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A note on first order quasi-stationary Mean Field Games

Fabio Camilli * Claudio Marchi † Cristian Mendico ‡

September 20, 2024

Abstract

Quasi-stationary Mean Field Games models consider agents who base their strategies on current
information without forecasting future states. In this paper we address the first-order quasi-stationary
Mean Field Games system, which involves an ergodic Hamilton-Jacobi equation and an evolutive
continuity equation. Our approach relies on weak KAM theory. We introduce assumptions on the
Hamiltonian and coupling cost to ensure continuity of the Peierls barrier and the Aubry set over
time. These assumptions, though restrictive, cover interesting cases such as perturbed mechanical
Hamiltonians.

Keywords: Mean Field Games, weak KAM theory, viscosity solutions.
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1 Introduction

Mean Field Games (MFG) theory is a mathematical framework for analyzing decision-making processes
among large populations of small interacting agents. It was independently introduced by Lasry-Lions
[20] and Huang-Caines-Malhamé [18]. MFG combines game theory and partial differential equations
(PDE) to address problems involving many players, where traditional game theory becomes impractical
due to complexity. In this model, agents are fully rational, meaning they have perfect knowledge of the
system’s dynamics and can predict the evolution of the mean field based on their actions and those of
others. The game reaches a mean field equilibrium where all strategies and the mean field distribution
are consistent, and no agent can unilaterally improve their outcome. The corresponding PDE system
includes a backward-in-time Hamilton-Jacobi-Bellman equation for the agents’ strategy evolution and a
forward-in-time Fokker-Planck equation for the state distribution dynamics.

However, real-world agents often deviate from full rationality due to unpredictability and the need
to learn and adapt their strategies over time. In quasi-stationary MFG model, introduced by Mouzouni
[21] and studied further in [7], the generic agent cannot predict the future evolution of the population.
Instead, the agent makes strategic decisions based solely on the information available at the current
moment. This means that each agent observes the current state of the mean field m(t) and, without
attempting to forecast how this might change over time, optimize the cost functional

lim inf
T→∞

1

T
inf
a
Ex,t

[ ∫ T

t
L(X(s), a(X(s))) + F (X(s),m(t)) ds

]
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where
dX(s) = a(X(s))ds+

√
2dW (s), X(t) = x

and a is a feedback control law. The corresponding MFG system is given by
−∆u+H(x,Du(t)) + α(t) = F (x,m(t)) in Td, ∀t ∈ [0, T ]

∂tm−∆m− div(mHp(x,Du(t))) = 0 in Td × (0, T )

m(0) = m0 in Td,

(1.1)

where Td is the unit torus in Rd. Let us underline an important feature of problem (1.1): the Hamilton-
Jacobi-Bellman equation is stationary while the Fokker-Planck equation is evolutive; hence, the standard
structure of MFG systems, where the Fokker-Planck equation is the dual of the linearized Hamilton-
Jacobi-Bellman equation, is lost. Nevertheless, the time t still affects the first equation in the system
through the time-dependent distribution m of players; in other words, the time t plays the role of a pa-
rameter in the Hamilton-Jacobi-Bellman equation. The existence of a solution to (1.1) can be established
by utilizing a continuous dependence estimate for the Hamilton-Jacobi-Bellman equation. This estimate
guarantees the required time regularity of the vector field DpH(x,Du(t)) that drives the Fokker-Planck
equation. Uniqueness of the solution does not require monotonicity of the coupling cost and it is achieved
by applying Gronwall’s Lemma, instead of the standard duality argument.

The aim of this paper is to address the well-posedness of the first order quasi-stationary MFG system
(i) H(x,Du(t),m(t)) + α(t) = 0 in Td, ∀t ∈ [0, T ],

(ii) ∂tm− div(mDpH(x,Du(t),m(t))) = 0 in Td × (0, T ),

(iii) m(0) = m0 in Td.

(1.2)

In contrast to the second-order problem, several intriguing issues arise in the first order case and to
prove existence of solutions is more challenging. Indeed, for a fixed t, while the ergodic constant α in
(1.2).(i) is uniquely determined, one cannot expect to have a unique viscosity solution (even up to an
additive constant). Some selection techniques are available in literature, see [4] and [14]. However, also
using these techniques, continuous dependence results for the Hamilton-Jacobi equation only ensures
the continuity of u(t) with respect to time, without providing any information on the regularity ofDu(t),
which is essential for proving existence of a solution to the system (1.2) using a fixed point argument.

We investigate the quasi-stationary MFG system (1.2) using an approach based on weak KAM theory
(see [15]). The structure of the solution set of the ergodic Hamilton-Jacobi equation is deeply connected
with the associated dynamical system, particularly with the properties of the Peierls barriers and the
Aubry set (see Section 2 for definitions). Since the Hamiltonian depends on the measure m(t), the
Aubry set can vary over time t and typically lacks stability with respect to perturbations. To address
this issue, we introduce specific assumptions on the Hamiltonian and on the coupling cost in order to
achieve continuity of the Peierls barrier and the Aubry set over time. Although our assumptions are
somewhat restrictive, they still encompass interesting cases, such as a perturbed mechanical Hamiltonian.
By exploiting this structure, we can prove the existence of a solution to system (1.2) via a fixed point
argument. However, it is worth mentioning that the structural assumptions in force does not guarantee
the uniqueness of solutions due to the instability of the Aubry set w.r.t. time. Indeed, uniqueness (as in
[21]) is strongly related to the continuity of the gradient of u(t, ·) w.r.t. time, a property connected to
the stability of the Aubry set which fails even in simple case as the mechanical system (see, for instance,
[13, Example 1.3]).

We mention that Weak KAM theory has been exploited to study the long time behavior of MFG (see
[6, 9, 10, 11, 12, 22, 19]). Moreover the first-order quasi-stationary MFG model shares similarities with
the Hughes model, another classical model used to study agent behavior with partial rationality [1]. Like
the system (1.2), the Hughes model comprises a nonlinear conservation law coupled with a stationary
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eikonal equation. Also in this case, the primary challenge lies in the irregularity of the gradient of the
solution to the eikonal equations, which affects the flux in the conservation law. Existence results for
the Hughes model are available only for one-dimensional spatial domains [5], although the model can be
formulated in any spatial dimension.

The paper is organized as follows. In Section 2 we introduce the tools from weak KAM theory
tailored to the MFG structure. Section 3 is devoted to the proof of the main result on the existence of
solutions to the quasi-stationary MFG system (1.2).
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project 2024. The third authors were partially supported by the MIUR Excellence Department Project
awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C23000330006.

2 The ergodic Hamilton-Jacobi equation

In this section, we recall definitions and preliminary results from weak KAM theory, which will be used
later in this paper (see [15] for more details).

Let P(Td) be the set of probability measures on Td which is a compact topological space when
endowed with the weak∗-convergence. Moreover the topology on P(Td) is metrizable by means of the
Kantorovich-Rubinstein distance

d1(µ, µ
′) = sup

{∫
Td

f(x)d(µ− µ′) : f : Td → R is 1-Lipschitz continuous
}
.

For a given m ∈ P(Td), we consider the ergodic Hamilton-Jacobi equation

H(x,Du,m) + α = 0 in Td, (2.1)

where the unknowns are the ergodic constant α and the viscosity solution u. We denote by L the La-
grangian associated to H, i.e.

L(x, v,m) = sup
p∈Rd

{⟨p, v⟩ − H(x, p,m)}. (2.2)

We make following assumptions on the Hamiltonian H.

(H) For each m ∈ P(Td), H(·, ·,m) ∈ C2(Td × Rd) and, for each (x, p) ∈ Td × Rd, the map
m 7→ H(x, p,m) is continuous w.r.t. d1 distance. Moreover, there exists a constant cH > 0
(independent of m) such that for any (x, p) ∈ Td × Rd we have

H(x, p,m) ≥ cH(|p|2 − 1),

D2
pH(x, p,m) ≥ 1/cH ,

|DpH(x, p,m)| ≤ cH(1 + |p|).

In particular, by the compactness of Td × P(Td), for each R > 0, there exists a modulus of continuity
ωR : [0,∞) → [0,∞) such that for any x ∈ Td, any p ∈ BR, and any m1,m2 ∈ P(Td) we have

|H(x, p,m1)−H(x, p,m2)| ≤ ωR(d1(m1,m2)). (2.3)

It is well known that the Lagrangian L satisfies the same properties of H. Given a probability measure
m ∈ P(Td), we define the family of action functions

Am : [0,∞)× Td × Td → R
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as

Am(τ, x, y) = inf

{∫ τ

0
L(γ(s), γ̇(s),m) ds : γ ∈ AC([0, τ ];Td), γ(0) = x, γ(τ) = y

}
,

and the Peierls barrier as
hm(x, y) = lim inf

τ→+∞

[
Am(τ, x, y) + αmτ

]
where αm is the Mañé critical value

αm := inf{α ∈ R : ∃ u ∈ C1(Td) s.t. H(x,Du(x),m) ≤ α}.

Proposition 2.1. For every x ∈ Td, the function hmx : Td → R, defined by

hmx (y) := hm(x, y) y ∈ Td,

satisfies the following equivalent conditions:

1. hmx is a viscosity solution to (2.1).

2. For all τ ≥ 0 we have

hmx (y) + αmτ = inf
γ(τ)=y

{
hmx (γ(0)) +

∫ τ

0
L(γ(s), γ̇(s),m) ds

}
. (2.4)

3. For any Lipschitz curve γ : [a, b] → Td we have

hmx (γ(b))− hmx (γ(a)) ≤
∫ b

a
L(γ(s), γ̇(s),m) ds+ αm(b− a) (Dominated curve)

and, moreover, for every x ∈ Td there exists a Lipschitz curve γx : (−∞, 0] → Td such that
γ(0) = x and

hmx (γx(b))− hmx (γx(a)) =

∫ b

a
L(γx(s), γ̇x(s),m) ds+ αm(b− a) (Calibrated curve)

for any a < b ≤ 0.

Definition 2.2. We call projected Aubry set the nonempty compact subset of Td defined by

Am := {x ∈ Td : hm(x, x) = 0}. (2.5)

We recall that the projected Aubry set is nonempty because the α-limit set of the Euler flow, due to
the compactness of the state space, is nonempty and is contained within Am. Furthermore, it is important
to note that both the Peierls barrier and the Aubry set depend on the fixed measure m.
We give two properties, well known in this framework, that we will be exploited in the next section to
prove the existence of solutions to MFG system. For the proofs of the following results, we refer to [15]
and [17].

Proposition 2.3. For any m ∈ P(Td), for any t ∈ [0, T ] and for any x ∈ Td let γx be a calibrated curve
for hm(x, ·), that is,

hm(x, γx(b))− hm(x, γx(a)) =

∫ b

a
L(γx(s), γ̇x(s),m) ds+ αm(b− a)

for any 0 ≤ a < b ≤ T . Then, we have

|γ̇x(t)| ≤ κ(T ).
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Proposition 2.4. There exists R̄ > 0 such that, for every m1,m2 ∈ P(Td), there holds

|αm1 − αm2 | ≤ ωR̄ (d1(m1,m2))

where ωR is the modulus of continuity introduced in (2.3).

Proof. We recall that the Mañé critical value can be written as

αm = − inf
φ∈C1(Td)

sup
x∈Td

H(x,Dφ(x),m).

By assumption (H) (in particular, the coercivity of H w.r.t. p), we deduce that there exists a positive
constant R̄ (independent of m) such that

αm = − inf
φ∈C1(Td)
∥Dϕ∥∞≤R̄

sup
x∈Td

H(x,Dφ(x),m).

By relation (2.3) we easily deduce the statement.

3 The quasi-stationary Mean Field Games system: existence of solutions

In this section, we study the existence of solutions to the first order quasi-stationary MFG system
H(x,Du(t),m(t)) = αm(t), x ∈ Td, ∀ t ∈ [0, T ],

∂tm(t)− div
(
m(t)DpH(x,Du(t),m(t))

)
= 0, (t, x) ∈ (0, T ]× Td,

m(0) = m0 x ∈ Td,

(3.1)

by means of the weak KAM theory techniques introduced in Section 2.

Remark 3.1. Note that there are two distinct time scales in the ergodic Hamilton-Jacobi equation from
the previous system: the exogenous time t, which is present due to the distribution m(t) and, for a fixed
t ∈ [0, T ], the intrinsic time τ ∈ R associated with the Peierls barrier, see (2.4). Additionally, the Peierls
barrier and the Aubry set, being functions of m(t), vary over time. This presents a significant challenge
in studying (3.1), as the continuity properties of these elements with respect to perturbations are generally
unknown.

Theorem 3.2. Assume (H) and

(A) For any m ∈ C([0, T ];P(Td)) there exists a unique xm ∈ Td such that

xm ∈
⋂

t∈[0,T ]

Am(t);

(IC) m0 is a Borel probability measure absolutely continuous w.r.t. the Lebesgue measure and the
density, still denoted by m0, belongs to L∞(Td).

Then, there exists a solution (u, α,m) to (3.1) such that

u(t, y) = hm(t)(xm, y), ∀ (t, x) ∈ [0, T ]× Td,

where xm is the point given in (A), and α = αm(t) is the corresponding Mañé critical value. Moreover,
the following properties hold.

i) d1(m(t),m(s)) ≤ Cb|t− s| for every t, s ∈ [0, T ], where Cb is a constant depending only on the
assumptions (see, the proof of Lemma 3.6);
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ii) for each t ∈ [0, T ], the measure m(t) is absolutely continuous w.r.t. the Lebesgue measure and its
density (that we still denote m(t)) belongs to L∞(Td) with ∥m(t)∥∞ ≤ C where C is a constant
independent of t;

iii) for any t ∈ [0, T ], there holds: m(t) = X(t, ·)#m0, where X(t, ·) is the flux given by

X(t, x) = x+

∫ t

0
DpH

(
X(s, x), Dyh

m(s)(xm, X(s, x)),m(s)
)
ds;

iv) u is Lipschitz continuous w.r.t. x, uniformly w.r.t. t;

v) u is semiconcave w.r.t. x, uniformly w.r.t. t, and continuous w.r.t. t;

vi) u(t, ·) is a weak KAM critical solution, namely it fulfills the properties of Proposition 2.1.

Before passing to the proof of Theorem 3.2 we provide some examples of quasi-stationary MFG
model which fit our assumptions (H) and (A).

Example 3.3. (i) The basic example is the one of the mechanical Hamiltonian with a positive coupling
cost, i.e.,

H(x, p,m) =
|p|2

2
− F (x,m), (3.2)

where F is continuous in Td × P(Td) and for any m ∈ P(Td)

F (0,m) = 0 and F (x,m) > 0 for x ̸= 0. (3.3)

For example, given k ∈ C(Td × Td) with k(0, y) ≡ 0 and k(x, y) > 0 in Td \ {0} × Td, the function

F (x,m) =

∫
Td

k(x, y)m(dy)

fulfills the previous properties. In this case, we have

αm = 0 and Am = {0} for any m ∈ P(Td)

(see [15, Section 4.14]), hence the assumption (A) is satisfied. We can replace the quadratic Hamiltonian
in (3.2) with any reversible Tonelli Hamiltonian H(p), i.e. H(p) = H(−p) for any p ∈ Rd, such that
H(0) = 0 and H(p) > 0 for |p| ≠ 0.

(ii) We can also consider a non-separable Hamiltonian of the type

H(x, p,m) = F (m)(H(p)− V (x))

with H a reversible Tonelli Hamiltonian, F (m) ≥ δ > 0 for any m ∈ P(Td) and V : Td → R a
continuous function with a unique minimum point x0. In this case,

αm = −F (m)min
Td

(H(0)− V (x)) = −F (m)(H(0)− V (x0))

and Am = {x0} for any m ∈ P(Td).

For the proof of Theorem 3.2 we need some preliminary lemmas. For these results, assumptions (A)
and (IC) are not needed.

Lemma 3.4. Assume (H). Let m ∈ C([0, T ];P(Td)) with
⋂

t∈[0,T ]Am(t) not empty and fix any point

xm ∈
⋂

t∈[0,T ]

Am(t). Then, the map

t 7→ hm(t)(xm, y)

is continuous for any y ∈ Td.
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Proof. Let t ∈ [0, T ] and let {tn}n∈N ⊂ [0, T ] be such that tn → t as n ↑ ∞. Then, since the function

y 7→ hm(tn)(xm, y)

is a global critical solution and xm belongs to the Aubry set, we have that there exists {γn}n∈N such that
γn : [0, 1] → Td, γn(0) = xm (where xm is as in the statement), γn(1) = y and

hm(tn)(xm, y)− hm(tn)(xm, xm) =

∫ 1

0
L(γn(s), γ̇n(s),m(tn)) ds+ αm(tn). (3.4)

Moreover, by the domination property we also have

hm(t)(xm, y)− hm(t)(xm, xm) ≤
∫ 1

0
L(γn(s), γ̇n(s),m(t)) ds+ αm(t). (3.5)

Hence, recalling that hm(s)(xm, xm) = 0 for any s ∈ [0, T ], taking the difference of (3.5) and (3.4) we
deduce

hm(t)(xm, y)− hm(tn)(xm, y)

≤
∫ 1

0
[L(γn(s), γ̇n(s),m(t))− L(γn(s), γ̇n(s),m(tn))] ds+ αm(t) − αm(tn).

From Proposition 2.3, we obtain ∥γ̇n∥∞ ≤ κ(T ); hence, by relation (2.3) and Proposition 2.4 we accom-
plish the proof.

Lemma 3.5. Assume (H). Then, the following properties hold.

(i) The map y 7→ hm(t)(x, y) is semiconcave with a linear modulus on Td, uniformly w.r.t. t ∈ [0, T ]
and x ∈ Td.

(ii) Given
xm ∈

⋂
t∈[0,T ]

Am(t)

the map t 7→ Dyh
m(t)(xm, y) is measurable for any y ∈ Td.

Proof. We recall that given t ∈ [0, T ] and x ∈ Td the function y 7→ hm(t)(x, y) is a viscosity solution of
the critical equation

H(y,Dyh
m(t)(x, y),m(t)) = αm(t), y ∈ Td;

the semiconcavity estimates, uniform w.r.t. time, follows by classical arguments (see [15]). Statement
(ii) is a standard consequence of Lemma 3.4.

Lemma 3.6. Let (H) be in force and assume that m ∈ C([0, T ];P(Td)) is a solution in the sense of
distributions of{

∂tm(t)− div
(
m(t)DpH(y,Dyh

m(t)(xm, y))F (y,m(t))
)
= 0, (t, y) ∈ [0, T ]× Td

m(0) = m0, y ∈ Td.
(3.6)

Then, the map t 7→ m(t) is Lipschitz continuous on [0, T ] w.r.t. the d1 distance with Lipschitz constant
Cb independent of m.
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Proof. Let m ∈ C([0, T ];P(Td)) be a solution in the sense of distributions to (3.6). By definition and
by a standard density argument for ϕ near times t and s (see [2, Lemma 8.1.2]), for any φ ∈ C1(Td) and
any 0 ≤ s < t ≤ T , we have that∫

Td

φ(y)
(
m(t, dy)−m(s, dy)

)
+

∫∫
(s,t)×Td

Dφ(y)DpH(y,Dyh
m(σ)(xm, y),m(σ)) m(σ, dy)dσ = 0.

Then, taking ψ ∈ C(Td) such that |ψ(x) − ψ(y)| ≤ |x − y| and defining ψε = ψ ⋆ ξε, where ξε is a
smooth mollifier, the previous equality gives the following estimate∫

Td

ψε(y)
(
m(t, dy)−m(s, dy)

)
≤
∫∫

(s,t)×Td

|Dψε(y)||DpH(y,Dyh
m(σ)(xm, y),m(σ))| m(σ, dy)dσ

≤ ∥Dψ∥∞cH(1 + sup
σ∈[s,t]

∥Dyh
m(σ)(xm, ·)∥∞)|t− s|.

By taking the limit as ε ↓ 0 in the previous inequality and recalling that ∥Dψ∥∞ ≤ 1, the arbitrariness
of ψ yields

d1(m(t),m(s)) ≤ cH

(
1 + sup

σ∈[s,t]
∥Dyh

m(σ)(xm, ·)∥∞

)
|t− s|. (3.7)

In order to get the uniform bound for the Lipschitz constant, it is enough to obtain that the functions
y 7→ hm(t)(xm, ·) are Lipschitz continuous with a Lipschitz constant independent of m(t). Indeed, by
standard arguments, for any m and any t, there holds

|αm(t)| ≤ sup
(y,m)∈Td×P(Td)

|H(y, 0,m)| =:Mα;

hence, by Proposition 2.1 and (H) , we infer

∥Dyh
m(t)(xm, ·)∥∞ ≤

(
Mα + cH

cH

)1/2

.

In conclusion, choosing
Cb := c

1/2
H

(
c
1/2
H + (Mα + cH)1/2

)
we accomplish the proof.

Proof of Theorem 3.2. In order to show the existence of solutions to (3.6) we use the Schauder fixed-
point theorem. To do so, we consider the set

C =

{
m ∈ C([0, T ];P(Td)) : sup

t̸=s

d1(m(t),m(s))

|t− s|
≤ Cb

}
,

where Cb is the constant introduced in Proposition 3.6 and define the map

S : C → C

as follows: given m ∈ C we fix the Peierls barrier (t, y) 7→ hm(t)(xm, y), where xm is the point defined
in (A), and we define

S(m) := µ

8



where µ is a solution to{
∂tµ(t)− div

(
µ(t)DpH(y,Dyh

m(t)(xm, y),m(t))
)
= 0 (t, y) ∈ [0, T ]× Td

m(0) = m0 x ∈ Td.
(3.8)

Note that µ exists and it is unique by [3, Section 5]; indeed, by [8, Theorem 2.3.1-(i) and theorem
A.6.5] and Lemma 3.5 the function Dy[DpH(·, Dyh

m(t)(xm, ·),m(t))] is absolutely continuous w.r.t.
the Lebesgue measure for a.e. t ∈ [0, T ]. Hence, [3, Section 5] ensures the existence of a Lagrangian
flow (see [3] for its definition and main properties) associated to (3.8); in particular the function µ(t) =
X(t, ·)#m0, where X(t, ·) is the flux given by

X(t, x) = x+

∫ t

0
DpH

(
X(s, x), Dyh

m(s)(xm, X(s, x)),m(s)
)
ds,

is a solution to (3.8); moreover, for each t ∈ [0, T ], µ(t) is absolutely continuous w.r.t. the Lebesgue
measure and its density belongs to L∞(Td) with ∥µ(t)∥∞ ≤ C where C is a constant independent of t.
Furthermore, by the Lipschitz estimates established in Proposition 3.6, µ belongs to C; hence the map S
is well-posed. Then, since C is convex and compact, in order to apply the Schauder fixed-point theorem
it suffices to show that S is continuous.

Let {mn}n∈N ∈ C be such that mn ⇀ m in C, let {xn} ⊂ Td be the sequence of points which
satisfies (A) for mn, i.e for each n ∈ N there exists a unique point xn in

⋂
t∈[0,T ]Amn(t), and let

µn = S(mn).

By compactness of Td, possibly passing to a subsequence, the sequence {xn}n∈N converges to some
point x. We claim that

x ∈
⋂

t∈[0,T ]

Am(t).

To do so, it is enough to prove that, for each t ∈ [0, T ], the point x̄ belongs to Am(t). Considering

hmn(t)(xn, xn) = 0

by definition there exist {τn}n∈N and {γn}n∈N such that τn ↑ ∞, γn : [0, τn] → Td, γn(0) = γn(τn) =
xn and ∫ τn

0
L(γn(s), γ̇n(s),mn(t)) ds+ αm(t)τn ≤ 1

n
.

By Proposition 2.3 and Ascoli-Arzela theorem, there exists γ such that γn uniformly converges to γ and
γ̇n weakly converges to γ̇ in L2(0,∞;Td), on every compact subset of [0,∞) respectively. Set

dn = |xn − x|

and define the curve

γ̃n(s) =


γ1n = segment x→ xn, s ∈ [−dn, 0]
γn(s), s ∈ (0, τn]

γ2n = segment xn → x, s ∈ (τn, τn + dn].

Up to a reparametrization, we can assume that |γ̇in(s)| ≤ 1 (for i = 1, 2) which yields∫ 0

−dn

L(γ1n(s), γ̇1n(s),mn(t)) ds ≤ dn∥L∥∞,Td×B1×P(Td)
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and the same estimate holds for γ2n in [τn, τn + dn]. Hence, by lower-semicontinuity of the action
functional we have

hm(τ)(x, x) = lim inf
τ→∞

{
inf

γ(0)=γ(τ)=x

∫ τ

0
L(γ(s), γ̇(s),m(t)) ds+ αm(t)τ

}
≤ lim inf

n→∞

{∫ τn+dn

−dn

L(γ̃n(s), ˙̃γn(s),mn(t)) ds+ αm(t)(τn + 2dn)

}
≤ lim inf

n→∞

(∫ 0

−dn

L(γ1n(s), γ̇1n(s),mn(t)) ds+

∫ τn

0
L(γn(s), γ̇n(s),mn(t)) ds+ αm(t)τn

+

∫ τn+dn

τn

L(γ2n(s), γ̇2n(s),mn(t)) ds+ 2αm(t)dn

)
≤ lim

n→∞

(
2dn sup

t∈[0,T ]
|αm(t)|∥L∥∞,Td×B1×P(Td) +

1

n

)
= 0

which proves that x ∈ Am(t); by the arbitrariness of t ∈ [0, T ] and by assumption (A) we infer

{x} =
⋂

t∈[0,T ]

Am(t).

Now, by continuity of the maps x 7→ hm(t)(x, y) (see, e.g., [15]) we have that for any (t, y) ∈ [0, T ]×Td

the limit as n→ ∞ of
hmn(t)(xn, y) → hm(t)(x, y).

Moreover, still from the continuity of the map x 7→ hm(t)(x, y) we deduce that x 7→ Dyh
m(t)(x, y)

is measurable. Thus, combining such a property with the uniform semiconcavity of the map y 7→
hm(t)(x, y) w.r.t. t, we also obtain

Dyh
mm(t)(xn, y) → Dyh

m(t)(x, y), on a.e. (t, y) ∈ [0, T ]× Td

invoking [8].
Therefore, by compactness of C we get µn ⇀ µ, up to a subsequence for some µ ∈ C. Passing

to the limit into the equation associated with mn we deduce that µ solve the equation associated with
hµ(t)(x, y), i.e.,{

∂tµ(t)− div
(
µ(t)DpH(y,Dyh

µ(t)(x, y), µ(t))
)
= 0, (t, y) ∈ [0, T ]× Td

µ(0) = m0, y ∈ Td.

Thus, recalling that

αm(t) +H(y,Dyh
µ(t)(x, y), µ(t)) = 0, y ∈ Td, ∀ t ∈ [0, T ],

we obtain the existence of a solution.
In conclusion, point (i) is an immediate consequence of our construction of m while points (ii) and
(iii) are due to [3]. Moreover, points (iv)-(vi) are due respectively to Proposition 3.6 and its proof,
Lemma 3.5 and [17, Proposition 2.2].
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