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Abstract
Background  The plasma concentrations of acyl coenzyme A binding protein (ACBP, also known as diazepam-
binding inhibitor, DBI, or ‘endozepine’) increase with age and obesity, two parameters that are also amongst the most 
important risk factors for cancer.

Methods  We measured ACBP/DBI in the plasma from cancer-free individuals, high-risk patients like the carriers 
of TP53 or BRCA1/2 mutations, and non-syndromic healthy subjects who later developed cancer. In mice, the 
neutralization of ACBP/DBI was used in models of non-small cell lung cancer (NSCLC) and breast cancer development 
and as a combination treatment with chemoimmunotherapy (chemotherapy + PD-1 blockade) in the context 
of NSCLC and sarcomas. The anticancer T cell response upon ACBP/DBI neutralization was characterized by flow 
cytometry and single-cell RNA sequencing.

Results  Circulating levels of ACBP/DBI were higher in patients with genetic cancer predisposition (BRCA1/2 or 
TP53 germline mutations) than in matched controls. In non-syndromic cases, high ACBP/DBI levels were predictive 
of future cancer development, and especially elevated in patients who later developed lung cancer. In preclinical 
models, ACBP/DBI neutralization slowed down breast cancer and NSCLC development and enhanced the efficacy of 
chemoimmunotherapy in NSCLC and sarcoma models. When combined with chemoimmunotherapy, the neutralizing 
monoclonal antibody against ACBP/DBI reduced the frequency of regulatory T cells in the tumor bed, modulated the 
immune checkpoint profile, and increased activation markers.
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Background
Acyl-coenzyme A binding protein (ACBP), which is 
encoded by diazepam binding inhibitor (DBI), is a phylo-
genetically ancient, small (~10 kDa) protein. ACBP/DBI 
can be found intracellularly as a protein interacting with 
activated medium to long-chain fatty acids and other lip-
ids, facilitating their transport and utilization in anabolic 
processes (including the synthesis of ceramides, glycero-
lipids, phospholipids and steroids) or in mitochondrial 
fatty acid oxidation [1]. Extracellularly, ACBP/DBI acts as 
a soluble factor that binds to the same receptor as does 
diazepam, a prototypic benzodiazepine [2, 3]. ACBP/
DBI indeed competitively displaces diazepam from its 
binding site in the pentameric gamma-aminobutyric acid 
(GABA) receptor type A. For this reason, ACBP/DBI and 
its fragments are also called ‘endozepines’ [4, 5]. Thus, 
ACBP/DBI acts like a neuroendocrine agent that, embed-
ded in multiple regulatory pathways and intertwined 
with other factors, contributes to the regulation of appe-
tite and body composition [3].

Plasma ACBP/DBI levels increase with adiposity, 
meaning that they strongly correlate with the body 
mass index (BMI) in healthy persons [6–8]. In addition, 
ACBP/DBI levels in the plasma increase in the context 
of chronological aging, independently from the corre-
lation with BMI [3, 8]. We have observed two types of 
derangement in these correlations between ACBP/DBI 
plasma concentrations and age or BMI. In healthy indi-
viduals that were diagnosed with cardiovascular disease 
within 9 years after drawing blood for ACBP/DBI quan-
tification, the levels of ACBP/DBI were disproportionally 
high, and this effect was independent from BMI and age. 
This observation suggested that ACBP/DBI might corre-
late with the biological (rather than only chronological) 
aging process that is associated with the development 
of cardiovascular disease [9]. Moreover, in patients that 
had been diagnosed with cancer, the correlation between 
ACBP/DBI levels and age or BMI was lost, suggesting the 
disruption of homeostatic circuitries [8]. In patients, the 
development of metabolic syndrome is commonly evalu-
ated by clinical criteria such as elevated blood pressure, 
hypertriglyceridemia, low high-density lipoprotein cho-
lesterol, high waist circumference and hyperglycemia. Of 
note, the presence of all or a subset of these metabolic 
criteria was associated with increased risk of non-small 
cell lung cancer (NSCLC) development in a prospective 

general-population study, pleading in favor of a more 
thorough metabolic assessment of lung cancer patients 
[10].

In preclinical experiments, inhibition of ACBP/DBI 
has positive effects on a variety of (patho)physiological 
parameters. Its genetic inhibition in model organisms 
prolongs lifespan [11–13]. Its knockout or neutraliza-
tion by antibodies (which act on the extracellular pool 
of ACBP/DBI) protect various organs against cell loss 
and inflammation induced by ischemia, toxic agents and 
dietary insult [14, 15]. ACBP/DBI is overexpressed in a 
wide variety of cancer types [1], and most studies have 
focused on the intracellular contribution of ACBP/DBI 
to cancer cell metabolism. Thus, it has been demon-
strated in the context of NSCLC [16] and glioblastoma 
[17, 18] that ACBP sustains cellular bioenergetics by 
stimulating fatty acid oxidation. However, the effects of 
systemic ACBP/DBI inhibition on cancer has not been 
investigated.

Here, we investigated whether plasma ACBP/DBI levels 
might be elevated in individuals at high risk of developing 
a cancer in the forthcoming years and found that ACBP/
DBI was indeed overabundant in the plasma of persons at 
risk. We observed that antibody-mediated neutralization 
of extracellular ACBP/DBI protects against NSCLC and 
synergizes with chemoimmunotherapy against NSCLC 
and sarcoma. This latter effect correlated with changes 
in the composition of the T cells infiltrating tumors that 
suggest reduced local immunosuppression and improved 
immune activation. These findings plead in favor of a 
cancer-relevant immunomodulatory effect of ACBP/DBI.

Methods
Patients
Li-Fraumeni syndrome patients
The LIFSCREEN clinical trial (NCT01464086) was origi-
nally designed to measure the benefits of whole-body 
MRI screening to detect early-stage cancer cases in 
patients carrying germline TP53 mutations (gTP53m) 
[19, 20]. The primary outcome was to assess whether the 
inclusion of whole-body MRI in the evaluation of patients 
would influence their overall survival. The secondary 
aim of the study was to create a collection of serum and 
plasma samples to establish a library for future investiga-
tions into new tumor biomarkers. In total, 107 individu-
als, consisting of 78 women and 29 men from 75 distinct 
families, were recruited for the study. The present cohort 

Conclusion  These findings suggest that ACBP/DBI acts as an endogenous immune suppressor. We conclude that 
elevation of ACBP/DBI constitutes a risk factor for the development of cancer and that ACBP/DBI is an actionable 
target for improving cancer immunosurveillance.

Keywords  Precocious detection, Neuroendocrine factors, Non-small cell lung cancer, Immunosurveillance, 
Immunotherapy
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includes the N = 38 patients bearing gTP53m who pro-
vided a signed agreement for the LIFSCREEN trans-
lational study part and for whom a sufficient volume of 
frozen plasma at inclusion was available. This sub-study 
was approved as part of a screening for inflammatory bio-
markers by the steering committee of LIFSCREEN. For 
comparison, Li-Fraumeni syndrome (LFS) patients were 
matched by sex, BMI and age with cancer-free healthy 
patients from the previously published and publicly avail-
able DESIR cohort [9] to a 2:1 controls: cases ratio with 
the MatchIt R package. The resulting cohort has compa-
rable values for sex, BMI and age between controls and 
LFS patients (Table S1).

Germline BRCA1/2 mutation carriers
Whole blood samples were collected at Gustave Roussy 
between 2013 and 2016, during a screening for BRCA1 
and BRCA2 germline mutations among healthy individu-
als with a family history of breast or ovarian cancer. All 
samples were taken under similar material and psycho-
logical conditions: on the same premises, between around 
10am and 12am, with the aim of screening, meaning that 
all patients were exposed to the same stress-inducing 
uncertainty. During the consultation, patients were asked 
to sign an informed consent form authorizing the use of 
the leftovers of the material collected for research pur-
poses in addition to diagnostic. For each patient, 20 mL 
of peripheral blood was collected in EDTA tubes and kept 
at room temperature for less than 2  h until the plasma 
was separated. For this, the blood tubes were centrifuged 
for 15 min at 1700 g at 20 °C, plasma was homogenized, 
aliquoted and stored at -80 °C until use. Figure 1F repre-
sents the flowchart of the cohort. Table S2 summarizes 
the main patient characteristics.

Healthy volunteers
The healthy volunteers’ cohort was constituted of base-
line samples from the randomized, double-blinded, pla-
cebo-controlled interventional study on the prevention 
of cancer and cardiovascular disease by supplementation 
of antioxidant vitamins and minerals (“SUpplémentation 
en Vitamines et Minéraux AntioXydants”, SU-VI-MAX, 
NCT00272428). A total of 13,017 patients were enrolled 
over a period of 8 years (1994–2002) and followed until 
2007 [21, 22]. All patients signed informed consent 
forms to participate in the study, and this sub-study was 
approved by the steering committee of SUVIMAX. Dur-
ing the initial phase of the study, information regard-
ing sociodemographic characteristics, smoking habits, 
medication usage, and overall health status was gathered 
through self-administered questionnaires. Addition-
ally, trained nurses and physicians conducted a baseline 
clinical examination, which involved taking anthropo-
metric measurements and obtaining blood samples from 

participants. The blood samples were collected in hepa-
rin tubes following a 12-hour fasting period. Among the 
13,017 patients, we selected the N = 638 patients that had 
never had malignancies at baseline but developed cancer 
during follow-up. They were matched with a 2:1 controls: 
cases ratio by sex, age, BMI, nutritional intervention 
group (placebo vs. vitamins and minerals), smoking sta-
tus, season of blood draw and, for women, menopausal 
status (at baseline and at the date of cancer occurrence). 
The clinical characteristics of the cancer patients and 
their matched controls are summarized in Table S3.

Statistics
Statistical analysis of patients’ datasets was performed on 
R (v. 4.2.0). The comparisons of ACBP/DBI concentra-
tions between two groups were performed by unpaired, 
one-sided Student’s t-test, following the hypothesis that 
cancer occurrence was associated with increased circu-
lating levels of ACBP/DBI. Correlation analyses were 
performed with the cor.test function: Pearson’s prod-
uct moment correlation coefficients (r) were calculated, 
p-values were evaluated assuming that the r coefficients 
followed a t distribution and confidence intervals were 
computed based on Fisher’s Z transform. Classifica-
tion power was evaluated by computing receiver oper-
ating characteristic (ROC) curves and calculating the 
area under the curve (AUC) with the pROC package 
[23]. Wilcoxon rank sum tests were used for computing 
p-values of the AUC (different from 0.5). AUCs with their 
95% confidence intervals were represented as forest plots. 
Survival data were plotted as Kaplan-Meier curves and 
analyzed by log-rank (Mantel-Cox) test.

ACBP/DBI quantification
Plasma concentrations of ACBP/DBI were measured in 
the same laboratory and by the same experimenter for 
all presented cohorts. Enzyme-linked immunosorbent 
assay (ELISA) was performed as previously described 
[7, 24]. Briefly, heparin plasma samples were diluted 
(1/20 for mouse, 1/50 for human) and incubated on cap-
ture antibody (MyBioSource, Cat# MBS768488, RRID: 
AB_3083599) coated plates for 2  h at 18–22  °C (room 
temperature, RT). They were detected by means of a 
biotin-conjugated antibody (LS Bio, Cat# LS-C299614, 
RRID:3083603), incubated 2  h at RT, and avidin-cou-
pled horseradish peroxidase (avidin-HRP, BioLegend, 
Cat# 405103). The HRP substrate (Thermo Fisher Sci-
entific, Cat# 34028) was incubated until sufficient color 
appeared, at which point 2  M sulfuric acid was added 
to quench the reaction. Absorbance was read at 450 nm 
on an automated plate reader within 15  min, and out-
of-standard curve measurements were excluded. For 
germline BRCA1/2 mutation carriers and their controls, 
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Fig. 1  ACBP/DBI is elevated in the plasma from patients with genetic predisposition to cancer. Plasma from patients with Li-Fraumeni syndrome (LFS) 
bearing gTP53MUT were collected at inclusion in the LIFSCREEN trial for MRI-screening of new malignancies. Each patient with LFS was matched by sex, 
body mass index (BMI) and age with two healthy patients from the DESIR cohort (A), and plasma ACBP/DBI was measured by ELISA. LFS patients had 
increased ACBP/DBI levels compared to healthy volunteers (one-sided unpaired Student’s t-test, B). TP53 modulation in mice was achieved in vivo either 
in the long-term by genetic manipulations (tamoxifen-induced knockout or constitutive overexpression of the Trp53 gene) or at short-term by intraperi-
toneal injections of the TP inhibitor pifithrin-α (C), and plasma ACBP/DBI was measured by ELISA (D, E). Bacterial lipopolysaccharide (LPS) was used as posi-
tive control for short-term induction of ACBP/DBI in mice. Plasma specimens were collected from a cohort of women enrolled in a screening campaign for 
BRCA1/2 mutations. N = 45 mutated: control pairs were randomly created by age-matching patients bearing germline BRCA1/2 mutations with controls 
who were exempt of known previous or future cancer as well as of somatic BRCA1/2 mutations (F). Patients with germline mutations in either BRCA1 
or BRCA2 had significantly higher plasma levels of ACBP/DBI than their age-matched controls (one-sided paired Student’s t-test, G). Breast cancer was 
induced by combination of a subcutaneous implant releasing medroxyprogesterone acetate (MPA) and weekly gavage with dimethylbenzanthracene 
(DMBA), after a 5-day tamoxifen induction period in Ubc: Cre+/−Acbpfl/fl (i.e. Acbp−/−, n = 9) or Ubc: Cre−/−Acbpfl/fl (i.e. Acbp+/+, n = 7) mice (H). Once diagnosed 
with breast cancer by palpation, Acbp−/− animals survived longer than their Acbp+/+ littermates (I). Female C57Bl/6J mice were regularly treated intraperi-
toneally with an ACBP/DBI monoclonal antibody (or the corresponding isotype control, mouse IgG2a, both 5 mg/kg). E0771 cells (5.0 × 105 per mouse) 
were injected into the mammary fat pad, and mice were treated with four cycles of anti-PD1 monoclonal antibody (or the corresponding isotype control, 
rat IgG2a, 200 µg per cycle) (J). The combination of anti-ACBP/DBI with immune checkpoint blockade slowed down tumor growth (K) and prolonged 
survival (L). Survival curves were compared by log-rank (Mantel-Cox) test, while tumor growth speeds were assessed by linear mixed effect modeling on 
the https://kroemerlab.shinyapps.io/TumGrowth/ website

 

https://kroemerlab.shinyapps.io/TumGrowth/
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plasma was collected in EDTA tubes only relative quanti-
fications were available for subsequent analyses.

Cell culture
C57Bl/6-derived cancer cell lines (TC1 cells expressing 
the luciferase enzyme, TC1-Luc, RRID: CVCL_4699, 
and MCA205, RRID: CVCL_VR90) were maintained in 
Dulbecco’s Modified Eagle Medium (DMEM) supple-
mented with 10% fetal bovine serum (FBS) and 10 mM 
HEPES. MCA205 were transduced with lentiviral par-
ticles with the ZsGreen-OVA transgene that were pro-
duced in 293FT cells (Thermo Fisher, Cat# R70007) by 
co-transfecting the plasmid coding for the fluorescent 
protein ZsGreen coupled with ovalbumin (OVA) and 
puromycin resistance (pCDH_Zs-Green-OVA_puro, Fig. 
S5E), the lentiviral packaging plasmid psPAX2 (Addgene 
Cat# 12260), and the VSV-G envelope expressing plasmid 
(Addgene, Cat# 12259). After cytofluorometric sorting 
of ZsGreen+ cells, single clones were put to grow under 
puromycin selection (5  µg/mL) to obtain stably trans-
duced cells.

Mouse experiments
Animal housing and handling
C57Bl/6J mice were handled according to the Federation 
of European Laboratory Animal Science Associations 
(FELASA) guidelines, as approved by the local ethics 
committee (project numbers #24410, #31018, #49169, 
#50485 and #IACUC.015-2019). Animals were left 
untouched for at least one week of acclimatation, pro-
vided with food ad libitum and housed collectively in a 
temperature-controlled environment with 12-hour light-
dark cycles.

Trp53 transgenic mice
Inducible knockout was induced in Trp53lox/lox mice [25], 
with either UBC-cre/ERT2+/T or UBC-cre/ERT2−/− [26] 
by feeding them with a tamoxifen diet (Envigo RMS, 
Cat. #TAM400/CreER) at 8 weeks of age for two weeks. 
Plasma from the resulting Trp53+/+ and Trp53−/− litter-
mates was collected in EDTA tubes at 30 weeks of age. 
Overexpression of Trp53 was achieved by insertion of the 
Tg.Trp53[MS-2] (+/T) transgene [27] and plasmas were 
collected from p53-overexpressing mice and the corre-
sponding controls between 20 and 25 weeks of age.

Induced breast cancer
Female Ubc: Cre, Acbpfl/fl mice under 8 weeks old were 
induced with five consecutive daily injections of tamoxi-
fen (75 mg/kg i.p., Sigma, Cat# T5648). After a two-week 
washout period, breast cancer was induced as previ-
ously described [28]. Briefly, a small incision was made to 
insert a slow-release subcutaneous medroxyprogesterone 
acetate (MPA)  pellet (50  mg, 90-day release, Innovative 

Research of America, Cat# NP-161) under the skin of 
the neck. One week after the implant, two cycles of three 
weekly gavages with dimethylbenzanthracene (DMBA, 
1 mg, p.o., Sigma, Cat# D3254) were performed over the 
next 7 weeks. Starting from the second cycle, mice were 
palped manually three times per week to detect nodules 
in the mammary glands. When confirmed, an electronic 
caliper was used to measure the area of the tumors. Mice 
were sacrificed when humane endpoint was reached 
(total area > 1.8 cm2, ulceration, weight loss > 20% or 
distress).

Orthotopic breast cancer
0.5 × 106 E0771 cells were resuspended in 100 µL PBS and 
injected subcutaneously in the fourth left mammary fat 
pad from syngeneic C57Bl/6J mice (female, 8–10 weeks 
old) under 3% isoflurane anesthesia. Tumor sizes were 
measured with an electronic caliper and calculated in 
mm2 as A = π/4 × L × w. When the average tumor area 
became greater than 15 mm2, mice were randomized into 
groups of equal tumor sizes to be given either anti-PD1 
(BioXCell, clone 29 F.1.A12, 200 µg per mouse i.p. at days 
15, 19 and 23 and 27) or the corresponding isotype con-
trol (IgG2a, BioXCell, clone 2A3).

ACBP/DBI neutralization
For passive immunization, injections of anti-ACBP/DBI 
monoclonal antibody [6] or the corresponding isotype 
control (IgG2a) were administered i.p. at 5  mg/kg, fol-
lowing the schedules presented in the figures. For active 
immunization, animals were vaccinated against endog-
enous ACBP/DBI as described [24]. Briefly, recombinant 
murine ACBP/DBI was conjugated to keyhole limpet 
hemocyanin (KLH, Thermo Fisher, Cat# 77649) by glu-
taraldehyde cross-linking at a molar ratio of 20:1. The 
obtained aqueous solution was mixed 1:1 with the adju-
vant Montanide ISA 51VG (Seppic, Cat# 36362/FL2R3) 
to form an injectable water-in-oil emulsion. The vaccine 
(KLH-ACBP/DBI or KLH only as a control) was injected 
i.p. once weekly for four consecutive weeks (30 µg, 30 µg, 
30  µg and 10  µg, injected in a total volume of 100 µL). 
After immunization, plasma was collected to check reac-
tivity against ACBP/DBI by immunoblotting.

Carcinogen-induced lung cancer
Six-week-old female C57Bl/6J mice were vaccinated 
with KLH or KLH coupled to ACBP/DBI. After a two-
to-four-weeks washout period, lung cancer was induced 
by 10 weekly i.p. injections of 1  g/kg urethane (Sigma, 
Cat #U2500) dissolved in 200 µL warm saline (Sigma, 
Cat# S8776), as described [29]. Mice were euthanized 30 
weeks after the first urethane injection, lungs were col-
lected, and macroscopically visible tumors were counted.
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Orthotopic NSCLC
0.5 × 106 non-small cell lung carcinoma TC1-Luc were 
resuspended in 100 µL PBS and injected intravenously 
into the lateral tail vein of each C57Bl/6J mouse (female, 
8–10 weeks old). Tumor development in the lungs was 
monitored twice per week by bioluminescence imaging 
to quantify luciferase activity as previously described 
[30]. Mice were injected i.p. with 150 mg/kg D-luciferin 
(Promega, Cat# E1605) in 200 µL of PBS. Acquisition 
was performed on a Xenogen IVIS 50 (Caliper Life Sci-
ences Inc., U.S.A.) 8 min after D-luciferin injection under 
light anesthesia (2% isoflurane), and the total photon flux 
was calculated on the region of interest (ROI) around the 
lungs. The total time of exposure was set at each mea-
surement to avoid saturation: exposure time started with 
4 min, and was gradually reduced to 3 min, 2 min, 1 min 
upon photon saturation. Chemotherapy was started (day 
0) five days after tumors were detectable, and mice were 
randomized by tumor size. Tumor bearing mice show-
ing photon saturation at 1 min of exposure were eutha-
nized. After the end of the measurements, survival was 
monitored and the mice were sacrificed when reaching 
humane endpoints (distress, weight loss > 20%).

Skin fibrosarcoma
C57Bl/6J mice (female, 8–10 weeks old) were shaved 
and injected subcutaneously with 0.3 × 106 MCA205 
cells under light isoflurane anesthesia (2% induction for 
≤ 5 min). After 6–7 days, tumors were big enough to be 
measured by means of an electronic caliper (tumor vol-
ume was calculated with the following formula V = π/6 × 
L × w × h), and mice were randomized to create groups 
with equivalent tumor burden and body weight repar-
tition [31]. Chemoimmunotherapy was started when 
tumors reached 50 mm3 (D0). From this point, tumor 
size was monitored thrice weekly until one of the fol-
lowing endpoints were reached: tumor larger than 1500 
mm3, ulceration or weight loss > 20% or distress.

Chemoimmunotherapy
At day 0 (see each model for definition), chemoimmu-
notherapy was initiated with one cycle of oxaliplatin 
(Sigma, Cat# Y0000271, 10 mg/kg i.p.), followed by three 
cycles of PD-1 neutralizing antibody (BioXCell, clone 
29 F.1.A12, 200 µg per mouse i.p. at days 8, 12 and 16). 
Vehicle and isotypes (IgG2a, BioXCell, clone 2A3) were 
injected following the same route and schedule into the 
control groups.

Vaccination experiment
On day 0, MCA205-OVA undergoing cell death induced 
by a 24-hour treatment with 500 µM oxaliplatin (Sigma, 
Cat# O9512) were collected, rinsed with PBS, and resus-
pended to a final concentration of 5 × 106 cells/mL. 100 

µL of this solution was injected subcutaneously in the 
lower right back of each mouse two hours after anti-
ACBP/DBI or isotype injection (5 mg/kg, i.p.) under light 
isoflurane anesthesia (Iso-vet isoflurane, 2% induction 
for ≤ 5 min). mAb injections were repeated according to 
the schedule described in Fig. 2. Half the mice were sacri-
ficed at day 6 and the right-side inguinal lymph node was 
collected sterilely for ex-vivo stimulation. The other half 
of the mice was rechallenged at day 14 with 0.5 × 106 live 
MCA205-OVA cells per mouse, also injected subcutane-
ously. At endpoint (day 20), tumor sizes were measured 
with an electronic caliper.

Statistics
Longitudinal comparison of the caliper-measured tumor 
sizes was performed on the online TumGrowth applica-
tion (https://kroemerlab.shinyapps.io/TumGrowth/). In 
brief, tumor sizes were modeled by linear mixed effect 
modeling with treatment and time as fixed affects, and 
individual mice as random effect. Adequate fitting of 
the model was verified, and tumor sizes were log-trans-
formed if needed to improve the linear fitting. Type II 
ANOVA was applied to compare the slopes of tumor 
size variations with time, and p-values were computed 
using the Wald test with one-sided hypothesis (reduction 
of slope by the treatment of interest). A factor based on 
Holm’s method was applied to correct for multiple com-
parisons. For bioluminescence imaging analyses, total 
flux over same-size ROIs were log-transformed prior to 
type-II ANOVA on the tumor sizes, and multiple com-
parisons between treatment groups were corrected with 
Sidak’s method. Survival curves were compared two-by-
two by means of the Log-rank Mantel-Cox test.

Immunohistochemistry
For immunohistochemical detection of DBI staining, 
Bond Leica automated immunostainer instrument was 
used to perform immunohistochemistry. After fixation of 
tumors in 4% formaldehyde, 4 μm thick paraffin sections 
were processed for heat-induced antigen retrieval (Epi-
tope Retrieval Solution 1, corresponding citrate buffer 
pH = 6, Leica, Cat# AR9961) for 20 min at 100 °C. Slides 
were incubated with a polyclonal rabbit anti-DBI anti-
body (Abcam, Cat# ab231910, 1:10000) and with Bond 
Polymer Refine Detection kit (Leica, Cat# DS9800). The 
signal was revealed with DAB and counterstained with 
haematoxylin.

Ex-vivo T cell stimulation
Lymph nodes were passed through a 70 μm strainer and 
thoroughly rinsed with PBS to obtain single-cell suspen-
sions. Cells were resuspended in serum-free CTL-Test™ 
medium (Immunospot, Cat# CTLT-010) supplemented 
with 2 mM L-glutamine, 100 U/mL penicillin and 100 U/

https://kroemerlab.shinyapps.io/TumGrowth/
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mL streptomycin (Gibco) and used for IFN-γ enzyme-
linked immunospot (ELISPOT) following the manu-
facturer’s instructions (Mabtech, Cat# 3321-4APT-2). 
Briefly, 0.5 × 106 cells were seeded in each well of a 96-well 
PVDF ELISPOT plate pre-coated with anti-murine IFN-γ 

antibody (clone AN18). Each biological sample was 
tested in unstimulated condition (medium only) and 
either dominant MHC-I-restricted (SIINFEKL, 2  µg/
mL) or MHC-II-restricted (ISQAVHAAHAEINEAGR, 
2  µg/mL) OVA peptides for 16  h. Wells were rinsed 

Fig. 2  ACBP/DBI increases in healthy patients prior to (lung) cancer diagnosis. Plasma samples were selected from the inclusion specimens of the 12,749 
healthy volunteers enrolled in the SU.VI.MAX study. Each of the 687 patients diagnosed with cancer at any time during follow-up (Cancer group) was 
matched with two individuals that stayeid disease-free (Control group), controlling for sex, age, body mass index (BMI), nutritional intervention (antioxi-
dants/placebo), smoking status, menopausal status and season of blood sampling (A). In both these groups of still-healthy volunteers, population-scale 
positive Pearson correlations between ACBP/DBI and BMI (B) or age (C) were observed. The concentration of ACBP/DBI was slightly increased in future 
cancer patients (D). This increase was more pronounced in patients (N = 104) who developed cancer within 3 years after inclusion, but was lost in patients 
diagnosed at later time points (E). Among the most common cancers (N > 20), patients who developed lung cancer (n = 33) were the ones with the most 
prominent increase in ACBP/DBI (F). A cohort of mice was vaccinated with four weekly injections of keyhole limpet hemocyanin (KLH) coupled to ACBP/
DBI (KLH-ACBP, n = 20) or with KLH alone (n = 28). After a wash-out period of 2–4 weeks, mice received weekly intraperitoneal injections of urethane (1 g/
kg) for 10 weeks (G). Lungs were collected 30 weeks after the first urethane injection. Representative images are shown in (H) and the number of macro-
scopic lung tumors was compared between the two experimental groups (I). Statistical analyses were performed by one-sided, unpaired Student’s t-tests 
for normally distributed plasma ACBP/DBI measurements and by one-sided Mann Whitney tests for lung nodule counts
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thoroughly and IFN-γ signal was revealed with a bioti-
nylated IFN-γ-reactive detection mAb (clone R4-6A2), 
streptavidin-ALP and BCIP-NBT plus enzymatic sub-
strate. Spot counts were performed automatically on the 
Immunospot software (ISQAVHAAHAEINEAGR and 
unstimulated groups) or on ImageJ when the number of 
dots was high (SIINFEKL group). Visual inspection of 
the spots masks confirmed that the sensitivity of spots 
detection was comparable within each group (Fig. S5D). 
The specific spot count for each peptide was defined as 
max(0, NSPOTS, PEPTIDE – NSPOTS, UNSTIMULATED) and sta-
tistically compared by non-parametric, one-tailed Mann-
Whitney test.

Flow cytometry analysis of the immune infiltrate
At day 10, MCA205-bearing mice were euthanized and 
tumors were collected and dissociated to a single cell 
suspension by mechanical and enzymatic disruption, 
following the manufacturer’s instruction (tumor dis-
sociation kit, Miltenyi Biotec, Cat# 130-096-730). Cells 
were stained with a viability staining (Live-Dead Fixable 
Yellow Dye, Invitrogen, Cat# L34967) then Fc recep-
tors were blocked by an uncoupled anti-mouse CD16/
CD32 antibody (BD BioSciences, clone 2.4G2) and 
fluorophore-coupled antibodies were added for the 
detection of surface markers (CD45-BUV661, RRID: 
AB_2870247, CD3-APC, RRID: AB_10597589, CD4-
APC-Vio770, RRID: AB_2751634, CD8a-PE, RRID: 
AB_394570, ICOS-BV421, RRID: AB_2738576, GITR-
BV786, RRID: AB_2740641, LAG3-BV605, RRID: 
AB_2742805, PD1-BUV395, RRID: AB_2742320, TIGIT-
BV711, RRID: AB_2742063 and VISTA-PerCP-Cy5.5, 
RRID: AB_2561400). Cells were fixed and permeabilized 
(eBioscience FoxP3/Transcription Factor staining buffer, 
Thermo Fisher, Cat# 00-5523-00) prior to intranuclear 
staining (FoxP3-FITC, RRID: AB_465243). Fluorescence 
data were acquired on a BD LSRFortessa X20 with the BD 
FACS Diva software. Compensation, scaling, gating and 
data analysis were performed on the omiq.ai online plat-
form. In addition to the classical cell populations, specific 
subpopulations of interest were defined among CD4+ 
and CD8+ T cells by performing unsupervised cluster-
ing in one of the three independent experiments. More 
specifically, the opt-SNE algorithm was used to perform 
dimension reduction, and then the FlowSOM algorithm 
was applied to split the clusters. Gating strategies were 
inferred from the markers expressed by the clusters of 
interest (differentially present between the CT + anti-
PD1 and anti-ACBP/DBI + CT + anti-PD1) and applied 
to the pooled data from three independent experiments 
for statistical analysis (Figure S6). Statistical comparison 
was performed on pooled data from all experiments, 
after elimination of the outliers (ROUT test, Q = 1%), by 

one-way ANOVA with Sidak’s correction for multiple 
comparisons.

Single-cell RNA sequencing of the intratumoral T cell 
populations
Sample preparation
MCA205 tumors were collected and homogenized fol-
lowing the same protocol as the one used for flow 
cytometry. The single-cell suspension was incubated 
in anti-mouse CD16/CD32 antibody (BD Biosciences, 
Cat# 553142, RRID: AB_394656), then stained with a 
fluorescent mix of 4’,6-diamidino-2-phénylindole (DAPI, 
viability) and fluorescent-labelled antibodies. T cells 
were sorted on a BD Aria III as the cells that were nega-
tive for all lineage markers (CD11c, RRID: AB_647251, 
Ly6C, RRID: AB_1727557, Ly6G, RRID: AB_1877261, 
F4/80, RRID: AB_2733261, NK1.1, RRID: AB_394507, 
CD19, RRID: AB_394495, all in the PE-Cy7 channel) and 
positive for CD45(-AF488, RRID: AB_493531) and either 
CD4(-PerCp-Cy5.5, RRID: AB_1107001) or CD8(-PE, 
RRID: AB_394571). After sorting, cells were counted and 
resuspended at a ratio of 1 CD4+ to 1 CD8+ T cell before 
loading a total of 10,000 cells to the Chromium Next 
GEM Chip K for emulsion. All subsequent steps, includ-
ing retro-transcription, cleanup, cDNA amplification 
and libraries construction, were performed according to 
the Single cell 5’ VDJ v2 manufacturer’s instruction (10× 
Genomics, USA). Libraries were sequenced on Illumina 
NovaSeq 6000, with paired-end 150 bp and 28/90 bp runs 
for gene expression and T cell receptor sequencing.

Data pre-processing
Single-cell 5’ and V(D)J data analyses was performed by 
GenoSplice technology (www.genosplice.com). Sequenc-
ing data quality was assessed using FastQC v0.11.5 on 6 
mouse expression and VDJ samples. For read alignment, 
unique molecular identifiers (UMI) quantification and 
paired clonotype calling, the CellRanger software v7.0.0 
was used on Mus Musculus 2020  A reference (genome 
mm10, gene annotation Ensembl 98 and VDJ reference) 
with default parameters. Cellranger multi and aggregate 
function were used. The 6 expression matrices contain-
ing the UMI counts were merged, and only the genes 
with UMI ≥ 1 in at least one cell were kept. The follow-
ing filters were applied to generate a global matrix used 
in further analysis: cells with UMI ≥ 1300, number of 
detected genes ≥ 800, and cells with UMI in mitochon-
drial genes ≤ 10%. In order to estimate and suppress 
ambient RNA, DecontX (Yang et al., 2020) R package was 
applied on counts data from cellranger. DoubletFinder 
(McGinnis, Murrow, & Gartner, 2019) with 10x expected 
percentage of doublets was used to suppress doublets 
(8% for C1, C2, D1 and D3, 7.60% for C3 and 6.09% for 

http://www.genosplice.com
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D2). Single-cell 5′ and V(D)J were integrated in a Seurat 
object.

Clustering
For normalization and clustering, Seurat 4.0.3 was used 
[32] and SCTransform normalization was applied. To 
avoid bias due to Tcell receptor genes, all Trav/Traj/Trbc/
Trbv genes were suppressed from variable genes. Based 
on elbow plot, 31 PC were used for UMAP calculation 
and clustering analysis. Clustering step was performed 
using default parameters from Seurat (FindNeighbors 
and FindClusters functions). To calculate markers for 
each cluster, a global-scaling normalization method was 
applied with a scale factor of 10,000 and log-transfor-
mation of data. Only genes expressed in at least 25% of 
cells with a log2FC minimum of 0.25 an adjusted p-value 
inferior at 0.05 were considered as markers using Seurat 
Wilcoxon test. Based on a treemap of clusters with differ-
ent resolution parameters and clusters markers, we chose 
a resolution parameter of 0.2. Low-frequencies clusters 
without Cd3g/d/e expression, which resulted from sort-
ing approximations, were excluded for downstream 
analysis (clusters 9 and 11). Cluster 5 was also excluded 
due to low UMI count, and the remaining 9 clusters were 
numbered from 0 to 8 (largest to smallest number of 
cells).

Statistics
Differentially expressed genes (DEG) analysis was per-
formed in each cluster using a Wilcoxon test from Seurat, 
genes expressed in at least 25% of cells in one condition, 
with a log2FC minimum of 0.25 an adjusted p-value 
inferior at 0.05 were considered. Single cell pseudo-time 
trajectory analysis was performed with monocle3 [33] 
independently on CD4+ cells and CD8+ cells. Root was 
defined based on a clear expression pattern of the naïve 
T -cells markers Sell, Ccr7 and Tcf7. Differences between 
cluster compositions were compared by chi-square test.

Results
Elevated ACBP/DBI levels in cancer predisposition 
syndromes
Li-Fraumeni syndrome is caused by a deleterious germ-
line TP53 alteration and characterized by the early (< 45 
years) manifestation of sarcomas and other cancers, 
often in the context of a family history of neoplastic dis-
ease [34]. We measured plasma levels of ACBP/DBI in a 
cohort of clinically cancer-free patients recruited in the 
LIFSCREEN prospective trial (NCT01464086). All par-
ticipants were carriers of germline pathogenic or likely 
pathogenic variants in the TP53 gene (gTP53m). When 
comparing them with age, BMI and sex-matched healthy 
controls from the DESIR cohort [9] (2 controls per case, 
Fig.  1A, Table S1), we found that plasma ACBP/DBI 

concentrations were higher in gTP53m patients than in 
controls (Fig.  1B). We found a significant (Spearman) 
positive correlation between ACBP/DBI and BMI and age 
in healthy controls that was lost (for BMI) or inverted (for 
age) in gTP53m patients (Fig. S1). In this series, elevated 
ACBP/DBI concentrations predicted the gTP53m sta-
tus associated with high sensitivity and specificity (area 
under the curve [AUC] of the receiver operator curve 
[ROC] = 0.948, Fig. S1). We also found elevated plasma 
ACBP/DBI levels in Trp53−/− mice (Trp53 is the mouse 
orthologue of human TP53), but no changes in mice 
overexpressing transgenic Trp53 (Fig. 1C, D). Short-term 
inhibition of p53 by pifithrin-α injection did not cause an 
increase in plasma ACBP/DBI, contrasting with the effect 
of pro-inflammatory lipopolysaccharide, which causes a 
surge in ACBP/DBI (Fig.  1E). This suggests that ACBP/
DBI is not under the direct transcriptional repression of 
TP53/p53, in accord with our prior observations [35], but 
rather indicates that the long term-effects of TP53/Trp53 
deficiency, which affect metabolism and inflammation 
[34, 36], cause an increase in ACBP/DBI.

We also observed high plasma ACBP/DBI concentra-
tions in women carrying germline mutations in BRCA1 
or BRCA2, which both predispose to the development of 
breast cancer, compared to age-matched controls (Fig. 1F, 
G). Of note, female mice subjected to knockout of Dbi 
(Fig. S1G) developed less aggressive cancers than control 
mice in a model of hormone-driven mammary carcino-
genesis, suggesting a pathogenic role for ACBP/DBI in 
breast cancer progression (Fig. 1H, I, S1H, I). ACBP/DBI 
inactivation specifically extended the post-diagnosis sur-
vival (Fig. 1I), which has been demonstrated to be under 
the control of inteferon-γ (IFNγ) producing T cells [28]. 
Accordingly, in mice bearing orthotopic E0771 breast 
cancers, neutralization of ACBP/DBI by repeated intra-
peritoneal injections of a monoclonal antibody (mAb) 
combined with PD-1 checkpoint blockade, but neither 
of the two treatments alone, prolonged survival and 
reduced tumor growth (Fig. 1J-L, S1J-L).

In conclusion, it appears that ACBP/DBI plasma lev-
els are elevated in two cancer predisposition syndromes, 
namely TP53 and BRCA1/2 mutations. Moreover, in 
mouse models of breast cancer, ACBP/DBI neutraliza-
tion slows down breast cancer progression, especially in 
the context of PD-1 blockade.

Prediagnostic elevation of ACBP/DBI levels in individuals at 
risk of lung cancer
Next, we investigated the potential predictiveness of high 
ACBP/DBI concentrations as a biomarker of future can-
cer diagnosis in the SU.VI.MAX cohort, a population of 
healthy individuals who donated blood samples from 
1994 and enrolled in a clinical follow-up of ≥ 8 years [22]. 
In this cohort of 12.749 individuals, 687 were diagnosed 
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with cancer. We matched these 687 cases with cancer-
free controls (2 controls per case) by sex, age, BMI, nutri-
tional intervention, smoking and menopausal status, as 
well as the season of blood sampling (Fig. 2A, Table S3). 
Both cases and controls exhibited a positive correlation 
between plasma ACBP/DBI and BMI (Fig. 2B) and age 
(Fig. 2C). The plasma ACBP/DBI concentrations were 
slightly (but significantly) higher in future cancer patients 
than in their matched controls (Fig. 2D). This difference 
was more pronounced in patients with imminent (within 
3 years) cancer diagnosis after blood sampling com-
pared to their time-matched controls but vanished for 
patients developing cancer after > 3 years (Fig. 2E). Statis-
tical analyses of ACBP/DBI levels according to the most 
frequent cancer types (> 20 cases in the cohort, Fig. S2) 
revealed particularly high ACBP/DBI levels before the 
diagnosis of lung cancer (Fig. 2F). While the AUC of high 
plasma ACBP/DBI as a predictor of the diagnosis of can-
cer within 3 years was 0.625 (Fig. S2B), the AUC for the 
diagnosis of lung cancer at any time point was 0.680 (Fig. 
S2C).

To study the effects of ACBP/DBI on lung carcinogen-
esis in a preclinical model, mice were vaccinated with the 
immunostimulant protein keyhole limpet hemocyanin 
(KLH) alone as a control, or a KLH-ACBP/DBI conjugate 
(KLH-ACBP), which induces anti-ACBP/DBI autoanti-
bodies [24]. These mice were then chronically exposed 
to urethane, a carcinogenic carbamate that induces lung 
cancers that are under T cell-dependent immunosur-
veillance [29, 37] (Fig.  3G, H). The KLH-ACBP vaccine 
reduced the number of lung tumors compared to KLH 
controls (Fig. 3I).

In conclusion, it appears that ACBP/DBI plasma levels 
are higher in non-syndromic patients announcing immi-
nent cancer diagnosis, in particular that of lung cancer. 
In mice, ACBP/DBI neutralization reduces chemically 
induced lung carcinogenesis.

Effects of ACBP/DBI on lung cancer immunosurveillance
Pretreatment of mice with an mAb neutralizing extracel-
lular ACBP/DBI [6] reduced non-small cell lung cancer 
(NSCLC) development in two models: one in which mice 
were challenged subcutaneously with TC1 NSCLC cells 
(Fig. S3A), and a second one in which TC1 cells express-
ing luciferase were injected intravenously (i.v.) into the 
tail vein (Fig.  3). Such cells then seed into the lung to 
form orthotopic NSCLC [30] (3A). Tumors monitored 
by bioluminescence imaging [30] (Fig. 3B) progressed 
less vigorously after intraperitoneal (i.p.) pretreatment 
with anti-ACBP/DBI mAb than in controls injected 
with an irrelevant isotype control mAb (Fig.  4B, C; Fig. 
S3B). Of note, orthotopic luciferase-expressing TC1 can-
cers progressed at an equal pace in athymic nude mice, 
which lack thymus-derived T cells, irrespective of the 

treatment with anti-ACBP/DBI mAb (Fig. 3D, E). Thus, 
the tumor growth-reducing effect of the ACBP/DBI anti-
body alone must rely on T cell-mediated cancer immu-
nosurveillance. To investigate the impact of ACBP/DBI 
on therapy-induced immunosurveillance, we treated 
NSCLC-bearing mice with anti-ACBP/DBI mAb together 
with a synergistic chemoimmunotherapy regimen involv-
ing oxaliplatin and PD-1 blockade [38] (Fig. 3F, G). The 
combination of anti-ACBP/DBI mAb and chemoimmu-
notherapy reduced tumor progression (in 17/21 mice) 
and increased survival beyond 60 days (in 13/21 mice) 
compared to isotype control-injected mice that always 
developed rapidly expanding tumors (Fig. 3H, I).

In sum, these results suggest that ACBP/DBI subverts 
immunosurveillance of NSCLC, notably in the context of 
chemoimmunotherapy.

Enhanced anticancer T cell response upon ACBP/DBI 
neutralization
Next, we switched to another orthotopic cancer model, 
namely, cutaneous fibrosarcoma MCA205 tumors 
implanted in mice that were subjected to ACBP/DBI 
neutralization by active or passive vaccination. Subcu-
taneous MCA205 tumors responded more efficiently to 
chemoimmunotherapy in mice that had been vaccinated 
with KLH-ACBP/DBI [24] (Fig. S4G) as compared to 
mice that had been vaccinated with KLH alone (Fig. S4D-
I). Similarly, repeated i.p. injections of the anti-ACBP/
DBI mAb led to superior outcome of chemoimmuno-
therapy compared to isotype control mAb injections (Fig. 
4A-C, Fig. S4G, H). We conclude that, in preclinical mod-
els, ACBP/DBI neutralization boosts the efficacy of che-
moimmunotherapy against both NSCLC and sarcoma.

In response to vaccination with chemotherapy-treated 
MCA205 cells that were engineered to express the model 
antigen ovalbumin (OVA), T cell responses against 
dominant MHC class-I and MHC class-II-restricted 
OVA-derived peptides were enhanced by ACBP/
DBI neutralization at the level of IFNγ secretion (Fig. 
4D,E, Fig. S4J-L). Moreover, at the functional level, after 
vaccination with dying OVA-expressing MCA205 cells, 
the control of sarcomas arising from rechallenge with live 
cells was improved by anti-ACBP/DBI mAb (Fig. 5G, H).

Altogether these results suggest that neutralization 
of ACBP/DBI stimulates T cell-mediated anticancer 
immunosurveillance.

Mechanisms of the immunostimulatory action of ACBP/DBI 
neutralization
To elucidate the immunostimulatory mechanisms of 
ACBP/DBI neutralization, we implanted MCA205 sarco-
mas orthotopically (under the skin) of immunocompetent 
mice and subjected them to combinations of chemo-
therapy, PD-1 blockade and ACBP/DBI neutralization in 
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short-term experiments in which the size of the tumors 
was comparable at endpoint (Fig.  2F), two days after 
one single cycle of immunotherapy (Fig.  5A). High-
dimensional immunofluorescence cytometry (for gating 
strategy see Fig. S5AB) allowed to detect major shifts in 

tumor-infiltrating T lymphocyte subpopulations (Fig. 5B-
K) but no major alterations in myeloid cells (Fig. S5C).

The combination treatment (chemoimmunother-
apy + ACBP/DBI blockade) was more efficient than each 
treatment modality alone (chemoimmunotherapy or 

Fig. 3  ACBP/DBI neutralization improves immunosurveillance of NSCLC in mice. Anti-ACBP/DBI mAb or isotype-matched control mAb was repeatedly 
injected intraperitoneally (i.p.), starting two days before intravenous (i.v.) injection of TC1 NSCLC cells expressing luciferase (TC1-Luc) into immunocom-
petent C57Bl/6 mice (A). Anti-ACBP/DBI mAb reduced the progression of orthotopic NSCLC cancers developing in the thoracic cage, as determined by 
chemoluminescence imaging (B, C). Alternatively, ACBP/DBI neutralization was performed in immunodeficient Hsd:Athymic Nude-Foxn1nu mice starting 
from tumor detection (D). Repeated injections of anti-ACBP/DBI mAb failed to slow down tumor progression in these athymic animals (E). In immuno-
competent C57Bl/6 mice bearing orthotopic NSCLC (TC1-Luc), neutralization of ACBP/DBI was achieved by recurrent injections of monoclonal antibody 
(mAb) during chemoimmunotherapy (CT + anti-PD1), following the schedule (F). Tumor growth was monitored in situ by bioluminescent imaging (G). 
ACBP/DBI neutralization improved mouse survival both with and without chemoimmunotherapy (H) by slowing down tumor growth (I). Individual 
longitudinal tumor growth curves from two independent experiments are displayed in the background, the group tendencies are represented by locally 
weighted scatterplot smoothing curves (5 points per smoothing window). Statistical comparisons were performed by log-rank (Mantel-Cox) tests for 
survival and by 2-way ANOVA after log-transformation for tumor bioluminescence
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ACBP/DBI blockade) in increasing infiltration by cyto-
toxic T lymphocytes (CTL, defined as CD3+CD8+) 
and T helper cells (TH, defined as CD3+CD4+Foxp3−), 
but decreasing regulatory T cells (TREG, defined as 
CD3+CD4+Foxp3+), hence improving the CTL/TREG and 
CTL/ TH ratios (Fig.  5B-I). Moreover, the combination 
treatment stood out for reducing the frequency of CTL 
and TH expressing the exhaustion marker LAG3 (Fig. 5J, 
K). Non-supervised clustering of CD4+ and CD8+ T 
cells by means of the opt-SNE method based on 8 acti-
vation/exhaustion markers allowed to identify multiple 
subpopulations (Fig.  5L, M). The comparison of cluster 
distribution between tumors from mice undergoing che-
moimmunotherapy alone or in combination with ACBP/

DBI blockade (Fig. 5M, N) revealed an absolute depletion 
of TREG cells with a non-exhausted ICOS+GITR+Lag3− 
phenotype (Fig. 5O) and an expansion of TH with an acti-
vated ICOSmed GITR+ Lag3− PD1− phenotype (Fig. 5P). 
Other exhaustion markers than LAG3 (ICOS, GIT4, 
TIM3, TIGIT, PD1 and VISTA) were particularly abun-
dant in CD4+ subset Q and in CD8+ subsets d and c 
(Fig.  5M, upper panel). Among these subpopulations, 
only CD8+ subset d was significantly reduced by anti-
ACBP/DBI antibody (Fig. 5M, lower panel).

To further characterize the ACBP/DBI effects on the 
cancer immune infiltrate, we used a similar experimen-
tal setting as above (though restricted to only two groups: 
chemoimmunotherapy alone or in combination with 

Fig. 4  ACBP/DBI neutralization improves immune responses against tumor antigens. Mice bearing MCA205 skin fibrosarcoma were treated with che-
moimmunotherapy (oxaliplatin plus PD-1 blockade) alone or in combination with ACBP/DBI neutralization (A), which slowed tumor growth (B) and 
prolonged survival (C). The immune response against tumor antigens was tested by subcutaneous injection of MCA205 expressing ZsGreen fluores-
cent protein coupled to ovalbumin (OVA) after in vitro treatment by chemotherapy (oxaliplatin), with concomitant intraperitoneal injections of ACBP/
DBI-neutralizing mAb or its isotype (5 mg/kg) (D). Six days after the injection of such dying tumor cells, the draining lymph nodes were collected 
and stimulated with the major histocompatibility complex-I (MHC-I)-dominant (SIINFEKL) or MHC-II-dominant (ISQAVHAAHAEINEAGR) OVA peptides to 
quantify interferon-γ (IFN-γ)-producing T cell clones by ELISPOT (E,F). The same experimental setup was repeated and followed by the injection of live 
MCA205-OVA tumor cells two weeks after the first challenge (G) and measurement of tumor size at day 20 (N). Tumor growth curves were compared 
by linear mixed effect modeling on the https://kroemerlab.shinyapps.io/TumGrowth/ platform. Survival was tested by log-rank (Mantel-Cox) test. In the 
vaccination experiments, the number of spots per biological replicate were compared by one-sided Mann-Whitney rank test and the endpoint tumor 
sizes by one-sided Student’s t-test
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Fig. 5  ACBP/DBI-neutralization improves the immune control of MCA205 carcinomas during chemoimmunotherapy. T cell populations of the tumor mi-
croenvironment were analyzed by flow cytometry eight days after the beginning of chemoimmunotherapy (consisting of one cycle of chemotherapy, CT, 
and one cycle of immune checkpoint blockade, anti-PD1, A). The number of specific cell populations relative to the total analyzed single cells is presented 
for cytotoxic T lymphocytes (CTL, CD3+CD8+, B) and CD4+ T lymphocytes (C). Within the CD4+ population, CD4+, FoxP3− helper T cells (TH, D) and CD4+, 
FoxP3+ regulatory T cells (TREG, E) were analyzed separately. The good-prognosis ratios between the counts of CTL and TREG was increased by anti-ACBP/
DBI injections in the context of chemoimmunotherapy (F), while this was not the case for the CTL/CD4+ (G) or CTL/TH ratios (H), indicating an increase in 
cancer-directed cytotoxicity. The percentage of CD4+ T cells that were immunoregulatory (FoxP3+) was decreased (I). Finally, the proportion of CTL (J) and 
TH (K) cells expressing the exhaustion marker LAG3 decreased with the combination therapy. Unsupervised clustering was applied to CD4+ and CD8+ T 
cells subsets on 8 phenotypic markers: the FoxP3 nuclear factor, two costimulatory surface receptors (inducible T cell costimulator, ICOS; glucocorticoid-
induced TNFR-related protein, GITR) and five early-to-late exhaustion surface markers (lymphocyte activation gene-3, LAG3; T cell immunoglobulin and 
mucin containing protein-3, TIM3; T cell immunoreceptor with Ig and ITIM domains: TIGIT; Programmed cell death protein 1, PD1; and V-domain Ig sup-
pressor of T cell activation, VISTA). Eight populations were defined within the CD4+ (α-θ) and CD8+ (a-h) cells (L), and the median fluorescence of each 
marker is represented as a heatmap (M). The relative abundance of these eight clusters was compared between chemoimmunotherapy alone or in 
combination with ACBP/DBI neutralization by Chi2 test and represented as fold-change (M). Manual gating was applied to recapitulate features of the 
two most differentially abundant clusters (N): the β-like cluster of TREG (CD4+;FoxP3+;GITR+;Lag3−, O) and the γ-like cluster of TH (CD4+;FoxP3−;ICOSmed;GIT
R+;Lag3-, P), which were depleted and increased, respectively, by the combination therapy. Compensation, scaling and gating strategies were performed 
using the omiq.ai platform. Data from three independent experiments are presented, population relative counts were cleaned up by ROUT test (outlier 
threshold = 1%), and p-values were calculated by one-way ANOVA with Sidak’s correction for multiple comparisons
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ACBP/DBI blockade) and performed single-cell RNA-
seq (scRNAseq) analyses of purified CD4+ and CD8+ T 
cells (at a 1:1 ratio). This procedure identified 9 major T 
cell subpopulations (Fig.  6A, B), with significant shifts 
between the two groups. Thus, anti-ACBP/DBI mAb 
reduced the frequency of TREG cells (cluster 2) and ele-
vated that of CTL (clusters 0, 3, 6) (Fig. 6C), confirming 
the results obtained by immunofluorescence cytometry 
(Fig. 5). More detailed analyses of the abundance of spe-
cific mRNAs revealed an ACBP/DBI neutralization asso-
ciated increase in CTL effector molecules (e.g. Gzmb, 
Nkg7), a decrease in inhibitory immune checkpoint mole-
cules (Pdcd1/PD-1, Ctla4) and an increase in stimulatory 
immune checkpoint markers (Icos, Cd28) on a per-cell 
basis across several T cell clusters (Fig.  6D). Computa-
tion of pseudo-time trajectories suggested a decreased 
propensity of CD4+ T cells to adopt an exhausted or 
regulatory end-stage phenotype in absence of ACBP/DBI 
blockade (Fig. 6E). In contrast, the most important shifts 
in CD8+ T cells induced by ACBP/DBI blockade appear 
to occur within cluster 0 at early stage (Fig. 6F). Differ-
ential gene expression analyses unveiled effect of ACBP/
DBI blockade that affected each of the clusters, alone, 
or in combination (Fig. S6, Table S4). Of note, 5 genes 
(Gadd45b, Lmna, Lgals3, Ubc, Csf1), were found to be 
upregulated in all (CD4+ or CD8+) T cell clusters. Among 
these genes, Lmna, which encodes for Lamin A/C, an 
obligatory T cell activation marker [39, 40], stood out for 
being upregulated by all T cell clusters (Fig. 6G, Fig. S6).

In sum, the immunophenotypic and transcriptomic 
analysis of tumor-infiltrating T lymphocytes provides 
a congruent demonstration that ACBP/DBI blockade 
augments T cell activation in all T cell subpopulations, 
improves CTL effector functions, but blunts TREG 
activity and reduces the expression of major inhibitory 
immune checkpoints.

Discussion
Although cancer research has been focusing until 
recently on (epi)genetic alterations in (pre-)malignant 
cells to understand oncogenesis and tumor progression, it 
has become clear over the last decade that extra-tumoral 
factors including aging, whole-body metabolism and 
(neuro-)endocrine factors play a major role in determin-
ing the trajectory of malignant diseases [41–43]. In the 
present paper, we describe that ACBP/DBI might be an 
important determinant in the ecosystem that influences 
cancer formation and progression. Indeed, ACBP/DBI 
has a pro-aging effect and increases with age [8, 9], which 
is arguably the most important risk factor for neoplasia 
[44]. ACBP/DBI also increases with BMI [6, 8], indepen-
dently of age [7, 8], knowing that obesity is among the 
most important modifiable risk factors of cancer [45]. 
Here, we show that, independently of age and BMI, an 

elevation of ACBP/DBI is associated with increased risk 
to develop cancer. As a possible interpretation, this might 
indicate that as a potential biomarker of (premature) bio-
logical aging, elevations of ACBP/DBI reflect a general 
(patho)physiological stage that is prone to cancerization.

In our cohort, before the diagnosis of a new cancer, 
patients with gTP53m had increased levels of ACBP/
DBI plasma concentrations as compared to controls. 
The same applied to patients with BRCA1/2 mutations. 
Moreover, in non-syndromic, apparently healthy partici-
pants that volunteered to be enrolled in a trial evaluat-
ing dietary supplements (revealing no overall effects of 
antioxidant preparations) [21, 22], ACBP/DBI plasma 
levels were elevated before the development of malignant 
disease, especially if cancer diagnosis was imminent (≤ 3 
years) or when the yet-to-be-discovered neoplasia affects 
the lung. Both sarcomas (part of the core spectrum of the 
Li-Fraumeni syndrome) [46] and NSCLC (which is the 
most frequent carcinoma affecting the bronchial tract 
and frequent in gTP53m carriers) are known to be under 
strong immunosurveillance [47, 48], meaning that they 
can only develop after escaping immune recognition. 
Moreover, even advanced NSCLC can be successfully 
delayed in its progression with immunotherapy, often in a 
neo-adjuvant setting in combination with chemotherapy 
[49]. This suggests that cancer cell-extrinsic factors such 
as ACBP/DBI (measured in the plasma) might modulate 
immunosurveillance to affect the onset of malignant dis-
ease as well as treatment responses.

Previous studies have suggested that ACBP/DBI 
expressed by NSCLC cells contributes to disease patho-
genesis. Thus, ACBP/DBI mRNA levels are overabundant 
in NSCLC, correlating with poor prognosis and tumor 
stage [16]. Knockdown of ACBP/DBI reduced NSCLC 
proliferation in cell culture, suggesting a cell-autono-
mous effect [16]. Here, we found that high extracellular 
(plasma) levels of ACBP/DBI predicted future NSCLC 
diagnosis and that neutralization of extracellular ACBP/
DBI (by means of neutralizing antibodies) reduced 
NSCLC progression in preclinical models. Although, we 
cannot exclude that the intra- and extra-cellular pools 
of ACBP/DBI are connected to each other, it appears 
improbable that mAb-mediated ACBP/DBI neutraliza-
tion has a direct effect on NSCLC cells because the anti-
NSCLC effect was only observable in the presence of an 
intact immune system.

ACBP/DBI reportedly increases in a variety of pro-
inflammatory conditions including diabetes [50], ste-
atohepatitis [51], osteoarthritis [52], infection by human 
immunodeficiency virus (HIV) [53], severe COVID-
19 [54], as well as surgery complicated by inflamma-
tion [55]. Mouse experimentation indicates that ACBP/
DBI neutralization has strong anti-inflammatory effects, 
hence dampening the activation of the inflammasome 
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Fig. 6  Single-cell RNA sequencing of the T cell immune infiltrate. Uniform manifold approximation and projection (UMAP) represents the 9 clusters of T 
cells infiltrating the MCA205 tumors 10 days after the beginning of chemoimmunotherapy (CT + anti-PD1), with or without ACBP/DBI-neutralizing mono-
clonal antibody (anti-ACBP/DBI) (A). Three CD4+ (1, 2 and 7) and four CD8+ main clusters (0, 3, 4 and 6) were identified based on their top differentially 
expressed genes and the expression of typical phenotypic genes, plotted as a heatmap of Z-score average expression per cluster (B). The remaining two 
clusters [5, 8] were constituted of mixed populations of CD4+ and CD8+ T cells. The repartition of cells per cluster in each sample was different between 
anti-ACBP/DBI-treated and isotype-treated samples, as tested by Chi2 test (C). Within each cluster, the phenotypic changes induced by anti-ACBP/DBI 
treatment were represented as a dot plot (D). In this graph, dot sizes represent the percentage of cells expressing the gene in the cluster, and colors 
indicate the log2 fold-change of gene expression between conditions. A Monocle3 trajectory analysis of the CD4+ (E) and CD8+ T cells (F) unveiled dif-
ferential accumulation of the T cells along the trajectory between conditions, with less cells at the terminal side of the trajectories in anti-ACBP/DBI treated 
samples. Cells are represented as dots and colored based on local density, and the trajectory (starting on the white dot and colored by pseudo-time) is 
overlaid on the UMAP projection. The essential T cell activation gene Lmna (coding for lamin A/C) was overexpressed in all clusters, as pictured on the 
violin plot (G). Expression data were log2-normalized by cluster and condition, and p-values were computed by Wilcoxon test between the two condi-
tions in each cluster
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and the production of inflammatory cytokines includ-
ing interleukin(IL)-1b (IL1b) and IL6 [15]. Inflamma-
tion is well known to contribute to the development of 
clinically detectable NSCLC as indicated by the disease-
preventive effects of canakinumab, an IL-1b -neutraliz-
ing antibody in patients with cardiovascular disease [56]. 
Hence, one possible explanation for the positive effects 
of ACBP/DBI neutralization on mouse NSCLC might 
be the suppression of pathogenic inflammation, which is 
immunosuppressive.

Beyond these speculative aspects, in the MCA205 
skin sarcoma model, it appears clear that ACBP/DBI 
neutralization boosts anticancer immune responses in 
the context of chemoimmunotherapy, hence improv-
ing tumor growth control and shifting the immune 
infiltrate, especially at the level of T lymphocyte sub-
populations. Among the most spectacular changes are a 
relative decrease in the abundance of TREG cells (as com-
pared to CTL or TH cells), improved CTL effector func-
tions (as suggested by the upregulation of components 
of cytotoxic granules) and reduced expression of major 
inhibitory immune checkpoints (CTLA-4, LAG-3, PD-1) 
on most T cell subpopulations. Among the most salient 
effects of ACBP/DBI blockade appears the upregulation 
of the mRNA coding for lamin A/C, which is a marker 
of T cell activation [40], and indispensable for this activa-
tion to occur because its genetic ablation abolishes T cell 
response in vivo [39]. Of note, lamin A/C has potent anti-
aging effects (and actually is mutated in the most severe 
human progeria, Hutchinson-Gilford syndrome) [57], 
perhaps molecularly connecting to the pro-aging effects 
of ACBP/DBI. Indeed, aging is (one of ) the most impor-
tant risk factor(s) for cancer diagnosis and progression 
[58]. Based on the results shown here, it appears possible 
that the age-related increase in ACBP/DBI might pro-
vide one of the molecular links explaining the association 
between aging and cancer.

Conclusions
Elevations in ACBP/DBI have previously been associ-
ated with cardiometabolic risk factors as well as an aug-
mented probability of developing cardiovascular disease 
[9]. Here, we extend this health-undermining effects of 
ACBP/DBI to cancer. Clinical associations and experi-
mental interventions suggest that ACBP/DBI favors 
tumor development/progression through the subversion 
of immunosurveillance. Indeed, ACBP/DBI neutraliza-
tion improved the outcome of immunotherapy or che-
moimmunotherapy against breast cancer, non-small-cell 
lung cancer and sarcoma, suggesting but not proving 
that these findings might apply to other cancers as well. 
Future investigation must clarify whether ACBP/DBI 
constitutes a valid target for the prevention or clinical 
management of neoplastic disease.
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