
HAL Id: hal-04704413
https://hal.science/hal-04704413v1

Preprint submitted on 20 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Stochastic Zakharov System to Multiplicative
Stochastic Nonlinear Schrödinger Equation

Grégoire Barrué, Anne de Bouard, Arnaud Debussche

To cite this version:
Grégoire Barrué, Anne de Bouard, Arnaud Debussche. From Stochastic Zakharov System to Multi-
plicative Stochastic Nonlinear Schrödinger Equation. 2024. �hal-04704413�

https://hal.science/hal-04704413v1
https://hal.archives-ouvertes.fr


FROM STOCHASTIC ZAKHAROV SYSTEM TO MULTIPLICATIVE

STOCHASTIC NONLINEAR SCHRÖDINGER EQUATION
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Abstract. We study the convergence of a Zakharov system driven by a time white noise, colored in
space, to a multiplicative stochastic nonlinear Schrödinger equation, as the ion-sound speed tends
to infinity. In the absence of noise, the conservation of energy gives bounds on the solutions, but
this evolution becomes singular in the presence of the noise. To overcome this difficulty, we show
that the problem may be recasted in the diffusion-approximation framework, and make use of the
perturbed test-function method. We also obtain convergence in probability. The result is limited
to dimension one, to avoid too much technicalities. As a prerequisite, we prove the existence and
uniqueness of regular solutions of the stochastic Zakharov system.
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1. Introduction

The Zakharov system was introduced in [45] as a simplified model for Langmuir tur-
bulence, a phenomenon resulting from the nonlinear coupling between Langmuir waves
and perturbations of the ion density in a partially ionized plasma. The system couples a
Schrödinger equation for the slowly varying complex envelope u of the electric field with
a wave equation for the deviation n of the ion density from its average. Related systems
of equations have also been derived from the coupled Euler equation for the electrons and
ions, and Maxwell equations for the electric field (see e.g. [8, 42, 43]).

After normalization of the quantities u and n with respect to physical constants (see e.g.
[35]), the system may be written as{

i∂tu = −∆u+ nu,

ε2∂2
t n = ∆(n+ |u|2),

(1.1)

where the remaining coefficient ε is proportional to the inverse of the ion sound velocity.
A large number of mathematical studies have been devoted to the Cauchy problem for

the system (1.1), as well as its limit as ε goes to zero: note indeed that the system formally
converges to the cubic nonlinear Schrödinger equation

i∂tu+∆u+ |u|2u = 0 (1.2)

in this limit.
The first mathematical results for the system (1.1) were obtained by Sulem and Sulem

in [41] where the authors proved global existence of weak solutions in the energy space
in dimension d = 1, 2, 3 using a Galerkin method, and global well-posedness in dimension
one for more regular initial data. Added and Added in [1] improved the results of [41] by
showing global well-posedness in dimension 2 for small initial data, using Brezis-Gallouét
inequality. A local well-posedness result was proved by Schochet and Weinstein in [40] with
an existence time interval independent of ε, which allowed them to obtain the convergence
as ε goes to 0 to a solution of (1.2). In [2] Added and Added investigated the rate of
convergence for small amplitude solutions, and highlighted the presence of initial layer
effects in the absence of a compatibility condition on the initial data. The optimal rates
for this convergence were obtained in [36]. This limit was also studied for instance in [33]
where the authors were interested in the convergence of the Klein-Gordon-Zakharov system
to the nonlinear Schrödinger equation.

Other local well-posedness results for regular data, as well as propagation of regularity
may be found in [37], and local existence in the energy space was obtained in [13]. Bourgain
and Colliander also used a low-high frequency decomposition method in [10], and the
method was also used in [26] to get some refinements for local well-posedness in general
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space dimension. More results about local and global well-posedness may be found for
instance in [14, 15, 34, 39] for different dimensions or different nonlinearities.

Here, we are interested in a stochastic version of the Zakharov system, in the presence
of an additional damping term. The system may be written as:{

i∂tu = −∆u+ nu,

ε2d(∂tn) + αε∂tn = ∆(n+ |u|2)dt+ ϕdW,
(1.3)

where α > 0. This system is complemented with inital data, which belong to some Sobolev
spaces that we will specify in the different sections of the paper. The operator ϕ is a
smoothing operator on L2(Rd), and the random process Wt is a cylindrical Wiener process
on L2(Rd), so that ϕWt is a ϕϕ∗-Wiener process. This stochastic perturbation corresponds
to a spatially correlated white noise in time, and can be physically understood as random
external fluctuations in the system under consideration, as for example thermal fluctua-
tions. The damping is introduced to compensate the input of energy due to the noise.
For a smaller damping, i.e. with ε replaced by εγ , γ > 1, we believe that the limit is
ill defined. A larger damping could be treated with similar arguments as in our work.
Note that numerical simulations indicate that indeed a smaller damping does not allow to
take the limit as ε tends to 0 (see [6]). The Zakharov system with damping terms and
stochastic forcing is used for example in [27], where the authors provide a numerical study
of Langmuir turbulence on incoherent scatter spectra.

As in the deterministic case, we expect that the solution of (1.3) converges in some
sense to a stochastic Nonlinear Schrödinger equation, as ε tends to zero. The conservative
version of this later equation with a multiplicative noise has been studied by Debussche
and de Bouard in [17] and [18], while Barbu, Röckner and Zhang in [3, 4, 5] used a dif-
ferent approach based on rescaling transformations to prove well-posedness results in both
conservative and nonconservative cases. Brzezniak and Millet [11] studied the stochastic
Nonlinear Schrödinger equation on a two-dimensional compact Riemannian manifold, with
the use of stochastic Strichartz estimates (see also [30, 12, 31]). The defocusing mass and
energy critical cases have been studied by Zhang [46] and Fan, Xu and Zhao [23].

As for the stochastic Zakharov system, Tsutsumi proved in [44] the global existence of
L2-solutions for a system of the form (1.3), but with an additional additive noise in the
equation for u, in space dimension d = 1. More recently, a more general system with a
multiplicative noise in the equation for u was studied by Herr, Röckner, Spitz and Zhang,
for d = 3, in [29], using the rescaling approach.

The aim of the present paper is to prove the convergence in probability, as ε goes to
zero, of the solution of (1.3), in dimension d = 1, to the solution of the stochastic nonlinear
Schrödinger equation:

idut = (−∂2
xut − |ut|2ut −

i

2
utF )dt− ut(∂

2
x)

−1ϕdWt,

where the last two terms in the equation correspond to the Stratonovitch noise
ut ◦ (∂2

x)
−1ϕdWt.
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The main difficulty comes from the fact that the energy of System (1.3):

H(u, n) = ∥∂xu∥2L2 +
1

2

(
∥n∥2L2 +

∥∥ε∂−1
x ∂tn

∥∥2
L2

)
+

∫
R
n|u|2dx (1.4)

is no longer preserved, and more importantly it has a singular evolution as ε goes to 0.
Indeed, applying formally the Itô formula to H, and using (1.3), terms which are not
controlled by the energy or terms of order ε−2 appear. In order to pass to the limit
in ε despite this singular evolution, we use a predictor-corrector method usually called
the Perturbed Test Function method. The method allows us to pass to the limit in a
martingale problem and to identify the limit equation, but we also use it to obtain bounds
on a modified energy, allowing us to prove the tightness of the approximating sequence.
This method was first introduced in a finite dimensional setting in [38], and many examples
of applications can be found in the book of Garnier, Fouque, Papanicolaou and Solna [24].
It was generalized to the infinite dimensional case for instance in [19],[22] and used in [7],
[20].

The perturbed test function method usually allows to prove convergence in law of solu-
tions. However, due to the special form of the noise considered here, we are able to obtain
convergence in probability. The application of the method requires to deal with rather reg-
ular solutions in space. Thus, despite the fact that the global existence of L2-solution was
proved in [44], we need first to prove the global existence of regular solutions of the (1.3),
under spacial regularity assumptions on the noise. Note that the well-posedness result that
we prove is still true without the addition of the damping term, namely for α = 0, but
the convergence of the system to the stochastic Nonlinear Schrödinger equation requires
α > 0. It is not clear at all whether the system (1.3) has a limit as ε goes to 0 in the case
α = 0.

The paper is organized as follows: in Section 2, we introduce some notations, and state
our main results. In Section 3 we prove the global existence of regular solutions, in the
strong probabilistic sense. The method is an adaptation of Kato’s method (see [32]),
together with estimates similar to those obtained in [41], and some details will be skipped.
In Section 4, we state our convergence problem in the diffusion approximation framework,
and give results on the driving process. In Section 5, we prove a modified energy estimate,
by using the perturbed test function method. Section 6 is devoted to the proof of the
tightness of the ε-dependent family of solutions. Finally, we prove the convergence to the
stochastic NLS equation in Section 6, by first proving a weak convergence result, through
the study of the martingale problem. Since we are in a situation where the driving process
is an Ornstein-Uhlenbeck process and all correctors can be computed explicitly, we are able
to have explicit martingales when studying the martingale problem. We take advantage
of this to obtain the convergence in probability of Equation (1.3) to Equation (2.4). Note
that convergence in probability in a similar but simpler problem - the Ornstein-Uhlenbeck
solves an equation of order one and the setting is in finite dimension - has been obtained
in [25]. Finally, technical results are gathered in the appendix.
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2. Notations and main results

Throughout the paper, for p ⩾ 1, we denote by Lp(R,C) the Lebesgue space of p
integrable C-valued functions on R, endowed with its usual norm. For p = 2, (·, ·) is the
inner product of L2(R,C) given by

(f, g) = Re

∫
R
f(x)ḡ(x)dx,

where Re denotes the real part of the integral. Sometimes we will just write Lp := Lp(R)
without any additional precision on the codomain. In fact, the only C-valued function in
our problem is u, and all the others functions are R-valued. For s ∈ R, we use the Sobolev
space Hs := Hs(R) of tempered distributions f ∈ S ′(R) such that (1 + ξ2)

s
2 f̂(ξ) ∈ L2(R),

f̂ being the Fourier transform of f , endowed with its usual norm. Besides we will need the
homogeneous Sobolev space Ḣs := Ḣs(R) of tempered distributions f ∈ S ′(R) such that

ξsf̂(ξ) ∈ L2(R). We also denote by Hs
loc(R) = Hs

loc the space of distributions f such that
for every ℓ > 0, f ∈ Hs([−ℓ, ℓ]), the standard Sobolev space on the interval [−ℓ, ℓ]. Finally,
if H,K are Hilbert spaces, L2(H,K) is the space of Hilbert-Schmidt operators from H to
K. When H = K we write L2(H).

To introduce a mathematical description of the system (1.3), we consider a probability
space (Ω,F ,P), endowed with a filtration (Ft)t⩾0. We also introduce a sequence (βk)k∈N
of real-valued, independent Brownian motions associated to this filtration, and a complete
orthonormal system (ek)k∈N of L2(R;R); then W (t, x, ω) =

∑
k∈N βk(t, ω)ek(x) is a cylin-

drical Wiener process on L2(R), and the series ϕW (t, x) =
∑

k∈N ϕek(x)βk(t) defines a

H-valued Wiener process with covariance operator ϕϕ∗, as soon as ϕ ∈ L2(L
2(R), H).

The system (1.3) is then rewritten as i∂tu = −∂2
xu+ nu

∂tn = µ
ε2dµ+ αεµ = ∂2

x(n+ |u|2)dt+ ϕdW (t).
(2.1)

The next theorem gives results about existence and uniqueness of regular solutions for
the system (2.1), for fixed ε > 0: we first state a local existence result for initial data in
H2 ×H1. This result is obtained by applying Kato’s method and a contraction argument,
using easy estimates on the linear equations, that we list in section 2. If the initial data and
the noise are slightly more regular, then we also prove, thanks to an adequate decomposition
of the solution and using estimates similar to those obtained in [41], that the solution is
more regular and is globally defined.

Theorem 2.1. Let ε > 0 be fixed. Let α ⩾ 0 and ϕ ∈ L2(L2, L2 ∩ Ḣ−1). Let (u0, n0, n1) ∈
H2(R)×H1(R)×L2(R)∩Ḣ−1(R). Then there exists a unique solution (u, n, µ) to (2.1), with

continuous paths with values in H2(R)×H1(R)×L2(R)∩Ḣ−1(R), such that (u(0), n(0), µ(0))
= (u0, n0, n1). This solution is defined on a random interval [0, τ(ω)) where τ(ω) > 0 is a
stopping time such that

τ(ω) = +∞ or lim
t→τ(ω)

max (∥u(t)∥H2 , ∥n(t)∥H1) = +∞.
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If moreover ϕ ∈ L2(L2, H1 ∩ Ḣ−1), u0 ∈ H3(R), n0 ∈ H2(R) and n1 ∈ H1(R) ∩ Ḣ−1(R),
then τ(ω) = +∞, a.s. and (u, n, µ) has trajectories a.s. in C(R+;H3(R)×H2(R)×H1(R)).

The result of the previous theorem may of course be generalized to random F0-measurable
initial data, by conditioning on F0.

We now turn to the main result of the paper, which is the convergence of the solution
as ε tends to 0, to the solution of the stochastic nonlinear Schrödinger equation. This
result will require more regularity on the noise, and we assume from now on that ϕ ∈
L2(L2, H1 ∩ Ḣ−1). In order to state the result, we rewrite the system in a different form:
consider an adapted solution Zε of the linear damped wave equation

ε2d(∂tZ
ε) + αε∂tZ

ε = ∂2
xZ

εdt+ ϕdWt, Z
ε(0) = ∂tZ

ε(0) = 0. (2.2)

Its trajectories are a.s. time continuous with values in H2 (see section 2 for a more precise
definition). Then, (u, n, µ) is a solution of (2.1) if and only if n = m + Zε, with (u,m)
solution of {

i∂tu = −∂2
xu+ (m+ Zε)u,

ε2∂2
tm+ αε∂tm = ∂2

x(m+ |u|2).
(2.3)

Note that if u0 ∈ H3(R), m0 ∈ H2(R) and m1 ∈ H1(R) ∩ Ḣ−1(R), then applying Theo-
rem 2.1, with F0-measurable initial data given by u0, n0 = m0 and n1 = m1, we deduce
that there is a unique global solution of the system (2.3) with u(0) = u0, m(0) = m0 and
∂tm(0) = m1. The convergence result is then as follows:

Theorem 2.2. Let α > 0. For any T > 0, and for any u0 ∈ H3(R),m0 ∈ H2(R) ∩
Ḣ−1(R),m1 ∈ H1(R) ∩ Ḣ−1(R), the process (uε,mε) solution of the system (2.3) with

u(0) = u0, m(0) = m0, ∂tm(0) = m1 and ϕ ∈ L2(L
2(R), H3(R) ∩ Ḣ−4(R)) satisfies: (uε)

converges in probability in C([0, T ], Hs
loc(R)) for any s < 1, to u solution of

idu = (−∂2
xu− |u|2u− i

2
uF )dt− u(∂2

x)
−1ϕdWt, (2.4)

where F (x) =
∑

k∈N
(
(∂2

x)
−1ϕek

)2
(x).

Note that, under the above assumptions on the initial data u0, and on the operator
ϕ, the existence of a unique solution of (2.4) with a.s. H1-valued continuous paths is a
consequence of Theorems 4.1 and 4.6 in [18]. Moreover, it is not difficult to prove that
given the assumption on the noise, the solution u has actually H2-valued continuous paths.

3. Well-posedness for fixed ε

This section is devoted to the proof of Theorem 2.1. We start with the proof of the local
well-posedness result, and propagation of regularity, then global existence for more regular
initial data is proved in Subsection 3.2, adapting the arguments of [41].
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3.1. Local Well-Posedness. In this section, we prove local well-posedness of the problem
(2.1). Here ε is fixed so there is no loss of generality in assuming that ε = 1. We start
with a first result which is proved by a fixed point argument, adapting the method used
by Kato in [32] for the Schrödinger equation. Then we state a second result which shows
that we can recover more regularity on our solutions. This extra regularity will be needed
in order to show afterwards that the problem (2.1) is actually globally well-posed.

Proposition 3.1. Let α ⩾ 0 and ϕ ∈ L2(L2, L2∩Ḣ−1). Let (u0, n0, n1) ∈ H2(R)×H1(R)×
L2(R) ∩ Ḣ−1(R). Then there exists a unique solution (u, n, µ) to (2.1) with continuous

valued paths in H2(R)×H1(R)×L2(R)∩Ḣ−1(R) such that (u(0), n(0), µ(0)) = (u0, n0, n1).
This solution is defined on a random interval [0, τ(ω)) where τ(ω) > 0 is a stopping time
such that

τ(ω) = +∞ or lim
t→τ(ω)

max (∥u(t)∥H2 , ∥n(t)∥H1) = +∞.

Proof. Let us fix (u0, n0, n1) satisfying the assumptions of Proposition 3.1 and rewrite the
system (2.1) (with ε = 1) in the mild form:{

u(t) = Γ1(u, n)(t)

(n(t), µ(t)) = Γ2(u, n, µ)(t),
(3.1)

with

Γ1(u, n)(t) = U(t)u0 − i

∫ t

0
U(t− s)n(s)u(s)ds (3.2)

and

Γ2(u, n, µ)(t) = Sα(t)(n0, n1) +

∫ t

0
Sα(t− s)(0, ∂2

x|u|2(s))ds (3.3)

+

∫ t

0
Sα(t− s)(0, ϕ)dW (s). (3.4)

Here, U(t) = eit∂
2
x is the free Schrödinger group on L2(R), while Sα(t) is the semi-group

associated with the linear damped wave equation, that is Sα(t)(n0, n1) is the solution of{
∂tn = µ
∂tµ+ αµ = ∂2

xn

with (n(0), µ(0)) = (n0, n1). Note that Sα has an explicit expression in Fourier variables,

and is a contraction semi-group in H1(R) × L2(R) ∩ Ḣ−1(R) (see Section 8.1 in the Ap-
pendix). Now, let us define, for T > 0, the spaces

ZT = {u ∈ L∞(0, T ;H2(R), ∂tu ∈ L∞(0, T ;L2(R))}
and

YT = {n ∈ L∞(0, T ;H1(R)), ∂tn ∈ L∞(0, T ;L2(R))}.
Let R0 > 0, and T0 > 0 be fixed. Using the arguments of [32], it is not difficult to see
that for all n ∈ BR0(YT0), the application u 7→ Γ1(u, n) is a contraction in ZT , for T > 0
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sufficiently small, depending only on ∥u0∥H2 , and R0. Denoting then by T (n) the solution
of {

i∂tu = −∂2
xu+ nu

u(0) = u0,
(3.5)

that is obtained in this way on [0, T0], it is easy to see that, for T sufficiently small,
depending again only on R0, there exists a constant C > 0 such that if u1 = T (n1), and
u2 = T (n2), with n1, n2 ∈ BR0(Y ), then

∥∂tu1 − ∂tu2∥L∞(0,T ;L2) ⩽ CT (∥n1 − n2∥YT
+ ∥u1 − u2∥L∞(0,T ;H1)).

Moreover, using again equation (3.5),

∥u1 − u2∥L∞(0,T ;H2) ⩽ C ∥n1 − n2∥YT
,

where C, and T small enough, depend only on R0.
Now, setting Γ3(n, µ) = Γ2(T (n), n, µ) (where we recall that Γ2 is defined in (3.3)) it

is easily seen that Γ3 is contracting in BR(YT × HT ), where HT = L∞(0, T ;L2 ∩ Ḣ−1),
provided T is small enough, depending only on R. On the other hand, by [16, Theorem
6.10], the stochastic convolution

∫ ·
0 Sα(· − s)(0, ϕ)dW (s) is a.s. in YT0 ×HT0 , and it follows

that the ball BR(YT ×HT ) is preserved by Γ3, provided the random constant R is chosen
sufficiently large (depending on the YT0 ×HT0-norm of the stochastic convolution, ∥n0∥H1

and ∥n1∥L2) and T is chosen small enough, depending on R. The conclusion of Proposition
3.1 follows by classical arguments. □

The next proposition shows that if the initial data is more regular, then the solution of
the system is also regular, as long as it exists in the sense of Proposition 3.1.

Proposition 3.2. Let ϕ ∈ L2(L2, H1∩Ḣ−1) and let (u, n, µ) be the solution of (2.1) given
by Proposition 3.1, and τ the corresponding stopping time. If u0 ∈ H3(R), n0 ∈ H2(R),
and n1 ∈ H1(R) ∩ Ḣ−1(R), then (u, n, µ) has a.s. continuous trajectories on [0, τ) with

values in H3(R)×H2(R)×H1(R) ∩ Ḣ−1(R).

Proof. The proof is obtained by classical arguments: differentiating the system (2.1) with
respect to x gives a linear (non homogeneous) equation for (∂xu, ∂xn, ∂xµ). Using then the
same kind of fixed point arguments as in the proof of Proposition 3.1, it is easy to prove
that this later system has a unique solution in ZT × YT × HT , for T sufficiently small,
depending only on max(∥u∥ZT0

, ∥n∥YT0
), where T0 < τ(ω) is fixed, so that the argument

may be iterated up to any time less than τ(ω). □

3.2. Global Well-Posedness. In this section, we follow the arguments in [41] to get a
priori estimates showing that the solution is global. We are still considering the system
(2.1), but now we mention the dependence on ε in the estimates. We will see in particular
that those are not uniform in ε. We prove below the following proposition.

Proposition 3.3. Let α ⩾ 0, T > 0 and let ϕ ∈ L2(L2, H1 ∩ Ḣ−1). For initial data

u0 ∈ H3, n0 ∈ H2 and n1 ∈ H1 ∩ Ḣ−1, there exists almost surely a unique solution
(u, n, µ) ∈ L∞([0, T ], H3 ×H2 ×H1 ∩ Ḣ−1) for the system (2.1).
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Proof. In order to get our estimates, we decompose n = m+ Zε where Zε satisfies

ε2d(∂tZ
ε) = (−αε∂tZ

ε + ∂2
xZ

ε)dt+ ϕdWt,

Zε(0) = ∂tZ
ε(0) = 0.

(3.6)

Note that (Zε, ∂tZ
ε) has a.s. continuous trajectories with values in H2 ×H1 ∩ Ḣ−1 (again

by [16, Theorem 6.10]). Also, (u, n, µ) is solution of the system (2.1) if and only if (u,m) is
solution of the system (2.3). Thus, under the assumptions of Proposition 3.3, the solution

(u,m) given by Proposition 3.2 satisfies a.s. ∂tm ∈ C([0, τ);H1∩ Ḣ−1), and we may define

V = −∂−1
x ∂tm ∈ C([0, τ);H2), a.s. (3.7)

for which

ε2∂tV + αεV + ∂x(m+ |u|2) = 0. (3.8)

Now, let us define, with the above notations, the mass and energy

N(u) = ∥u∥2L2 and H(u,m) = ∥∂xu∥2L2 +
1

2
(∥m∥2L2 + ∥εV ∥2L2) +

∫
R
m|u|2dx. (3.9)

The evolution of those quantities allows us to get first the following estimate.

Lemma 3.1. Under the above assumptions, the local solution (u,m) of the system (2.3)
satisfies: for any T > 0, there exists a random constant Cε(ω) > 0 depending only on T ,
∥u0∥H1, ∥n0∥L2 and ∥Zε∥L∞(0,T ;H2), such that

1

2
∥∂xu∥2L2 +

1

4
∥m∥2L2 +

1

2
∥εV ∥2L2 ⩽ Cε, a.s. (3.10)

Proof. Using the fact that m is real valued, it is easy to see (taking the inner product in
L2(R;C) of the first equation of (2.3) with iu) that the mass N(u) is conserved. As for
the energy, under the above regularity assumptions, we may take the inner product of the
first equation of (2.3) with ∂tu, and integrate by parts to get

∂t ∥∂xu∥2L2 +

∫
R
(m∂t|u|2 + Zε∂t|u|2) dx = 0. (3.11)

On the other hand, taking the inner product of equation (3.8) with V , integrating by parts
the term (∂x(m+ |u|2), V ) and adding the result to equation (3.11) gives

∂tH(u,m) +

∫
R
Zε∂t|u|2dx = −αε ∥V ∥2L2 . (3.12)

Note that Young and Galiardo-Nirenberg inequalities, together with the conservation of
mass yield ∣∣∣ ∫

R
m|u|2dx

∣∣∣ ⩽ 1

4
∥m∥2L2 + 4N(u0)

3
2 ∥∂xu∥L2

(see [41, Lemma 2]), while ∂t|u|2 = −2Im(ū∂2
xu) by the first equation of (2.3), so that

integrating by parts, ∫
R
Zε∂t|u|2 dx =

∫
R
∂xZ

εIm(ū∂xu) dx
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and the later term is bounded by ∥∂xZε∥L∞N(u0) + ∥∂xu∥2L2 . The conclusion of Lemma
3.1 is then obtained by integrating (3.12) between 0 and t, using the above bounds and
Grönwall Lemma. □

The next equalities are very similar to those stated in [41], and we only sketch their
proofs.

Lemma 3.2. Under the above assumptions, the local solution (u,m) of the system (2.3)
satisfies

∂t
(
∥ε∂tV ∥2L2 + ∥∂tm∥2L2

)
+ 2

∫
R
∂2
tm∂t|u|2dx+ 2αε ∥∂tV ∥2L2 = 0, (3.13)

∂t ∥∂tu∥2L2 = 2Im

∫
R
u∂tū (∂tm+ ∂tZ

ε) dx, (3.14)

− ∂t ∥∂t∂xu∥2L2 =

∫
R
(m+ Zε)∂t|∂tu|2dx+

∫
R
∂t(m+ Zε)

(
∂2
t |u|2 − 2|∂tu|2

)
dx. (3.15)

Proof. Equality (3.13) is obtained by taking the time derivative of (3.8), using integration
by parts and the fact that ∂x∂tV = −∂2

tm. As for (3.14), it suffices to differentiate the
first equation of (2.3) in time, take the scalar product of the resulting equation with ∂tu,
and integrate by parts. Finally, (3.15) is obtained by differentiating in time the equation
∂2
xu = (m+Zε)u− i∂tu, taking the inner product with ∂2

t u, integrating by parts, and using
the fact that Re(u∂2

t ū) =
1
2(∂

2
t |u|2 − 2|∂tu|2). □

Now, by gathering (3.13)-(3.15) and integrating in time we obtain:

2 ∥∂tu∥2H1 + ∥ε∂tV ∥2L2 + ∥∂tm∥2L2 + 2

∫
R
(∂tm∂t|u|2 +m|∂tu|2) dx+ 2αε ∥V ∥2L2([0,t],L2)

= C(u0, n0, n1, Z
ε(0)) +

∫ t

0

∫
R

(
6∂tm |∂tu|2 + 4Im(u ∂tū ∂tm)

)
dxds

+ 4Im

∫ t

0

∫
R
u ∂tū ∂tZ

εdxds− 2

∫
R
Zε|∂tu|2dx

− 2

∫ t

0

∫
R
∂tZ

ε
(
∂2
t |u|2 − 3|∂tu|2

)
dxds.

(3.16)

In what follows, C denotes various constants that may depend on ω, T, u0, n0, n1 and ε.
Note that the first term on the second line of (3.16) is finite, thanks to the assumptions on
the initial data. As for the second term, using the fact that ∂tm = −∂xV , integrating by

parts and using Lemma 3.1, it is bounded by C
∫ t
0 ∥∂tu∥

2
H1ds. The last term of the second

line is in turn bounded by C
∫ t
0 (∥∂tu∥

2
H1 + ∥∂tm∥2L2) ds, by conservation of mass.

We now estimate the terms in equation (3.16) involving the stochastic convolution Zε.
Using the fact that (Zε, ∂tZ

ε) ∈ L∞([0, T ], H2)×L∞([0, T ], H1) a.s., the first term involving

Zε is bounded by C(1 +
∫ t
0 ∥∂tu∥

2
L2ds). For the third term involving Zε, we use the fact
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that ∂t|u|2 = −2Im(ū ∂2
xu), differentiate in time, and integrate the term by parts to get∫ t

0

∫
R
∂tZ

ε∂2
t |u|2ds ds ⩽ 2

∫ t

0
∥u∥H1∥∂tZε∥H1∥∂tu∥H1ds.

Lemma 3.1 allows then to bound also the third term involving Zε in (3.16) by Cε(1 +∫ t
0 ∥∂tu∥

2
L2ds).

There remains to bound the terms in (3.16) that are not integrated in time. Note that,
again by the relation ∂tm = −∂xV , and integrating by parts,∫

R
∂tm∂t|u|2dx ⩽ ∥V ∥L2∥u∥H1∥∂tu∥H1 ⩽

1

2
∥∂tu∥2H1 + Cε.

On the other hand, (3.14) and Lemma 3.1 easily imply

∥∂tu∥2L2 ⩽ Cε(1 +

∫ t

0
∥∂tu∥2L2 + ∥∂tm∥2L2ds),

from which we deduce∫
R
m|∂tu|2dx ⩽ ∥m∥L2∥∂tu∥L2∥∂tu∥H1 ⩽

1

2
∥∂tu∥H1 + C(1 +

∫ t

0
∥∂tu∥2L2 + ∥∂tm∥2L2ds).

Gathering the above estimates allows to conclude that

∥∂tu∥2H1 + ∥ε∂tV ∥2L2 + ∥∂tm∥2L2 ⩽ Cε(1 +

∫ t

0
∥∂tu(s)∥2H1 + ∥∂tm(s)∥2L2 ds), (3.17)

so that by Grönwall Lemma, the quantities ∥∂tu∥H1 , ∥∂tm∥L2 and ∥ε∂tV ∥L2 are a.s.
bounded on [0, T ].

Next, equation (3.8) and Lemma 3.1 imply ∥m∥H1 ⩽ Cε, while the first equation of
(2.3) and Lemma 3.1 give a bound on ∥∂2

xu∥H1 , showing that u ∈ L∞(0, T ;H3), a.s. The
conclusion of the proof of Proposition 3.3 follows then from Proposition 3.2, and the blow
up criterion in Proposition 3.1. □

4. The driving process and its generator

It is clear that the estimates obtained in Subsection 3.2 are not uniform in ε (note

for instance that Zε is of order ε−1/2, as can be seen by computing E(∥Zϵ(t)∥2L2)). In
order to get a uniform bound in ε on the solutions of the system (2.3) allowing us to prove
Theorem 2.2, we first remark that this latter system is related to a diffusion-approximation
problem. Indeed, let us denote (zε(t), ζε(t)) = (ε1/2Zε(t), ε3/2∂tZ

ε(t)), where we recall that
Zε satisfies (2.2). Then (zε, ζε) satisfies the equation

∂tz
ε =

1

ε
ζε,

dζε =
1

ε
(−αζε + ∂2

xz
ε)dt+

1

ε1/2
ϕdWt,

(4.1)

with zε(0) = ζε(0) = 0.
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Moreover, the infinitesimal generator of (zε, ζε) is given by 1
εM, where M is the gener-

ator of the ε-independent process (z, ζ) such that{
∂tz = ζ,
dζ = (−αζ + ∂2

xz)dt+ ϕdWt.
(4.2)

Note that the transition semigroup associated with (4.2) possesses a unique (Gaussian)
invariant measure ν (see [16, Chapter 11]), where uniqueness follows from the decay of Sα

for α > 0. Note that ν is also invariant for the system (4.1).
In the next section, we will prove a uniform bound on a modified energy by using the

perturbed test function method, and this bound will allow us to prove the tightness of
approximating sequences (as ε tends to 0) in Section 6. We first gather in this section
some results about the driving process (zε, ζε) and the generator M.

Choosing an initial condition of the system (4.2) fo the form:(
z0
ζ0

)
=

∫ 0

−∞
Sα(−s)

(
0

ϕdWs

)
(4.3)

allows to get a stationary solution of this system. The regularity of (z0, ζ0) depends on the
regularity of ϕ as a Hilbert-Schmidt operator, as can be seen in Section 8.1. Then for any
continuous bounded function φ on H2 ×H1 ∩ Ḣ−1 we have an explicit expression for the
expectation with respect to the invariant measure ν:

Eν [φ(z, ζ)] = E [φ(z0, ζ0)] = E
[
φ

(∫ ∞

0
Sα(s)

(
0

ϕdWs

)
1

,

∫ ∞

0
Sα(s)

(
0

ϕdWs

)
2

)]
.

In order to justify the computations below, we will need to take ϕ ∈ L2(H
3∩Ḣ−4), which

guarantees that (zε, ζε) ∈ C([0, T ]; (H3 ∩ Ḣ−3)2) almost surely, for any T > 0, since the
operator Sα(t) commutes with the operator ∂x. We control the growth of (zε, ζε) thanks
to the following Proposition (see also [7]).

Proposition 4.1. For any T > 0 and any δ > 0:

lim
ε→0

P
(
sup
[0,T ]

(∥zε(t)∥H3∩Ḣ−3 + ∥ζε(t)∥H3∩Ḣ−3) ⩾ ε−δ
)
= 0.

Proof. Let (z, ζ) satisfy (4.2) with initial condition z(0) = ζ(0) = 0 and, for k ∈ N, denote
by ηk the process

ηk = sup
t∈[k,k+1]

(
∥z(t)∥H3∩Ḣ−3 + ∥ζ(t)∥H3∩Ḣ−3

)
.

It is easy to see that E(η2k) is bounded independently of k. Since the process (z, ζ) is
Gaussian, this implies that E[ηγk ] is finite and is also bounded independtly on k, for all
γ > 0. Thus, by Markov inequality for any δ′ > 0, choosing γ > 1/δ′ we have

∑
k∈N P(ηk >

kδ
′
) < ∞, so that Borel-Cantelli lemma implies the existence of random variables Z1, Z2

such that
∥z(t)∥H3∩Ḣ−3 + ∥ζ(t)∥H3∩Ḣ−3 ⩽ Z1 + |t|δ′Z2, a.s. (4.4)

Choosing δ′ < δ, this estimate implies the statement of Proposition 4.1 for (z( tε), ζ(
t
ε)) and

thus for (zε, ζε), noticing that both processes have the same law. □
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As a consequence of Proposition 4.1, the stopping time

τ εδ = inf
{
t : ∥zε(t)∥H3∩Ḣ−3 + ∥ζε(t)∥H3∩Ḣ−3 ⩾ ε−δ

}
(4.5)

converges to infinity in probability as ε goes to 0.
Let us focus on the infinitesimal generator M of (z, ζ), which will be useful in the

next sections where we use the Perturbed Test Function method, for which we have to
find the inverse of the generator applied to several quantities. We do not wish to specify
the domain of the generator. For a Borel function φ, we write Mφ when φ(z(t), ζ(t)) −∫ t
0 Mφ(z(s), ζ(s))ds is a well defined quantity and is an integrable martingale. Similarly,

we write M−1φ when M−1φ(z(t), ζ(t))−
∫ t
0 φ(z(s), ζ(s))ds is a well defined quantity and

is an integrable martingale.
For a function f , we try to find a function φ such that Mφ = f (we write φ = M−1f).

Clearly, we need Eν [f(z, ζ)] = 0, recalling that ν is the invariant measure of (z, ζ). Given
η = (z, ζ), we denote by (z(t, η), ζ(t, η)) the solution of (4.2) with initial data η at time
0. Then, since the process has all moments finite, it is classical that for any φ measurable
with polynomial growth, we have:

M−1φ(η) = −E
∫ ∞

0
φ(z(t, η), ζ(t, η))dt.

The following results give properties on Mφ for some test functions φ that will be used in
the Perturbed Test Function method.

Lemma 4.1. For (z, ζ) ∈ H1 ∩ Ḣ−2 × L2 ∩ Ḣ−2 and ϕ ∈ L2(L
2, L2 ∩ Ḣ−2) we have

M−1z = (∂2
x)

−1ζ + α(∂2
x)

−1z (4.6)

where M−1z is a notation for M−1π1(z, ζ), π1 being the projection on the first coordinate.

Proof. By equation (4.2), we have

d
(
(∂2

x)
−1ζ + α(∂2

x)
−1z

)
= zdt+ (∂2

x)
−1ϕdWt

and thus (∂2
x)

−1ζ(t) + α(∂2
x)

−1z(t) −
∫ t
0 z(s)ds is a martingale. Note that the zero-mean

condition is satisfied because ν is a centered Gaussian measure. □

Proposition 4.2. For (z, ζ) ∈ (H1 ∩ Ḣ−3) × (L2 ∩ Ḣ−3) and ϕ ∈ L2(L
2, H1 ∩ Ḣ−4) we

have ∥∥M−1
(
zM−1z − Eν

[
zM−1z

] )∥∥
L∞ ⩽ Cϕ

(
1 + ∥z∥2

H1∩Ḣ−3 + ∥ζ∥2
L2∩Ḣ−3

)
(4.7)

where Eν denotes the expectation under the invariant measure and Cϕ is a constant de-

pending on the Hilbert-Schmidt norm of ϕ in the space H1 ∩ Ḣ−4.
Moreover, for (z, ζ) ∈ (H2 ∩ Ḣ−2) × (H1 ∩ Ḣ−2) and ϕ ∈ L2(L

2, H2 ∩ Ḣ−3), in-
equality (4.2) holds with (z, ζ) replaced by (∂xz, ∂xζ), and a constant Cϕ depending on
∥ϕ∥L2(L2,H2∩Ḣ−3).

In order to prove Proposition 4.2, we state the following lemma:
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Lemma 4.2. Under the assumptions of Proposition 4.2,

M−1
(
zM−1z − Eν

[
zM−1z

])
= −

∫ ∞

0

[
(Sα(t)(z, ζ))1 (∂

2
x)

−1 (Sα(t)(z, ζ))2

−
∑
k∈N

∫ ∞

t
(Sα(s)(0, ϕek))1 (∂

2
x)

−1 (Sα(s)(0, ϕek))2 ds

+α (Sα(t)(z, ζ))1 (∂
2
x)

−1 (Sα(t)(z, ζ))1

−α
∑
k∈N

∫ ∞

t
(Sα(s)(0, ϕek))1 (∂

2
x)

−1 (Sα(s)(0, ϕek))1 ds
]
dt,

(4.8)

where Sα is the semigroup associated with the linear damped wave equation (see (8.2), (8.3)
and (8.4) for an explicit expression). Besides we denote by (Sα(t)(z, ζ))i the i-th component
of Sα(t)(z, ζ).

Proof. Thanks to Lemma 4.1,

M−1
(
zM−1z − Eν

[
zM−1z

])
= M−1

(
z(∂2

x)
−1ζ − Eν

[
z(∂2

x)
−1ζ

])
+ αM−1

(
z(∂2

x)
−1z − Eν

[
z(∂2

x)
−1z

])
.

For the first term, we write:

Eν [z(∂
2
x)

−1ζ] =E
[( ∫ 0

−∞
Sα(−s)(0, ϕdWs)

)
1

( ∫ 0

−∞
(∂2

x)
−1Sα(−s)(0, ϕdWs)

)
2

]
=
∑
k∈N

∫ ∞

0

(
Sα(s)(0, ϕek)

)
1

(
(∂2

x)
−1Sα(s)(0, ϕek)

)
2
ds

(4.9)

thanks to Itô isometry. It follows:

M−1
(
z(∂2

x)
−1ζ −Eν

[
z(∂2

x)
−1ζ

])
=−

∫ ∞

0
E
[(
Sα(t)(z, ζ) +

∫ t

0
Sα(t− s)(0, ϕdWs)

)
1

×(∂2
x)

−1
(
Sα(t)(z, ζ) +

∫ t

0
Sα(t− s)(0, ϕdWs)

)
2
− Eν

[
z(∂2

x)
−1ζ

] ]
dt

=−
∫ ∞

0

[
(Sα(t)(z, ζ))1 (∂

2
x)

−1 (Sα(t)(z, ζ))2

+
∑
k∈N

∫ ∞

t
(Sα(s)(0, ϕek))1 (∂

2
x)

−1 (Sα(s)(0, ϕek))2 ds
]
dt.

The argument is the same for the second term. □

Proof of Proposition 4.2. The proof is now a consequence of Lemma 4.2, together with the
embedding H1 ↪→ L∞ and the bounds of Lemma 8.1. □
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5. Modified energy estimate

Before stating our modified energy estimate, let us explain how we apply the perturbed
test function method to our problem. Recall that M is the infinitesimal generator of (z, ζ).
We denote by Lε the infinitesimal generator of (u,m, µ, zε, ζε), associated with the system
(2.3), that we rewrite in the form

i∂tu = −∂2
xu+ (m+ 1√

ε
zε)u,

∂tm = µ,

ε2∂tµ+ αεµ = ∂2
x(m+ |u|2),

(5.1)

recalling that (zε, ζε) is the solution of (4.1) with initial condition zε(0) = ζε(0) = 0.
Provided φ is a smooth function, Itô formula gives:

Lεφ(u,m, ε2µ, zε, ζε) =Duφ(i∂
2
xu− imu)− 1√

ε
Duφ(iz

εu) +Dmφ(µ)

+Dµφ(∂
2
x(m+ |u|2)− αεµ) +

1

ε
Mφ,

where

Mφ = Dzφ(ζ) +Dζφ(∂
2
xz − αζ) +

1

2
Tr(ϕ∗D2

ζφϕ). (5.2)

If φ does not depend on (z, ζ), then Mφ = 0, and in order to deal with the singular

term in ε−1/2 in the expression of Lεφ, it seems natural to add to φ a corrector
√
εφ1, with

Mφ1 = Duφ(izu), or in other terms, according to Lemma 4.1,

φ1(u, z, ζ) = Duφ(iM−1zu) = Duφ
(
iu(∂2

x)
−1(ζ + αz)

)
. (5.3)

The new terms in Lε(φ +
√
εφ1) have to be controled uniformly in ε. Due to the growth

of (zε, ζε) as a negative power of ε (see Proposition 4.1), we are led to consider a second
corrector

φ2(u, z, ζ) = M−1 (Duφ1(iuz)− Eν [Duφ1(iuz)])

= M−1
(
Du

(
Duφ(iuM−1z)

)
(iuz)− Eν

[
Du

(
Duφ(iuM−1z)

)
(iuz)

])
,

(5.4)

where ν is the invariant measure of zε, or of z. Finally, setting φε = φ +
√
εφ1 + εφ2, or

more precisely,

φε(u,m, µ, zε, ζε) =φ(u,m, µ) +
√
εDuφ

(
iu(∂2

x)
−1(ζε + αzε)

)
+ εM−1 (Duφ1(iuz

ε)− Eν [Duφ1(iuz)]) ,
(5.5)

we have a hope to bound Lεφε uniformly in ε.
We now apply the above computations to the energy H(u,m, µ), where we recall that

H(u,m, µ) = ∥∂xu∥2L2 +
1

2
(∥m∥2L2 + ∥εV ∥2L2) +

∫
R
m|u|2dx,

with V = −∂−1
x µ. We also introduce

K(u,m, µ) = ∥∂xu∥2L2 +
1

2
∥m∥2L2 +

1

2
∥εV ∥2L2 . (5.6)
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It is clear that, for some constant C > 0,

1

2
K(u,m, µ)− C∥u∥6L2 ⩽ H(u,m, µ) ⩽ 2K(u,m, µ) + C∥u∥6L2 (5.7)

for any (u,m, µ) ∈ H1 × L2 × Ḣ−1.
Now, the above computation of Lεφ applied to φ = H (which does not depend on (z, ζ)),

and the fact that H is preserved for the deterministic equation leads to

LεH(u,m, µ) = −αε
∥∥∂−1

x µ
∥∥2
L2 −

2√
ε
Re

∫
R
iu∂xū∂xz

εdx. (5.8)

The first corrector H1(u, z
ε, ζε) is computed thanks to (5.3) and Lemma 4.1:

H1(u, z
ε, ζε) = 2Re

∫
R
iu∂xū∂xM−1zεdx

= 2Re

∫
R
iu∂xū

(
∂−1
x ζε + α∂−1

x zε
)
dx,

(5.9)

while H2(u, z
ε, ζε) is given by (see (5.4)):

H2(u, z
ε, ζε) = 2

∫
R
|u|2M−1

(
∂xz

ε∂xM−1zε − Eν

[
∂xz∂xM−1z

])
dx. (5.10)

Proposition 5.1. Let u0 ∈ H3(R),m0 ∈ H2(R) ∩ Ḣ−1(R),m1 ∈ H1(R) ∩ Ḣ−1(R), and
let (zε(t), ζε(t)) be the unique solution of (4.1) satisfying zε(0) = ζε(0) = 0, with ϕ ∈
L2(L

2, H2∩Ḣ−3). Let (u(t),m(t), µ(t)) be the solution of (5.1) given by Theorem 2.1, and
consider

Hε(t) = H(u(t),m(t), µ(t)) +
√
εH1(u(t), z

ε(t), ζε(t)) + εH2(u(t), z
ε(t), ζε(t)), (5.11)

H1 and H2 being respectively defined in (5.9) and (5.10). Let us fix δ ⩽ 1
8 , and let τ εδ be de-

fined in (4.5). Then, there is a constant C depending only on ∥u0∥L2 and ∥ϕ∥L2(L2,H2∩Ḣ−3)

such that for any ε with 0 < ε ⩽ 1,

1

4
K(u(t),m(t), µ(t))− C ⩽ Hε(t) ⩽ 3K(u(t),m(t), µ(t)) + C, a.s.,

for any t < τ εδ .

Proof. In view of (5.7), it suffices to obtain adequate bounds on H1 and H2. From (5.9),
we deduce

|
√
εH1(u, z

ε, ζε)| ⩽ 2 ∥u∥L2 K
1
2 (u,m, µ)(

√
ε
∥∥∂−1

x ζε
∥∥
H1 + α

√
ε
∥∥∂−1

x zε
∥∥
H1), (5.12)

while (5.10) and Proposition 4.2 imply

|εH2(u, z
ε, ζε)| ⩽ 2ε ∥u∥2L2

∥∥M−1
(
∂xz

ε∂xM−1zε − Eν

[
∂xz∂xM−1z

])∥∥
L∞

⩽ Cϕ∥u∥2L2(1 + ε ∥zε∥2
H2∩Ḣ−2 + ε ∥ζε∥2

H1∩Ḣ−2).
(5.13)

The conclusion follows thanks to Young’s inequality, (4.5) and the conservation of L2

norm. □
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Next, we need to compute the evolution of Hε(t) defined in (5.11), in order to obtain
a uniform estimate with respect to ε on the solution. The Itô formula will give us an
evolution of the form

dHε(t) = LεHε(t) + dXt + dYt, (5.14)

where Xt and Yt are martingale terms arising from the correctors H1 and H2. The estimate
is as follows.

Proposition 5.2. Under the assumptions of Proposition 5.1, there exist positive constants
B and C, depending only on ∥u0∥L2 and ∥ϕ∥L2(L2,H3∩Ḣ−3) such that for any ε with 0 <
ε ⩽ 1,

Lε(Hε(t)) + α
∥∥√εV (t)

∥∥2
L2 ⩽ εK2

t +BKt + C, a.s., (5.15)

for any t ∈ [0, τ εδ ], where Kt = K(u(t),m(t), µ(t)), and V (t) = −∂−1
x µ(t).

Proof. By (5.8), and Itô formula applied to (5.9) using (4.1) and (5.1), we easily obtain

d(H +
√
εH1) =

(
− αε

∥∥∂−1
x µ

∥∥2
L2 − 2

∫
R
|u|2∂xzε(∂−1

x ζε + α∂−1
x zε)dx

+ 4
√
ε

∫
R
|∂xu|2(ζε + αzε)dx+

√
ε

∫
R
∂x|u|2(∂xζε + α∂xz

ε)dx

− 2
√
ε

∫
R
|u|2∂xm(∂−1

x ζε + α∂−1
x zε)dx

)
dt

+ 2Re

∫
R
iu∂xū

∑
k∈N

∂−1
x (ϕek)dβk(t)dx

=Lε(H +
√
εH1)dt+ dXt,

(5.16)

with

Xt = 2Re

∫
R

∫ t

0
iu∂xū

∑
k∈N

∂−1
x (ϕek)dβk(s)dx. (5.17)

Introducing then the corrector H2 defined in (5.10) in order to control the terms of order
zero in ε in the above expression of Lε(H +

√
εH1), we obtain

Lε(Hε
t ) =− 2

∫
R
|u|2Eν

[
∂xz∂xM−1z

]
dx

+
√
ε
(
4

∫
R
|∂xu|2(ζε + αzε)dx+

∫
R
∂x|u|2(∂xζε + α∂xz

ε)dx

− 2

∫
R
|u|2∂xm(∂−1

x ζε + α∂−1
x zε)dx

)
−α

∥∥√εV
∥∥2
L2 + 4εRe

∫
R
iū∂2

xuM−1
(
∂xz

ε∂xM−1zε − Eν

[
∂xz∂xM−1z

])
dx,

(5.18)
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where we recall thatHε
t is defined in (5.11) and V = −∂−1

x µ. Note that the second corrector
also contributes to the martingale part which can be computed thanks to Itô formula and
Lemma 4.2 adding

Yt =
√
ε

∫ t

s=0

∫
R
|u|2

∫ ∞

t′=0
∂x

(
Sα(t

′)(zε, ϕdWs)
)
1
∂−1
x

((
Sα(t

′)(zε, ζε)
)
2
+ α

(
Sα(t

′)(zε, ζε)
)
1

)
+ ∂x

(
Sα(t

′)(zε, ζε)
)
1
∂−1
x

((
Sα(t

′)(zε, ϕdWs)
)
2
+ α

(
Sα(t

′)(zε, ϕdWs)
)
1

)
dtdx.

(5.19)

In other words, dHε
t = LεHε

t dt+ d(Xt + Yt) with Xt defined in (5.17) and Yt in (5.19).
It remains to bound the terms in the right hand side of (5.18). First, Lemma 4.1, a

computation similar to (4.9), and Lemma 8.1 easily gives∣∣∣∣2 ∫
R
|u|2Eν

[
∂xz∂xM−1z

]
dx

∣∣∣∣ ⩽ C∥ϕ∥2L(L2;H1∩Ḣ−2)
∥u∥2L2 .

Besides, for t ∈ [0, τ εδ ],∣∣∣∣4√ε

∫
R
|∂xu|2(ζε + αzε)dx

∣∣∣∣ ⩽ C
√
ε ∥∂xu∥2L2 (∥ζε∥H1 + α ∥zε∥H1)

⩽ Cε
1
2
−δKt,

and ∣∣∣∣√ε

∫
R
∂x|u|2 (∂xζε + α∂xz

ε) dx

∣∣∣∣ ⩽ C
√
ε ∥u∥L2 ∥∂xu∥L2 (∥ζε∥H2 + α ∥zε∥H2)

⩽ Cε
1
2
−δK

1
2
t ⩽ C +Kt,

thanks to the conservation of ∥u∥L2 and since ε ⩽ 1. It remains to estimate two terms in
the right-hand side of (5.18) . First, by integration by parts:

√
ε

∣∣∣∣∫
R
|u|2∂xm

(
∂−1
x ζε + α∂−1

x zε
)
dx

∣∣∣∣ ⩽√
ε

∫
R
∂x|u|2m

(
∂−1
x ζε + α∂−1

x zε
)
dx

+
√
ε

∫
R
|u|2m (ζε + αzε) dx.

The second integral is easily bounded by C +Kt, for t ∈ [0, τ εδ ], using similar arguments
as above and in those in Lemma 3.1, while for the first integral:

√
ε

∣∣∣∣ ∫
R
∂x|u|2m

(
∂−1
x ζε + α∂−1

x zε
)
dx

∣∣∣∣
⩽ 2

√
ε
(∥∥∂−1

x ζε
∥∥
L∞ + α

∥∥∂−1
x zε

∥∥
L∞

)
∥u∥L∞ ∥∂xu∥L2 ∥m∥L2

⩽ C ∥u∥
1
2

L2 ε
1
2
−δ ∥∂xu∥

3
2

L2 ∥m∥L2 ⩽ C(Kt + ε1−2δK
3
2
t )

⩽ C(1 +Kt + εK2
t ),
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again thanks to the conservation of ∥u∥L2 , and for t ∈ [0, τ εδ ], recalling that δ ⩽ 1
8 . The

last term in (5.18) is also integrated by parts, and taking account of the fact that zε and
ζε are real valued, it is bounded for t ∈ [0, τ εδ ] by

Cε ∥u∥L2 ∥∂xu∥L2

∥∥∂xM−1
(
∂xz

ε∂xM−1zε − Eν

[
∂xz∂xM−1z

])∥∥
L∞

⩽ CϕεK
1
2
t (1 + ∥zε∥2

H3∩Ḣ−2 + ∥ζε∥2
H2∩Ḣ−2) ⩽ Cε1−2δK

1
2
t

⩽ C(1 +Kt),

thanks to Proposition 4.2, and the conservation of ∥u∥L2 . Gathering all these estimates
gives the conclusion. □

Propositions 5.1 and 5.2, together with the expression of the martingale terms (5.17)
and (5.19) allow us to state the two following energy estimates which will be useful for the
tightness.

Proposition 5.3. Let u0 ∈ H3(R),m0 ∈ H2(R) ∩ Ḣ−1(R),m1 ∈ H1(R) ∩ Ḣ−1(R), and
let (zε(t), ζε(t)) be the unique solution of (4.1) satisfying zε(0) = ζε(0) = 0, with ϕ ∈
L2(L

2, H3 ∩ Ḣ−3). Then, for any T > 0, there exists a constant C(T ) > 0, independent of
ε, and a stopping time τ ε such that P(τ ε ≤ T ) converges to 0 as ε tends to 0, such that the
solution (u,m, µ) of the system (5.1) given by Theorem 2.1 satisfies

E
[

sup
t⩽τε∧T

K2(t)
]
⩽ C(T ),

where K(t) is defined in equation (5.6) with u = u(t),m = m(t), µ = ∂tm(t). Moreover, if
V (t) = −∂−1

x µ(t), then

E
[∥∥√εV

∥∥2
L2(0,τε∧T ;L2)

]
⩽ C(T ).

The proof of Proposition 5.3 is postponed to the Appendix.

6. Tightness of the processes

Let us fix T > 0. Thanks to the bounds obtained in Proposition 5.3, we are able to
prove the tightness of the family of processes indexed by ε, and apply the Prokhorov and
Skorohod Theorems.

Let (u0,m0,m1) and (zε, ζε) be as in Proposition 5.3. For ε > 0, denote by (uε,mε, µε)
the solution to the system (5.1) given by Theorem 2.1. We will use Aldous criterion (see
[9, Theorem 16.10]) for which we need a control of the modulus of continuity. It leads us
to consider the following integrals (we recall that V ε = −∂−1

x µε):

M ε(t) =

∫ t

0
mε(s)ds, Vε(t) =

∫ t

0
V ε(s)ds. (6.1)

We also fix δ ⩽ 1
8 and introduce the space

E =

{
f ∈ C(R, H3 ∩ Ḣ−3), sup

t∈R

∥f(t)∥H3∩Ḣ−3

1 + |t|δ
< ∞

}
. (6.2)
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According to Proposition 4.1, and more precisely to (4.4), the process (z, ζ), solution of
(4.2), takes values a.s. in E × E. Our aim is to prove the following Proposition.

Proposition 6.1. Let (u0,m0,m1) ∈ H3×(H2∩Ḣ−1)×(H1∩Ḣ−1). Denote by (uε,mε, µε)
the solution of (5.1), and (z, ζ) the solution of (4.2) satisfying z(0) = ζ(0) = 0. Then
the sequence (uε,M ε,

√
εVε, z, ζ) where M ε,Vε are defined in (6.1) is tight in the space

C0([0, T ], Hs
loc)× C0([0, T ], H−σ

loc )×Hs([0, T ], H−σ
loc )× E × E for any s < 1, σ > 0.

In order to prove this result, we first study the process uε, for which we will apply Aldous
criterion, using again the Perturbed Test function method. More precisely, we show that
the process (uε)ε is tight in the space C0([0, T ], Hs

loc). We need two statements, namely
Lemma 6.1 and Proposition 6.2.

Lemma 6.1. Let ε > 0 and denote by (uε,mε, µε) the solution of (5.1) given by Theorem
2.1. Then

lim
R→∞

lim sup
ε→0

P
(

sup
t∈[0,T ]

∥uε(t)∥H1 > R
)
= 0. (6.3)

Proof. This is a simple consequence of Proposition 5.3, since

P
(

sup
t∈[0,T ]

∥uε(t)∥2H1 > R
)
⩽P

(
sup

t∈[0,τε]
∥uε(t)∥2H1 > R

)
+ P (τ ε < T )

⩽
C(T )

R
+ P (τ ε < T ) ,

(6.4)

for some constant C independent of ε, and τ ε converges to T in probability as ε tends to
0. □

Proposition 6.2. Let ε > 0 and denote by (uε,mε, µε) the solution of (5.1) given by
Theorem 2.1. Then for every λ, η, there exist δ0, ε0 such that for δ̄ < δ0 and ε < ε0, if τ is
a stopping time with τ ⩽ T a.s. then

P
( ∥∥uε(τ + δ̄)− uε(τ)

∥∥
H− 1

2
> λ

)
⩽ η. (6.5)

In order to prove Proposition 6.2, we will need two lemmas, whose proofs will use the
Perturbed Test Function method.

Lemma 6.2. Let τ ε be as in Proposition 5.3. For any η > 0 , there exist δ0, ε0 such that
for any bounded stopping time τ , for δ̄ < δ0 and ε < ε0 we have

E
[ ∥∥uε((τ + δ̄) ∧ τ ε)

∥∥2
H− 1

2
− ∥uε(τ ∧ τ ε)∥2

H− 1
2

]
⩽ η. (6.6)

Proof. We apply the perturbed test function method to φ(u) = ∥u∥2
H− 1

2
, for u ∈ H3. We

first compute the infinitesimal generator Lε applied to φ and we get

Lεφ(u,m, zε) = 2⟨(1− ∂2
x)

− 1
2u, i∂2

xu− imu⟩+ 2√
ε
⟨(1− ∂2

x)
− 1

2u,−izεu⟩. (6.7)

As above, in order to cancel the term of order ε−1/2, we use a first corrector

φ1(u, z
ε, ζε) = 2⟨(1− ∂2

x)
− 1

2u, iuM−1zε⟩, (6.8)
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which is easily bounded on [0, τ εδ ] by C(T )ε−δ, thanks to Lemma 4.1, Lemma 4.5, and the
conservation of ∥uε(t)∥L2 . Applying then the infinitesimal generator Lε to φ(u)+

√
εφ1 we

get

Lε(φ+
√
εφ1)(u,m, zε, ζε) = 2⟨(1− ∂2

x)
− 1

2u, i∂2
xu− imu⟩

+ 2⟨(1− ∂2
x)

− 1
2u, uzεM−1zε⟩ − 2⟨(1− ∂2

x)
− 1

2 (zεu), uM−1zε⟩

+ 2
√
ε
[
⟨(1− ∂2

x)
− 1

2u, (mεu− ∂2
xu)M−1zε⟩

+⟨(1− ∂2
x)

− 1
2 (∂2

xu−mεu), uM−1zε⟩
]
.

Here again, we introduce a second corrector φ2 in order to control the terms of order 0:

φ2(u, z
ε, ζε) = −2⟨(1− ∂2

x)
− 1

2u, uM−1(zεM−1zε − Eν

[
zεM−1zε

]
)⟩

+2⟨u,M−1[(1− ∂2
x)

− 1
2 (zεu)M−1zε − Eν

[
(1− ∂2

x)
− 1

2 (zu)M−1z
]
)⟩.

The two terms on the right-hand side of the above equation are bounded for t ∈ [0, τ εδ ]
thanks to Proposition 4.2 (or similar arguments as in the proof of Proposition 4.2 for the
second term), (4.5) and the conservation of ∥uε(t)∥L2 , and we get

φ2(u
ε, zε, ζε) ⩽ C(T )ε−2δ (6.9)

where C depends on the L2 norm of u and the Hilbert-Schmidt norm of ϕ. Defining
φε = φ+

√
εφ1 + εφ2, we end up thanks to (6.8), Lemma 4.1 and (6.9) with

|φε(uεt , z
ε
t , ζ

ε
t )− φ(uεt )| ⩽ Cε

1
2
−δ + Cε1−2δ, for all t ∈ [0, τ εδ ], (6.10)

where C depends on T , ∥u0∥L2 and ∥ϕ∥L2(L2,H3∩Ḣ−4). We also compute

(Lεφε)(uε,mε,zε, ζε) = 2⟨(1− ∂2
x)

− 1
2uε, i∂2

xu
ε − imεuε⟩

+ 2Eν

[
⟨(1− ∂2

x)
− 1

2uε, uεzM−1z⟩ − 2⟨(1− ∂2
x)

− 1
2 (zεuε), uεM−1z⟩

]
+ 2

√
ε
[
⟨(1− ∂2

x)
− 1

2uε, (mεuε − ∂2
xu

ε)M−1zε⟩

+⟨i(1− ∂2
x)

− 1
2 (∂2

xu
ε −mεuε), iuεM−1zε⟩

]
+
√
εDuφ2(−izεuε) + εDuφ2(i∂

2
xu

ε − imεuε).

Proceeding as above, it is not difficult to prove that for t ∈ [0, τ εδ ],
√
ε|Duφ2.(−izεuε)| ⩽ C(T )ε

1
2
−3δ,

and

εDuφ2.(i∂
2
xu

ε − imεuε) ⩽ C(T )(∥uε∥2H1 + ∥mε∥2L2)ε
1−2δ,

so that if τ ε is as in Proposition 5.3,

|(Lεφε)(uε,mε, zε, ζε)| ⩽ C(T )
(
1 + ε

1
2
−3δ + ε1−2δ

)
.
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Now, since

φε(uεt , z
ε
t , ζ

ε
t )− φε(u0, z

ε
0, ζ

ε
0)−

∫ t

0
(Lεφε)(uεs,m

ε
s, z

ε
s , ζ

ε
s )ds

is a martingale, the above estimate and (6.10) lead to

E
[
φ(uε((τ + δ̄) ∧ τ ε))− φ(uε(τ ∧ τ ε))

]
⩽ E

[
φε(uε((τ + δ̄) ∧ τ ε))− φε(uε(τ ∧ τ ε))

]
+ Cε

1
2
−δ + Cε1−2δ

⩽ Cδ̄
(
1 + ε

1
2
−3δ + ε1−2δ

)
+ Cε

1
2
−δ + Cε1−2δ.

Finally, for δ̄ and ε small enough we get the conclusion of Lemma 6.2, recalling that
φ(u) = ∥u∥2

H− 1
2
. □

The second lemma states a similar result.

Lemma 6.3. Let τ ε be as in Proposition 5.3. There exist δ0, ε0 such that for any bounded
stopping time τ , for δ̄ < δ0 and ε < ε0,

E
[
⟨uε((τ + δ̄) ∧ τ ε)− uε(τ ∧ τ ε), uε(τ ∧ τ ε)⟩

H− 1
2

]
⩽ η (6.11)

Proof. The proof is very similar to the proof of Lemma 6.2, by applying the Pertubed

Test Function method to φ(u) = ⟨u, h⟩
H− 1

2
for a fixed function h ∈ H− 1

2 , then choosing

h = uε(τ ∧ τ ε), so we leave the details to the reader. □

Proposition 6.2 is now a consequence of Lemmas 6.2 and 6.3.

Proof of Proposition 6.2. Let λ and η be two positive numbers, and let τ be a stopping
time such that τ < T − δ̄. Then:

P
(∥∥uε(τ + δ̄)− uε(τ)

∥∥
H− 1

2
> λ

)
⩽P

(∥∥uε((τ + δ̄) ∧ τ ε)− uε(τ ∧ τ ε)
∥∥
H− 1

2
> λ

)
+ P(τ ε < T )

⩽P
(∥∥uε((τ + δ̄) ∧ τ ε)− uε(τ ∧ τ ε)

∥∥
H− 1

2
> λ

)
+

η

2
for ε small enough. Now, since

E
[∥∥uε((τ + δ̄) ∧ τ ε)− uε(τ ∧ τ ε)

∥∥2
H− 1

2

]
= E

[∥∥uε((τ + δ̄) ∧ τ ε)
∥∥2
H− 1

2
− ∥uε(τ ∧ τ ε)∥2

H− 1
2

]
− 2E

[
⟨uε((τ + δ̄) ∧ τ ε)− uε(τ ∧ τ ε), uε(τ ∧ τ ε)⟩

H− 1
2

]
,

the conclusion follows from Markov inequality and Lemmas 6.2 and 6.3, for ε and δ̄ small
enough. □

The next proposition is now a consequence of Lemma 6.1 and Proposition 6.2, thanks
to Aldous criterion and the compactness of the embedding of H1 into Hs

loc for s < 1.

Proposition 6.3. The sequence (uε) is tight in C0([0, T ], Hs
loc) for s < 1.
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Now that we have obtained the tightness of (uε)ε, let us briefly explain how to get the
tightness of the whole sequence (uε,M ε,

√
εVε, z, ζ). For the sequence (M ε)ε defined in

(6.1) we use again Aldous criterion and Proposition 5.3 coupled with the compact em-
bedding L2 ↪→ H−σ

loc to get the tightness in C0([0, T ], H−σ
loc ). For the sequence (

√
εVε)ε

defined in (6.1), we also use Proposition 5.3 and the compact embedding H1([0, T ], L2) ↪→
Hs([0, T ], H−σ

loc ) to conclude. Note that in these cases, we do not need to use the perturbed
test function method to estimate the modulus of continuity, since we have taken integrals
in time, so that the estimates of Proposition 5.3 are sufficient. Finally, z and ζ are constant
random processes, which both belong almost surely to E defined in (6.2), according to the
proof of Proposition 4.1 thus the tightness is established.

7. Convergence to the Stochastic Schrödinger equation

In this section, we prove the main result of this paper, that is Theorem 2.2. With this
aim in view, we first prove some weak convergence results, similar to those we can find
in [2], before passing to the limit in ε in the martingale problem. The regularities on the

initial data and on ϕ assumed in Theorem 2.2 ensure that the process (z, ζ) ∈ H3 ∩ Ḣ−3

and that the computations below are justified.

7.1. Weak convergences. We have proved in the previous section that the sequence
(uε,M ε,

√
εVε, z, ζ) is tight in C([0, T ], Hs

loc) × C([0, T ], H−σ
loc ) ×Hs([0, T ], H−σ

loc ) × E × E
for s < 1 and σ < 0. Then, according to Skorohod Theorem, there exists a probability
space (Ω̃, F̃ , P̃) and a sequence of random variables (ũε, M̃ ε, Ṽε, z̃ε, ζ̃ε) on Ω̃, equal in law

to (uε,M ε,
√
εVε, z, ζ), which converges almost surely in the same space to (ũ, M̃ , Ṽ, z̃, ζ̃)

as ε goes to 0. Let us define

m̃ε = ∂tM̃
ε, m̃ = ∂tM̃, Ṽ ε =

1√
ε
∂tṼε, and Ṽ = ∂tṼ, (7.1)

where the derivatives are taken in the weak sense. We also define the process(
z̃ε(t), ζ̃

ε
(t)

)
=

(
z̃ε

(
t

ε

)
, ζ̃ε

(
t

ε

))
, (7.2)

which is equal in law to (zε, ζε). Note that the new processes satisfy the same equations,
with the same regularities thanks to Proposition 3.1 and (3.17). We also define

K̃ε
t = ∥∂xũε∥2L2 +

1

2
∥m̃ε∥2L2 +

1

2
∥εṼ ε∥2L2 . (7.3)

Now, in order to identify the limit of the processes uε and mε, we first prove a bound on
the new random variables which is similar to the bounds obtained in Lemmas 5.3. Note
that the set E plays here an important role.

Proposition 7.1. For K̃ε and Ṽ ε defined in equations (7.3) and (7.1), there exists a
stopping time τ̃ ε and a constant C(T ) > 0 independent of ε such that:

E

[
sup

t∈[0,τ̃ε∧T ]
(K̃ε

t )
2 + α∥

√
εṼ ε∥2L2(0,τ̃ε∧T ;L2)

]
⩽ C(T ). (7.4)
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Besides, τ̃ ε converges in probability to T as ε goes to 0.

Proof. The only difference between the system satisfied by (uε,mε) and the one satisfied
by (ũε, m̃ε) is that the process z is replaced by a process z̃ε which a priori depends on ε. If
it were not the case, we could do the same computations as in section 5 and easily recover
the above bound. Let us introduce

τ̃ εδ = inf
{
t : ∥z̃ε∥H3∩Ḣ−3 + ∥ζ̃ε∥H3∩Ḣ−3 ⩾ ε−δ

}
. (7.5)

Note that the Skorohod Theorem ensures that (z̃ε, ζ̃ε) converges a.s. to (z̃, ζ̃) in E, so

that for any δ′ < δ and for a.e. ω ∈ Ω̃, there exists a constant C(ω) such that for ε small
enough,

∥z̃ε(t)∥H3∩Ḣ−3 + ∥ζ̃ε(t)∥H3∩Ḣ−3 ⩽ ∥z̃(t)∥H3∩Ḣ−3 + ∥ζ̃(t)∥H3∩Ḣ−3 + C(ω)(1 + |t|δ′).

Besides, z̃ and z have the same law, so we deduce from the above bound and (4.4) that

there exist two random variables Z̃1, Z̃2 such that for ε > 0 sufficiently small,

∥z̃ε(t)∥H3∩Ḣ−3 + ∥ζ̃ε(t)∥H3∩Ḣ−3 ⩽ Z̃1 + |t|δ′Z̃2.

Thus the stopping time τ̃ εδ converges a.s. to infinity when ε goes to 0. □

Note that the bound in Proposition 7.1 implies the weak convergence, up to the ex-
traction of a subsequence, of the stopped processes: there is a subsequence, still denoted
(ũετ̃ε , m̃

ε
τ̃ε ,

√
εṼ ε

τ̃ε), which converges in L4(Ω̃, L∞(0, T ;H1))×L4(Ω̃, L∞(0, T ;L2))×L2(Ω̃×
[0, T ]×R) to (ũ, m̃, Ṽ ) weak star. The next two lemmas, which are adapted from [2], give
precisions on those weak limits.

Lemma 7.1. The weak limit m̃ of the stopped process m̃ε
τ̃ε is equal to −|ũ|2.

Proof. First, it is clear that |ũετ̃ε |2 converges a.s. to |ũ|2 in L∞(0, T,Hs
loc). Now, let φ be a

test function in L2(Ω̃;D((0, T )× R)). Integrating in time equation (3.8) gives:

E
[
⟨ε2(Ṽ ε

τ̃ε − Ṽ ε(0)),1[0,τ̃ε)φ⟩+ α⟨ε
∫ t

0
Ṽ ε
τ̃ε(s)ds,1[0,τ̃ε)φ⟩

]
= −E⟨

∫ t

0
∂x

(
m̃ε

τ̃ε(s) + |ũετ̃ε |2(s)
)
ds,1[0,τ̃ε)φ⟩.

Now,
√
εṼ ε

τ̃ε ,
√
ε
∫ t
0 Ṽ

ε
τ̃ε(s)ds and 1[0,τ̃ε)φ are bounded in L2(Ω̃× [0, T ]×R), and we deduce

that the terms on the left hand side of the above equation tend to 0 as ε goes to 0. On the
other hand,

E⟨
∫ t

0
∂xm̃

ε
τ̃ε(s)ds,1[0,τ̃ε)φ⟩ = E⟨∂xM ε,1[0,τ̃ε)φ⟩

converges to E⟨∂xM̃, φ⟩, by dominated convergence, thanks to the boundedness of m̃ε
τ̃ε in

L∞(Ω̃;L∞(0, T ;L2
x)) and the fact that ∂xM̃

ε converges a.s. to ∂xM̃ in L∞(0, T ;H−σ−1
loc ),
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while 1[0,τ̃ε)φ converges in probability to φ in L1(0, T ;Hσ+1). In the same way,

E⟨
∫ t
0 ∂x(|ũ

ε
τ̃ε |2,1[0,τ̃ε)φ⟩ converges to E⟨

∫ t
0 ∂x(|ũ|

2)ds, φ⟩, and we deduce

∂x(m̃+ |ũ|2) = 0 a.s. in D′((0, T )× R).

Since m̃, |ũ|2 ∈ L2(Ω̃, L∞(0, T ;L2)), it follows that m̃+ |ũ|2 = 0. □

Lemma 7.2. The process m̃ε
τ̃ε ũ

ε
τ̃ε converges weakly to −|ũ|2ũ in L2(Ω, L2(0, T ;H−1)).

Proof. Let φ ∈ L2(Ω, L2(0, T ;H1)) such that supp φ ⊂ [0, T ] × [−R,R], a.s., for some
R > 0. Then,

E
[∫ T

0

∫
R

(
m̃ε

τ̃ε ũ
ε
τ̃ε + |ũ|2ũ

)
φdxdt

]
=E

[∫ T

0

∫
R
m̃ε

τ̃ε (ũ
ε
τ̃ε − ũ)φdxdt

]
+ E

[∫ T

0

∫
R

(
m̃ε

τ̃ε + |ũ|2
)
φũ dxdt

]
.

Note that ũετ̃ε converges to ũ in L4(Ω̃, L∞(0, T ;L2(−R,R))), thanks to the a.s. convergence
in L∞(0, T ;Hs

loc) and the uniform integrability given by the conservation of L2-norm. Since
the first term in the right hand side above is easily bounded by

∥m̃ε
τ̃ε∥L4(Ω̃,L∞(0,T ;L2)) ∥φ∥L2(Ω̃,L2(0,T ;H1)) ∥ũ

ε
τ̃ε − ũ∥L4(Ω̃,L∞(0,T ;L2(−R,R))) T

1
2 ,

we deduce that this term tends to 0 with ε. On the other hand, the conservation of L2-
norm for ũ implies that φũ ∈ L2(Ω, L1(0, T ;L2)) and Lemma 7.1 allows to conclude that
the second term in the right hand side above converges to 0 with ε. □

The above lemmas will be useful in the next subsection.

7.2. Martingale Problem. In this subsection, we use the Perturbed Test Function method
to identify the limit generator of ũ, and study the limit as ε goes to 0 of the martingale
problem associated to (ũεt , z̃

ε
t , ζ̃

ε
t ). Since ũ ∈ C([0, T ];Hs

loc), a.s., we only need quadratic
test functions to identify the generator, thanks to the martingale representation theorem
(see [16, Theorem 8.2]).

We define the function φ : u 7→ (u, h)ℓ for h ∈ H1 a fixed function with compact support,
and ℓ = 1, 2. First we compute, as in Section 5:

(Lεφ)(ũε, m̃ε, z̃ε) = ℓ(ũε, h)ℓ−1(i∂2
xũ

ε − im̃εũε, h)− ℓ√
ε
(ũε, h)ℓ−1(iz̃εũε, h).

The first corrector is then given by (see (5.3)):

φ1(ũ
ε, z̃ε, ζ̃

ε
) = ℓ(ũε, h)ℓ−1(iũε(∂2

x)
−1(ζ̃

ε
+ αz̃ε), h), (7.6)

and the second corrector (see (5.4)):

φ2(ũ
ε, z̃ε, ζ̃

ε
) =− ℓ(ũε, h)ℓ−1

(
ũM−1

(
z̃εM−1z̃ε − Eε

ν

[
zM−1z

])
, h

)
+ℓ(ℓ− 1)M−1

(
(iz̃εũε, h)(iũεM−1z̃ε, h)− Eν

[
(izũε, h)(iũεM−1z, h)

])
.

(7.7)
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Finally, defining φε = φ+
√
εφ1 + εφ2, we get:

(Lεφε)(ũε, m̃ε, z̃ε, ζ̃
ε
)

= ℓ(ũε, h)ℓ−1(i∂2
xũ

ε − im̃εũε, h) + ℓ(ũε, h)ℓ−1(ũεEν

[
zM−1z

]
, h)

− ℓ(ℓ− 1)Eν

[
(izũε, h)(iũεM−1z, h)

]
+
√
εDuφ1(i∂

2
xũ

ε − im̃εũε)

+
√
εDuφ2(−iz̃εũε) + εDuφ2(i∂

2
xũ

ε − im̃εũε).

(7.8)

Taking formally the limit in ε in the above expression, and using Lemma 7.1, we obtain a
candidate for the limit generator given by

Lφ(ũ) =ℓ(ũ, h)ℓ−1(i∂2
xũ+ i|ũ|2ũ, h) + ℓ(ũ, h)ℓ−1(ũEν

[
zM−1z

]
, h)

− ℓ(ℓ− 1)Eν

[
(iũM−1z, h)(iũz, h)

]
.

(7.9)

We recall that here, φ(·) = (·, h)ℓ, ℓ = 1, 2, with h ∈ H1. Note that the above expres-
sion is well defined for ũ ∈ H3. The next proposition gives some precision on the above
convergence.

Proposition 7.2. Let φ(u) = (u, h)ℓ, ℓ = 1, 2, where h ∈ H1 with compact support. Let
φ1, φ2 be the two correctors defined in equations (7.6) and (7.7), and let φε = φ+

√
εφ1 +

εφ2. Then:

(1) There is a constant C depending on ∥ϕ∥L(L2;H1∩Ḣ−4) such that

|φε(ũετ̃ε , z̃
ε
τ̃ε , ζ̃

ε
τ̃ε)− φ(ũετ̃ε)| ⩽ C

√
ε ∥ũετ̃ε∥

ℓ
L2 ∥h∥ℓL2 (1 + ∥z̃ετ̃ε∥

2
E + ∥ζ̃ετ̃ε∥2E),

where E is defined in Equation (6.2).

(2) The quantity Lεφε(ũετ̃ε , m̃
ε
τ̃ε , z̃

ε
τ̃ε , ζ̃

ε
τ̃ε) − Lφ(ũ) converges to 0 in L2(Ω̃;L∞(0, T ))

weak star, as ε goes to 0.
(3) Taking ℓ = 1, the quantity M ε

t defined by

(M ε
t , h) = φε(ũεt , z̃

ε
t , ζ̃

ε
t )− φε(ũ0, z̃0, ζ̃0)−

∫ t

0
Lεφε(ũεs, m̃

ε
s, z̃

ε
s, ∂tζ̃

ε
s) ds (7.10)

is a local martingale for the filtration F̃ε generated by the process (ũε).

Proof. The first point of the Proposition is clear in view of (7.6), (7.7) and Proposition 4.2.
For the second point, we take the difference between (7.8) and (7.9), and consider each
term of the resulting expression. We start with the terms of order 1

2 and 1 in ε; using again
(7.6), (7.7) and Proposition 4.2, together with (7.5),

√
εDuφ1(i∂

2
xũ

ε
τ̃ε − im̃ε

τ̃ε ũ
ε
τ̃ε) ⩽ Cε

1
2
−δ (∥ũετ̃ε∥H1 + ∥m̃ε

τ̃ε∥L2 ∥ũετ̃ε∥L2) ∥ũετ̃ε∥
ℓ−1
L2 ∥h∥ℓH1 ,

and √
εDuφ2(−iz̃ετ̃ε ũ

ε
τ̃ε) ⩽ Cε1−3δ ∥ũετ̃ε∥

ℓ
L2 ∥h∥ℓL2 .

Besides,

εDuφ2(i∂
2
xũ

ε
τ̃ε − im̃ε

τ̃ε ũ
ε
τ̃ε) ⩽ Cε1−2δ (∥ũετ̃ε∥H1 + ∥m̃ε

τ̃ε∥L2 ∥ũετ̃ε∥L2) ∥ũετ̃ε∥
ℓ−1
L2 ∥h∥ℓH1 ,
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and we may conclude thanks to Proposition 7.1 that these three terms tend to 0 when ε goes
to 0, strongly in L2(Ω̃;L∞(0, T )). Furthermore, the zero order terms may be treated thanks

to the strong convergence of ũετ̃ε to ũ in L4(Ω̃, L∞(0, T ;L2
loc)) (see the proof of Lemma 7.2)

and the weak convergence of Lemma 7.2. Indeed, the above convergences, together with
the weak convergence of ũετ̃ε to ũ in L4(Ω̃, L∞(0, T ;H1)) allow to get the weak convergence
in L2(Ω;L∞(0, T )) of the term (ũετ̃ε , h)(i∂

2
xũ

ε
τ̃ε−im̃ε

τ̃ε ũ
ε
τ̃ε , h) to (ũ, h)(i∂2

xũ+i|ũ|2ũ, h), while
the two remaining zero order terms converge strongly in L2(Ω̃;L∞(0, T )).

The last point of the Proposition stems from a simple application of the Itô formula,
given the smoothness of the processes ũε, m̃ε, z̃ε, ζ̃ε. □

7.3. Convergence in law. We are now in position to prove the convergence in law of the
process ũε to the unique solution of (2.4) with u(0) = u0.

Identification of the limit generator. We define

k(x, y) = Eν

[
z(x)M−1z(y) + z(y)M−1z(x)

]
, (7.11)

and F (x) = k(x, x). The next lemma relates the kernel k and the Hilbert-Schmidt operator
ϕ.

Lemma 7.3. For x, y ∈ R and (z, ζ) solution of equation (4.2), we have:

−k(x, y) =
∑
k∈N

(∂2
x)

−1(ϕek)(x)(∂
2
x)

−1(ϕek)(y), (7.12)

where we recall that (ek)k∈N is a complete orthonormal system in L2(R;R).

The proof of Lemma 7.3 is technical and is postponed to the Appendix. Now, we recall
that in order to identify the limit generator L, we only need to apply it to quadratic test
functions. Considering first φ(u) = (u, h), with h ∈ H1 with compact support, we use (7.9)
and (7.12) to get:

Lφ(ũ) =
(
i∂2

xũ+ i|ũ|2ũ− 1

2
ũF (x), h

)
= (Duφ)

(
i∂2

xũ+ i|ũ|2ũ− 1

2
ũF (x)

)
, (7.13)

where we recall that F (x) =
∑

k∈N
(
(∂2

x)
−1ϕek

)2
(x). Next, considering φ(u) = (u, h)2

gives:

Lφ(ũ) = (Duφ)
(
i∂2

xũ+ i|ũ|2ũ− 1

2
ũF (x)

)
−
∫
R

∫
R
Re

(
iũ(x)h̄(x)

)
Re

(
iũ(y)h̄(y)

)
k(x, y)dxdy. (7.14)

Note that the second term of the right-hand-side above may be written, thanks to Lemma 7.3
as: ∑

k∈N

(
iũ(∂2

x)
−1(ϕek), h

)2
=
1

2
Tr (iũ(∂2

x)
−1ϕ)∗(D2

uφ)(iũ(∂
2
x)

−1ϕ).
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We deduce that

Lφ(ũ) =(Duφ)
(
i∂2

xũ+ i|ũ|2ũ− 1

2
ũF (x)

)
+

1

2
Tr (iũ(∂2

x)
−1ϕ)∗(D2

uφ)(iũ(∂
2
x)

−1ϕ),

(7.15)

which is the generator of the transition semi-group associated with equation (2.4).

Convergence. We first prove the following lemma.

Lemma 7.4. Let φ(u) = (u, h) where h ∈ H1 with compact support. Then the process Mt

defined by:

(Mt, h) = φ(ũt)− φ(ũ0)−
∫ t

0
Lφ(ũs)ds (7.16)

is a martingale for the filtration Gs generated by ũs.

Proof. Let g ∈ Cb ((Hs
loc)

n), let 0 ⩽ s1 < s2 < · · · < sn = σ < t, and let φ1 and φ2

be the correctors defined in (7.6) and (7.7) respectively, with ℓ = 1. Then, thanks to
Proposition 7.2,

E
[
(M ε

τ̃ε(t)−M ε
τ̃ε(σ), h)g (ũ

ε
τ̃ε(s1), · · · , ũετ̃ε(sn))

]
= 0,

so we deduce that

E
[(
φ(ũt)− φ(ũσ)−

∫ t

σ
Lφ(ũr)dr

)
g (ũετ̃ε(s1), · · · , ũετ̃ε(sn))

]
= E

[(
(φ(ũt)− φ(ũετ̃ε(t)))− (φ(ũσ)− φ(ũετ̃ε(σ)))

−
√
ε (φ1(ũ

ε
τ̃ε(t))− φ1(ũ

ε
τ̃ε(σ)))− ε (φ2(ũ

ε
τ̃ε(t))− φ2(ũ

ε
τ̃ε(σ)))

−
( ∫ σ∧τ̃ε

σ
Lφ(ũr)dr −

∫ t∧τ̃ε

t
Lφ(ũr)dr

)
−
∫ t∧τ̃ε

σ∧τ̃ε
Lφ(ũr)− Lεφε(ũετ̃ε(r), z̃

ε
τ̃ε(r), ζ̃

ε
τ̃ε(r))dr

)
g(ũετ̃ε(s1), · · · , ũετ̃ε(sn))

]
= E [T1 + T2 + T3 + T4] .

Note that, for convenience, we did not write the dependence of φ1 and φ2 on m̃ε, z̃ε and
ζ̃
ε
. The convergence of ũετε to ũ, the boundedness of g, and Proposition 7.2 imply

lim
ε→0

E [T1 + T2] = 0.

Regarding T3, in view of (7.13) and the boundedness of g,

E
[( ∫ σ∧τ̃ε

σ
Lφ(ũr)dr

)
g(ũετ̃ε(s1), · · · , ũετ̃ε(sn))

]
⩽C ∥h∥H1 E

[
(σ ∧ τ̃ ε − σ) ∥ũ∥L∞([0,T ],H1)

]
⩽ C E

[
(σ ∧ τ̃ ε − σ)2

] 1
2 ,

since ũ ∈ L4(Ω̃, L∞([0, T ], H1)). The same bound obviously holds for the other term of
T3, and since τ̃ ε converges in probability to T , we deduce that limε→0 E[T3] = 0. Finally,
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the convergence of E[T4] to zero is obtained thanks to Proposition 7.2 (2), the strong

convergence of g(ũετ̃ε(s1), · · · , ũετ̃ε(sn)) to g(ũ(s1), · · · , ũ(sn)) in L4(Ω̃) and of 1[σ∧τ̃ε,t∧τ̃ε]
to 1[σ,t] in L4(Ω̃;L1(0, T )).

We thus proved that

lim
ε→0

E
[(
φ(ũt)− φ(ũσ)−

∫ t

σ
Lφ(ũr)dr

)
g (ũετ̃ε(s1), · · · , ũετ̃ε(sn))

]
= 0, (7.17)

and the continuity of g and the a.s. convergence of ũετ̃ε allow to conclude that the process
Mt is a martingale for the filtration Gs generated by ũs. □

Similarly to Lemma 7.4, we can take the limit in ε of the quadratic variation of M ε

defined in (7.10) to get

(⟨M,M⟩th, h) =
∫ t

0

(
L(φ2)− 2φLφ

)
(ũs)ds, (7.18)

where, still, φ(u) = (u, h). Note that this requires the use of Proposition 7.2, as in the
proof of Lemma 7.4, but with ℓ = 1 and ℓ = 2, together with an expression similar to
(7.18) for M ε

t and Lε. Equation (7.15) then implies that(
L(φ2)− 2φLφ

)
(ũ) =

1

2
Tr (iũ(∂2

x)
−1ϕ)∗(D2

u(φ
2))(iũ(∂2

x)
−1ϕ).

Thus, the martingale

Mt = ũt − u0 −
∫ t

0

(
i∂2

xũs + i|ũs|2ũs −
1

2
ũsF (x)

)
ds

has the quadratic variation:∫ t

0
Tr

(
iũs(∂

2
x)

−1ϕ
) (

iũs(∂
2
x)

−1ϕ
)∗

ds.

Thus, using the martingale representation theorem, and up to enlarge the probability space,
there exists a cylindrical Wiener process W̄ such that

Mt =

∫ t

0
iũs(∂

2
x)

−1ϕdW̄s,

so ũ is a martingale solution of (2.4).

Uniqueness. So far we have proved the convergence in law to Equation (2.4) for a subse-
quence, we need to conclude with the convergence of the whole sequence. This is however
a simple consequence of the fact that ũ has paths a.s. in L∞(0, T,H1), and the (obvious)
uniqueness of the solution of (2.4) with paths in L∞(0, T,H1) a.s. This, together with the
convergence in probability of τ ε to T leads to the convergence in law of (uε) to the solution
of (2.4).
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7.4. Convergence in probability. The aim here is to prove that we can actually get a
better convergence of the solution uε of (2.3) to the solution u of (2.4), as announced in
Theorem 2.2. It is not usually the case in approximation diffusion problems, and it is due
here to the particular form of the process (zε, ζε).

Note that the correctors φ1 and φ2 introduced in (7.6) and (7.7) give us an explicit
expression of the martingale M ε

t defined in (7.10). Indeed, the process (zε, ζε) being a
solution of (4.1), where Wt is the cylindrical Wiener process introduced in the system
(1.3), when we apply the Perturbed Test Function method to φ(u) = (u, h) for h ∈ H1

with compact support, the first corrector
√
εφ1(u

ε) =
√
ε(iuε((∂2

x)
−1ζε + α(∂2

x)
−1zε), h)

contributes to the martingale part according to Equation (4.1) satisfied by (zε, ζε), adding

Xε
t =

∫ t

0

(
iuε(∂2

x)
−1ϕdWs, h

)
. (7.19)

In the same way, according to Lemma 4.2, the martingale part coming from the second
corrector εφ2(u

ε) = −ε(uεM−1(zεM−1zε − Eν [zM−1z], h) is

Y ε
t =

√
εRe

∫ t

s=0

∫
R
uε(s)h̄

∫ ∞

t′=0

[(
Sα(t

′)(zε, ϕdWs)
)
1
(∂2

x)
−1

((
Sα(t

′)(zε, ζε)
)
2
+ α

(
Sα(t

′)(zε, ζε)
)
1

)
+
(
Sα(t

′)(zε, ζε)
)
1
(∂2

x)
−1

((
Sα(t

′)(zε, ϕdWs)
)
2
+ α

(
Sα(t

′)(zε, ϕdWs)
)
1

) ]
dt′dx.

(7.20)

Thus the previous section and more precisely the third item of Proposition 7.2 ensures that

φε(uεt , z
ε
t , ζ

ε
t )− φε(u0, z

ε
0, ζ

ε
0)−

∫ t

0
Lεφε(uεs, z

ε
s , ζ

ε
s )ds = Xε

t + Y ε
t , (7.21)

with φε = φ+
√
εφ1 + εφ2. The quadratic variation of Y ε

t is estimated thanks to Lemma
8.1 and we obtain:

d⟨Y ε, Y ε⟩t∧τε ⩽ ε(1 + ε−4δ)Cϕ ∥uε∥2L2 ∥h∥2H1

where τ ε is the stopping time defined in (4.5). We deduce from Doob’s inequality that

lim
ε→0

E
[∣∣ sup

t∈[0,τε]
Y ε
t

∣∣] = 0. (7.22)

We are now ready to end the proof of Theorem 2.2.

Proof of Theorem 2.2. Let (uεk ,mεk)k and (uηk ,mηk)k be two subsequences of the family
of solutions (uε,mε)ε, of (2.3). Then the proof of Proposition 6.1 ensures that the sequence

(uεk , uηk ,M εk ,Mηk ,
√
εkVεk ,

√
ηkVηk , z, ζ, (βn)n∈N)k

is tight in the space (C0([0, T ], Hs
loc))

2 × (C0([0, T ], H−σ
loc ))

2 × (Hs([0, T ], H−σ
loc ))

2 ×E ×E ×
C([0, T ])N for s < 1, σ > 0. According to Skorohod Theorem, there exists a probability

space (Ω̃, F̃ , P̃) and a sequence of random variables on Ω̃, with the same laws, which
converges almost surely in this space as ε goes to 0. We denote respectively by ũ and ṽ
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the almost sure limits of the new subsequences ũεk and ũηk . For any n ∈ N we also denote
by β̃n the limit of the subsequence (β̃k

n), and we define:

W̃ k
t (x) =

∑
n∈N

en(x)β̃
k
n(t), W̃t(x) =

∑
n∈N

en(x)β̃n(t).

According to section 7.2, and (7.19), (7.20) and (7.21), the stopped process ũεkτ̃εk , where
τ̃ ε is the stopping time which appears in Proposition 7.1, satisfies for φ(u) = (u, h), where
h ∈ H1(R) with compact support,

φεk(ũεkτ̃εk (t), z̃
εk
τ̃εk (t), ζ̃

εk
τ̃εk (t))−φεk(ũ0, z̃

ε
0, ζ̃

ε
0)−

∫ t∧τ̃εk

0
Lεkφεk(ũεkτ̃εk , z̃

εk
τ̃εk , ζ̃

εk
τ̃εk )(s)ds

=

∫ t∧τ̃εk

0

(
iũεkτ̃εk (s)(∂

2
x)

−1ϕdW̃ k
s , h

)
+ Ỹ εk

τ̃εk ,

(7.23)

where Ỹ ε is defined as Y ε in (7.20) but using the new random variables. The stopped
process ũηkτ̃ηk satisfies the same equation with εk replaced by ηk. Proposition 7.2 ensures

that the left hand side of (7.23) converges weakly in L2(Ω̃) to

(ũt, h)− (ũ0, h)−
∫ t

0
Lφ(ũs)ds,

where L is the limit generator defined in (7.9). We also know by (7.22) that Y εk
τ̃εk converges

in probability to 0. On the other hand, applying [21, Lemma 2.1] to the sequences (W̃ k)k
and (ũεkτ̃εk (∂

2
x)

−1ϕ)k, the integral on the right hand side of (7.23) converges in probability
to ∫ t

0

(
iũ(s)(∂2

x)
−1ϕdW̃s, h

)
.

The procedure is the same for ũηkτ̃ηk , and finally the limits ũ and ṽ are both solutions of

(ut, h)− (u0, h)−
∫ t

0

(
i∂2

xus + i|us|2us +
1

2
usF, h

)
ds =

∫ t

0

(
ius(∂

2
x)

−1ϕdW̃s, h
)
,

with F (x) =
∑

k∈N
(
(∂2

x)
−1ϕek(x)

)2
. We conclude thanks to uniqueness of the solution of

the stochastic Schrödinger equation that ũ = ṽ.
Thus, we have proved that for all subsequences (uεk)k, (u

ηk)k, the couple (uεk , uηk)k
converges in law (up to a subsequence) when ε goes to 0 to a limit (u, u). Thanks to
the Gyongy-Krylov argument (see Lemma 1.1 in [28]), the sequence (uε)ε converges in
probability as ε goes to 0 to a limit u, which, again by the above arguments, is a weak
solution of

idu = (−∂2
xu− |u|2u− i

2
uF )dt− u(∂2

x)
−1ϕdWt, (7.24)

where Wt is the cylindrical Wiener process of (1.3). Actually, it is not difficult to prove
that u is a mild solution of Equation (7.24).

We would like to insist on the fact that here we used the convergence in probability to
pass to the limit directly in the martingale term in (7.23), because lim W̃ k = W̃ , whereas
in section 7.2 we just used the martingale representation theorem to ensure the existence
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of some Wiener process which allowed to give an explicit expression of the martingale
term. □

8. Appendix

This appendix gathers several proofs or results, which although technical are not essential
to the understanding of the article.

8.1. The damped linear wave semi-group. Let us consider the semigroup (Sα(t))
associated with the linear wave equation with damping:{

∂tn = µ
∂tµ+ αµ = ∂2

xn,
(8.1)

so that the solution of the above equation with initial data (n0, n1) can be written as
(n(t), ∂tn(t)) = Sα(t)(n0, n1). For any bounded measurable function φ we define the

Fourier multiplicator φ((−∂2
x)

1
2 ) = F−1φ(|ξ|)F as an operator from L2(R) to L2(R). We

then note that Sα(t) may be defined as Sα(t)ϕ = F−1(mα(t, ξ)ϕ̂(ξ)) where:

mα(t, ξ) = e−
α
2
t

(
m1,1

α (t, ξ) m1,2
α (t, ξ)

m2,1
α (t, ξ) m2,2

α (t, ξ)

)
(8.2)

with

m1,1
α (t, ξ) = cosh

(√α2 − 4ξ2

2
t
)
+

α√
α2 − 4ξ2

sinh
(√α2 − 4ξ2

2
t
)
,

m1,2
α (t, ξ) =

2√
α2 − 4ξ2

sinh
(√α2 − 4ξ2

2
t
)
,

m2,1
α (t, ξ) =

(√α2 − 4ξ2

2
− α2

2
√
α2 − 4ξ2

)
sinh

(√α2 − 4ξ2

2
t
)
,

m2,2
α (t, ξ) = cosh

(√α2 − 4ξ2

2
t
)
− α√

α2 − 4ξ2
sinh

(√α2 − 4ξ2

2
t
)
,

(8.3)

for |ξ| < α
2 , and

m1,1
α (t, ξ) = cos

(√4ξ2 − α2

2
t
)
+

α√
4ξ2 − α2

sin
(√4ξ2 − α2

2
t
)
,

m1,2
α (t, ξ) =

2√
4ξ2 − α2

sin
(√4ξ2 − α2

2
t
)
,

m2,1
α (t, ξ) =

(√4ξ2 − α2

2
− α2

2
√

4ξ2 − α2

)
sin

(√4ξ2 − α2

2
t
)

m2,2
α (t, ξ) = cos

(√4ξ2 − α2

2
t
)
− α√

4ξ2 − α2
sin

(√4ξ2 − α2

2
t
)

(8.4)
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for |ξ| > α
2 .

Now, if (n(t), ∂tn(t)) = Sα(t)(n0, n1), with n0 ∈ H1(R) and n1 ∈ L2 ∩ Ḣ−1(R), then it
is not difficult to see that

d

dt
(∥n(t)∥2H1 + ∥µ(t)∥2L2 + ∥∂−1

x µ(t)∥2L2) ≤ 0,

showing that Sα is a contraction semi-group in H1(R)× L2 ∩ Ḣ−1(R).
Next, we state a lemma which provides important estimates, useful in the proof of

Proposition 4.2. This lemma requires in particular the use of homogeneous Sobolev spaces,
due of the integration in time in the low frequency domain.

Lemma 8.1. For k, ℓ ∈ N, there exists a constant C > 0 (depending on α) such that∫ ∞

0
∥(Sα(t)(n,m))1∥

2
Hk∩Ḣ−ℓ dt ⩽ C

(
∥n∥2

Hk∩Ḣ−(ℓ+1) + ∥m∥2
Hk−1∩Ḣ−(ℓ+1)

)
, (8.5)

∫ ∞

0
∥(Sα(t)(n,m))2∥

2
Hk∩Ḣ−ℓ dt ⩽ C

(
∥n∥2

Hk+1∩Ḣ−(ℓ+1) + ∥m∥2
Hk∩Ḣ−(ℓ+1)

)
, (8.6)

and for i = 1, 2, and k ∈ N,∫ ∞

0

∫ ∞

t
∥(Sα(s)(0, ϕek))i∥

2
Hk∩Ḣ−ℓ dsdt ⩽ C ∥ϕek∥2Hk∩Ḣ−(ℓ+2) , (8.7)

where (Sα(t)(n,m))i denotes the i-th component of Sα(t)(n,m).

Proof. These estimates are proved using similar tricks, so we choose to prove only the first
one in details, and we focus on the Hk norm since the procedure for the Ḣ−ℓ norm is
similar. Thanks to the explicit form of Sα, given in (8.3) and (8.4), we can bound the

expression
∫∞
0 ∥(Sα(t)(n,m))1∥

2
Hk dt by:

C

∫ ∞

0

∫
|ξ|⩽α

2

(1 + |ξ|2)ke−αt
[ α2

α2 − 4ξ2
sinh2

(√α2 − 4ξ2

2
t
)
n̂2(ξ)

+ cosh2
(√α2 − 4ξ2

2
t
)
n̂(ξ)2 +

4

α2 − 4ξ2
sinh2

(√α2 − 4ξ2

2
t
)
m̂2(ξ)

]
dξdt

+C

∫ ∞

0

∫
|ξ|⩾α

2

(1 + |ξ|2)ke−αt
[ α2

4ξ2 − α2
sin2

(√4ξ2 − α2

2
t
)
n̂2(ξ)

+ cos2
(√4ξ2 − α2

2
t
)
n̂2(ξ) +

4

4ξ2 − α2
sin2

(√4ξ2 − α2

2
t
)
m̂2(ξ)

]
dξdt.

Now we decompose the frequency space as follows:
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• |ξ| ⩽ α
4 : Here we integrate in time and get the bound:

C

∫
|ξ|⩽α

4

(1 + |ξ|2)k
( 1

α−
√
α2 − 4ξ2

+
1

α+
√

α2 − 4ξ2

)
×
((

1 +
α2

α2 − 4ξ2
)
n̂2 +

4

α2 − 4ξ2
m̂2

)
dξ

=
1

2
Cα

∫
|ξ|⩽α

4

|ξ|−2(1 + |ξ|2)k
((

1 +
α2

α2 − 4ξ2
)
n̂2 +

4

α2 − 4ξ2
m̂2

)
dξ;

since on this domain (1 + |ξ|2)k and α2

α2−4ξ2
are bounded, we can bound this expression by

C(∥n∥2
Ḣ−1 + ∥m∥2

Ḣ−1). Note that the Ḣ−1 regularity is needed due of the integration in
time in this low frequency domain.

• α
4 ⩽ |ξ| ⩽ α

2 : Here we use the inequality 1
x sinh(x) ⩽ cosh(x); since α −

√
α2 − 4ξ2 ⩾

(1−
√
3
2 )α in this domain, we deduce that t2e−(α−

√
α2−4ξ2)t is uniformly integrable in time,

so that we may bound here the double integral by:

C(∥n∥2L2 + ∥m∥2L2),

due to the upper and lower bounds on ξ.

• α
2 ⩽ |ξ| ⩽ α: We may here bound the double integral as above, using the inequality

sin(x)
x ⩽ 1.

• |ξ| ⩾ α: Here we integrate in time and bound the double integral by

C

α

∫
|ξ|⩾α

1

α
(1 + |ξ|2)k

((
1 +

α2

4ξ2 − α2

)
n̂2 +

4

4ξ2 − α2
m̂2

)
dξ

⩽ C(∥n∥2Hk + ∥m∥2Hk−1),

since on this domain 1
4ξ2−α2 is bounded.

Gathering all these estimates, we obtain:∫ ∞

0
∥(Sα(t)(n,m))1∥

2
Hk dt ⩽ C

(
∥n∥2

Hk∩Ḣ−1 + ∥m∥2
Hk−1∩Ḣ−1

)
so that the first estimate is proved. The computations are the same for the other estimates,
except that for the last one we have to integrate in time twice so that a Ḣ−2 regularity is
needed. □

8.2. Proof of Proposition 5.3. We start with some estimates on the martingale term
Xt + Yt introduced in equations (5.17) and (5.19).

Lemma 8.2. For t ⩽ τ εδ , where τ εδ is defined in equation (4.5), the martingales Xt and Yt
defined in (5.17) and (5.19) satisfy:

d⟨X,X⟩t ⩽ CϕKdt, d⟨Y, Y ⟩t ⩽ Cϕ(1 +K)dt, d⟨X,Y ⟩t ⩽ Cϕ(1 +K)dt, (8.8)
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where K is defined in (5.6). The constant Cϕ depends on the mass ∥u∥2L2 and the Hilbert-

Schmidt norm of ϕ in the space H3 ∩ Ḣ−4.

Proof. From (5.17), we get for t ⩽ τ εδ :

d⟨X,X⟩t =
∑
k∈N

(
Im

∫
R
u∂xū∂

−1
x (ϕek)dx

)2
dt

⩽ 4K ∥u∥L2

∑
k∈N

∥∥∂−1
x (ϕek)

∥∥2
L∞ dt ⩽ CϕKdt.

The quadratic variation of Yt is estimated thanks to Lemma 8.1:

d⟨Y, Y ⟩t ⩽ εCϕ ∥u∥4L4 (1 + ∥zε∥4
H2∩Ḣ−2 + ∥ζε∥4

H2∩Ḣ−2)dt,

so that Gagliardo-Nirenberg inequality and Proposition 4.1 yield for ε ⩽ 1 and δ small
enough:

d⟨Y, Y ⟩t ⩽ Cϕ(1 +K)dt, a.s.,

for t ⩽ τ εδ . The arguments are the same for the last quadratic variation. □

Proof of Proposition 5.3. Let us first prove that there exists C(T ) > 0 and a stopping time
τ ε such that P(τ ε ≤ T ) converges to 0 as ε goes to 0 such that

E
[

sup
t⩽τε∧T

(Hε
t )

2
]
⩽ C(T ).

We recall that, thanks to Proposition 5.2,

Lε(Hε
t ) ⩽ εK2

t +BKt + C, a.s.,

for all t ⩽ τ εδ , where δ ⩽ 1
8 is fixed, τ εδ is defined in (4.5), and K is defined in (5.6).

Moreover, we deduce from the proof of Proposition 5.2 that

dHε
t ⩽ (εK2 +BK + C)dt+ dNt, a.s. for t ⩽ τ εδ ,

with Nt = Xt + Yt, where Xt and Yt are the martingales introduced respectively in (5.17)
and (5.19). In order to estimate (Hε)2, we use Proposition 5.1 to get with the Itô formula:

d(Hε
t )

2 =2Hε
t dH

ε
t +Hε

t d⟨Hε, Hε⟩t
⩽2Hε

t

(
4ε(Hε

t )
2 +BHε

t + C
)
dt+ 2Hε

t dNt +Hε
t d⟨N,N⟩t,

with possibly different constants B and C. Lemma 8.2 and Young inequality then give

d(Hε
t )

2 ⩽
(
ε(Hε

t )
4 +B(Hε

t )
2 + C

)
dt+ 2Hε

t dNt, a.s.

for t ⩽ τ εδ , with constants B and C still independent of ε. Let us introduce the stopping
time

τ ε = inf
{
t ∈ [0, T ]; ε(Hε

t )
2 ⩾ 1

}
∧ τ εδ . (8.9)

For t ⩽ τ ε we get

d(Hε
t )

2 ⩽
(
(1 +B)(Hε

t )
2 + C

)
dt+ 2Hε

t dNt,
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from which we deduce, thanks to Grönwall Lemma, the estimate:

E[1[0,τε)(Hε
t )

2] ⩽
(
C(T ) + E[H2

0 ]
)
e(1+B)t. (8.10)

The supremum over [0, τ ε] is estimated thanks to a martingale inequality (see e.g. [16,
Theorem 3.14]):

E
[
sup
t⩽τε

(Hε
t )

2
]
⩽ E[(Hε

0)
2] + C(T ) + (1 +B)E

[ ∫ T∧τε

0
(Hε

s )
2ds

]
+ E

[( ∫ T∧τε

0
(Hε

s )
2d⟨N,N⟩s

) 1
2

]
.

Lemma 8.2 and Proposition 5.1 give

E
[( ∫ T∧τε

0
(Hε

s )
2d⟨N,N⟩s

) 1
2

]
⩽CϕE

[( ∫ T∧τε

0
(Hε

s )
2(1 +K)ds

) 1
2

]
⩽CϕE

[(
1 + sup

t⩽τε
(Hε

t )
2
) 1

2
( ∫ T∧τε

0
(Hε

s )
2ds

) 1
2

]
,

so that finally

1

2
E
[
sup
t⩽τε

(Hε
t )

2
]
⩽E[(Hε

0)
2] + C(T, ϕ) + CϕE

[ ∫ T∧τε

0
(Hε

s )
2ds

]
,

which allows to conclude, thanks to (8.10) and Proposition 5.1 again, that

E
[

sup
t⩽τε∧T

K2(t)
]
⩽ C(T ). (8.11)

For the second estimate, we note that for t ⩽ τ ε,

Hε
t + α

∫ t

0

∥∥√εV
∥∥2
L2 ds =

∫ t

0
(Lε(Hε

s ) +
∥∥√εV

∥∥2
L2) ds+ (Xt + Yt) +Hε

0 ,

where Xt and Yt are the martingales defined in equation (5.17) and (5.19). Applying
Proposition 5.2, then Proposition 5.1, we deduce:

1

2
K(t) + α

∫ t

0

∥∥√εV
∥∥2
L2 ds ⩽

∫ t

0
(εK2 +BK + C)ds+ (Xt + Yt) + C,

so that the second estimate of Proposition 5.3 simply follows from (8.11) and the martingale
inequality of [16, Theorem 3.14].

It remains to prove the convergence of τ ε as ε goes to 0, but this is a simple consequence
of Markov inequality, since

P(τ ε < T ) ⩽ P
(
sup
t⩽τε

(Hε
t )

2 ⩾
1

ε

)
⩽ εC(T ).

This concludes the proof of Proposition 5.3. □
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8.3. Proof of Lemma 7.3. We recall that the aim here is to compute

k(x, y) = Eν

[
z(x)M−1z(y) + z(y)M−1z(x)

]
,

with, thanks to Lemma 4.1, M−1z = (∂2
x)

−1ζ+α(∂2
x)

−1z. We start by computing the term
Eν

[
z(x)(∂2

x)
−1z(y)

]
. According to equation (4.9), this term is equal to

∑
k∈N

∫ ∞

0
(Sα(t)(0, ϕek))1(x)(∂

2
x)

−1(Sα(t)(0, ϕek))1(y)dt

with, according to (8.2), (8.3) and (8.4),

(Sα(t)(0, ϕek))1(x) =2e−
α
2
t

∫
|ξ|⩽α

2

sinh
(√α2 − 4ξ2

2
t
) ϕ̂ek(ξ)√

α2 − 4ξ2
eixξdξ

+ 2e−
α
2
t

∫
|ξ|⩾α

2

sin
(√4ξ2 − α2

2
t
) ϕ̂ek(ξ)√

4ξ2 − α2
eixξdξ.

Thus, we deduce:

Eν

[
z(x)(∂2

x)
−1z(y)

]
= 4

∑
k∈N

∫ ∞

0
e−αt

[ ∫
|ξ|⩽α

2

sinh
(√α2 − 4ξ2

2
t
) ϕ̂ek(ξ)√

α2 − 4ξ2
eixξdξ

+

∫
|ξ|⩾α

2

sin
(√4ξ2 − α2

2
t
) ϕ̂ek(ξ)√

4ξ2 − α2
eixξdξ

]
×
[ ∫

|η|⩽α
2

sinh
(√α2 − 4η2

2
t
) ̂(∂2

x)
−1ϕek(η)√
α2 − 4η2

eiyηdη

+

∫
|η|⩾α

2

sin
(√4η2 − α2

2
t
) ̂(∂2

x)
−1ϕek(η)√
4η2 − α2

eiyηdη
]
dt

= I + II + III + IV.

We focus on the computation of the low frequency product:

I = 2
∑
k∈N

∫
|ξ|⩽α

2

∫
|η|⩽α

2

ϕ̂ek(ξ)√
α2 − 4ξ2

̂(∂2
x)

−1ϕek(η)√
α2 − 4η2

ei(xξ+yη)

×
∫ ∞

0
e−αt

[
cosh

(√α2 − 4ξ2

2
t+

√
α2 − 4η2

2
t
)

− cosh
(√α2 − 4ξ2

2
t−

√
α2 − 4η2

2
t
)]

dt dη dξ.
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For fixed k, ξ, η, the time integral is equal to

1

2

[ 1

α− 1
2

√
α2 − 4ξ2 − 1

2

√
α2 − 4η2

+
1

α+ 1
2

√
α2 − 4ξ2 + 1

2

√
α2 − 4η2

− 1

α− 1
2

√
α2 − 4ξ2 + 1

2

√
α2 − 4η2

− 1

α+ 1
2

√
α2 − 4ξ2 − 1

2

√
α2 − 4η2

]

=
α
√
α2 − 4ξ2

√
α2 − 4η2

(ξ2 − η2)2 + 2α2(ξ2 + η2)
,

so that

I = 2α
∑
k∈N

∫
|ξ|⩽α

2

∫
|η|⩽α

2

ϕ̂ek(ξ) ̂(∂2
x)

−1ϕek(η)

(ξ2 − η2)2 + 2α2(ξ2 + η2)
ei(xξ+yη)dη dξ.

Siimilar computations for the other terms lead to:

Eν

[
z(x)(∂2

x)
−1z(y)

]
=

∑
k∈N

∫
R

∫
R
K1(ξ, η)ϕ̂ek(ξ)ϕ̂ek(η)e

i(xξ+yη)dη dξ, (8.12)

with

K1(ξ, η) = − 1

η2
× 2α

(ξ2 − η2)2 + 2α2(ξ2 + η2)
. (8.13)

The computation of Eν

[
z(x)(∂2

x)
−1ζ(y)

]
is very similar so that we do not write it in details.

We obtain

Eν

[
z(x)(∂2

x)
−1ζ(y)

]
=− α

2
Eν

[
z(x)(∂2

x)
−1z(y)

]
+

∑
k∈N

∫
R

∫
R
K2(ξ, η)ϕ̂ek(ξ)ϕ̂ek(η)e

i(xξ+yη)dη dξ,
(8.14)

with

K2(ξ, η) = − 1

η2
× α2 + ξ2 − η2

(ξ2 − η2)2 + 2α2(ξ2 + η2)
. (8.15)

Finally, defining K(ξ, η) = α
2K1(ξ, η) +K2(ξ, η) we obtain

Eν [z(x)M−1z(y) + z(y)M−1z(x)]

=
∑
k∈N

∫
R

∫
R
(K(ξ, η) +K(η, ξ))ϕ̂ek(ξ)ϕ̂ek(η)e

i(xξ+yη)dη dξ

= −
∑
k∈N

∫
R

∫
R

1

ξ2η2
ϕ̂ek(ξ)ϕ̂ek(η)e

i(xξ+yη)dη dξ

(8.16)

which gives the result of Lemma 7.3.
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