mbustness (see [36]). In the following, swing factors are used.

Applying the BDF method to [Problem (Pxrsp )}, we get

Find a sequence of (h™)o<n<n € VP(E™) such that :

90(4)

q A -
Yt D ag k" o | an (BT o kT = La(p), Ve € VP(E). (Pxtep)
mi=0

where m,,, a,, and [,, are given, respectively, by [Equation (7)| [Equation (8)| [Equation (9)|with ¢ = h — z.

The time integration method needs an initialization step to compute the solution for further time steps.
The initialization uses the prescribed initial condition to start the first time step. A direct and simple way
is to write the corresponding discontinuous weak formulation:

Find h° € VP(£°) such that: mo(h°, @) = fo(y),
where my is defined by and fy is the linear form defined by:

fole) = > | hopdE, Yp € VP(£).
EceoVE

2.4 Non-linear iterative process

[Problem (Pnirp)| being non-linear, several iterative methods can be used such as the Newton-Raphson
method or the classical first-order fixed point method Picard’s method. Due to the strong non-linearities of




the constitutive laws [Equation (2) and [Equation (3) (see also Remark [I.1]), the convergence of the iterative
methods may fails [25], [27]. We will see in [Section 3| that in the case of IIPG methods one can enhance the
convergence of the iterative methods, at least in the case of a Picard’s fixed point method, whenever the
penalization terms [Equation (5)[ and [Equation (6)|are well-chosen. Therefore, in what follows, we present
the Picard’s fixed point method for [Problem (Pnprp )}

Linearization of [Problem (Pnrrp)|is done by a Picards’ iterative procedure. For k =0, ..., the problem
is:

For a given h" 1% € YP(£™) find h"T1FH1 € YP(E™) such that , Vo € VP(EM) :

" (89(1&)

1,k+1 1,k+1 . 1,k\ _
aq’ohn—‘r " v@) +an(h"+ + a‘pvhn-i_ ) -

ntlk

90(4)
O

(PLFD)

qg—1
> g

wn+1,k =0

ln(p) —mnp

where m,, a, and [, are given, respectively, by [Equation (7)| [Equation (8)| [Equation (9)| with ¢ = h — 2.
h"~J stands for the solution at the rank k of the iterative process.
The global algorithm of the Picard’s fixed-point iteration, for a positive n, is:

1. Start with an initial guess h"+1:0;

2. Compute the solution of [Problem (Pppp )| with A" 10 to get hT1:1;

Start again with A"t

- W

5. Compute the solution of |[Problem (Pppp )| with A"t to get An+1E+L;

6. Start again with A"+1*+1 until the stopping criteria are satisfied;
7. Set hntl = prtikt

The stopping criterion is one important choice in determining accuracy for a non-linear iterative process.
For RE, the stopping criterion can be specified in terms of absolute error for pressure head or water content
Hrn(h#P)HL?(Q) H%Hm@
Tan )z < €1 204 Trp 2
where 8 = h¥—h¥=1 and r,,(h, ) = m,(0sh, ; h)+an(h, ©; h)—1,(p). €1 and &3 are user-defined tolerances.
These two criteria are relative and independent of the characteristic quantities of the problem.

between two successive iterations [9]. For this study, we have used: €9,

2.5 Adaptive time stepping

Time adaptation is motivated by the convergence of the nonlinear solver. On one hand, transient simulations
have difficulties to converge if the time step is too large but, on the other hand, shorter time steps mean more
time steps and so, a longer computational time. That is the reason why time adaptation is very attractive
and common for Richards’ equation. Different strategies can be used to adjust the time step [19, Bl 29], either
heuristic and mainly based on convergence performance of the nonlinear solver or rational and based on error
control. The latter ones are generally more efficient but heuristic methods remains a relevant approach due
to their simplicity.

In this study, the time step is adjusted heuristically based on the number of iterations N;; from the
nonlinear solver, as discussed in [39, [3]. The size of the time step directly influences the convergence of the
solver. The simulations start with a time step At%, and subsequent time steps are calculated according to the
following rule: the time step remains unchanged if convergence is achieved between m;; and M;; nonlinear
iterations; it is increased by an amplification factor Agmp > 1 if convergence is achieved in fewer than my;

10



nonlinear iterations; and it is decreased by a reduction factor A..q < 1 if convergence requires more than M,
nonlinear iterations. If convergence fails due to solver issues (poor initial guess, bad condition number) or
exceeds a prescribed maximum bound Wy, the time step is recalculated using a reduced step size (Ayeq < 1).
The calculation of the next time step At"*! from the previous one At™ follows this time-stepping scheme:
)\ampAtn if Nit S mit,
AT = At™ if my < Ny < My,
AreaAt™ if My < Ny < Wi,
A" = NpegAt™ if Ny > Wiy or if the solver has failed (time step is started again),

with N;; the number of nonlinear iterations.

Remark 2.3. By studying the full-time-dependent problem, as done in in the case of the steady
problem, the time step can be adjusted automatically and this work is in progress.

Remark 2.4. In the numerical code RIVAGE , Adaptive Mesh Refinement can be also employed. We refer
to [17,120, [1, (9, [§] for more details.

3 Theoretical study and estimation of the optimal penalization
parameters

In this section, we present the main result of this work, namely, the way to get a convergent iterative scheme
by constructing a robust method to compute automatically the penalization parameters (see
and [Equation (6)). This is achieved by studying the theoretical properties and convergence of the solution
of the discrete problem |[Problem (Pxrrp)|to the mathematical problem To this end and
for the sake of simplicity, we will consider a toy model similar to the stationary RE for which we study, as

depicted in
1. the existence and uniqueness of the weak solution to the non-linear problem in

2. the existence and uniqueness of the weak solution to the discrete linearized problem in

3. the method to compute optimal penalization parameters to ensure the convergence of the non-linear
solver at the discrete level in [Section 3.4l

4. the convergence of the discrete linearized weak problem to the continuous linearized weak problem in
Section 3.5

Proofs of this section are given in Appendix [A] and can be easily extended to several space dimensions.
However, since the computations are rather technical to get the optimal penalization parameters in the
two-dimensional case, for the sake of completeness, the 2D case for the existence and uniqueness of the weak
solution to the discrete linearized problem is considered in We will see that the construction of
the optimal penalization parameters is essentially based on the constants appearing in the discrete continuity
and the discrete coercivity of the operator.

3.1 Toy model
Let us consider the following toy problem (P) on the interval Q = [a,b] C R:

For a given f € L*(Q2), find u(z) : @ — R such that :

- (A(l‘,u7ul))/ = f ) in
u=0 , on 0}

11
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------ N Discretization :
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(W;,,) : Discretized linearized weak problem

3! solution to (W)

Figure 4: Scheme of the general proof.

with A(x,s,&) = K(z,s)¢ where the real function K intends to mimick the properties of K (Equation (2)]).
Following [4] and in view of the properties of K (Equation (2))), assuming that

ElKO,K1€Rj_ 7K0§K(Z,’l_l,)§K1 ,VCEGQ, Vu € R (’]—[1)
HKlip c R+ R \K(m,ﬂl) — K(Z‘,’ljg” < Kliplﬂl — ’ljgl , Vo € Q, V(’U,l,ﬂz) S R2 ’
we deduce that A is straightforwardly a Carathéodory function, that we recall hereafter,
(1) Ja>0 st. (A(z,s, &) — Az, 5,0))€ > al¢)?,
(2) 38>0,3he L*Q) st IA(w ;O < B(h(z) + [s| + [€]), (2)
(3) Fy>0 st (Alz,s,6) — Az, s,m) (€ —n) = [€ —nl,
(4) 3>0, 3eL*(Q) st |Alz,s,€) - A(%tﬁ)l < 6fs — t](h(z) + [§] + |s] + [2]).

This problem can be cast into the weak formulation by multiplying by a test function v € H}(Q2) and
integrating over {2:

Find u € HJ(Q) such that : a(u,v) = I(v), Yv € H}(Q) W)

a(u,v):AK(x,u)u’v’dx, l(v):/ﬂfvdx.

being non-linear, we use the Picard’s iterations method as in [Problem (Pnrrp)| to get

where

For a given @ € L*(), find u € H} () such that : -
a(u,v;a) = l(v), Yo € Hy(Q)

with

(u,v; ) /Kxuuv’dz.

Given @, we solve the |Problem with % = 4° to obtain u'. Then, we solve the [Problem with @ = !

to obtain u? and so on. The sequence of solutions of the linearized problem is denoted by (u"),en and its
limit when n goes to infinity is expected to be the solution to the non-linear [Problem (W) In the following
we note u"*! = T'(u™) the fixed point.

12



Figure 5: Representation of &, in the one-dimension case.

3.2 Existence and uniqueness of the weak solution to the non-linear [Prob-|
lem (W)

The first step is to show that [Problem (V)| has a unique solution in H{(£2). The existence of solution

of [Problem (V)| can be achieved by using the Schauder fixed-point theorem to the operator 7" while the

uniqueness can be obtained through the technique proposed in [4].
Thus, we have

Lemma 3.1 (Existence of a solution to [Problem (W)). Under|Hypothesis (H1), 3u € H}(Q); T (u) = u.

Then, one can obtain uniqueness through the following result

Lemma 3.2 (Uniqueness of the solution to [Problem (W))). Under|Hypothesis (H1), the solution u € Hg(£2)

of [Problem (W) is unique.

These results hold for the dimension d < 3 and the proofs are rather classical and left to the reader.

3.3 Existence and uniqueness of the weak solution to the discrete linearized
[Problem (W)

One-dimensional case

To solve numerically [Problem we use DG methods as in Let 0 =290 < ... <2y =1

be a partition En of Q and denote I, = [z, Zn11] a sub-interval. The size of a sub-interval is defined as
|| :=h=%, Vne{0,.,N —1} with N the number of elements in the partition. The solution is sought
in the DG space VI (&) defined as:

VO 5h {U € L2 ) ‘ U‘@Q = 0; ’U|]n S ]P)p(fn), VI, € & } - LQ(Q)
As in we define

v(z)f) = li_r)r(l)v(xn +e), vz,

Al o) = limou(z, —e€),

e—0
e>0 e>0
_ 1 _
[)e, = v(@y) —o(zy), Avbe, =5 (v(z) +o(@y)), Ve {1.N -1},
and
[v]z = —v(@g), {vhey = v(2g),  [v]ay =v(y), (vhay =v(zy).
The DG space V(&) is associated with the norm:
N-1 N N-1
=) W+ Iz, = Y IV, + (vl (10)
o] :
n=0 n=0 n=0
where | - |7, is the usual norm L?(I,,) and |v|% := Zf:;o +[v]?. is the jump semi-norm. With this definition
of the norm, jumps are controlled. One can observe that || - || is a norm on V(). One can note that
VE(En) is a complete Banach space, i.e., a complete normed vector space for || - ||. Lastly the concept of

13



broken gradient is introduced to specify when only the regular part of the gradient is considered. The broken
gradient Vy, : VI(E,) — L?(Q) is defined such that, for all v € V§ (&),

VE € &, (Vav)|e == V(v|E).

The linearized weak formulation [Problem can be discretized using the IIPG formulation as in
Bection 7 to get

For a given @ € V(&), find uy € VI (&) such that : W)
. _ h
ap(up,vp; ) = lp(vn), Yon, € VE(En)
with
n(up, vp, @ Z K (z,u)ujvy,dr — Z{[K (x, a)up, Ve, [vn]e, (11)
(o1} Op—1+0n ON
+ F[[uh]]ro [vnlze + Z T[[uhﬂzn [vrle, + Tﬂuhﬂzw [vr]en
n=1
lh(’l}h) :/ f’l)hdl‘.
Q
At the discrete level, one can write [Hypothesis (#1)|as follows: for all n € {0,..., N — 1} :
KM KM eRy, Ve el,, VaeR, K" < K(za) < K™, -
3K € Ry, Vo € I, V(i i) € R, |K(z,) — K(z,0)| < Kiiplin — o] '
where (n) (n) (n)
K= n:OI,I.l..i,I}Vf Kln , Ko := n:Or}}%)Ii\fflKOn and Kj;, = nzor’nix Kl;l)

Existence and unicity for the solution to [Problem (W, )|is obtained using the Lax-Milgram theorem. We
have the following result:

Theorem 3.1 (Existence and uniqueness of the weak solution to the discrete linearized [Problem (W;,)).
Under [Hypothesis (H,,) for all n, for a given w € VE(Ey), then u € VE(Ey) such that ap(up,vp;a) =
lh(vh), Yoy, € Vg(gh)

This existence and uniqueness result is obtained thanks to the below-following lemmas.

Lemma 3.3 (Discrete coercivity of ap). Under|Hypothesis (H,, )| for all n, for any vector of positive numbers
€= (5("))71:07,,,)1\;_1, there exists a constant C*(e) > 0 such that

Yuy, € Vg(gh), dh(uh,uh;ﬂ) > C’*(e)||uh||2

if
")C n) 2
o % Vne{l,.,N -1}
e <2 vne{o,..,N -1} 2e(M K
on >0, Yne{l,.,N-1} (K(O)Ct(g) )2
* with § of = ML Tinp—l
0o > 0y (O)K(O)
A N-1) ~(N-1
e oy = FVC
E(N—l)K(() )
and "
() — i . (n) _i) - L . (Jn—o;‘;)}
C*(e) mm{n:g{l.{r]lv_l (KO (1 3 )),00 — 05, 0N oN,,_ min 5 .
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Lemma 3.4 (Discrete continuity of ). Under|Hypothesis (H, )| for all n, for any vector of positive numbers
€= (5("))71:07,,,)1\;_1, there exists a constant C(e) > 0 such that

Vun, v € V5 (En)s |an(un, vn; @)| < C(€)l|un]l llon

where

C’(e) :n:Om“?_ig(V_l (Kﬁn)) + \/n_orn“a}](v_1 (25(n)K§n)> max <08707V, n:lm..z.uji\f—l (U;))

+ (%)
max | op,0N max —_— .
T =1, N=1\ 2

Lemma 3.5 (Discrete continuity of i5,). There ezists a constant B > 0 such that Yvy, € VE(E), ||ln(vp)] <
Bllon||-

Remark 3.1. Trace constant involved in bounds for penalization parameters are a function of the polynomial
degree p, the type of polynomial basis used. In the one-dimensional case, with an orthonormal basis and for
u € VE(Er), the trace constant for I, is given by:

cn ])g =p+1.

Proofs of Lemmas can be found in[Appendix A The proof of Theorem 3.1]is a straightforward

application of the Lax-Milgram theorem and is left to the reader.

Two-dimensional case

We propose to extend the previous results to the dimension 2. Let us consider the two-dimensional extension
of |Problem (W,

For a given @ € Vi (&), find up, € VY (Ep) such that , Vv, € V(&) : 0v2)
dh(uh,vh;ﬂ) :lh(’l)h). h
where
a(up, vp; Z / (x,u)Vup) - Vo,dE — Z / {(K(x,@)Vug) - ng |} [op]dF
EcEn FeF
+ Z < ) / [[uh]] [[’Uh]]dF + Z / upvpdF
FeFm Fe}'D
vp) z/ Sfupdx.
Q
The two-dimensional version of the discrete hypothesis on K is given by: For all F € £ :
{3K7.KY €RY, Vx€ B, Vu € R, K§ < [K(x,a)]2 < K G

with |K]||2 = max;=1 2 (K;;). In addition, K1 = maxgeg K¥E and Ky = mingeg K& denotes global bound of
K.
The DG space is associated with the following norm:

ol = S Il + 3 (5 + g ) IRl + 35 N0l = 35 ol + of3

EcE FeFin FeFo EcE

2, 2 . . . . .
where H’UHE is the usual L? norm on FE, ||UHF is the L? norm on F and |v\3 is the jump semi-norm. This
norm has the same characteristics as in the one-dimensional case. We obtain the following result
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Theorem 3.2 (Existence and uniqueness of the weak solution to the discrete linearized [Problem ()
If K satisfies |Hypothesis (Hz )| for all E € € and for a given u € V§(E), then 3w € VE(EL) such that

&;L(uh, Vp; ﬂ) = l}L(U;L), Yy, € Vg(gh)

As before, This result is a consequence of the Lax-Milgram theorem through the following lemmas:

Lemma 3.6 (Discrete coercivity of ap). If K satisfies [Hypothesis (H% ) for all E € € and for any vector of
EYpee, there exists a constant C*(e) > 0 such that

positive numbers € = (g

Yuy, € Vg(gh), dh(uh,uh;ﬂ) > C*(e)||uh||2

if
E ENE 2
EE < 27 VE € & o_in,* _ D (Kl Ctr,p—l)
i j ; j ; B 4eEKE
oy >0t and o >on", VYFEF™ withVE €& 0
" " DE (KECE )2
9 0% o O,x 1 Yitr,p—1
op >o0g, VF € F oy’ =

2ePKE

and DF is the number of edges of the element E. Moreover

Lo (kma - €0 i (TEETY L (e o
C*(€) = min min Ky (1—7) ymin | === |, min (O’E—a'E’) .

Lemma 3.7 (Discrete continuity of ay,). If K satisfies|Hypothesis (H% ) for all E € € and for any vector of
positive numbers € = (¢¥)gee, there exists a constant C(e) > 0 such that

Yun, vn € VE(Er), lan(un, va;@)| < C€)|unl ||vall

where

i) E oF d }
0 =g s {pax (). a (02)

N,k
o
+ 4| 2maxePKF max{max £ |, max (U%*> } .
EBe€ E 2

€& FeFo

Lemma [3.5] still holds in the two-dimensional case and is left to the reader. Proofs of Lemmas
and are similar to proofs in the one-dimensional case. The main difference is in the expression of trace
constants. In two dimensions, they are linked to the element’s shape. For an orthonormal basis and for
u € V{(En), the trace constant of E € & is given by:

1 2
w7 if F is a triangle,

ck = 2 12
tr,p D + 1 ( )

2

, if F is a quadrilateral.

3.4 Optimal penalization parameters

Thanks to the previous results on the discrete linearized problem [Problem (W,), one can now construct a
method to set automatically penalization parameters. They must be chosen to ensure the coercivity and

continuity of the linearized discrete problem, i.e. C*(e) > 0 and C(e) > 0. Moreover, using Céa’s lemma
they are set to minimize the distance between the weak and discrete solutions.
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Lemma 3.8 (Céa’s lemma). Let V be a real Hilbert space with the norm || -||. Leta : V xV = R be a
bilinear form andl : V — R a linear form satisfying the Lax-Milgram theorem. Let V}, be a closed subspace
of V.. Then there exists a unique up, € Vy, such that

C
YV v € Vi, alup,v) = (vy) and ||u — ug|| < @Hu —v|l, YveV,

where C is the continuity constant and C* the coercivity constant.

Firstly as a reminder, positivity of continuity and coercivity constants enforce that for all n € {0, ..., N —
1},e™ <2 and Vn € {0,..., N}, o, > o’. They are given by :

2(n)

oy : (n) _7> I . (Un—an)}
C*(¢) mln{n:()r?.l,lll\/—l (KO (1 5 )),00 — 05, 0N Ny, min )

and

Ay — (n)) ( (n) (n)> P n
C(e) n:(f.l.?:}Jil—l(Kl + n:()r}}%%_l 2e(M K max O'O,O'N,n:Ln’.l'E.i)}](v_l 5

On
+ max | og,0nN, max — .
n=1,...N—1 \ 2

For the sake of simplicity, let us consider that the variable € is the same for every element: Vn € {0, ..., N —
1}, e = ¢ < 2, and in addition, because penalization parameters are bounded below, let us consider that
they are above the lower bound of an amount « constant for every element:

(KO 1)

K™

a Q. o o
VYa>1,Vne{l,..,N -1}, o, = 2—0:, o9 = —04, ON = —0pn With ), =
€ € €

Using previous assumptions it can be noticed that C* and C are functions of € and « and can be rewritten:

e, a—1 a—1 a—10
. — min { Ko(1 = g g i ( l)}
C*(ov9) =min {Ko(1 - 5). =0 v, _min, | (S5

and

~ 1 ok o o
Cle) = Ky + /2eK1 | - max | 58,57 a -2 — max ( 79,0 a —- .
(€) = Ko+ ¢ - max (%ﬂmn_f}_.ifm ( 4 )) P ("O’UN’n_i?,’fm ( 1
One can see that two quantities are involved in the two previous definitions:

N N . On . - On
Omin = Min| 0o, 0N, _Min T and G4, = Max-< do, 0N, max "
n=1,..,N— n=1,..,N—

to have the final write:

C*(a, ) = min {K0(1 - %), ol

&mm} and C’(a,a) =K +V2K10maz + g&mam
€

These new expressions of C* and C' show that C* has two different states and C' is continuous concerning
Claye)

a and €. The aim of this section can now be reformulated as find o and € such that y(a,e) = m
a?
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is minimal. First, C* and C are studied separately, then ~ is observed. C* has two different states, is
continuous and well defined for all (a, ) € (1,+00) x (0,2). It can be rewritten as follows:

V(a,e) € (1,400) x (0,2),
-1
- &mina if S a* (6) KO
Clae)=q with 0*(d) = S22 c(2-2) 1.
Ko(1 - 5), otherwise Omin

C is continuous and well defined for all (o, &) € (1, +00)x (0,2). C* and C' are now explicitly characterized

Clae)
C*(ave)

and now y(a,€) =

by:

can be studied. (qopt, opt) are looked for such that v is minimal and it is given

Y(a,e) € (1,+oo) x (0,2),

<K1 + \/2K10maz) Fmas ,if o < a*(e)

-1 a?ﬂln
(K1 + V2K 10mar + amm) , otherwise

v is studied on its different open subdomains and the boundary between them. On Dy, for all (a,¢) €
(a*(g), +00) x (0,2) it gives:

& in(a
Yane)=q "

Ko(

1 (6% . K + \/2K1&maa: Omaz
= b tha=2 db=2 .
ave) = ag— +bop— witha Ko o Ko

Then, looking at its variations, it gives that:

<0 ,if0<e<e” b
657(0676) =0 ,ife=¢" and aa’}/(()é,f) = >0
) e(2—¢)
>0 ,ifef<e<?2

with e* = 7”17(22%)4) > 0. And finally noting that v — 400 when @ — +00 and when ¢ — 0 or € — 2 it
gives that v is minimal for ¢ = ¢* and o — a*(*).
On Do, for all (a, ) € (1,a*(g)) x (0,2) it gives:

€ / = « &maw
’)/(04,6) = ~71) (Kl + 2K10'maw> + = .

Omin (O[ - a—1 Omin

Then, looking at its variations, it gives that:

K 2K10maz 1 mazx
O-v(o€) = L+ V2K 16 man > Oand 9, y(a,e) = ———— (0 (Kl+m) o > <o.

5—min(a - 1) (Oé - 1)2 Omin

And finally noting that v — +o0o0 when o« — 1 it gives that - is minimal for & — a*(¢). On the boundary
between Dy and Dy, for all a = a*(¢) and € € (0,2) it gives:

1 1 . Kl + \% 2K15maz 6-maa: &maa:
* = b tha=2 b=2 de= .
v(a* (), ¢€) a5+ 5(2—5)+CW1 a Ko . K, eeTG5
Then, looking at its variations, it gives that:
<0 ,if0<e<eopt
) b(2a +b) —b
Oy(a™(€),e) g =0 , ife =cop with e, = % > 0.

>0 , ifeop <e<2
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The expression of (Qpt, €opt) can be summarized as follows:

\/ b(2a + b) - b . Kl + V 2K1&max &maz KO
< witha=2
a

and b =2 and aope

= ———¢copt(2 — &, 1.
Ky Ky 25mm€ pt(2 = Eopt) +

Eopt =
Finally in one dimension, the auto-calibration of penalization parameters is given by:

(KMol )2

r,p—1

Qopt -~ Qopt ~ (67 t~
Vne{l,..N -1}, o, = =26, 09 = 263, oy = —2 55 with &

25opt Eopt Eopt Kén)

In two dimensions, the auto-calibration of penalization parameters is given by:

i Qopt ; Qopt 4
VF c fln o_zn — /4 0'* a_zn — o
y VE 250pt E> YE,. E DE (KlECrp 1)
Qont EiE
VF € Fo, 0'% = Sovt px 2eP K
Eopt

and D the number of edges of the element E and Cff,,_, the trace constant defined in [Equation (12)

3.5 Convergence of the discrete linearized weak problem to the continuous
linearized weak problem

Previously, it has been proven that the [Problem Wh )| has a unique solution. This problem is part of a fixed

point method, and it has been proven in [Section 3.2] that this fixed point has a unique solution also. To solve

the non-linear weak formulation [Problem (W)} one step needs to be added to prove the well-posedness of the
(Wh)

problem. It is addressed in the following; the goal is to prove that the solution of |Problem converges
towards the solution of |P and prove that the bilinear form a of |[Problem (Wj,)| converges to
[Problem (W)

The work in this section is based on the book of Di Pietro and Ern published in 2011 [3I]. They proved
convergence in the case of a Symmetric Interior Penalty Galerkin method and sketch the proof in the case
of an Incomplete Interior Penalty method. The following study provides detailed proof of the IIPG case.

The key idea is to revisit the concept of consistency and introduce a new point of view based on asymptotic
consistency. This new form of consistency and the usual stability of the discrete bilinear form are the two
main ingredients for asserting convergence to the minimal regularity solutions. The discrete bilinear form
ayp, needs to be reformulated to consider only the contribution of K on the mesh elements, not the interfaces;
consequently, lifting operators are introduced. They map functions defined on mesh faces to functions defined
on mesh elements. In the context of DG methods, liftings act on interfaces and boundary jumps. Bassi,
Rebay et al. introduced them [2] in the context of compressible flows and analyzed by Brezzi, Manzini et al.
[5] in the context of the Poisson problem. Liftings have many useful applications. They can be combined
with the gradient to define discrete gradients. Discrete gradients play an essential role in the design and
analysis of DG methods. Indeed, they can be used to formulate the discrete problem locally on each element
using numerical fluxes.

Liftings: Definition

For any point ,,, and for all ¢ € L?({z,}) the lifting operator r2 : L*({z,}) — V& (&) is defined as the
solution of the following problem:

/Qrﬁ(so)mdw =T benp(@n), Y1 € V§(En).

For any v in V§ (&), the global lifting of its interface and boundary jumps is defined as follows:

RV ([0]) : er [v]) € VE(En).
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Discrete gradients: Definition

The discrete gradient operator G} : VJ(E,) — L*(I,,) is defined as follows: for all v in VI (&),
G (v) == Vv — Ry ([v]). (13)
In addition, there exists a bound on the discrete gradient operator:
1G} ()2 (0) < afv]| (14)
where || - || is the norm associated with the ITPG formulation defined [Equation (10)|

Theorem 3.3 (Regularity of the limit and weak asymptotic consistency of discrete gradients). Let p > 0.
Let vy, be a sequence in V(&) bounded by the ||.||-norm. Then, there is a function v € Hg () such that as
h — 0, up to a subsequence,

v, — v strongly in L*(Q),

and for all p > 0, the discrete gradients defined by are such that

G? (vp,) — v weakly in L*(Q).

Proof of Theorem [3.3] n is available in [31] pp. 194-195].
Because of the shape of the ITPG formulation, the modified discrete gradient operator G% : V(&) — L*(I,,)
is defined as follows: for all v in V§ (&),

G? (v) := V.

Using liftings and discrete gradients, surface contributions of the flux in [Equation (11)|are transformed to
volume contribution. It makes working with the bilinear form ay, easier. For a given u € VI (&),) it can be
rewritten as follows:

Yup, vy € VO (5 )

N-1 N
dh(uhwh;ﬁ) = Z / K(x,ﬁ)vhuhvhvhdx — Z{[K(x,ﬂ)vhuh]}zn [['Uh]]xn + sh(uh,vh)
N-1 n:OA " N N-1 =
= Z/ K (z,a)GY, (up)Vyopde — Z Z/ K (x,a)rE ([vn]) G P (un) + sn(un, vn)
n=0"In n=0m=0"Im
N-1 )
= Z . K(z,w)GY (up)Vyopde — Z/ K(z,u) ([[vhﬂ) Y (un) + sn(un, vn)
n=0 n
N-1

- /I K (2, @) G2 (un) G2 (on)dz + s (un, vn)

n=0 n
with
o o i+o o
Vaun, o € VE(En), s, vn) = 2 [undao [ondoo + 3 == —"[unle [onle + 5 [unlen [onle -
n=1

Consider that (0,),—o,. N are chosen according to the Lemma [3.3] that implies discrete coercivity in the
[|-||-norm, and hence well-posedness of the discrete linearized problem (V).
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Figure 6: Scheme of the whole loop of resolution with the different linearization methods

Definition 3.1 (Asymptotic adjoint consistency). The discrete bilinear form ay, is asymptotically adjoint
consistent with the ezact bilinear form a on V{(Ep) if for any subsequence vy, in Vi (Ey) bounded in the
||.|[-norm and for any smooth function ¢ € C§°(Q), there is a subsequence @y, in V& (EL) converging to ¢ in
the ||.||-norm and such that, up to a subsequence

i an (vn, 1) = a(o.0) = [ '¢'ds
h—0 0
where v € H () is the limit of the subsequence identified in Theorem .

Lemma 3.9 (Asymptotic adjoint consistency of ay). The discrete bilinear form ap of |Problem (W), ) is
i

asymptotically adjoint consistent with the exact bilinear form a of on V& (Er).

Finally, we deduce the following result:

Theorem 3.4 (Convergence to minimal regularity solutions). Letp > 1. Let up, be a sequence of approzimate
solutions generated by solving the discrete linearized problem (Vy,) with ap, defined by|Equation (11)| and with
penalty parameters ensuring coercivity. Then as h — 0

up, — u strongly in L*(Q)
Vyup — u' strongly in L*(Q)
lun|; — 0

where u € H}(Q) is the unique solution of the strong problem.

Proofs of Lemma [3.9] and Theorem can be found in

3.6 Concluding results

In the current section, several theorems have been proven. It is proven that there exists a unique solution
to [Problem (W)| using [Lemma 3.1 | and [Lemma 3.2 Then it is proven that for a given %, there exists a
unique solution to [Problem (W, )| using [Lemma 3.1 | Lastly it is proven that for a given @, the solution
of [Problem (W),)| converges to the solution of |Problem (W)l These results proven in a general case for a
given 4 can be used to solve the toy problem. gives a graphical representation of the whole loop of
resolution with different paths.

The non-linear problem, can be linearized directly at the continuous level by employing a
fixed point method. The continuous level linearization

T:H}(Q) — Hy )
ar—T(u) =u
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stands for : find u solution of for a given 4 € H}(2). One can define the following sequence
defined by u° € HZ(f2) an initial guess and u"*! = T'(u™) for n € N. [Lemma 3.1 | and [Lemma 3.2 | ensures
that taking lim,, ., u™ gives the solution of [Problem (W)

A discretization step is needed to compute the solution of [Problem (W), Consequently, the projector
Py @ HYQ) — VE(E) is introduced. It projects a function living in an infinite-dimensional space to a
finite-dimensional space, especially it projects a function to the DG space VJ'(&p,). Then at a discrete level
the linearization method

Ty« V5 (En) — V5 (€n)
u+— Th(ﬂ) = up

stands for : find uy, discrete solution of [Problem (W) )| for a given @ € V¥'(€,). One can notice that for a
given @ € HZ(Q), it has been proven (Theroem 3.4 |) that (T}, o P,)(u) = uy, converges to u given by T ().
Lastly the linearization method of [Problem (W)[going through a discretization step is defined as
Tp : Hy(Q) — Hy ()
ur— TD(’U) = hm(Th [¢] Ph)(’L_L) =1Uu
h—0

Using Tp one can define a new sequence v° € H}(Q) an initial guess and v"*! = Tp(v") = limy, (T}, o
Pp,)(v™) for n € N. Taking the limit when n goes to infinity gives the solution of

The previously explained method use two limits, h goes to 0 then n goes to infinity. One can also consider
limits in the opposite order. Using proof of applied to the non-linear discrete problem and then
using one can prove that the solution of the non-linear discrete problem converges to the
solution of the non-linear continuous problem.

4 Numerical results

Following the numerical methods and theoretical results presented in the previous sections, the RIVAGE code
is validated against numerical test cases. Two analytical test cases are used to compute convergence rates
and validate the code. These analytical test cases are obtained by considering the problem’s aimed solution
and choosing the source term according to the solution and the hydraulic conductivity function. They are
built upon the non-linear Poisson’s equation. The first case is a non-linear one-dimensional problem in its
stationary form. The second case is a non-linear two-dimensional problem in its stationary form. These
numerical experiments are inspired by literature. In 2008, Riviere [34] and in 2021, Clément [9] computed
convergence rates for linear problems also for non-linear problems.

Stationary problems are considered since theoretical results are given on this type of problem. Moreover,
they are more difficult to solve since they solve the problem at infinite time. Consequently, the non-linear
solver has to find the solution without getting time sub-steps

Experimental test cases are solved with the RIVAGE code. These problems aim at confirming the per-
formance of the adaptive strategy proposed in this work. Moreover, they allow to test RIVAGE of problems
encountered in the hydrology field. These experiments are based on the work of Haverkamp [22] and Vauclin
[43].

4.1 One-dimensional analytical test case

For this first test case, theoretical convergence rates of the IIPG methods are checked, and numerical stability
is evaluated concerning penalty values and penalization methods. The following problem is considered:

— 0 (K (u)0zu) = f(x) in Q =[-1,1]
u(—1) =1,
u(l) = -1,
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p=1 p=2 p=3

o Ny L%-error r t(s) L%-error r t(s) L%-error r t(s)
1 20 3.211071 0.21  1.3310°! 1.94 2.29104 6.21
- 40 1.29107! 1.31 046  3.411072 1.97  3.17 1.421075  4.01  11.85
- 80 3.771072 178  1.02 853107  2.00 5.97 8.881077  4.00 23.94
- 160 9.83107%  1.94 2.08 2131072 200 12.09 5621078  3.98  52.83
- Fitted __ 1.69 __ _ 199 __ _ 4.00

100 20 8.33103 0.21  1.361073 1.48 2.3310°6 5.89
- 40 2101073 1.99 0.51  3.4110=*  2.00 2097 1441077 4.02  11.87
- 80 5.27107%  2.00 1.03 853107°  2.00 5.94 9.74107°  3.89  24.03
- 160 1.31107*% 2,00 2.08 2.13107° 2.00 1216 1.37107°  2.83  53.20
- Fitted __ 1.99 __ _ 2.00 __ _ 3.61

auto 20 3.531072 0.24 1.691072 1.43 3.461076 5.88
- 40 8881072  1.99 051 4401072  1.94  2.86 1.611077 442  11.92
- 80 2.17107% 2,03 1.05 1.1310* 1.95 595 9.45107°  4.10  24.07
- 160 5.3210~*  2.03 2,55 290107* 197 1213 1331077 282  53.25
- Fitted  __ 202 _ 1.96 __ _ 3.81

Table 3: L2?-error, convergence rates and number of iterations for the one-dimensional benchmark.

with K(u) = tanh(5u) + 1.01 and f obtained by replacing u by u, in the problem. The chosen analytical
solution is e, (x) = —sin(Fx). The analytical solution is chosen not to be polynomial but to span the
interval [—1,1]. The hydraulic conductivity is chosen to have a non-linear problem with a similar shape of
law given in tanh has been chosen because it is a smooth function convenient for the computation
of convergence rates and looks like constitutive laws for RE. Moreover, a factor 200 between the maximum
and the minimum value of K with Ky = 0.01. The problem is solved with the IIPG method. Three types
of penalization are used. The first one o = ¢ = 1 for all E € &£, the second one o = ¢ = 100 for all
E € € and the third one o are auto-calibrated using the method presented in For each type
of penalization, the solution is approximated by a piecewise linear function (p = 1), a piecewise quadratic
function (p = 2), and a piecewise cubic function (p = 3). Moreover, lastly, four different mesh sizes are used
N, = 20,40, 80,160 with N, the number of elements in the equally spaced partition of 2.

shows L2-error and convergence rate for each computation. It can be noticed that computed
convergence rates correspond to the theoretical ones found in literature [34] and [14] pp. 64-84]. For the
ITPG formulation with penalization, p is odd is order p + 1, it is optimal, and if p is even the order is p,
it is suboptimal. Moreover, for a penalization speed set by the user to 1 (outside of the range specified by
theoretical results), errors are about 100 times greater than other computations. The fixed point method
converges to a less accurate solution. Computation times are also given. It can be noticed that auto
penalization is not greatly slower than user-defined penalization and can even be faster due to the quickest
convergence of the iterative method.

Moreover, |[Figure 7| shows penalization values in the case of auto-calibration. One can observe that
penalization values are not constant on 2 and vary according to the polynomial degree of approximation.
On the domain, some part needs a small amount of penalization, whereas some others need a higher amount.
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Figure 8: Penalization parameters for the two-dimensional test case in the case of auto penalization.

4.2 Two-dimensional analytical test case

This second experiments focuses on the ability of the ITPG method to solve RE in two dimensions. Its con-
vergence rates are computed, and numerical stability is evaluated concerning penalty values and penalization
methods. The following problem is considered:

-V (Kw)Vu) =f(x)in Q=[-1,1] x [-1,1]
u =0 on 09,

with K (u) = tanh(u) 4+ 1.01 and similarly to the previous test case f is obtained by replacing u by e, in
the problem. The chosen analytical solution is u.(z,y) = sin(5z) sin(Fy). The problem is solved similarly
to the one-dimensional test case. Three types of penalization are used. The first one 0¥ = ¢ = 1 for all
E € &, the second one 0¥ = ¢ = 100 for all E € £ and the third one ¢ are auto-calibrated. For each type
of penalization, the solution is approximated by a piecewise linear function (p = 1), a piecewise quadratic
function (p = 2), and a piecewise cubic function (p = 3). Lastly, three different meshes are used. They are
all composed of quadrilaterals of identical size, and each space direction is discretized with N = 10, 20,40

elements. It gives a mesh with Ng = 100,400, 1600 elements. shows L2-error and convergence rate
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p=1 p=2 p=3

o Ny L%-error r t(s) L%-error r t(s) L%-error r t(s)

1 10 6.4510~2 0.29 4.8310°2 1.54 8.6010* 5.07

- 20 1.5110~2 1.99 1.00 1.111072 2.11 7.21 4.6910°° 4.20 2721
- 40 3.5310~%  2.10 7.57  2.65107%  2.07 59.51 2.74107%  4.09  279.59
- Fitted —__ 210 _ 200 __ _ 4.15

100 10 3.801072 0.25 2.021073 1.14 7.32107° 4.83

- 20 95310~ 199 099 2.72107* 290 6.78 45910~%  4.00 30.23
- 40 2381072  2.00 837 4.08107° 274 61.62 2.871077  4.00 290.86
- Fitted —__ 200 __ _ 282 _ 4.00

auto 10 3.371072 0.25 2.521073 1.15 7.4110°5 4.93

- 20 8111073 2.06 1.03 5.9010~* 2.09 6.88 471107 398 30.15
- 40 2.02107% 2.00 849 1.51107* 196 60.85 2971077  3.99  288.50
- Fitted —__ 203 __ _ 203 __ _ 3.98

Table 4: L2-error, convergence rates and number of iterations for the two-dimensional benchmark.

for each computation. It can be noticed that computed convergence rates correspond to the theoretical ones
found in literature [34] and [I4, pp. 64-84]. For the IIPG formulation with penalization, p is odd in order
p+1, it is optimal, and if p is even, the order is p and suboptimal. Moreover, for a penalization speed set by
the user to 1 (outside of the range specified by theoretical results), errors are about 100 times greater than
other computations. The fixed point method converges to a less accurate solution. Computation times are
also given. It can be noticed that auto penalization is not greatly slower than user-defined penalization and
can even be faster due to the quickest convergence of the iterative method as in the one-dimensional case.
Moreover, shows penalization values in the case of auto-calibration. One can observe that
penalization values are not constant on 2 and vary according to the polynomial degree of approximation.
On the domain, some part needs a small amount of penalization, whereas others need a higher amount.

4.3 Application to groundwater flows I: Haverkamp’s test case

The two problems considered here, one-dimensional and two-dimensional, aim to validate the numerical
resolution of RE using DG methods and auto-calibration of penalization parameters. Numerical results are
compared to numerical simulations in the literature and experimental data.

The first experimental validation of solving RE with DG methods is a one-dimensional test case. The
numerical results are compared with data sourced from the literature. This particular numerical test case
was initially presented by Celia et al. [7]. It is based on an experiment conducted by Haverkamp et al.
[22], who referred to the availability of a quasi-analytical solution provided by Philip [30]. Subsequently, it
was used by others such as [37], 28], and represents a set of well-established test cases, for instance, see [29].
Despite its simplicity, this case offers insights into the fundamental physics of a wetting front resulting from
infiltration.

This scenario involves the one-dimensional infiltration into a soil column measuring 40cm in height and
8cm in width. The hydraulic head at the top and bottom is governed by Dirichlet boundary conditions:
htop = 19.3cm and hpottom = —61.5cm, resulting in cumulative downward infiltration. The sides are imper-
meable. The initial condition is hg = —61.5 + z ¢m. Although this case is one-dimensional, it is solved on
a two-dimensional domain. Therefore, homogeneous Neumann boundary conditions are applied along the
boundary in the infiltration direction. For a visual representation of this setup, refer to
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Figure 9: Haverkamp’s test case configuration.

Hydraulic properties use Vachaud’s relations inwith A=1.17510% B =4.74, C = 1.611105 D =
3.96, Ks = 0.0094 ¢m.s~ ', 6, = 0.287 and 6, = 0.075. The simulation is done on a mesh of 160 elements
along the z-axis. The solution is piecewise linear (p = 1), and time integration is BDF of order 2. Penaliza-
tion parameters are set automatically using results from In addition, stopping criteria are set to
10~ for this computation. The solution to this problem is computed at T = 600s.

On are displayed the comparison of numerical results with results from Manzini et al. [28], the
pressure head distribution at ¢ = 360s and the penalization parameters distribution at ¢ = 360s. Numerical
results are in good agreement with the literature results for this test case. The pressure head distribution
shows a vertical progression of the wetting front with a steep transition from the initial ¥ to 1 imposed at
the boundary condition. Moreover, the distribution of penalization parameters shows that the penalization
parameters are not constant on the whole domain and are higher on the wetting front.

This test case validates a real, evolving test case for the DG method. Moreover, it gives a good insight
into the behavior of automatic penalization. Penalization parameters are auto-calibrated as long as the
solution evolves. Moreover, automatic penalization impacts a full non-linear problem because the non-linear
solver needs fewer iterations to converge to the solution.

4.4 Application to groundwater flows II: Vauclin’s test case

Vauclin, Vachaud, and Khanji conducted a series of laboratory experiments in the 1970s, the details of which
can be found in [43]. These experiments explored water table recharge and drainage in a slab of sandy soil.
The work by Vauclin et al. [43] specifically focuses on simulating water flow recharge through a soil slab
and provides experimental details and results. The experiment involved a 6 m by 2 m box, with only one
half simulated due to symmetry. The left, top (for > 50 ¢m), and bottom sides were impervious, with a
prescribed constant flux on the top for z < 50 em of u,-n = —14.8 cm.h™!. The water level was maintained
at a constant h = 65 ¢m in the ditch on the right for z < 65 ¢m, while the remaining boundary on the right
for z > 65 ¢m accounted for a seepage boundary condition. The initial state was at hydrostatic equilibrium
with the water table at z = 65 m. For further reference, please see for a schematic representation
of the setup. The complete simulation of water table recharge by Vauclin et al. [43] has been used by
numerous studies to evaluate their methods (see for instance, [I3} [40} [45]). The MODFLOW code validation
partially relies on this experimental dataset [39].

Hydraulic properties use Vachaud’s relations in with A = 2.9910%, B = 5.0, C = 40000, D =
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Figure 12: Vauclin’s test case, initial mesh.

2.9,Ks = 35 cm.h™!,0, = 0.3 and 6, = 0.0. The simulation is carried on an evolving mesh. The mesh
is adapted along the computation according to the gradient of h. Mesh adaptive parameters are set to
B. = 50 and B, = 50. The solution is sought piecewise linear (p = 2) and time integration is BDF of order
3. Penalization parameters are set automatically using results from In addition, stopping criteria
are set to 1076 for this computation. The solution of this problem is computed until 7' = 10h.

In the initial mesh displayed in Figure the refinement below the water entry edge aims to assist in
simulating the steep wetting front. Figure [I3] compares the water table’s position at ¢t = 2,3,4,8 h with
data from Vauclin et al. [43]. The numerical results closely match the experimental profile, although there
are small discrepancies in the middle of the water table, which may be due to the non-perfect isotropic and
homogeneous nature of the sandy soil.

Figures [14] and [15] illustrate the field distribution of hydraulic head, flux, and the positions of the water
table and capillary fringe at § = 0.29. These figures also show the isolines of the hydraulic head. The
numerical results are in agreement with the data from Vauclin et al. [43].

Additionally, in Figure the evolution of penalization parameters during the computation is presented.
At selected times, the evolution of the mesh reflects the capture of the steep front.

Finally, Figure displays the evolution of time-steps and the number of elements over time. The
adaptation of time-steps and the number of elements is evident, with the time-steps initially small due to
the strong non-linearity induced by the steep wetting front. As the front smoothens, the number of elements
decreases, stabilizing at N = 600 after ¢t = 3 h.

This test case is a test case is a typical problem where auto-calibration of penalization parameters is
essential. Since the problem is strongly non-linear and evolving, with a basic penalization and user defined
parameters, the non-linear solver failed to capture the solution or necessitates some combination of fixed
point solver and Newton-Raphson method such as in the work of [8].

A Proofs on theoretical results

Proof of Lemma[3.3. For a given u € VI (&) and choosing v, = uy, in yields
N-1 N
Vup € VE(En),  an(un,up) = Y / K (z, ) (up) de — > (K (, 0)uj, e, [un]z,
n=0 71 n=0

N-1
o) Op—1+0n ON
o Tl + > == [l + 5 [l

n=1
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(b) Numerical solution

Figure 14: Vauclin’s test case, at t = 3 h, spacial distribution of hydraulic head, water table position (white
line), contour plot of hydraulic head (red lines) and flux (arrows).
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(b) Numerical solution

Figure 15: Vauclin’s test case, at t = 8 h spacial distribution of hydraulic head, water table position (white
line), contour plot of hydraulic head (red lines) and flux (arrows).
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An upper bound to the term ZT]:/:O{[K(QT, @)up, b, [un]s, needs to be established to prove the coercivity of
ap. Using [Hypothesis (#,,)| and definition of average:

Vn e {l,..,N -1}

U st D | < o (1K G D )|+ |t ) (o))

KpD RO
S |up, ()| + 5 |uj ()]

Recalling the trace inequality [44] in the case of an orthonormal polynomial basis: for an interval I,,,

lwllp2(r,)

Vh

||UHL2(1")

Yu € PP(I,,), |u(33jz_)| < Ciup Jh

|u(:1c;+1)| < Crp

we get, Vn € {1,..,N —1}:

) K(n—l) C(;ﬂ__l)l K(n) C(;L)—l
U e D Do, | < (== i 1,y + =5 =5 i, e |
— K1 C(rnf_l)
< VeV Vi, = e,
2= /K"

(n)

(n)
o K Cerr
+ Ve K ||uj |15, L P ], |
ovem /KM Vh

At the boundary nodes zo and xpy, we have

2 o
- T2 | fun Lo

Ve /K Vh
KiN—l) cWN-1

tr,p—1

|[uhH1N|
= N-1 h
Ve(N-1) K(() ) Vh

_ 0
K (2, @) Do | Tunlao ) < Ve©@ K ([l

_ N—-1
K (2, @)l Do lunden | < Ve® =DV KNIy,
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Gathering the bounds on the boundary and the interior nodes, we get

(0)

N—-1 (0)

_ 0 K Cirp—1
ST K (@ a)up ba, unle, | < Ve© ) KO, |l 7,—— : 2 [un
n=0 NEO! KSO)

(n—1)

N—1 K(n—l)
+> (Vf“’” K&,y ! ol |
n=1 Ve (n—1) Ké”*l) \/E
(n)

n K ) r,p—1
+ Ve K[, : t\/p— |[[uhﬂxn|>
Ve / K,

N—1 K(N b Ct(N711)
+ VeW-UV KN i 1y L ] 79
“(N—4) KéN_l) Vh

Then, using Cauchy-Schwarz’s and Young’s inequality, we have:

N-1
Z [ K (2, a)up s, [un]e, <

n=0
O EALGRPIPNL e VRN 0 LS s U 0
X T T
NZ K00 N a2, | (KO )2 ﬂwﬂin)
2\ gD 20 2e(m) K §™ 2h

From the above inequality, we deduce a lower bound of ay, (up, up; ), Yu, € V§(En)

N-1 (n) (™) N71( —or ) _*
€ Opn-1—04_1)+(on—0%) 1
an(unyun) > Y- (K¢ = =) lup 3, + 3 s =[unl?,
n=1

n=0
o 1 w1
+(Uo—00)g[[uhﬂ§0 +(UN_UN)E[[uh]]3:N (15)
where
(n) (n) 2
K;"VC
6 n
0) ~(0
L >05r1, )’
0 E(O)K(O)
N-1
o _( Ct(rp 1))
N — _ N—
(N 1)K(§ 1)

Finally, thanks to the inequality , an is coercive if

e <2 vne{0,.,N-1}
on >0y, Vne{l,.,N-—1}
oo > 0y

ON > 0N

which ends the proof. O
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Proof of Lemma[34 For a given u € V(&p), an upper bound for |ap(up,vp;@)|, Yun, vy, € V5 (EL) needs
to be established in order to prove continuity of aj. Firstly, start bounding above the volume contribution

using [Hypothesis (F,)}
N-1 N-1 N-1
| whohe| < 30K K e,
n=0

/ K(z,u)upv,dz| < Z Kfn)

1 N—-1 1

2 n 2

(ZK lanl, ) (D2 K enl3, )
n=0

Then, penalization terms are bounded above

% funlan 1] + Z L L0 e [0 + T [t Eonlan

SIS

a0 9 — op_1 + oy 2 oN 2
<(FHfunl?, + > T funl?, + 2 [unl?, )

n=1

N

N-1
ohs) 9 Op—1+0p 2 ON 2
(Flonl2, + > Tl ¢ T [onl2,, )
< (%)) e llton)
max max —_—
Smax{og,0n, max (7 up||||vn

and one can write

N N-—1
ST HE (@, @) o, [on]e,] < (2 > s<">Ké">||u;L||%n>

NI

n=0 n=0
(0 0 N-1 N
( )Ct(r)p 1) [[’Uh]]gzo (K( )Ct(rp 1) [[ H
5<0>K(0> h cN-DE(ND
1
n—1 n—1 n n
NZ ( ( )Ct(rp )1) ( ( )Ct(r; 1) )[[Uhﬂxn +
— 2¢e(n— 1)K n—1) QE(n)Kén) 2h

n=1

From those inequalities, we obtain an upper bound Vup, v, € VE (&), as follows
N-1 1 N-1 1
an(un,ons )] < (30 K rl3,) (0 K 3, )
n=0 n=0
N-1 5/ .
" <Z 26(")K{”>IIU§LII?W> <U}?[[vh]] Z on_1toy +a G Yo 7[[%1] )
n=1

n=0

On
T T o ) [ L

< K(")>
_ma (K Jlunlflonl

n=0,...,
+ max (25(")K(n)) max ( 0%, 0%, max & [[un [ [|vall
n —1 1 OEN O N—1\ 2

N

=0,....N

On
T N O [ T

=1,...

<Cfunll[vnll
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where

5.

On
+ max | 09,0y, max — .
n=1,...,.N—1 \ 2

€l =, _gmax_, (1 +\/n_£%_1 2B Jmax \ o5, o, _max, (5

O

Proof of Lemma[3.5. An upper bound for |I(vy,)| is established using Poincaré inequality and Cauchy Schwarz: Vv, €
Ve (En),

fvdx

N— N—
< Z 11z, lonllz, < Z 11 Bl 1,
7\/' N-1 - %
Z 713, (Z 2Iwrl,)” < Blloal
1
L) .

Proof of Lemma[3.9. For a given u € Vi (&), let vy, be a sequence in VY(&,) bounded in the ||.|-norm and

let ¢ € C5°(2). For all h € R, set 5 = mp¢ where m), denotes the L?-orthogonal projection onto Vj(&p,).

Since p > 1, infer ||p — ]| P 0. Owing to [Equation (14)and since G% (¢) = ¢’ because ¢ € C§°(9),
—

obtain for all p > 0

[

<

/-\

with B= m (ﬁn)(z

.....

GP (mhe) — ¢’ strongly in L*(Q)

One can observe that
an(vh, Thp; U) = / K (z, )G (vp) Gy (thp)dw + sp(vh, Thep) == T1 + T
Q

Clearly as h — 0,1 — [, K(z,u)v'¢'dz owing to the weak convergence of G’Z(vh) to v" and to the strong
convergence of G} (m,¢) to ¢'. Furthermore, using Cauchy-Schwarz inequality yields :

|T2| = |sn(vh, The)|

N-—1
o) On—1+0n ON
=| A [vn]lzo [Trp]zy + § oh o]z, [Trele, + A [on]len [Tn@]en |

g( 2[[%]] +NZ:1 On— 1+0n) [[Uhll]xn o hﬂm)%<zﬂﬂh@ﬂ )é

< Clop|smnels

where )
Opn—1+o0
C — max {03’ W’gﬁf}'
Since |vp|s is bounded by assumption and since |mpp|; = | — The|s Yy 0, infer Ty vy 0. O
— —

Proof of the Theorem[3.4 For a given @ € V{(&}), owing to the discrete coercivity of ay, the sequence uy,
is bounded in the ||.||-norm. Theorem implies that there is v € H}(2) such that up to a subsequence,
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up, — v in L2(Q) and for all p > 0, G% (uy,) — v" weakly in L*(Q) as h — 0. Let ¢ € C5°(£2). Owing Lemma
ap(up, Thp; ) — a(v, @) as h — 0. Since uy, solves the discrete linearized problem (W), infer as h — 0

an(un — Thep, up — Tpe; U) = ap(Up, up — THP; U) — &h(ﬂh%uh — Thep; )
— a(v,v — @) —alp,v—

—>/v— fda:—/Ka:u (v—)dx
Hence using a, (v, vp; i) > C*||vy]|? from Lemma

C*|lun — mrepl|| < an(un — Thip, up — Thip; 1)

& thUPC lun — Tl < thUPah(Uh — T, Up — TR; U)

- <|/v— fdx—/Kxu (o — ) dal

< fllz2@yllv = @ll2 @) + Kl L2 @)ll(v — )l 22 (o)

1
< Cro (v = ¢l + 10 = @) aqey )

2
< Cppllv— ol (@

[N

with Cy , = (||f||LQ(Q + Ki|l¢’ ||L2 ) . As a consequence
. 1
limsup [lun = mhel| < = Crellv = @llm @)
h—0

One can observe that the choice for CA?’;L satisfy the stability property
Yon € VE(En),  [1Gh(wn)lr20) < Clloall

for C' independent of h. As a result,

. . ) 1
limsup (|G} (un) — G} ()|l 2 (@) < C =z Crollv — @llai )
h—0 C

because

IG (u )*GQ(WW)HLQ(Q C||Uh*77hsﬁ||
& limsup || GE (up) — G¥ (7

h—0

SO

O+ Cf,go”?f - 80||H1(Q)

And since Gz (mhe) strongly converges to ¢’ in L2?(2), this yields

limsup [|G% (un) — ¢'[| 2 v — 0|l g1 (0)-
h—0

C*

Since ¢ is arbitrary in C§°(€2), and since this space is dense in H}(f2), the term on the right hand side can
be made as small as desired taking ¢ = v, infer

GY (up) — v’ strongly in L*(Q)
—
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As a result, taking ¢ arbitrary in C§°(Q) yields

/ K(z,u)v' ¢ dx e K(z,u)uymhe’ de = ap(up, mhe) = / frnp — / fodzx

(16)

using Lemma i.e. v solves the poisson problem by density of C§°() in H'(€). Since the solution u to
the Poisson problem is unique, the whole sequence u; strongly converges to u in L?(2) and, for all p > 0,

the sequence (G} (up)) weakly converges to v/ in L?().

hers,
an(up,up; @) = | K(z, ﬂ)éi(uh)Gi(uh)dx + sp(un,up)
Q

> / K (e, @)CP (up) G () dae
Q
Thus

lim inf ap, (wp, up; @) >hm1nf/ K(z,w)GY (up)G (up)dx > / K(z,a)u'v'dz
h—0 h—0 Q

Furthermore

/ K(xaﬂ)GZ(uh)Gh(uh)dx < ap(up, un; o / fupdz
Q
yielding with [Equation (16)

limsup/ K (2, @)G? (u,)GP (up)dz < limsup ap (up,, up; @)
h—0 h—0

:limsup/ fuhde/K(m,ﬁ)u’u’dx
Q Q

h—0
Thus, [, K (z,@)GP (up)G? (up)dx — Jo K (z,w)u'u'dx strongly. Moreover ap, (up, up; @) — Jo K
—
strongly. Owing that

n(up, up; / K (x,u)GY (up)GY (up)dx + sp(un, up)

Z/K(:C,ﬂ)Gﬁ(uh)GZ(uh)dx—i— minN(Un)|uh\?,
QO 7

1=0,...,

EEREE)

& minN(an)|uh|3 < ap(up,up) —/K(x,ﬂ)éfl(uh)Gfl(uh)dx
Q
and since min _(oy,) > 0 and the right-hand side tends to zero, |up|; — 0.

n=0,...,

up, — || L2(0) = ||Gp(uh) — /|| z2(0) — 0,
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