
HAL Id: hal-04704288
https://hal.science/hal-04704288v1

Submitted on 20 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DFT2FEFFIT: a density-functional-theory-based
structural toolkit to analyze EXAFS spectra

Alain Manceau, Romain Brossier, Olivier Mathon, Kirill A Lomachenko,
Marius Retegan, Pieter Glatzel, Stephan N. Steinmann

To cite this version:
Alain Manceau, Romain Brossier, Olivier Mathon, Kirill A Lomachenko, Marius Retegan, et al..
DFT2FEFFIT: a density-functional-theory-based structural toolkit to analyze EXAFS spectra. Jour-
nal of Applied Crystallography, 2024, 57 (4), pp.1229 - 1234. �10.1107/s1600576724005454�. �hal-
04704288�

https://hal.science/hal-04704288v1
https://hal.archives-ouvertes.fr


computer programs

J. Appl. Cryst. (2024). 57 https://doi.org/10.1107/S1600576724005454 1 of 6

ISSN 1600-5767

Received 9 February 2024

Accepted 7 June 2024

Edited by H. Brand, Australian Synchrotron,

ANSTO, Australia

Keywords: FEFF software; density functional

theory; DFT; apatite; rare earth elements;

cerium; EXAFS.

Supporting information: this article has

supporting information at journals.iucr.org/j

Published under a CC BY 4.0 licence

DFT2FEFFIT: a density functional theory-based
structural toolkit to analyze EXAFS spectra

Alain Manceau,a,b* Romain Brossier,c* Olivier Mathon,a Kirill A. Lomachenko,a

Marius Retegan,a Pieter Glatzela and Stephan N. Steinmannb

aEuropean Synchrotron Radiation Facility (ESRF), 38000 Grenoble, France, bENS de Lyon, CNRS, Laboratoire de Chimie,
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This article presents a Python-based program, DFT2FEFFIT, to regress theo-
retical extended X-ray absorption fine structure (EXAFS) spectra calculated
from density functional theory (DFT) structure models against experimental
EXAFS spectra. To showcase its application, Ce-doped fluorapatite [Ca10-
(PO4)6F2] is revisited as a representative of a material difficult to analyze by
conventional multi-shell least-squares fitting of EXAFS spectra. The software is
open source and publicly available.

1. Introduction

Extended X-ray absorption fine structure (EXAFS) spectro-
scopy is an established method for characterization of the
local structure of liquids, glasses and crystalline materials
(Chantler et al., 2020). The chemical nature, number and
distance of atoms located in successive spherical shells around
the X-ray photoabsorber are obtained by fitting the experi-
mental EXAFS signal to the theoretical !(k) function (Stern
et al., 1975; Rehr & Albers, 2000; Rehr et al., 2020):

!ðkÞ ¼ S20
Xshells

i

Ni

kR2
i

fi exp $2Ri="ið Þ exp $2#2
i k

2
! "

% sin 2kRi þ $ið Þ; ð1Þ

where k is the photoelectron wavenumber, k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2me!E0Þ=h- 2

p

(me is the mass of the electron?), !E0 is the shift in the Fermi
level between experiment and theory, S20 is a scale factor
taking into account amplitude damping due to multielectron
effects, the sum is over shells of atoms of a particular type i and
similar distance from the photoabsorber, Ni is the coordina-
tion number, Ri is the interatomic distance, fi is the photo-
electron backscattered amplitude, "i is the mean free path of
the photoelectron, #2

i is the mean-square radial displacement
of atoms in the ith shell (Debye–Waller term) and "i is the
phase shift of the electronic wave. Although equation (1),
strictly speaking, applies only to single scattering paths from
neighboring shells of atoms, Rehr & Albers (1990) showed
that this formula can be generalized to represent the contri-
bution from N equivalent multiple scattering contributions of
path length 2R.
Characterizing the local structure requires solving the

inverse problem of finding a plausible structure model that
corresponds to the measured EXAFS signal (Timoshenko et
al., 2019; Terry et al., 2021). As powerful a structural method as
EXAFS is, the analysis of chemically complex and structurally
defective materials is challenging (Boyanov et al., 1996).
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Because the information content of quality EXAFS data is
typically bandwidth-limited to about kmax ’ 14 Å$1, two
overlapping subshells separated by less than '0.10–0.15 Å are
unresolved in multi-elemental materials. Furthermore,
EXAFS fails to distinguish neighboring atoms of similar
scattering power and phase shifts (!Z < '10). Yet another
difficulty arises when the interatomic distances in an atomic
shell are unequal. In equation (1), the radial distribution
function (RDF) of the atoms in shell i is assumed to be
Gaussian,

GiðRÞ ¼
Ni

#
ffiffiffiffiffiffi
2%

p exp $ R$ Rið Þ2

2#2
i

$ %
: ð2Þ

Poorly crystalline and compositionally heterogeneous
materials frequently have more complicated analytical atomic
distributions than Gaussian. An asymmetric distribution of
distances results in an apparent loss of coordination and
usually reinforces correlations between the N and # para-
meters in the fit (Marcus et al., 1986; Crozier, 1997). Still, the
asymmetric shape of the distribution may be obtained by a
cumulant EXAFS analysis of the disordered shell, but this
model-independent method is limited to small degrees of
disorder when the cumulant series rapidly converges within
the EXAFS k range (Dalba & Fornasini, 1997).

A prototypical case of a material difficult to analyze by
EXAFS is fluorapatite [Ca10(PO4)6F2, FAp]. Its structure
comprises two Ca sites, a larger nine-coordinated Ca1 site
forming with the phosphate groups the walls of a honeycomb
framework, and a smaller seven-coordinated Ca2 site along
the sub-nanometre-sized tunnels containing the column F site
(Hughes et al., 1989) (Fig. 1). The coordination of Ca1 is really
6+3 rather than 9, and that of Ca2 is 6+1, and the six Ca1—O
and six Ca2—(O,F) distances are unequal, which is a source of
uncertainty in the determination of the site occupancy of a
substituent (Fig. 2). The situation is not improved beyond the
first coordination shell, because the Ca—O, Ca—P and
Ca—Ca distances are widely distributed and partly overlap.

Natural FAp is commonly enriched in trivalent rare earth
elements (REE) (Harlov & Rakovan, 2015; Manceau et al.,

2022). The substitution may occur on the Ca1 or Ca2 site,
depending on the ionization energy of the substituent
(Manceau et al., 2024). The charge excess resulting from
REE3+ for Ca2+ substitution is generally considered to be
balanced by parallel Na+ $ Ca2+ substitution on the Ca1 or
Ca2 octahedral site, or Si4+ $ P5+ substitution on the tetra-
hedral site (Rønsbo, 1989; Fleet et al., 2000). Furthermore, the
charge balance may occur locally, or indifferently at a short- or
long-range distance. Other substitutional mechanisms can be
envisaged, such as a coupled REE3+ + F$ $ Ca2+ substitution
with incorporation of an additional F$ ion in the FAp tunnels,
and a coupled 2REE3+ + Vac ! 3Ca2+ substitution with
creation of a Ca vacancy. Clearly, the conventional multi-shell
EXAFS fitting approach has a high risk of failing to find the
correct local structure of REE due to the inherent large
number of unknowns to fit with multiple optima in parameter
space. Not all of the atomic shells can be refined indepen-
dently without causing correlations between parameters.
Hence, a priori information is required to make educated
guesses. Another inherent problem, besides the non-unique-
ness of the model parameters resulting from overlapping
subshells, is the lack of discrimination between Si and P
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Figure 1
The structure of FAp projected in the ab plane (Hughes et al., 1989;
Harlov & Rakovan, 2015). The F atom is located in the middle of the
tunnel.

Figure 2
Population histograms of (a) the Ca1—(O,P,Ca) and (b) the Ca2—(O,F,P,
Ca) distances in fluorapatite (Hughes et al., 1989). The number of atoms is
counted in intervals of 0.05 Å.
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backscatterers, and the low sensitivity of EXAFS spectroscopy
to F, Na and vacancies.

An alternative to multi-shell EXAFS fitting is to use the
geometric constraints of density functional theory (DFT)
models for comparative modeling of the EXAFS spectra
(Harris et al., 2006; Cotelesage et al., 2012). The EXAFS signal
is a one-dimensional projection in reciprocal space of a
spherically averaged three-dimensional structure. Incorpora-
tion of an impurity in a solid does not modify just its atomic
pair distances, but also those of its neighboring atoms and its
bond angles. This information is compressed in EXAFS data
and not easily and reliably accessible, motivating the use of
DFT models as three-dimensional templates of the whole
impurity environment. Recently, we followed this approach
and showed by calculating the EXAFS spectra of DFT models
that Ce3+ occupies the Ca2 site in FAp with a coupled Si4+

substituent at a short distance [d(Ce2—Si) = 3.09 Å, Ce2–Si-
close model], while the coupled Na+ $ Ca2+ substitution on
the Ca1 or Ca2 octahedral site was negated (Manceau et al.,
2024).

Here, we extend our previous approach and present
DFT2FEFFIT, a general regression analysis tool that best-fits
an EXAFS spectrum using the !i functions generated by
FEFF (Version 8.2; Ankudinov & Rehr, 1997) from a DFT
model. Its capabilities are demonstrated with reconstructions
of the Ce L3 edge EXAFS spectrum of the FAp reference
from Cerro de Mercado near Durango, Mexico (Manceau et
al., 2022). Using DFT2FEFFIT, we show that alternative Ce3+

+ F$ $ Ca2+ substitution (Ce2–F model) and 2Ce3+ + Vac !
3Ca2+ substitution (2Ce2–Vac model) are nonfitting models.

2. Software details

2.1. Input

DFT2FEFFIT is open-source code written in Python. It
uses a command-line interface, which is invoked with a Python
entry point. The user is then prompted to enter the input
filename. The following input data are required: the experi-
mental ! function to fit (line 1), the number of scattering paths
(n, line 2), the k weighting of ! for the fit (kn!, line 3), the k
range of the fit (line 4), S20 (line 5), whether !E is adjusted
(integer 1) or fixed (integer 0) (line 6), the value of !E if no
variation is allowed (integer 0), or its interval of variation
(!Emin, !Emax) and the step size (line 7), and the list of
scattering paths [lines 8 to 8 + (n $ 1)]. Each path line is
structured as follows: a line number (e.g. path ID); a string
(e.g. chemical symbol, SS or MS for single or multiple scat-
tering path); the path distance, only added for easy reference
and not actually part of the fit; !i; the format of !i [FEFF
format (chip000n) or simply two columns, k, !i]; whether #i is
optimized (1) or not (0); the initial #i value; #i,min; #i,max; and
the path ID with which the #i value is co-varied, $1 if the #
values are not linked. Path lines commented with a hash (#)
symbol are ignored. At the end of the refinement, the code
provides the optimized values, the experimental and calcu-
lated k-weighted ! functions (ASCII data and plot), the

modulus and real part of the Fourier transform (i.e. RDF) of
kn!exp and kn!fit using a Kaiser–Bessel window (& = 2.5), and
the fit residual expressed as the normalized sum of squared
differences [NSS =

P
(kn!exp $ kn!calc)

2/
P

(kn!exp)
2].

2.2. Calculation

The software seeks to minimize NSS by optimizing #i for
each !E value. Because !calc varies nonlinearly with #i
[equation (1)], the minimization of NSS toward the local
minimum is performed iteratively by following the negative of
the first derivative of equation (1) with respect to #i (gradient-
descent method) at each iteration. The scheme is iterated until
NSS reaches a plateau (!NSS = 10$7) or for a user-defined
fixed number of iterations. Convergence is speeded up by
rescaling the input #i values to the [$1, 1] range according to
# ¼ 2(#i $ #mean)/(#max $ #min), with #mean = 0.5(#max $
#min). Wolfe’s conditions (Wolfe, 1969; Nocedal & Wright,
2006) are used to determine the appropriate step size for each
line search of strict descent at a point mn = #n. The update to
mn for the next iteration is mn+1 = mn+1 + 'npn [mn+1 appears
on both sides of this equation?], where 'n is the new step size
computed from the line search at mn to satisfy the Wolfe
conditions and pn is the search direction. The input scripts for
the DFT models are deposited in the NOMAD repository
(Draxl & Scheffler, 2019) at https://dx.doi.org/10.17172/
NOMAD/2024.02.09-1.

The gradient-descent optimization method was preferred
over the Levenberg–Marquardt (LM) method for several
reasons. The LM method requires an estimation of the Jaco-
bian of the forward problem in order to build the Gauss–
Newton Hessian matrix. This step is not needed with the
steepest-descent algorithm. The LM method does not include
a line search that would ensure proper convergence (Wolfe’s
conditions), and would therefore need to be coupled with
Wolfe’s conditions to ensure convergence. Lastly, the LM
method requires another tuning parameter for the damping of
the diagonal of the Gauss–Newton Hessian matrix.

3. Case study

EXAFS spectroscopy probes the local structure of a given
element up to about 6 Å. Modeling by DFT the bonding
environment of a substituent up to this distance requires
optimizing the geometry of rather large clusters comprising
more than one hundred atoms. DFT methods exploiting a
linear combination of plane waves, as implemented in the
Vienna Ab-initio Simulation Package (VASP), are in this
respect more cost effective than methods adopting a linear
combination of local atomic orbitals, usually represented as
Gaussian-type orbitals, as implemented in CRYSTAL (Dovesi
et al., 2014). Comparison of the DFT structures obtained with
VASP and CRYSTAL14 on Ce–FAp clusters of 336 atoms
(2%2%2 supercell, radius ’ 6 Å) showed that CRYSTAL14
did not provide superior models, even with the accurate
PBEsol functional (Perdew et al., 2008) and basis sets of triple-
zeta quality for Ca, P, O and F. Therefore, all optimizations
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reported in this study were performed with VASP to speed up
the calculations. Details of the VASP parameters and func-
tionals are given in the supporting information.

The radial distributions of Ce in the Ce2–Si-close, Ce2–F
and 2Ce2–Vac models up to R = 4.3 Å are shown in Fig. 3, and
the Cartesian coordinates of the models are listed in the
supporting information. The Ce2–F model essentially differs
from the optimal Ce2–Si-close model by (i) an increase in
coordination from 6 to 7, and hence an increase in the average
Ce2_(O,F) distance from 2.43 Å to 2.48 Å due to the incor-
poration of the interstitial F atom at 2.42 Å from Ce2, and (ii)
the displacement to shorter distance of two Ca atoms
[d(Ce2—Ca) = 3.65–3.75 Å] and to longer distance of two
further Ca atoms [d(Ce2—Ca) = 4.26 Å]. Regarding the 2Ce2–
Vac model, one Ce atom of the paired Ce atoms (Ce2_1) has a
similar local structure to Ce in Ce2–Si-close, whereas the other
Ce atom (Ce2_2) has a distinctive bonding environment
characterized by a split of the first (O,F) shell and longer
Ce2—Ca distances.

The best-fit results of the Ce L3 edge EXAFS spectrum for
the Durango FAp with the calculated EXAFS spectra for the
three DFT models up to R = 4.3 Å, together with the corre-
sponding RDF, are shown in Fig. 4. The data were collected at
room temperature on beamline ID24-DCM at the European
Synchrotron Radiation Facility (ESRF) in high energy-reso-
lution mode (HERFD-EXAFS) using five analyzer crystals
bent to a radius of 0.5 m (Rovezzi et al., 2017; Glatzel et al.,

2021). Best-fit calculations were conducted by optimizing
initially !E and one # value for all SS paths (!NLEG = 2 in
FEFF). Afterwards, individual SS paths were grouped into
shells (O1, P1, P2, Ca) and their #i values refined. The
criterion for retaining a new #i was that the fit had to improve
by at least 5% and be physically meaningful. A single # value
was applied to all multiple scattering (MS) paths calculated by
FEFF (!NLEG=4 $ !NLEG=2). The optimal !E value varied
marginally (<1 eV) from one fit to another. S20 was fixed to 0.9.
Best-fit EXAFS parameters of the three DFT models are
reported in the supporting information.

Our results show that coupled Ce3+ + F$ $ Ca2+ (Ce2–F
model) and 2Ce3+ + Vac ! 3Ca2+ (2Ce2–Vac model) are
incompatible models. Adding an F atom or removing a Ca
atom near a Ce atom are sources of disorder, which manifests
on the calculated RDF by a misfit of the Ce2—(O,F) shell and
a loss of amplitude of the Ce2—P and Ce2—Ca peaks. Thus,
these results underscore the high sensitivity of DFT2FEFFIT
for detailed characterization of the local structure of elements
in complex environments. EXAFS alone does not allow
differentiation between P and Si neighbors, for their scattering
powers are similar, nor the detection of a light F atom and a
vacancy site. This distinction becomes possible by comparing
the theoretical EXAFS spectra derived from DFT structure
models with experiment. DFT2FEFFIT may, therefore, be
considered as a useful tool for the validation of hypothesis-
driven structure models based on EXAFS analysis.
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Figure 3
Population histograms of the computed Ce2—(O,F,P,Ca,Ce) distances for (a) the Ce2–Si-close model, (b) the Ce2–F model and (c), (d) the two Ce atoms
of the 2Ce2–Vac model. Computation details can be found in the supporting information. The number of atoms is counted in intervals of 0.05 Å.
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4. Availability of DFT2FEFFIT

The Python script of DFT2FEFFIT is available in the
supporting information and at https://gitlab.esrf.fr/
scientific-software/dft2feffit.

5. Related literature

For further literature related to the supporting information,
see Blöchl (1994), Gautier et al. (2015), Gonthier et al. (2012),
Kresse (1995), Kresse & Furthmüller (1996), Kresse & Joubert
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Figure 4
Experimental and DFT-derived theoretical Ce L3 edge EXAFS spectra and radial distribution functions (magnitude and real part of the k2-weighted
Fourier transform). (a), (b) Ce2–Si-close model, (c), (d) Ce2–F model and (e), (f ) 2Ce2–Vac model.
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(1999), Perdew et al. (1996) and Steinmann & Corminboeuf
(2011).
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