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Abstract—We propose a new method to attenuate the nuisance
of the flux halo of stars in hyperspectral images and recover
the spatio-spectral sparse signals of forming extrasolar planets.
The proposed approach takes into account the punctuality of
the sources and the spatio-spectral point spread function of the
instrument. We show that our linear and parametric method
based on polynomial modulation avoids distortions in the planets
spectra compared to present algorithm involving frequency
filtering. Simulated data demonstrate the enhancements. We also
study the influence of model complexity on the quality of the
results. We verify the improvement on real data of observations
of the PDS 70 system with the MUSE instrument.

Index Terms—Hyperspectral images, Detection, Spectral un-
mixing, Protoplanets characterization, Polynomial modulation.

I. INTRODUCTION

Young analogues of Jupiter form within gas-rich disks
surrounding stars during their first 106 years [1]. The accretion
of the gas (mostly Hydrogen and Helium) onto the planet
embryo (protoplanet) is producing narrow emission lines at
specific wavelengths within the optical and near-infrared spec-
tral range (0.4-2.5µm). These sparse signals have been recently
targeted by ground-based telescopes equipped with Integral
Field Spectrographs (IFS), allowing to record hyperspectral
images of the sky [2], [3]. Actually, the contrast between the
emission lines of the protoplanets and the thermal continuum
emission from the star is higher at these specific wavelengths
and ease the detection of the planets. The emission lines
can also be used to study the poorly understood accretion
mechanisms occurring onto the protoplanets [4], [5].

The Multi Unit Spectroscopic Explorer (MUSE) of the Very
Large Telescope (VLT) [6] is a powerful instrument for this
task. It is an IFS operating at optical wavelengths (0.47-
0.93µm) and medium-spectral resolution (Rλ = λ/∆λ from
2000 to 4000). It allows to target the bright Hα emission
line (6583Å) of protoplanets. The instrument is equipped with
adaptive optics, in order to restore the angular resolution of
the telescope [7], [8] required for detecting protoplanets close
to their host stars. MUSE produces stacks of monochromatic
images whose pixels correspond to 0.025” size on sky and
offer a hyperspectral data diversity paving the way to leverage
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innovative stellar halo subtraction methods. While main state-
of-the-art detection approaches to tackle the presence of the
halo rely on data based differential methods that require
difficult registration or rescaling steps, MUSE led to the direct
detection of two protoplanets (the only two known) around the
young star PDS 70 thanks to techniques using this spectral
diversity [9]. However, present halo subtraction methods are
based on non-linear and non-parametric models, which distort
planetary spectra and limit the efficiency and robustness of the
detections obtained on these data.

In this article, we start describing the data and the detection
problem as a sources separation problem. We then explain the
details of our new robust method (allowing simultaneously
better modeling of the star contribution and better preservation
of the sought signals of protoplanets). We conclude with
simulations results highlighting our solution improvements,
and with on-sky data results to connect with astronomy reality.

II. SOURCES MIXTURE PROBLEM

A. Notations and Definitions

a, A, A respectively denote a vector, a matrix and a cube.
The set of the first ℓ integers is [ℓ] = {1, . . . , ℓ}.

A hyperspectral image is a data cube. It is both a stack of
monochromatic images (spatial matrices) at wavelengths λi

for i ∈ [ℓ], ℓ being the number of wavelengths, and a matrix
of spaxels (spectral pixels), i.e. vectors of spectra acquired at
positions (x, y) ∈ [n] × [m], n and m being respectively the
number of rows and columns of the monochromatic images.
For a hyperspectral cube A ∈ Rℓ×n×m, the spaxel at position
(x, y) is denoted axy ∈ Rℓ, and the ith monochromatic image
is denoted Ai ∈ Rn×m.

Finally, ⊗ denote the outer product between vectors or
matrices, ∗ the Fredholm operator (convolution generalization
to a potentially variant input), and · the Hadamard (entrywise)
product between vectors of the same size.

B. Observation model

Stars and planets are not resolved by the optical imaging
system, and are consequently considered as point sources. We
define A as the perfect observation cube of a number u of
point sources (e.g., unresolved planets or stars) at position
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(xj , yj) with spectrum ǎ(j) respectively, for j ∈ [u]. This
ideal cube thus expresses as:

A =

u∑
j=1

ǎ(j) ⊗∆(j) , (1)

where ∆(j) ∈ Rn×m is the indicator matrix which equals 1
at position (xj , yj), 0 otherwise.

However, due to diffraction, the observation cube O is a
degraded version of A. This is blurred by the spatio-spectral
Point Spread Function (PSF) of the instrument, assuming
that the optical imaging system is linear. As a complete
modeling of the PSF is complex, the following spatio-spectral
separation, which gives realistic results, is commonly used:
PSFi(i

′, x, y) = LSFi(i
′) × FSFi(x, y), with LSF the spec-

tral Line Spread Function and FSF the spatial Field Spread
Function, both wavelength dependent in i. This allows to
understand the observation cube wavelength by wavelength.
We note a(j) = LSF∗ǎ(j) ∈ Rℓ the spectrum of the jth source
blurred by the LSF operator. ϕ(j)

i = FSFi ∗∆(j) ∈ Rn×m is
the FSF matrix1 at the ith wavelength and centered in (xj , yj).
Then, a noiseless observation of the ith monochromatic image
of the cube O, degraded by the instrument response, reads:

Oi =

u∑
j=1

a
(j)
i ϕ

(j)
i , ∀i ∈ [ℓ] , (2)

where a
(j)
i is the ith entry of the jth source spectrum a(j).

Fig. 1. Stellar cube after spatio-spectral spread, from PDS 70 star observation
by MUSE simulation. On the right, three monochromatic images are shown
at three different spectral channels λ0, λ1840 and λ3680. On the left, three
spaxels are shown at different distances from center, highlighting spectra
distortion caused by spatial spread evolution with wavelength.

In the perfect case where the instrument is diffraction lim-
ited with a circular aperture, the FSF is theoretically an Airy
disk. However, due to the complex deformation caused by the
adaptive optic system, modeling the FSF is difficult. We rather
define the Chromatic Spread Function (CSF), which illustrates
the (position-dependent) spectra deformation as highlighted in
Figure 1. Let Φ(j) = (ϕi)i∈[l] ∈ Rℓ×n×m be the cube of the
FSF matrices centered around the jth source. Then the CSF

1The FSF is L1-normalized such that the flux of the source is preserved.

vector of the jth source at position (x, y), denoted by α
(j)
xy , is

defined as the (x, y) spaxel of the FSF cube Φ(j). This leads
us to represent the cube O as a matrix of spaxels, defined as:

oxy =

u∑
j=1

a(j) ·α(j)
xy , ∀(x, y) ∈ [n]× [m] . (3)

For the considered problem, the astrophysical sources reduce
to a single star hosting up ≥ 0 protoplanets (see Fig. 2). The
data cube can be decomposed as O = S +P , where S and
P are the stellar and the (proto)planets cube respectively.

Fig. 2. Real PDS 70 system image by MUSE (spectral integration of all the
wavelengths) with PDS 70 b theoretical observed planet spectrum in cyan
and PDS 70 theoretical observed star spectrum in magenta. Magenta square
indicates PDS 70 position while cyan squares indicate PDS 70 bc positions.

To complete our model, we finally consider an electronic
noise which is i.i.d., centered, and symmetrically distributed.
We assume here that the photon noise (following a Poisson
distribution depending on flux) is not significant where we
expect to find protoplanets. All these assumptions result in
equation (4), where the observed hyperspectral data cube D
is composed of the cube of the planets P (the sought sources),
the cube of the star S (the strong nuisance component) and
the cube of observation noise E:

D = S +P + E. (4)

III. ESTIMATED NUISANCE SUBTRACTION

We present in this part all the details of our method, the
aim of which is to solve the problem of spectrum distortion
after subtraction, using a linear parametric model of the CSF.

In hyperspectral data, the estimation P̂ of the cube P
amounts to detect the positions of a few possible planets
and to characterize them from their spectrum. We assume the
presence of the Hα line at 6563Å, in both the stellar spectrum
and protoplanets spectra. This line, exhibiting an elevated
flux compared to the continuum (low-frequency component
of the spectrum signal), serves as the most reliable indicator
of accretion and consequently the formation of planets. We
primarily focus on detecting this signal which is both spatially
and spectrally sparse, as illustrated in Fig. 2. The main
challenges lie in the fact that the Hα line is also present in the
spectrum of the star (due to similar phenomena), associated to
a flux which is much higher than the flux of the protoplanets.
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Estimation methods (as state-of-the-art ones) are based on
the stellar halo subtraction:

P̂ = D − Ŝ . (5)

i.e. the direct subtraction of the estimated nuisance Ŝ. Ac-
cording to (4), perfect stellar halo estimation Ŝ = S leads
to a planet estimate P̂ = P + E which is still corrupted
by the observation noise E . This latter is in general much
fainter than the stellar halo and can also be reduced by usual
filtering methods. Based on the previous data description (3),
estimating Ŝ comes to estimate ŝ the star’s degraded spectrum
s and α̂xy the instrument CSF αxy , allowing spaxel by spaxel
halo estimation and avoiding any spatial model of the FSF:

ŝxy = ŝ · α̂xy . (6)

On the one hand, flux integration of the entire field on each
wavelength is a faithful estimate ŝ of s according to (2). It
is assumed here that the total flux of the planets remains
low compared to that of the star. However, an arbitrary
selection of the noisiest spaxels is discarded beforehand and
a robust estimate is computed based on their median for each
wavelength. On the other hand, α̂xy is the key coefficient of
the method to be learned for each spaxel. This is where we
want to focus our efforts to improve the current method.

A. State-of-the-art

PDS 70 b and PDS 70 c were discovered subtracting a
spaxel-by-spaxel estimation of the star [9]. Following Eq. (6),
the method use a “reference spectrum” r (obtained by spatial
averaging of each monochromatic image) multiplied by an
“alpha coefficient”:

α̂xy = SGd,w (dxy./r) , (7)

with SGd,w the Savitzky-Golay filter of degree d and spectral
window size w, ./ the Hadamard (entrywise) division and dxy

the data spaxel.
However, this method precludes any physical interpretations

from estimated spaxels because of the strong distortion of
estimated spaxels of planets. It intrinsically removes continua
of spaxels and it notably oversubtracts stellar flux around the
Hα line depending on the relative line-continuum flux ratios
of the star and the planets (because of the restricted spectral
localization of the Savitzky-Golay window). Moreover, from a
statistical perspective, a significant limitation of this approach
stems from the non-linear division operation which is prone to
numerical instabilities. A small variation in the denominator
(i.e., the estimated stellar spectrum) can result in significant
changes, leading to unstable estimates that overfit the observed
data.

B. Linear parametric estimation of the CSF

Assuming smoothness of the CSF, we propose to model
it at each position (x, y) by a polynomial function of the
wavelengths λi:

αxy =

(
d∑

k=0

λk
i β

(k)
xy

)
i∈[ℓ]

. (8)

Following (6), this amounts to modulating the reference stellar
spectrum ŝ by a polynomial of degree d :

sxy =

(
d∑

k=0

λk
i ŝiβ

(k)
xy

)
i∈[ℓ]

. (9)

The degree, or order, d of the polynomial is a hyperparameter
controlling the complexity of the model (see section III-C for
more details).

With this parametric model, the estimation of the stellar
contribution is reduced to the estimation of the polynomial
coefficients β

(k)
xy . This expresses as a linear regression model:

dxy = Xβxy + εxy, (10)

where the features corresponding to the column vectors of the
design matrix X ∈ Rℓ×d+1 is defined as xk = λ·k · ŝ ∈ Rℓ

and λ·k denotes the vector of wavelengths raised to the power
of k, for k = 0, . . . , d. Here βxy ∈ Rd+1 is the vector of the
unknown regression coefficients. Its estimation can be directly
obtained by ordinary least squares (OLS) method:

β̂xy = argmin
β

||dxy −Xβ||22 = (XTX)−1XTdxy . (11)

However, this polynomial regression problem with equally
spaced wavelengths is ill-conditioned as the degree d of
the polynomial increases. In fact, the Gram matrix XTX
becomes ill-conditioned, even for moderate or low degree2. As
a result, the OLS estimator (11) is calculated with considerable
error and is unreliable. Then, the use of Legendre orthogonal
polynomials allows us to mitigate the ill-conditioning problem
by cancelling multi-collinearity between different polynomial
terms. The orthogonality also allows the coefficients of each
term to be estimated independently, simplifying the interpre-
tation of the model. This results in a change of polynomial
basis and the new features read now, for k = 0, . . . , d:

xk = πk(λ) · ŝ,

with πk(λ) ∈ Rℓ a vector where each entry corresponds to
the value of the kth (shifted) Legendre polynomial πk [10]
evaluated at the respective wavelength in λ. Finally, these
features are centered, except for x0, and L1-normalized:

x′
0 =

x0

||x0||1
and x′

k =
xk − xk

||xk||1
, ∀k ∈ [d] . (12)

This makes it possible to construct a quasi-orthogonal design
matrix X for estimating polynomial coefficients in a stable
way3 from (11) in the unconstrained case. An additional
advantage of this parameterization is that the coefficients have
easier interpretations: the first coefficient β

(0)
xy represents the

total flux of the source, β
(1)
xy controls the linear modulation

of its spectrum and the other coefficients control higher-
frequency modulations. This allows to possibly enforce box

2For equally spaced regression variables in the [0, 1] range, the Gram matrix
for the polynomial regression problem becomes equivalent to an Hilbert matrix
which is known to be very ill-conditioned.

3This is (asymptotically with ℓ) an orthogonal basis when the reference
spectrum ŝ is a non-zero constant.
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constraints on these parameters in the least-squares fit to reg-
ularize the solution, using standard constrained optimization
algorithm as in [11]. For instance one can ensure that the
flux of the estimated stellar halo spatially decreases with
distance from the star (0 ≤ β

(0)
xy ≤ txy for a spatially

dependent decreasing threshold txy), or that the linear trend
in the modulation decreases with wavelengths (β(1)

xy ≤ 0) as
physically expected.

Hereafter, we assume for simplicity that the coefficients
have been estimated through (unconstrained) OLS as given
in (11), but using the Legendre based design matrix. Then the
stellar halo estimate reads:

ŝxy = ΠXdxy , (13)

where ΠX = X(XTX)−1XT is the orthogonal projection
matrix onto the image of X .

C. Orthogonal decomposition of the estimation

Leveraging the observation model (4) and the stellar halo
estimate (13), we can derive the orthogonal projection for each
component of the data:

ŝxy = ΠXsxy +ΠXpxy +ΠXexy . (14)

This shows the contribution of each component to halo es-
timation. First, part of the halo which is orthogonal to the
modulated reference spectrum cannot be estimated. Last, noise
or planet components may also contribute to the estimate of
the star’s spaxel if they can be overfitted by the modulation
model. One benefit of the proposed approach over state-of-the-
art methods is our ability to interpret and quantify the various
sources of estimation error. By subtraction (5), we obtain now
the decomposition of the estimate of the planets’ spaxels:

p̂xy = Π⊥
Xsxy +Π⊥

Xpxy +Π⊥
Xexy , (15)

where the matrix Π⊥
X = Iℓ −ΠX is the projection onto the

orthogonal complement to the image of X .
These results are used in section IV for tuning the polyno-

mial degree d and evaluating the estimation performances on
simulated datasets.

IV. RESULTS

We consider the PDS 70 system observed with the MUSE
instrument. The set of wavelengths is Λ = {λ0 + iλstep}i∈[ℓ]

with λ0 ≈ 4749.71Å and λstep = 1.25Å according to data
headers. While data cubes have more than 300 rows and 300
columns, we zoom on a smaller cube with n = 40 and m = 40
(1” in the sky) centered around the PDS 70 star where the
sought planets PDS 70 b and c are supposed to be.

For the generation of synthetic cubes, we consider first sim-
ple cases where Hα contrasts (i.e., ratio of planet’s spectrum
flux to that of the star at Hα line wavelengths) are 100 times
bigger than the estimated real ones (1.7×10−3 and 8.3×10−4

respectively for PDS 70 b and PDS 70 c, from state-of-the-art
results). The simulated FSFs are Moffat functions, and their
Full Width at Half Maximum (FWHM) decreases inversely

linearly with wavelength. The noise E is finally generated with
i.i.d. N (0, σ2) entries (with values according to previous noise
estimations [9]).

A. Hyperparameter tuning for the polynomial order d

The polynomial order d controls the bias/variance trade-off
of the star and planets estimation. For small d, the model is
simpler and may underfit the stellar spectrum. Conversely, for
large d, the model is more flexible and may overfit the potential
planets. For the usual squared loss, the optimal value for d is
obtained by minimizing the mean squared error (MSE):

MSE = E
(
||p̂xy − pxy||2

)
. (16)

Straightforward computations yield:

MSE = ||ΠXpxy||2 + ||Π⊥
Xsxy||2 + E(||Π⊥

Xexy||2) , (17)

where E(||Π⊥
Xexy||2) = (ℓ− (d+ 1))σ2.

Fig. 3. Mean Squared Error decomposition as given in (17) at Hα line spectral
channel. The MSE (solid light green line) is the sum of the overfitting error
of the planets ||ΠXpxy ||2 (dash-dotted turquoise line), of the underfitting
error of the star ||Π⊥

Xsxy ||2 (dotted light orange line) and of the underfitting
error of the noise E

(
||Π⊥

Xexy ||2
)

(dashed yellow line).

Fig. 3 shows the evolution of the MSE as a function of d.
On this simulation, a polynomial degree d = 4 is the best
choice for Hα line recovery. Note however that this optimal
value depend on the FSF/CSF of the instrument. Their true
behavior is likely more complicated than what we achieved in
our simulation, using a model of FSF with FWHM decreasing
inversely with the wavelength.

B. Spectral simulation results

The brightness of the planets in our simulation highlights the
self-subtraction effect at the wavelengths of the Hα line (see
Fig. 4) for the state-of-the-art approach described in section
III-A. The filter parameters (linear fits on a sliding window
of 101 MUSE spectral bins) are fixed as in [9]. Figure 5
illustrates that our method can efficiently correct the self-
subtraction with d = 4 as suggested in figure 3. This side effect
is corrected by the limited complexity of the polynomial model
compared to state-of-the-art filter. Moreover, while continuum
(low-frequency spectrum component, in infrared for planets)
is completely removed by this low-pass filter, our method
keeps part of it. It is distorted and therefore unusable for
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Fig. 4. Simulated PDS 70 b spaxel subtraction results with the state-of-the-
art method. Top panel compares the estimated planets spaxel with the ground
truth. Bottom panel compares the estimated CSF with the deformation relative
to the stellar spaxel and that relative to the data spaxel. The self-subtraction
effect and its origin in the CSF estimate are circled and zoomed.

physical interpretations but it is still additional information for
detection. The continuum is not completely preserved because
the stellar halo estimate (13) overfits the planets contribution.

C. Real data detections

We used four on-sky observations of PDS 70 presented in
[9] to verify the accuracy of our method. We merge them by
median to reduce electronic noise.

Fig. 3 shows MSE results for a simplistic simulation (with
Moffat FWHM decreasing exactly inversely with wavelength)
to highlight the main effects of the subtraction. With a slightly
more realistic simulation (with Moffat FWHM not decreasing
exactly inversely with wavelength as built by multiple Moffat
fits on real PDS70 monochromatic images), the optimum
degree moves to d = 7 allowing a little more flexibility to
fit instrumental imperfections.

As with the state-of-the-art method, the two planets PDS 70
b and PDS 70 c are well detected, but stellar flux residues are
less dispersed with our new method. After applying spectral
matched-filtering with an Hα line model and spatial matched-
filtering with an FSF model, the signal due to the two planets
is magnified. The difference in robustness between the two
methods becomes even more pronounced. As illustrated in
Figure 6, we can see that the number of false alarms to detect
the two planets is considerably reduced (respectively 108/13
false alarms for old/new method with a threshold of 0.033,
left-hand PDS 70 c detection joining the false alarms below).

V. CONCLUSION

Our proposed method demonstrates better subtraction re-
sults in both simulated scenarios and our available data. It
exhibits increased robustness by mitigating self-subtraction
in the Hα line. Part of the continuum is also preserved.
Furthermore, it paves the way to many more improvements
for the future of planets detection using spectral diversity.
Spectral and spatial regularisation would help to obtain a better
estimation, better stellar spectrum estimation would improve
results on particular at Hα line wavelengths, and a recursive
process should push the exploitation of this data even further.

Fig. 5. Simulated PDS 70 b planet spaxel subtraction results with the
proposed method. The legend is similar to Fig. 4. Correction of the self-
subtraction effect and correction of its origin are clearly visible in the same
zooms (respectively in green and pink).

Fig. 6. Spatial adaptive filtering of the post stellar halo subtraction residuals
for real MUSE datacube of PDS 70 system. The matching template cube is
obtained from a Hα line model combined with a spatial model of the FSF.
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