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Highlights
Super-resolution on unstructured coastal wave computations with graph neural networks and
polynomial regressions
Jannik Kuehn,Stéphane Abadie,Matthias Delpey,Volker Roeber

• Super-resolution can speed up spectral wave forecasts by up to 80 times
• Prediction errors are negligible for most applications
• Polynomial regressions outperform graph neural networks in most cases
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A B S T R A C T
Accurate high-resolution wave forecasts are essential for coastal communities, but local and even
coastal coverage is often still missing due to the heavy computational load of modern state-of-the-
art wave models. This study presents a machine learning super-resolution approach that drastically
reduces the computational effort, while keeping errors negligible for the majority of forecasting
applications. The method consists of first computing a wave forecast on a coarse mesh which is
then converted to a forecast of finer resolution with the help of machine learning. To demonstrate
the feasibility and the potential for practical applications of this approach, we present a case study
of a 44-year hindcast along the French Basque coast over an unstructured mesh. We introduce two
machine learning approaches, a graph neural network and a polynomial ridge regression and compare
their performances in different sea states and spatial environments. Both models exhibit very small
prediction errors for the significant wave heights, with Root Mean Square Errors (RMSEs) ranging
from 0.3 cm to 2 cm, depending on the study region, while being up to 80 times faster than a direct
computation of a numerical wave model at the corresponding spatial resolution. To the best of our
knowledge, this is the first time that a super-resolution approach is extended to unstructured meshes
in the field of coastal sciences.

1. Introduction1

From ship navigation safety to coastal risk management,2

accurate ocean wave forecasts play a vital role for coastal3

communities (Gopinath and Dwarakish, 2015). Thanks to4

a vast number of buoy networks and state-of-the-art nu-5

merical wave models such as SWAN — Simulating WAves6

Nearshore (Booij et al., 1999) and WAVEWATCH III (Tol-7

man, 2009), forecast coverage spans the entire globe. Never-8

theless, local forecasts are often still missing (Camus et al.,9

2011). Indeed, particularly in shallow water, an accurate10

wave description becomes more complex as a consequence11

of depth-limited processes such as shoaling, wave refraction,12

and depth-induced breaking. These wave-bottom interac-13

tions have a significant effect on the space-time variabil-14

ity of the wave field, especially in highly heterogeneous,15

shallow bathymetries that can introduce distinctive small-16

scale features (Gorrell et al., 2011; Ardhuin et al., 2012).17

Owing to this complexity, high-resolution forecasts of larger18

parts of the coast demand a lot of resources and often19

necessitate access to high-performance computing facilities20

(James et al., 2018).21
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With the recent rise of machine learning and artificial23

intelligence, data-driven approaches have become more pop-24

ular and their adoption by the coastal engineering commu-25

nity has increased considerably. Typical applications include26

short-term wave forecasting (Londhe and Panchang, 2006;27

Zhang and Dai, 2019), improving predictions of numerical28

models (Londhe et al., 2016; Callens et al., 2020; Lucero29

et al., 2023), or efficiently computing surf-zone hydrody-30

namics (Ricondo et al., 2024). Despite various successful ap-31

plications of numerical models over decades, deep learning32

approaches are becoming a popular alternative since coastal33

wave models are usually resource-intensive. Surrogate mod-34

els bypass numerical wave models completely and try to35

learn patterns directly from a training dataset. Generally, the36

input is similar to what is used for coastal wave models and37

might include, for example, wind (Huang et al., 2022; Michel38

et al., 2022), wave buoy (Chen et al., 2021b), and bathymetry39

(Jörges et al., 2023) data. These surrogate models are ex-40

tremely fast and once trained they can compute the forecast41

more than a thousand times faster than a direct calculation.42

However, this speed-up comes at the price of some reduction43

in accuracy. The super-resolution approach proposed in this44

study offers a reasonable balance between the accuracy of45

direct numerical computations and the speed of surrogate46

models.47

The concept is to convert results from a numerical model48

run over a coarse mesh to a higher resolution with the help49

of a machine learning model. Due to the low-resolution50

computation of the numerical wave model that is used as51

an input, the data-driven prediction is based, at least to52

some extent, on a physical basis. The model only has to53

adjust the prediction to the correct value, whereas a surrogate54
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model will need to discover the physical relationships by55

itself. This generally results in a substantially lower overall56

accuracy of the latter (Obiols-Sales et al., 2021; Kuehn et al.,57

2023). On the other hand, a super-resolution approach still58

speeds-up the calculations considerably since the numerical59

solvers only have to run on a coarse resolution and the60

conversion to a higher resolution with a statistical model61

is very fast. However, both surrogate and super-resolution62

model methods need an initial high-resolution computation63

to be trained on — a non-negligible point that we will revisit64

in the discussion.65

There are many examples of successful applications of66

deep-learning super-resolution in fluid mechanics on struc-67

tured (Dong et al., 2016; Fukami et al., 2019; Gao et al.,68

2021) and unstructured meshes (Belbute-Peres et al., 2020-69

07-13/2020-07-18; Xu et al., 2023). In the ocean sciences,70

super-resolution based on deep neural networks was used71

to increase the resolution of bathymetry data (Sonogashira72

et al., 2020; Yutani et al., 2022), sea surface temperature73

(Ducournau and Fablet, 2016; Su et al., 2021; Lloyd et al.,74

2022), and sea surface height (Lopez-Radcenco et al., 2017).75

Furthermore, Zhu et al. (2023) and Kuehn et al. (2023)76

applied super-resolution to decrease the computation time77

of wave height forecasts of numerical models on a structured78

grid. Although surrogate models for wave forecasts exist on79

unstructured meshes (Shi et al., 2022), this is not the case for80

super-resolution.81

82

The goal of this study is to first, extend the super-83

resolution approach for coastal wave forecasts to unstruc-84

tured grids, second, underline the value of choosing an85

appropriate model, and lastly, explore the performances of86

different models in different wave regimes and bathymetries.87

To this end, we present and compare two approaches: Graph88

Neural Networks (GNNs) — a relatively natural choice for89

unstructured data, often seen as a generalization of the suc-90

cessful Convolutional Neural Networks (CNNs) (Bronstein91

et al., 2021); and Polynomial ridge Regressions (PRs) — an92

extension of linear regressions that are used in certain non-93

linear machine learning tasks, at times even outperforming94

neural networks (Choon et al., 2008; Cheng et al., 2019).95

96

The article is structured as follows: Section 2 describes97

the dataset used in our analyses and introduce three distinct98

study regions with varying wave characteristics. Section 399

is dedicated to the description and explanation of the super-100

resolution approach and details both data-driven models, the101

GNN and PR. Following this, section 4 presents our results102

of super-resolution on unstructured meshes and compares103

both models with each other. Lastly, we discuss our results104

and future research directions in section 5 and finish on some105

concluding remarks in section 6.106

2. Dataset107

As for any machine learning task, the underlying dataset108

is of great importance. We chose the 44-year coastal wave109

hindcast of Lastiri et al. (2020) as a study dataset, as it al-110

lows to extend the super-resolution approach to unstructured111

grids, while at the same time to examine the performance of112

the GNN and PR in different wave regimes and bathymetries.113

The hindcast was created to assess the local wave energy114

resource at the southwestern coast of France. Its study area115

includes multiple regions with distinct characteristics, rang-116

ing from rocky beaches with strongly varying bathymetric117

features in the south, over a dominating submarine canyon118

around the Capbreton area, to sandy beaches with gentle119

slopes in the north (see Figure 1). Sheltered by mainland120

France in the east and the Iberian Peninsula in the south,121

the study area is mostly exposed to energetic swells from the122

north-western Atlantic. Over the study period, the significant123

wave height can reach 9m, with a mean on the order of124

1m. Similarly, the peak wave period exhibits a range of125

4 s to 20 s, with a mean of 10.5 s. The peak wave direction126

ranges from 280◦ to 310◦, but especially in the southern127

part of the domain nearshore refraction processes greatly128

influence the shape of the local wave field. Considerable129

seasonal variations of the wave field can also be observed130

with differences of almost 1m for the mean significant wave131

height between winter and summer months and 2 s for the132

mean peak period.133

The hindcast was computed with the state-of-the-art134

third-generation wave propagation model SWAN, developed135

for studying coastal and nearshore domains. The offshore136

boundary condition is composed of spatially distributed137

spectra of the BOBWA (Bay of Biscay Wave Atlas) dataset138

(Charles et al., 2012) that covers the same 44 years (1958 to139

2001) as the chosen hindcast. The computation is done on140

a triangle-based unstructured mesh of 45 156 nodes, where141

grid steps range from 100m around the canyon and at the142

coast to 2000m further offshore. Local wind generation,143

tidal oscillations, and triad interaction effects were neglected144

in this computation. The water level is taken to be constant145

and spatially uniform, its value being set to the mean-tide146

level of 2.25m. Even though the resolution is comparatively147

coarse near the coastline, depth-induced wave breaking is148

considered. It is modeled with the bore-based model of149

Battjes and Stive (1985) with constant values of 𝛼 = 1150

and 𝛾 = 0.73. The spectral space was discretized with151

20 frequencies ranging from 0.0373Hz to 0.25Hz with a152

logarithmic step and a 3◦ directional step. Various bulk153

parameters of the sea state were saved every 3 h over the154

entire computational domain, including significant wave155

height 𝐻𝑠, mean absolute wave period 𝑇𝑚01, and mean wave156

direction 𝜃𝑚 as well as the relative peak period 𝑇𝑝 and peak157

wave direction Θ𝑝. The computational step was set to 15min158

and the maximum number of iterations per SWAN sweep159

was set to 50. For more detailed information about the setup160

of the hindcast, we refer to the authors’ original article.161

Additionally, the GitHub repository of the Data Availability162

section 7.1 contains example steering SWAN files.163
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2.1. Creation of the low-resolution dataset164

To create a corresponding low-resolution dataset, we use165

the exact same setup for SWAN as in the high-resolution166

hindcast, except for the computation grid, which is much167

coarser in the spatial domain. To coarsen the original grid,168

we follow closely the geographical mesh creation process of169

the original article, but increase the edge size of the cells170

by a factor of 8. The mesh is generated with a constrained171

Delaunay triangulation with minimum angle sizes of 25◦172

to ensure that it conforms to SWAN prerequisites. The173

number of nodes of the low-resolution mesh is 1059, which174

results in an overall downsampling factor of 42. Figure 9175

in the appendix shows the low- and high-resolution mesh176

employed in this study. In contrast to recent super-resolution177

approaches (Fukami et al., 2019; Chen et al., 2023; Zhu178

et al., 2023) that downsample the high-resolution dataset179

to obtain a low-resolution version, our study creates a low-180

resolution dataset by running a distinct low-resolution nu-181

merical SWAN computation. This makes it more applicable182

since a machine learning model trained on downsampled183

high-resolution computations as an input is not necessarily184

going to perform well in practice with actual low-resolution185

inputs. In summary, using the coarsened computational grid,186

the entire hindcast computation was run again to provide a187

low-resolution dataset. Thus two datasets are available for188

our study, one at high and the other at low spatial resolution.189

To keep the amount of data to a practical size, we use for190

both datasets a subset of 5 years of the 44-year hindcast191

for training, ranging from 1959 to 1963, and use the entire192

year of 1964 for testing purposes. The training set itself is193

split up further, with 20% that are set aside for a validation194

dataset and 80% that are reserved for the actual training of195

the models. The validation dataset is used for early stopping196

and tuning of hyperparameters. Note that once the model197

is trained on the subset of 5 years, it could be used to198

reconstitute the entire hindcast of 44 years.199

2.2. Study regions200

While it is possible to train a machine learning model201

on the entire hindcast domain, it is computation-wise sig-202

nificantly more onerous. Moreover, in many practical appli-203

cations the areas of interest are usually delimited to a few204

specific regions nearshore. That is why for our analyses, we205

divide the hindcast dataset in three geographical subregions206

with different characteristic wave properties and bathyme-207

tries. Figure 1 shows the locations of the regions with respect208

to the entire study area. An inlet indicates the location of the209

study area with respect to mainland France. The subfigures210

on the right-hand side provide a more detailed insight of211

the bathymetric variations in the different regions. Region212

1 is located south of the submarine canyon and covers the213

beaches around Biarritz city. The region is characterized214

by rocky beaches with a complex local bathymetry that215

changes rapidly cross- and long-shore. This results in a216

high spatiotemporal variability of the local wave field in217

the area, mostly controlled by wave refraction over shallow218

bathymetric gradients (Varing et al., 2021; Delpey et al.,219

Study Area 𝑛LR 𝑛HR

Full 1059 45156

Region1 36 2448

Region2 69 3773

Region3 96 2730

Table 1
Number of nodes in the low-resolution (𝑛LR) and high-
resolution (𝑛HR) meshes for each region. Full denotes the entire
study area.

2021). Further up north, Region 2 encompasses the coast-220

line around Capbreton town, at the outlet of the submarine221

canyon that has a dominant impact on the wave field in222

the area (Abadie et al., 2006). Lastly, Region 3 is situated223

further north in the Landes region, where the sandy coastline224

exhibits a much more regular bathymetry. Consequently the225

wave field is much less variable in space in this subregion.226

Table 1 indicates the number of nodes for each regional low-227

resolution (𝑛LR) and high-resolution (𝑛HR) mesh.228

3. Methods229

Originally, super-resolution is a computer vision prob-230

lem tackling the question whether it is possible to reconstruct231

high-resolution (HR) details from a low-resolution (LR) im-232

age, and if so, to which degree (Capel and Zisserman, 2003).233

Certain forms of super-resolution are widely in use, such as234

bilinear or bicubic interpolation (Keys, 1981). A generally235

more performant alternative is the use of neural networks,236

particularly fully convolutional (Dong et al., 2016; Fukami237

et al., 2021) or generative adversarial neural networks (Xie238

et al., 2018; Stengel et al., 2020). In Kuehn et al. (2023) we239

show that super-resolution is able to improve the resolution240

of low-resolution numerical wave computation with mean241

errors of under 2 cm. However, this and the majority of242

other studies assume an image-like input; that is, a regular,243

rectangular grid in the case of numerical wave models. This244

is a major constraint since a large part of wave fore- and245

hindcasts nowadays work with unstructured grids (Piggott246

et al., 2008). One attempt to revert back to the successful247

CNN-based super-resolution is to interpolate the input to a248

structured grid, compute the prediction with the CNN and249

interpolate the prediction back to the unstructured grid, but250

this leads to inherent interpolation errors or heavy computa-251

tional loads due to small cell sizes (Pfaff et al., 2021).252

For these reasons, we propose to use altogether dif-253

ferent neural network architectures. While a simple fully-254

connected neural network is technically suitable for super-255

resolution on unstructured grids, we decided, after an initial256

performance analysis, to concentrate on graph neural net-257

works.258

3.1. Graph neural networks and MeshGraphNets259

Graph neural networks have seen a large spike of in-260

terest over the last few years due to their state-of-the-art261
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Figure 1: Bathymetry map of the study area and the three regions chosen for an in-depth analysis. The coordinate system is
Lambert Zone III, EPSG: 27573. Note the nonlinear colormaps for the study area and Region 2 that were chosen to show the
spatial variability of the bathymetry also off the canyon.

performance on a large variety of tasks ranging from traffic262

forecasts (Jiang and Luo, 2022) to laminar flow prediction263

around two-dimensional shapes (Chen et al., 2021a). Their264

arguably biggest advantage is the capacity of working with265

non-euclidean data, allowing them to generalize over a vast266

range of datasets (Zhou et al., 2020). In fluid mechanics267

and lately also in ocean sciences, GNNs are adapted for268

surrogate, super-resolution, and forecast models with good269

success. One of the most successful frameworks in working270

with mesh-based data of physical numerical equations is271

the Encoder-Processor-Decoder architecture with GraphNet272

blocks. Battaglia et al. (2018) and Sanchez-Gonzalez et al.273

(2018) were among the first to introduce the concept of a274

GraphNet block which was later extended to meshes (Pfaff275

et al., 2021), and further improved in Fortunato et al. (2022).276

In Lam et al. (2023) the authors use the same framework in277

a landmark study, where their GRAPHCAST neural network278

produces more accurate forecasts than the European Centre279

for Medium-Range Weather Forecasts at a fraction of the280

computation time.281

Due to its great success, we adapt this framework to our282

super-resolution approach. In the following, we will use a283

similar notation as in Pfaff et al. (2021) and Fortunato et al.284

(2022) for easier comparison.285

An undirected graph 𝐺 = (𝑉 ,𝐸) is defined by a set of286

nodes or vertices 𝑉 together with a set of edges𝐸 connecting287

them. We convert a mesh by setting mesh nodes to graph288

nodes and using the sides of mesh cells as edges. While289

using cell edges as graph edges seems intuitive, it is not the290

only and possibly not the most optimal way to obtain graph291

edges. Other approaches range from learning edges with the292

help of static node features like bathymetry, coordinates,293

or node type (Cachay et al., 2021), to manually creating294

several short- and long-range interaction edges (Lino et al.,295

2022; Lam et al., 2023). In a graph each node can have a296

feature associated with it, denoted by 𝐯𝑖 ∈ ℝ𝑓𝑛 , ∀𝑖 ∈ 𝑉 ,297

where 𝑓𝑛 is the number of node features. Similarly, edges298

can have edge features 𝐞𝑖,𝑗 ∈ ℝ𝑓𝑒 , ∀(𝑖, 𝑗) ∈ 𝐸, where 𝑓𝑒299

is the number of edge features. Node features can represent300

physical parameters like significant wave height, mean wave301
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period or direction at the location of the node, but also static302

node features such as depth, the coordinates of the node, or303

the type of node (ocean boundary, coastal boundary, interior,304

etc.). Common edge features are the distance between two305

nodes or their relative position.306

Our adapted framework of the MultiScale MeshGraph-307

Nets (Fortunato et al., 2022) equally consists of three distinct308

parts: an encoder, a processor, and a decoder. As in the309

original article, we work with two distinct graphs, a low-310

resolution 𝐺𝑙 = (𝑉 𝑙, 𝐸𝑙) and a high-resolution graph 𝐺ℎ =311

(𝑉 ℎ, 𝐸ℎ), that are obtained from the corresponding low-312

and high-resolution meshes. In the original paper, the au-313

thors use the low-resolution graph only to pass information314

more efficiently and further in the graph, allowing them315

to accurately predict long-range interactions. In a super-316

resolution approach the low-resolution graph constitutes an317

intrinsic part of the method. Also, in contrast to the original318

paper, dynamic node features (like significant wave height)319

are defined on 𝐺𝑙, thus there is no need for downsampling320

graphs.321

In our study, the node features of the low-resolution322

graph are the significant wave height 𝐻𝑠 and the mean wave323

direction 𝜃𝑚 at the location of the node. To avoid numerical324

inconsistencies at 360◦, the direction is transformed to a 2D325

unit vector. A sensitivity analysis of the input features is326

given in the appendix A.1. The node feature of the high-327

resolution graph is the significant wave height since it is the328

variable that we want to predict. As in Kuehn et al. (2023)329

it is possible to predict other variables, but this study only330

focuses on 𝐻𝑠. The edge features are the relative coordinates331

𝐮𝑖𝑗 = 𝐮𝑖 − 𝐮𝑗 and their norm ||𝐮𝑖𝑗|| for each edge 𝐞𝑖𝑗 ∈332

𝐸𝑙, 𝐸ℎ. All node features, both low- and high-resolution, are333

z-normalized over the training data, the edge features are334

normalized by the largest edge distance.335

336

Encoder337

The low-resolution graph 𝐺𝑙 and the high-resolution edge338

features 𝐸ℎ are encoded the same way as in Pfaff et al.339

(2021) with a multi-layer perceptron (MLP) of 2 hidden340

layers with a latent size of 128 and a Sigmoid Linear Unit341

(SiLU) activation. In contrast to that study, we do not use342

LayerNorm since it showed a decrease in performance in our343

case.344

345

Processor346

The core part of the framework is the processor, which347

consists of 𝑁𝑙 low-resolution blocks, an upsampling block,348

and 𝑁ℎ high-resolution blocks. In both the low- and high-349

resolution blocks, the nodes on the graph are updated by350

message passing — each node aggregates the information351

of itself and its neighbors to update its current value. We352

follow the implementation of the original authors and use353

GraphNet blocks, defined by an initial update of the edge354

features that are then aggregated to update the node features.355

More specifically the updates are (see also Fortunato et al.356

(2022)):357

Low-resolution358

𝐞′𝑙𝑖𝑗 ← MLP𝐸,𝑙(𝐞𝑙𝑖𝑗 , 𝐯
𝑙
𝑖, 𝐯

𝑙
𝑗) + 𝐞𝑙𝑖𝑗 ,

𝐯′𝑙𝑗 ← MLP𝑉 ,𝑙(𝐯𝑙𝑗 ,
∑

𝑖∈ (𝑗)
𝐞′𝑙𝑖𝑗) + 𝐯𝑙𝑗 ,

High-resolution359

𝐞′ℎ𝑖𝑗 ← MLP𝐸,ℎ(𝐞ℎ𝑖𝑗 , 𝐯
ℎ
𝑖 , 𝐯

ℎ
𝑗 ) + 𝐞ℎ𝑖𝑗 ,

𝐯′ℎ𝑗 ← MLP𝑉 ,ℎ(𝐯ℎ𝑗 ,
∑

𝑖∈ (𝑗)
𝐞′ℎ𝑖𝑗 ) + 𝐯ℎ𝑗 ,

where the MLPs have the same structure as for the encoder,360

and the sums are over the neighbors of 𝑗. The updates361

include residual connections, which is known to be helpful362

for convergence (Szegedy et al., 2017). To upsample the363

data from the low-resolution mesh, we employ the fast k-364

nearest-neighbor interpolation algorithm introduced in Qi365

et al. (2017):366

𝐯ℎ𝑖 =

∑

𝑗∈𝑘(𝑖)
𝑤𝑗𝐯𝑙𝑗

∑

𝑗∈𝑘(𝑖)
𝑤𝑗

, with 𝑤𝑗 =
1

||𝐮ℎ𝑗 − 𝐮𝑙𝑖||
, (1)

where 𝑘(𝑖) denotes the k-nearest neighbors of the node 𝑖.367

This is not a trainable operation and thus does not add further368

parameters to the network. In all of our computations we use369

𝑘 = 3 since early tests on the validation dataset showed that370

increasing 𝑘 to larger numbers does not add much benefit.371

372

Decoder373

The decoder is situated at the end of the processor and374

transforms the updated embedding into a prediction. We use375

the same MLP structure as for the encoder, but with only one376

output feature — the predicted variable.377

378

We implement the neural network in Python with the379

PyTorch (Paszke et al., 2019), PyTorch Geometric (Fey and380

Lenssen, 2019), and PyTorch Lightning (Falcon et al., 2020)381

frameworks. A link to the GitHub repository with our source382

code can be found in the Data Availability section 7.1. As an383

optimizer, we use AdamW (Loshchilov and Hutter, 2019)384

with a learning rate of 0.0005, a weight decay of 0.001, and385

𝛽1 = 0.9, 𝛽2 = 0.95. The network is trained to convergence386

with early stopping (Prechelt, 1998) of a patience of 30 on387

the validation dataset. The loss function employed in this388

study is the mean absolute error since it tends to improve389

performance and convergence in super-resolution applica-390

tions (Wang et al., 2021). Lastly, after a sensitivity analysis391

(see appendix A.1), we found that setting the number of low-392

resolution layers to 𝑁𝑙 = 15 and of high-resolution layers to393

𝑁ℎ = 5 presented the best efficiency/accuracy ratio of the394

tested setups.395

3.2. Polynomial ridge regression396

Neural networks are an excellent tool to model complex397

nonlinear functions and can approximate a wide range of398
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functions with arbitrary precision (Cybenko, 1989). Nev-399

ertheless, it is still of utmost importance to understand the400

underlying task that one wants to model so as to find the401

most appropriate method.402

In our super-resolution approach, the resolved wave pro-403

cesses at the two resolutions are in theory identical, and404

at the least, strongly correlated for most of the domain. It405

is expected that only close to the shoreline the difference406

in resolution becomes manifest, due to bathymetry-driven407

processes like wave refraction and depth-induced breaking408

that are not properly resolved on the low-resolution mesh.409

Figure 2 visualizes this spatial variation of the correlation410

between both resolutions for Region 1. Similar plots for the411

other two regions are found in the appendix in Figure 10 and412

Figure 11. The linear relationship is displayed by calculating413

the squared Pearson correlation coefficient 𝑟2 of one low-414

resolution node (panel (a), loc. 1) with all high-resolution415

nodes. The correlation is computed over the whole training416

dataset and the resulting coefficients plotted spatially are417

shown in panel (c). As a help for interpretation, bathymetry418

contour lines are shown too. Note that triangles that con-419

tained nodes with invalid values are not plotted, which at420

times results in the omission of valid nodes too. However,421

in the scatter plots and all performance measures all valid422

values are included.423

For the chosen offshore LR node, we observe that the424

correlation is very high (𝑟2 > 0.95) with almost all high-425

resolution nodes. A clear drop in the correlation is observed426

only at a water depth of around 5m at the beginning of the427

surf zone. This drop is also observed in the other two regions,428

and is a indicator that the low-resolution computation is429

not able to resolve nonlinear phenomena such as shoaling,430

refraction, and wave breaking correctly. Further insight is431

gained by the panels (d)-(f), that give concrete examples of432

the correlation when both low- and high-resolution nodes are433

offshore, both nodes lie nearshore, or one node lies near- and434

the other offshore, respectively. While both offshore nodes435

are strongly correlated, the two last panels indicate that436

at least some nonlinearity is needed to accurately perform437

super-resolution. Nevertheless, the strong linear correlations438

over large parts of the domain indicate that a super-resolution439

approach based on a multivariate linear or polynomial ridge440

regression might be pertinent.441

In a multivariate linear regression, a linear combination442

of all input nodes is used to predict one output node (Timm,443

2004). Assuming a high-resolution dataset 𝐘 of dimension444

(𝑛steps, 𝑛HR) and a corresponding low-resolution dataset 𝐗445

of size (𝑛steps, 𝑛LR + 1), the prediction 𝐘̂ of the multivariate446

linear regression can be written as447

𝐘̂ = 𝐗𝐖 . (2)
Here, 𝑛steps is the number of time steps in the training dataset448

(in our study 𝑛steps = 8×365×5+8 = 14 608, where the ad-449

ditional “8” is due to a lap year), 𝑛HR/LR the amount of high-450

/low-resolution nodes of the output/input (see Table 1), and451

𝑊 a (𝑛LR + 1, 𝑛HR) matrix with the weights that have to be452

determined. Note that 𝑛LR is usually increased by one to take453

into account a constant bias feature. Furthermore, note that454

while equation (2) computes all high-resolution predictions455

at once, the predictions of each node are independent of each456

other. For each high-resolution node, we are trying to find457

a hyperplane of dimension 𝑛LR that minimizes the distance458

to the instances of the given node over time. Under certain459

assumptions this equation can be solved with ordinary least-460

squares (Dempster et al., 1977).461

To increase performance it is possible to perform a poly-462

nomial regression by artificially adding nonlinear features to463

the input and computing a multivariate linear regression with464

those new features (Ostertagová, 2012). The new features465

are usually polynomial combinations of the previous ones.466

For example, in the case of only 2 input features 𝑥1, 𝑥2, we467

could add 𝑥21, 𝑥1𝑥2, 𝑥22, 𝑥31, 𝑥21𝑥2, ... In this article, only trans-468

formations of degree 𝑑 = 2 are added to avoid overfitting469

and an excessive number of input features. Moreover, the470

scatter plots in panel (e) and (f) of Figure 2 indicate that at471

least some of the nonlinearities are approximately parabola-472

shaped.473

Even with a relatively low degree, however, a stan-474

dard multivariate polynomial regression tends to overfit. We475

found that in some cases the maximum error was on the476

range of a few centimeters on the training set, but grew477

absurdly large to more than 60m on the validation set (even478

though the mean and median error stayed relatively low). We479

found that this is mostly due to very large coefficients that480

balance each other, which works on the majority of cases,481

but fails catastrophically in others.482

To tackle this, we use a variant of polynomial regression483

called polynomial ridge regression, where instead of only484

optimizing the squared distances, the value of the coeffi-485

cients are minimized as well, which can help the regression486

to generalize better. More precisely, this is implemented by487

the objective488

min
𝐖

(𝐖) = min
𝐖

(||𝐘 − 𝐗𝐖||

2
2 + 𝛼||𝐖||

2
2) , (3)

where 𝛼 is a hyperparameter to control the strength of the489

regularization and  the loss function to minimize. Since490

the loss function is convex, we can find the minimum by491

differentiating with respect to 𝐖 and setting it equal to zero,492

which gives the explicit solution493

𝐖̂ = (𝐗⊺𝐗 + 𝛼)−1𝐗⊺𝐘 . (4)
Typical implementations of ridge regression compute the494

pseudo-inverse of a matrix via a singular value decompo-495

sition that scales as (𝑛2LR). A large number of features, in496

our case low-resolution input nodes, quickly grows compu-497

tationally inefficient, especially if ridge regression is paired498

with polynomial features. Nevertheless, in a super-resolution499

approach the low-resolution input is usually relatively low500

dimensional, so that Eq. (4) can be computed directly in501

most cases. As to our implementation, with a coarse grid502

search we found that a value of 𝛼 = 0.005 gives the best503

performance on the validation dataset. In the following, all504

regression results refer specifically to a polynomial ridge505
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Figure 2: Panel (a) and (b): Low- and high-resolution mesh bathymetries of Region 1 with one off- and one nearshore location
highlighted, that are used to calculate the correlations of significant wave height. Panel (c): A map of all the correlation coefficients
𝑟2 of the low-resolution node loc. 1 with all high-resolution nodes. Bathymetry contour lines were added to aid interpretation.
Triangles with invalid node values are not plotted, see main text. Panel (d)-(f): Examples of the correlations between different
off- and nearshore locations. Note also the differences in the meshes between panel (b) and (c), which is due to the exclusion of
NaN values when calculating the correlation map.

regression of degree 2 and 𝛼 = 0.005. As for the GraphNet,506

we use a combination of significant wave height 𝐻𝑠 and507

mean wave direction 𝜃𝑚 as an input (see the sensitivity508

analysis in the appendix A.1). To keep the amount of input509

parameters reasonably low, only 𝐻𝑠 is transformed poly-510

nomially and 𝜃𝑚 is kept linear. As before, both the low-511

and high-resolution data are z-normalized over the training512

data. Table 2 summarizes the hyperparameters used for the513

GraphNet and the polynomial regression.514

3.3. Measuring performance515

To compare the models between each other and to the516

usual errors of spectral wave models, we will focus on517

two indicators commonly reported in literature, the Mean518

Absolute Error (MAE) and the Root Mean Square Error519

(RMSE), as well as the coefficient of determination 𝑅2 in520

certain cases. Furthermore, to give an idea of the kind of521

maximal error to expect from the models, we also report522

the Maximum absolute Error (MaxE). These indicators are523

computed as follows:524

MAE = 1
𝑛steps𝑛HR

𝑛steps
∑

𝑖

𝑛HR
∑

𝑗
|𝑦̂𝑖,𝑗 − 𝑦𝑖,𝑗| ,

RMSE =

√

√

√

√
1

𝑛steps𝑛HR

𝑛steps
∑

𝑖

𝑛HR
∑

𝑗
(𝑦̂𝑖,𝑗 − 𝑦𝑖,𝑗)2 ,

𝑅2 = 1 −

𝑛steps
∑

𝑖

𝑛HR
∑

𝑗
(𝑦̂𝑖,𝑗 − 𝑦𝑖,𝑗)2

𝑛steps
∑

𝑖

𝑛HR
∑

𝑗
(𝑦𝑖,𝑗 − 𝑦̄)2

,

MaxE = max
𝑖≤𝑛steps,𝑗≤𝑛HR

|𝑦̂𝑖,𝑗 − 𝑦𝑖,𝑗| .

(5)

Here, 𝑦̂𝑖,𝑗 and 𝑦𝑖,𝑗 are the prediction of a model and the high-525

resolution SWAN reference, respectively, at a time step 𝑖 and526

at the node of the high-resolution mesh 𝑗, while 𝑦̄ denotes527

the mean of the reference. Note that these indicators perform528

averaging or max operations over both each node and each529

time step, which are helpful to obtain a quick overview of the530

model in question, but may conceal many important nuances531

that we will analyze further throughout the next section.532
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GraphNet

Hyperparameter Value

Optimizer AdamW

Learning rate 5 × 10−4

Weight decay 1 × 10−3

AdamW 𝛽1 0.9

AdamW 𝛽2 0.95

Early stopping 30 epochs

Loss function MAE

Polynomial Regression

Hyperparameter Value

𝛼 5 × 10−3

Loss function See eq. (3)
Table 2
Hyperparameters of the GraphNet implementation and the
polynomial ridge regression.

3.4. Baseline: Interpolation of low-resolution data533

To evaluate the two proposed super-resolution approaches534

it is important to define a baseline. A widely spread method535

to convert low-resolution data to a higher resolution is536

bilinear or bicubic interpolation. It has the advantage that537

it can be performed on the data directly, without the need538

for training or additional training data. Furthermore, it is539

comparatively fast and works reasonably well for slowly-540

varying data, especially if the initial resolution is fine enough541

(Xia et al., 2013). Typical implementations, such as in SciPy542

(Virtanen et al., 2020), compute the convex hull of the area543

to be interpolated and tessellate it into simplices (typically544

triangles). The function is then interpolated by computing545

piece-wise cubic interpolations on those simplices (Alfeld,546

1984). As our regions are not entirely convex, we compute547

the bicubic interpolation only on the convex part and use a548

𝑘-nearest-neighbors approach with 𝑘 = 3 (see Eq. (1)) on the549

results of the interpolation to compute the missing values.550

Figure 3 gives an example of such an interpolation for a551

fairly typical sea state in Region 1. The average significant552

wave height of the test year is 0.83m, the mean wave period553

10.1 s, the direction 301◦. Here, the chosen example has554

values of 0.83m, 10.9 s, and 308◦, respectively.555

The interpolated version does capture an averaged value556

of the wave height, but it completely lacks any details of557

the spatial variability of the refraction patterns and depth-558

induced breaking. For a more quantitative estimate of the559

performance, we compute the MAE, RMSE, and MaxE (see560

equations (5)) for the three regions averaged over all time561

steps and over all nodes. The results are displayed in Table562

3.563

We emphasize again that these are values averaged over564

all time steps and over all nodes. Depending on the location565

of the node, the results might differ considerably. In the566

Figure 3: Comparison of the interpolated low-resolution data
to the high-resolution reference computation for a typical wave
field. The interpolation is a combination of bicubic and 𝑘-
nearest-neighbors interpolation.

case of Region 1, for example, the RMSE of an offshore567

node is only 5.7 cm, compared to the much higher, general568

20.89 cm. On the other hand, if a nearshore node is chosen,569

the errors shoot up to 41.5 cm, and the maximum error of570

3.6m, as well as the largest errors in general, stem all from571

nearshore nodes. Large errors are to be expected given the572

lack of resolution in the original low-resolution input. A573

maximum discrepancy of 3.6m is somewhat of an artifact of574

not well-resolved shorelines and the fact that interpolation575

does not take into account phenomena like wave breaking576

close to shore. Nevertheless, a RMSE between 10 cm to577

20 cm is not to be neglected, especially when these are only578

average values and might increase under certain conditions.579

In the following, we show how a super-resolution approach580
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Domain MAE [cm] RMSE [cm] MaxE [cm]

Region 1 10.35 20.89 361.63

Region 2 5.17 11.14 165.25

Region 3 7.43 16.41 149.81

Table 3
Performance indicators MAE, RMSE, and MaxE computed on
the three regions for a simple interpolation scheme.

with both polynomial ridge regressions and graph neural581

networks outperform this baseline significantly.582

4. Results583

Whenever possible, the results are shown for the three584

study regions in the main text. However, in certain situations,585

this would lead to very large figures that might hinder586

comprehensibility. Wherever this is the case, we present the587

results of Region 1 — the study area with most variability —588

in the main text and refer to the figures of the other two589

regions in the appendix.590

4.1. Density scatter plots591

As an initial comparison between the predictions of the592

polynomial ridge regression and the GraphNet (GN) model,593

Figure 4 shows a scatter density plot for Region 1, where the594

x-coordinates are the high-resolution SWAN results, and the595

y-coordinates are the respective predictions of the models.596

Each point corresponds to one node at a given time, so the597

total number of points is 𝑛steps × 𝑛HR (e.g., 2928 × 2338 ≈598

7 million points for Region 1). To facilitate the distinction599

of denser regions, the number of points per pixel are binned600

and density is indicated by color. As a supplementary tool for601

interpretation, histograms on both axes show the distribution602

of the data. Similar figures for the other two regions are603

found in the appendix.604

Both models reproduce the high-resolution results well605

with no major outliers throughout the whole test year. The606

spread around the red reference line is slightly cone-shaped607

with the tendency of smaller errors at small wave heights,608

that increase up to a certain extent with increasing wave609

heights, a trend that we will discuss further below. Both610

models slightly overestimate large wave heights. While the611

predictions are relatively similar at first glance, the Graph-612

Net exhibits a larger spread at around 3m to 4m than the613

polynomial regression, the inverse holds true at around 1m614

to 2m for the latter.615

For Region 2 and Region 3 (see Figure 12 and Figure 13616

in the appendix) the polynomial regressions perform clearly617

better than the GraphNet, even though the latter still shows618

excellent results. As before, the variation of the prediction is619

the highest at around 3m to 4m for both models and both620

regions, even though this trend is more pronounced for the621

GraphNet. In the case of Region 3, apart from some minor622

discrepancies, the prediction is very accurate and becomes623

difficult to distinguish from the reference diagonal. Note also624

that for all three regions, more than 60% of the data points625

Figure 4: A scatter density plot of the model predictions for
Region 1, where color indicates the number of points per
pixel on a logarithmic scale. Additionally, histograms on both
axes show the distribution of the significant wave heights. The
upper figure refers to the predictions of the polynomial ridge
regression, the lower to the GraphNet.

have a significant wave height smaller than 1m, a range626

where the deviations are particularly small.627

The variability of the performances in the different re-628

gions is to be expected to a certain extent. Region 1, for629

example, has a wave field that is governed by its strongly630

varying bathymetry that gives rise to a variety of different,631

localized wave focusing and shadowing zones, only resolved632

in the higher resolution. On the other hand, the bathymetry633

profile of Region 3 is almost perfectly uniform longshore634
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Region 1

MAE [cm] RMSE [cm] MaxE [cm]

Poly. Regr. 1.32 2.05 24.80

GraphNet 1.13 1.79 23.76

Region 2

MAE [cm] RMSE [cm] MaxE [cm]

Poly. Regr. 0.41 0.64 14.52

Graphnet 0.55 0.85 14.52

Region 3

MAE [cm] RMSE [cm] MaxE [cm]

Poly. Regr. 0.16 0.27 4.85

Graphnet 0.30 0.48 7.89

Table 4
Mean absolute, root mean square, and maximum prediction
errors of the polynomial regression and GraphNet for the three
study regions, averaged over all nodes and the entire test year.

at both spatial resolutions. As a consequence, the low-635

resolution SWAN computation is already a highly valuable636

and correlated input and the predictive models only have to637

learn some minor variations, mostly in the surf zone.638

4.2. Wave height-dependent error distribution639

As the scatter plots only give a global overview of the640

performance, it is crucial to study the errors on a finer scale.641

In Table 4, we compute and present the MAE, RMSE, and642

MaxE for the polynomial regression and GraphNet models643

and highlight in bold the best performances for the given644

region per indicator. For Region 1, the GraphNet outper-645

forms the polynomial regression slightly on each of the646

indicators, but performs less well than the latter on the other647

two regions. This trend is confirmed in panel (a) of Figure648

5 that adds further nuances with boxplots of the absolute649

differences between the model predictions and the SWAN650

reference computations. The lower and upper whiskers ex-651

tend to the 5th and the 95th percentile, the edges of the boxes652

to the 25th and 75th, respectively. The black line inside the653

box denotes the median, whereas the white dot indicates the654

mean.655

Region 1 is the most difficult study area to predict for656

both models, with the third quartile being larger than almost657

all of the other 95th percentiles. However, the errors are658

still less than 2 cm for 75% of the data. For Region 2, this659

increases to 95% and in Region 3 almost all of the errors are660

smaller than 1 cm.661

In the panels (b)-(d) the error distributions are further662

split into bins of the incident wave height at that node.663

More precisely, for each prediction the absolute difference664

to the reference computation |𝑦̂𝑖,𝑗 − 𝑦𝑖,𝑗| is put into a certain665

bin depending on the value of 𝑦̂𝑖,𝑗 . This helps to estimate666

the error at a certain location given its significant wave667

height. Mostly, for each region and for both model types, the668

absolute error tends to increase with increasing wave height.669

While this trend is quite distinct in Region 1, it is less so in670

the other two regions, where at the largest wave heights the671

error decreases after an initial rise. This is in accordance with672

the previous scatter density plots in Figure 4, where the slight673

cone shape hints at a multiplicative error of the prediction.674

This means that the high-resolution reference can be approx-675

imately described as a function of the prediction by 𝑦𝑖,𝑗 ≈676

𝑦̂𝑖,𝑗𝑒𝑖,𝑗 , with 𝑒𝑖,𝑗 ∈ 𝐄 for a constant error matrix 𝐄. With677

this (simplified) assumption, the absolute error simplifies to678

|𝑦𝑖,𝑗𝑒𝑖,𝑗 − 𝑦𝑖,𝑗| = |𝑦𝑖,𝑗(𝑒𝑖,𝑗 − 1)| with a linear dependence679

on the wave height. A possible source of this multiplicative680

error might be explained by the individual correlation plots681

of panel (d) in Figure 2 and to a lesser extent in Figure 10.682

The two wave heights form again a relatively cone-shaped683

linear relationship, with little variance at low wave heights,684

that increases with larger values. We suspect that this trend685

is a direct consequence of how SWAN computes results at686

different resolutions, but could not find any studies on wave-687

height dependent analyses of the differences between SWAN688

computations at different resolutions.689

A multiplicative error as described above implicates that690

the percentage of the errors does not vary with wave height.691

The error might be 5% of 50 cm, but also 5% of 5m, which692

seems plausible. A more extensive analysis of the error693

trend is out of the scope of this study and the explanations694

provided here are more a simplified interpretation of the695

results rather than a rigorous proof. As seen in Region 2 and696

3, the drop of the wave heights after an initial rise defies697

this first-order approximation. Furthermore, for both the PR698

and GN the dependence on the low-resolution wave height699

is not linear and consequently the way that the cone-shape700

in Figure 2 contributes to the final predictions is decidedly701

more complex.702

4.3. Spatial error comparison703

While Figure 5 gives a good overview of the perfor-704

mances of the different models in the three regions in various705

wave regimes, it contains no information about where the706

errors occur. A linear regression might, for example, work707

exceptionally well in the linearly correlated areas of the low-708

and high-resolution computations, but perform poorly close709

to the shoreline and in wave refraction areas. To compare the710

error of the models spatially, we calculate the MAE over the711

test year for each node.712

Figure 6 presents the results for each region and both713

models in the form of error maps. From the figure it is clear714

that models with a lower error perform better not only locally715

but rather throughout the whole region. This is particularly716

evident in Region 1 where the error of the ridge regression717

model has a distinct spatial dependence, but compared to718

the GraphNet the error is still higher over almost the entire719

domain. The remark is also true for the other two regions, but720

with a larger error for the GraphNet method. In general, the721

errors are larger closer to the shoreline or on wave refraction722

patterns for both models. In the case of the polynomial723
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Figure 5: Absolute differences of the polynomial ridge regression and GraphNet models in comparison to the high-resolution
SWAN computation. The panels characterize the distribution of the error with boxplots. Panel (a) details the errors globally for
each region, panel (b)-(d) focus on the absolute error at different wave heights.

regression, this is especially clear and the shape of the wave724

field is markedly visible for all three regions. This is not too725

surprising given that offshore nodes are likely well predicted726

due to the strong linear relationship between the LR and HR727

datasets in that area. As for the shoreline and the refraction728

zones, they are not at all, or only barely, resolved in the low-729

resolution input and are thus much more prone to errors,730

also due to the fact that nonlinearities are only modeled731

up to a second degree. The same arguments apply to the732

graph neural network, with the difference that the method733

is inherently nonlinear, so that the distinction of the errors in734

the linear and the nonlinear regime are less clear. This more735

homogeneous distribution can be observed especially for736

the first and third region, even though some wave refraction737

zones can still be easily discerned.738

While for Region 2 and 3, the polynomial regression739

is outperforming GraphNet considerably, the latter still ex-740

hibits impressive results, with mean errors on the scale of741

1 cm for Region 2 and only around 0.5 cm for Region 3 — a742

scale of errors that is negligible in almost all use cases.743

4.4. Computation time744

The advantage of a super-resolution approach over a745

classical numerical wave model computation is that it can746

reduce the computation time considerably without sacrific-747

ing much accuracy. Once the data-driven models are trained,748

the conversion from low to high resolution by the poly-749

nomial regression and GraphNet is done very quickly, the750

limiting factor is usually how fast the low-resolution input751

can be obtained in comparison to the finer resolution. To752

fairly compare the computation times, the original SWAN753

computation times have to be divided up according to the754

regions since the numerical wave models ran on the full755

study area, but the data-driven models only on a specific756

region. While the true, underlying computation times are757

surely different, we approximate it by attributing to each758

region a time proportional to its number of nodes. More759

specifically, for Region 1 the times are computed as follows:760

𝑇1 = 𝑛1
𝑛tot

𝑇tot ≈ 5.4%𝑇tot for the high-resolution and761

3.4%𝑇tot for the low-resolution. Similarly, the percentages762

for Region 2 are 8.3% and 6.5%, and for Region 3 they763

are 6.0% and 9.1%, respectively. Table 5 shows the original764

computation times of the high- and low-resolution SWAN765

computations, along with the fractions corresponding to the766

regions.767

Furthermore, the training and inference times of the768

data-driven models for all three regions are provided in Table769

6. The last column indicates the gained speed-up of the770

super-resolution approach for this particular model in the771

given region. The speed-up is computed as772

Speed-up =
𝑇HR

𝑇LR + 𝑇Pred
, (6)
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Figure 6: A node-to-node mean absolute error map for polynomial ridge regression and GraphNet models for the three different
regions.

where 𝑇HR is the computation time of the high-resolution773

SWAN model (column "High-Resolution" in Table 5), 𝑇LR774

the corresponding computation time of the low-resolution775

SWAN input (column "Low-Resolution in Table 5), and776

𝑇Pred is the inference time of an already trained data-driven777

model (column "Prediction" in Table 6).778

All time measures, apart from the training times, refer to779

the whole test year. The training times refer to training the780

model on a total of 5 years, with significant wave height and781

wave direction as an input. Both SWAN computations and782

the training and testing of the polynomial regression were783

performed on 6 parallel threads of an Intel Core i7 9750H784

processor with a maximum clock rate of 4.5GHz. The graph785
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Region High-Resolution [s] Low-Resolution [s]
Full 181 000 4020
1 9800 120
2 15 000 240
3 10 800 360

Table 5
SWAN computation times for the low- and high-resolution
mesh. For the three regions, the times correspond to fractional
times proportional to their number of nodes. The region "Full"
indicates the entire study area.

Region Training [s] Prediction [s] Speed-up
1 1 0.1 81

PR 2 8 0.7 62
3 17 0.7 30
1 40 000 22 70

GN 2 54 000 31 55
3 38 000 23 28

Table 6
Prediction and training times of the polynomial ridge regression
(PR) and the GraphNet (GN) model as well as the speed-up
(see Eq. (6)) in comparison to directly computing the high-
resolution SWAN result for the three different regions. The
training times of the GraphNet models is an average over three
runs and rounded to the nearest thousand seconds.

neural network was trained and tested on a Nvidia GeForce786

RTX 2070 Mobile Graphic Card with 8GB VRAM. Note787

also that while the computation times of the SWAN and788

polynomial ridge regression models are relatively constant,789

the training time of the GNN can vary considerably due790

to the stochastic nature of the optimization process. During791

training, the model might get stuck for some time in a local792

minimum, or the randomly chosen batches might align in an793

opportune way for a fast convergence. Here, we report the794

average of three training runs, rounded to the next thousand795

seconds. We point out that the prediction time on the other796

hand, does not vary since only non-stochastic calculations797

are performed.798

Tables 5 and 6 indicate that, while the speed-up, in-799

ference and training times differ for different regions and800

models, a super-resolution approach is always distinctively801

faster than a traditional, high-resolution numerical wave802

computation with gains in computation time that reach a803

factor of 80. However, an important caveat is that, as for804

most data-driven approaches, this only holds true for already805

trained models. The generation of the training sets, which806

are not included in this calculation, is a non-negligible initial807

computational effort. Furthermore, in the case of the GNN,808

not only obtaining the training set, but also actually training809

the model is rather time-intensive and might warrant a more810

extensive future usage to actually reduce computation time811

with a super-resolution approach.812

5. Discussion813

The previous sections showed that a super-resolution814

approach can decrease the computation time of significant815

wave height by spectral wave forecasts on an unstructured816

mesh considerably. While the graph neural networks were817

able to convert the low-resolution inputs to a higher resolu-818

tion with remarkable accuracy, we found that a polynomial819

ridge regression performed in many cases equally well, if not820

better. The advantage of the latter is that the coefficients of821

its weight matrices can be calculated analytically, provided822

that the number of input features times the number of output823

features does not grow too large and fits into memory. In-824

deed, this analytical solution can be computed very quickly.825

Taking Region 1 as an example, for a conversion of roughly826

500 (polynomial) input features to 2400 output nodes for827

5 years of training data, the weight matrix is determined828

in less than a second on our (commodity) hardware. What829

is more, the prediction of an entire year of data, with the830

computation of the low-resolution included, is only slightly831

more than 120 s = 2min, in contrast to a direct high-832

resolution approach that takes roughly 9800 s = 163min833

(compare with the fractioned times of Table 5). Certainly, a834

super-resolution approach can never be 100% accurate since835

at least some information is missing in the low-resolution836

input, due to the underdetermined nature of the problem.837

Even so, the results presented in the previous section suggest838

that for the vast majority of the time, the errors of the839

predicted significant wave height are remarkably low in our840

study area. Even for Region 1, a study area with a highly841

heterogeneous wave field, the absolute error is lower than842

5 cm for 95% of the data. In less complex regions, like843

Region 3, this errors drops as low as 1 cm.844

This error can be considered negligible compared to the845

errors usually reported when confronting spectral wave mod-846

els with coastal and nearshore measurements. For example,847

in the same study region, Delpey et al. (2021) performed a848

detailed comparison of SWAN model results with several849

field measurement datasets. They used a refined modeling850

strategy targeting specifically the nearshore area around851

Biarritz (our Region 1), with a maximum spatial resolution852

of up to 10m, while including tidal water level oscilla-853

tions and local wind generation into the computation. With854

this remarkably high resolution model they report RMSEs855

of 19 cm to 33 cm and a Normalized RMSE of 11% to856

19%, which can be considered very accurate in the complex857

nearshore study area. However, in comparison, the RMSEs858

of our super-resolution approach range from approximately859

0.3 cm to 2.0 cm for the polynomial ridge regression. This860

is equivalent to adding only 1% to 2% to the Normalized861

RMSE, for a 30-80 times faster calculation.862

In certain cases, very accurate predictions are important863

and further inaccuracies are not acceptable, but other appli-864

cations could benefit from a slightly less accurate but much865

faster computation. This could be the case for emergency866

forecasts, when wave predictions have to be updated quickly867

to support real-time crisis management. Another case might868

be ensemble forecasting, where the speed-up would allow to869
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increase the number of ensemble members, compensating870

the small accuracy loss due to super-resolution.871

5.1. Comparison of graph neural networks and872

polynomial regressions873

In our study, we found that the predictions of a polyno-874

mial ridge regression worked as well as or better than the875

predictions made by a much more complex graph neural876

network. At first glance, this seems surprising. The chosen877

architecture is based on a neural network able to predict878

accurately complex fluid mechanical phenomena such as879

turbulence (Pfaff et al., 2021) and a variant of it even outper-880

forms the weather forecasts of the highly reputable European881

Centre for Medium-Range Weather Forecasts. Moreover, the882

amount of parameters of the neural network is orders of883

magnitude larger than for the polynomial ridge regression.884

Nevertheless, the very strong linear correlation between the885

two resolutions reduces the super-resolution problem to a886

practically linear task with nonlinear perturbations at given887

locations. Addressing these perturbations with polynomial888

features reduces the errors, as seen in the results, even in889

the refraction and breaking zones (although the polynomial890

approximation is clearly not perfect). Neural networks are891

by design nonlinear, and may produce sub-optimal results in892

strongly linear tasks. In theory, a neural network can approx-893

imate a wide variety of different functions, including linear894

ones, but they might need a large amount of parameters895

to do so (Brüel Gabrielsson, 2020). This problem can be896

likened to approximating a straight line with a Fourier series.897

Given enough terms it is possible to get arbitrarily close, but898

estimating a straight line directly is easier and more accurate.899

Still, a polynomial regression has its disadvantages and900

a graph neural network its advantages. If the number of fea-901

tures grows too large, the solution to the polynomial regres-902

sion might not be calculated directly and has to be computed903

with iterative methods such as gradient descent, similar to a904

neural network. This slows down training substantially and905

convergence problems might arise, especially for strongly906

correlated features (Tran et al., 2015). Furthermore, the907

regressions are always only calculated for one study area908

and it is not possible to re-use the results on another domain.909

Graph neural networks, on the other hand, use weights based910

on the interactions of nodes with their nearest neighbors and911

do not have rigid weights linked to individual nodes. This912

makes it possible to train a graph neural network for multiple913

regions at the same time, resulting in a more versatile tool.914

However, in preliminary studies we found that specialized915

networks focusing on only one specific region had better916

performances.917

Another advantage of GNNs is that adding different918

input features, such as mean wave period or direction is very919

natural; at each node the features are concatenated to the920

existing ones and computations are performed separately on921

all the features. In the case of a polynomial regression, on922

the other hand, each additional feature has to be connected923

to every single output node, thus adding 𝑛HR additional924

weights.925

Lastly, in our case the problem was strongly linear, espe-926

cially for Region 2 and 3, but in the more nonlinear Region927

1, the GraphNet did perform slightly better. This difference928

could grow larger in cases where linear correspondence929

between the low- and the high-resolution is less strong, such930

as in highly variable wave fields or situations where the low-931

resolution stems from a different computation or wave model932

than the high-resolution. For example, one might want to use933

a low-resolution input that is taken from an external database934

based on a coarse WAVEWATCH III run to convert it to a935

higher resolution, training on an internal SWAN hindcast.936

Now a super-resolution approach has to take not only the937

differences in resolution into account, but also the model938

differences (WAVEWATCH III to SWAN).939

5.2. Computation time analysis940

We mentioned in section 4.4 that, when we refer to the941

speed-up of a model, we do not include neither the training942

time of the data-driven model, nor the actual creation of943

the training dataset. This process can potentially be quite944

time consuming, but we argue that there are multiple ways945

to justify this initial effort. First, in Kuehn et al. (2023),946

we compute an estimate of how long a hindcast has to be947

in order for super-resolution to be beneficial. The limiting948

factor, in that example, was the training time of the neural949

network since it was 2-3 times longer than computing one950

year of high-resolution data. In the given study, this problem951

is mitigated for the neural network since the training time952

for one year (column "Training" in Table 6 divided by 5)953

is already less than computing one year of high-resolution954

results.955

Assuming that we want to reconstitute the 44-year956

hindcast of this study for Region 1, then, using the high-957

resolution SWAN model would take roughly 5 days. With958

the graph neural network trained on 5 years, this is reduced959

to 1.1 d, creation of the training set, training, low-resolution960

computations and their conversions included. Note that the 5961

years of high-resolution data to set up the training dataset can962

(and should be) used to constitute this new hindcast. Finally,963

with a polynomial regression the computation time further964

drops down to only 0.6 d, where a bit more than 0.5 d are965

due to the calculation of the high-resolution training data.966

Thus, everything included, the super-resolution approach is967

5-10 times faster in those two cases. Note that for predictions968

over a long period of time (almost 40 years in this case),969

the wave climate might evolve — due to climate change970

or morphological changes of the domain — which could971

negatively affect prediction performance.972

It is often the case that one of the datasets is already973

provided. For example, in our case, the high-resolution974

hindcast was already available, thus reconstituting the 44-975

years with the polynomial regression (the low-resolution976

calculation included) would only take 1.5 h. Theoretically,977

we could go even further, assuming that we want to increase978

the resolution of some low-resolution results that are readily979

available in a database (and for example might get updated980

every month). If a short high-resolution hindcast is available981
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in the same region, a super-resolution model could be trained982

on these two datasets and with every future update, the high-983

resolution results are obtained almost immediately. Lastly, in984

the case of ensemble forecasting mentioned earlier, the data-985

driven models can be used over and over again for multiple986

computations, compensating quickly the initial effort to set987

these models up. It is due to these various possible setups988

that we chose to exclude the training time and the creation989

of the dataset in our speed-up calculations. These are only990

one-time costs and might be vastly different depending on991

various factors, such as the length of the training dataset. For992

an extensive usage of the super-resolution model, the overall993

speed-up with all steps included (creation of the datasets,994

training of the model, etc.) converges to the speed-up factor995

of an already trained model.996

997

The discussion about the speed-up still needs to be998

further nuanced. In this study, the machine learning models999

are trained to reproduce only the significant wave height.1000

A direct computation with a numerical wave model like1001

SWAN, on the other hand, is able to compute as many bulk1002

parameters as needed (or output directly the entire spectrum)1003

with a negligible increase in run time. To have the equiva-1004

lent amount of information with the approach proposed in1005

this study, one model would have to be trained for each1006

bulk parameter, which can quickly result in a significant1007

upfront computational investment. In the case of a GNN, it1008

is technically possible to train a model that predicts multiple1009

bulk parameters simultaneously, but this commonly leads1010

to inferior results (Schultz et al., 2021). Additionally, as it1011

is, the data-driven model can not work with spectral data1012

directly. Consequently, if many different bulk parameters1013

are required for an application, a super-resolution approach1014

might be ultimately slower than a direct computation. An1015

exciting future research direction to mitigate this problem1016

is the extension of the super-resolution approach to wave1017

spectra, which then can be used for a direct calculation of1018

the required bulk parameters.1019

5.3. Outlook1020

While super-resolution is already well established in1021

computer vision and is recently receiving a lot of attention1022

in fluid mechanics, its application to numerical coastal wave1023

models remains limited for the moment. Apart from our1024

current and recent work (Kuehn et al., 2023), there were1025

only two other similar publications (Chen et al., 2023; Zhu1026

et al., 2023). This highlights the need for further research1027

of super-resolution in coastal wave modeling. One of the1028

factors that influence the results considerably is the cell size1029

and node number of the low-resolution input. Given a finer1030

input, the results are likely more accurate, but the speed-up1031

is diminished, whereas the opposite holds true for a coarser1032

input. However, this notion has to be studied more deeply.1033

It is not clear if the relationship is linear or if there might1034

be diminishing returns with possibly an optimal mesh size1035

for a given problem. Analyzing this problem on structured1036

grids is facilitated by a clear definition of what a reduction in1037

resolution means since the sides of the rectangular cells can1038

be divided by a given factor. On unstructured meshes, this1039

approach is not as clear-cut, given that no one correct down-1040

sampling method exists, particularly one that guarantees the1041

convergence of the numerical solver. A few initial tests with1042

our downsampling method hint at a nonlinear dependence1043

on resolution, but more research is needed for conclusive1044

results.1045

1046

Furthermore, in this study, super-resolution was tested1047

specifically on the spectral coastal wave model SWAN, but1048

applications on other phase-averaged models (e.g., WAVE-1049

WATCH III) or also phase-resolved models such as XBeach1050

(Roelvink et al., 2010) or BOSZ (Roeber and Cheung, 2012)1051

could be of great interest. Additionally, super-resolution1052

could be potentially also extended to the prediction of surf-1053

zone hydrodynamics, where it could be compared to other1054

hybrid approaches such as HySwash (Ricondo et al., 2024).1055

1056

Another potential research direction is the inclusion of1057

physical equations or wave measurements to potentially1058

improve upon the high-resolution SWAN results. For exam-1059

ple, Chen et al. (2021b) and Lam et al. (2023) use buoy1060

wave measurements and reanalysis hindcasts, respectively,1061

to create surrogate models that outperform their respective1062

reference numerical model used in their studies. A similar1063

approach is certainly applicable to super-resolution forecasts1064

too and was already employed in the field of fluid mechan-1065

ics by Fortunato et al. (2022) for wake flow simulations.1066

Finally, some physics-informed neural networks integrate1067

prior knowledge about the governing physical equations1068

into the neural network, that makes them more robust to1069

out-of-distribution samples and helps them generalize to1070

new domains (Raissi et al., 2019; Gupta and Brandstetter,1071

2022). While these approaches are relatively difficult to1072

implement for complex numerical wave models such as1073

SWAN or WAVEWATCH III, recent advances on integrat-1074

ing advection-diffusion equations (de Wolff et al., 2021),1075

shallow water equations (Bihlo and Popovych, 2022; Giladi1076

et al., 2021), or energy balance equations (Wang et al., 2022)1077

show the potential and the great interest of this emerging1078

domain.1079

6. Conclusion1080

Our study shows that data-driven super-resolution can1081

be an efficient tool to quickly and accurately compute wave1082

fore- and hindcasts of specific bulk parameters of the sea1083

state. Once the data-driven model is trained, this approach1084

is able to convert a low-resolution wave computation to1085

much higher resolution of equivalent quality, thus bypassing1086

lengthy direct computations over fine grids. We applied this1087

approach on the hindcast presented in Lastiri et al. (2020)1088

and were able to reduce the computation time by up to 801089

times, with RMSEs of only around 2 cm or less — errors1090

that are minor for most wave forecast applications.1091

In particular:1092
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• A polynomial ridge regression performed either al-1093

most equally well or better than a graph neural net-1094

work for the study domains considered in our region.1095

The strong linearity between low- and high-resolution1096

results favors linear approaches, even though the1097

graph neural network still performs very well.1098

• Performances are dependent on wave height, with a1099

slight linear correlation between the median absolute1100

error and the wave height regime. Furthermore, the1101

errors also depend on the overall spatial variability of1102

the wave field, which is mostly controlled by bathy-1103

metric features in our study case. More homogeneous1104

bathymetries lead to predictions with considerably1105

smaller errors.1106

• Over an entire test year, the maximum absolute error,1107

all nodes and all time steps included, stays below1108

25 cm, but for certain regions and models is as low as1109

5 cm. The RMSE for 2 out of 3 study areas is smaller1110

than 1 cm.1111

Data-driven models are increasingly gaining in popular-1112

ity in natural sciences, and while they will not and should1113

not replace numerical models, they are a useful comple-1114

mentary tool in scientific computing. We believe that super-1115

resolution approaches make an important contribution to1116

coastal wave forecasts, offering a balance between slow, but1117

accurate direct numerical calculations and the faster, but1118

more error-prone surrogate models. Future research could1119

extend the approach to spectral data, making it more versatile1120

for different applications.1121
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A. Appendix1146

A.1. Sensitivity analysis1147

This section analyzes the influence of certain architec-1148

tural choices in section 3 on the mean absolute and root1149

mean square error of the predictions of the GraphNet and1150

polynomial regression. More particularly, the focus is on the1151

choice of the different input variables and the number of low-1152

and high-resolution layers in the GraphNet.1153

Dependence on input variables1154

The goal of super-resolution in this study is to convert1155

low-resolution results of a variable, such as significant wave1156

height, to a higher resolution. Nevertheless, other wave1157

parameters might contain complementary information and1158

might help to improve performance. Figure 7 compares the1159

MAE and RMSE of four different combinations of inputs:1160

only significant wave height (𝐻𝑠), significant wave height1161

and mean wave period (𝐻𝑠 + 𝑇𝑚01), significant wave height1162

and mean wave period (𝐻𝑠+𝜃𝑚), and all three input variables1163

together (All). The errors are calculated on the validation1164

dataset. All models exhibit the same trend for both the

Figure 7: Mean absolute and root mean square error of
the GraphNet architecture and the polynomial regression for
different combinations of input variables. Errors computed on
the validation dataset of Region 1.

1165

MAE and RMSE that shows that additional variables do1166

improve the performance in comparison to a 𝐻𝑠-only ap-1167

proach. While the addition of the mean wave period 𝑇𝑚011168

has only a minor impact on the performance, adding the1169

mean wave direction 𝜃𝑚 reduces the error considerably. A1170

further, much smaller, reduction of the error is obtained by1171
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using a combination of all variables. To keep the number1172

of parameters as low as possible (particularly in the case1173

of the polynomial regression), while still retaining a good1174

performance, we opt for the 𝐻𝑠 + 𝜃𝑚 setup, since the benefit1175

of adding the mean wave period is minor.1176

Dependence on number of message passing layers1177

The GraphNet architecture contains various hyperpa-1178

rameters, such as latent vector width, activation functions,1179

number of MLP layers and the size of their hidden lay-1180

ers. However, a sensitivity analysis by Pfaff et al. (2021)1181

showed that the GraphNet is mostly insensitive to those1182

hyperparameters, except for the number of message passing1183

layers / GraphNet blocks, where more layers led to a better1184

performance, but also to longer computations. They found1185

that a total of 15 message passing layers presented a good1186

efficiency/accuracy ratio. Fortunato et al. (2022) obtained1187

satisfying results with 15 to 25 layers, with varying amounts1188

of low- and high-resolution layers. Here, we set the total1189

number of message passing layers to 20 (a middle ground1190

between the two articles) and look at three different com-1191

binations of message passing layers at low and high resolu-1192

tion: 5 low-resolution layers followed by 15 high-resolution1193

layers (5-15), 10 low-resolution layers followed by 10 high-1194

resolution layers (10-10), 15 low-resolution layers followed1195

by 5 high-resolution layers (15-5). Figure 8 shows the MAE1196

and RMSE computed over the validation dataset for these1197

three combinations. In the case of the RMSE, the error de-

Figure 8: Mean absolute and root mean square error of the
GraphNet architecture for different numbers of low- and high-
resolution layers. Errors computed on the validation dataset of
Region 1.

1198

creases with an increasing number of low-resolution layers;1199

in the case of the mean absolute error, the minimum is at1200

10-10, although 15-5 presents a similar error. Note also that1201

the variations of the error are much smaller compared to the1202

influence of the input variables (e.g., a difference of 0.01 cm1203

to 0.03 cm between the MAEs for the number of layers in1204

contrast to 0.05 cm to 0.2 cm between variables). Another1205

aspect that has to be taken into account is the training time,1206

that is the highest for the 5-15 setup (20.5 h), followed by 10-1207

10 (14.5 h), and the lowest for 15-5 (8.5 h). Given the better1208

computational efficiency and similar or better accuracy, we1209

opt for an architecture with 15 low-resolution and 5 high-1210

resolution layers.1211

A.2. Additional figures1212

J Kuehn et al.: Preprint submitted to Elsevier Page 17 of 22



Deep learning super-resolution on unstructured coastal wave computations

Figure 9: Low- and high-resolution mesh employed for the SWAN computations, as well as the locations of the study regions.
The low-resolution mesh contains 1059 nodes and the high-resolution mesh 45 156.
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Figure 10: Panel (a) and (b): Low- and high-resolution mesh bathymetries of Region 2 with one off- and one nearshore location
highlighted, that are used to calculate the correlations of significant wave height. Panel (c): A map of all the correlation coefficients
𝑟2 of the low-resolution node loc. 1 with all high-resolution nodes. Bathymetry contour lines were added to aid interpretation.
Triangles with invalid node values are not plotted, see main text in section 3.2. Panel (d)-(f): Examples of the correlations between
different off- and nearshore locations. Note also the differences in the meshes between panel (b) and (c), which is due to the
exclusion of NaN values when calculating the correlation map.
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Figure 11: Panel (a) and (b): Low- and high-resolution mesh bathymetries of Region 3 with one off- and one nearshore location
highlighted, that are used to calculate the correlations of significant wave height. Panel (c): A map of all the correlation coefficients
𝑟2 of the low-resolution node loc. 1 with all high-resolution nodes. Bathymetry contour lines were added to aid interpretation.
Triangles with invalid node values are not plotted, see main text in section 3.2. Panel (d)-(f): Examples of the correlations between
different off- and nearshore locations. Note also the differences in the meshes between panel (b) and (c), which is due to the
exclusion of NaN values when calculating the correlation map.
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Figure 12: A scatter density plot of the model predictions
for Region 2, where color indicates the number of points per
pixel on a logarithmic scale. Additionally, histograms on both
axes show the distribution of the significant wave heights. The
upper figure refers to the predictions of the polynomial ridge
regression, the lower to the GraphNet.
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