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Abstract. Accurate measurement of black carbon (BC) mass
concentrations in snow and ice is crucial for the assessment
of climatic impacts. However, it is difficult to compare meth-
ods used to assess BC levels in the literature as they are not
the same. The single particle soot photometer (SP2) method
appears to be one of the most suitable to measure low con-
centrations of BC in snow and ice. In this paper, we evalu-
ated a method for the quantification of refractory BC (rBC)
in snow and ice samples coupling the SP2 with the APEX-Q
nebulizer. The paper reviews all the steps of rBC determina-
tion, including SP2 calibration, correction for rBC particle
aerosolization efficiency (75± 7 % using the APEX-Q neb-
ulizer), and treatment of the samples. In addition, we com-
pare the SP2 method and the thermal–optical method – Sun-
set organic carbon (OC) / elemental carbon (EC) aerosol ana-
lyzer with EUSAAR2 protocol – using snow and firn samples
with different characteristics from the Greenland Summit,
the French Alps, the Caucasus, and the Himalayas. Careful
investigation was undertaken of analytical artifacts that po-
tentially affect both methods. The SP2-based rBC quantifi-
cation may be underestimated when the SP2 detection range
does not cover correctly the existing size distribution of the
sample. Thermal–optical EC measurements can be underes-
timated by low filtration efficiency of quartz fiber filter be-
fore analysis or dust properties (concentration and type), and
overestimated by pyrolyzed OC artifacts during EC analysis.
These results underline the need for careful assessment of the
analytical technique and procedure for correct data interpre-
tation.

1 Introduction

Black carbon (BC) only enters the atmosphere as a primary
emission and mainly originates from incomplete combus-
tion of biomass and fossil fuels. BC is the subject of in-
creasing attention as it strongly absorbs visible light and
thereby affects the earth’s radiative budget (Bond et al., 2013;
Jacobson, 2001). BC particles are ubiquitous in the atmo-
sphere. Their relatively long residence time in the atmo-
sphere (up to 10 days; Bond et al., 2013, and references
therein) allows for efficient transport over long distances
once emitted above the boundary layer, as, for example, at
high-altitude or high-latitude sites in the Northern Hemi-
sphere, where they are deposited with snow precipitation and
on the surface of the snow. The deposited BC darkens the sur-
face of the snow and ice and can modify the local radiative
balance with potentially larger scale consequences for cli-
mate (Doherty et al., 2010; Flanner et al., 2007; Painter et al.,
2013). The absolute rate of snow albedo reduction by BC and
other absorbing particles is not particularly high, but it is of
concern because even slight changes in solar absorption can
accelerate snowmelt (Clarke and Noone, 1985; Hansen and
Nazarenko, 2004; Warren, 1984). Hence, BC deposited on
snow surfaces has been identified as a significant contribut-
ing factor that may increase snowmelt over the Himalaya
and the Tibetan Plateau (Flanner et al., 2007; Ginot et al.,
2014; Xu et al., 2009), although the exact impact has not yet
been precisely quantified. The BC deposited in snow is also
an important indicator in ice-core studies (e.g., McConnell
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et al., 2007) as it provides information on the variability of
combustion processes due to both natural and anthropogenic
activities. Since multi-year observations of atmospheric BC
concentrations are rare, long-term BC trends derived from
ice-core studies are extremely useful in identifying possible
changes in its sources of emissions.

The term “black carbon” is often used without a clear def-
inition of its meaning (Petzold et al., 2013). It is now gener-
ally agreed that, when determined by thermal–optical meth-
ods using its chemical composition and carbon content, BC
should be called “elemental carbon” (EC). Thermal methods
have been widely used to quantify EC mass concentrations in
snow and ice in the Arctic (Aamaas et al., 2011; Hagler et al.,
2007), the European Alps (Legrand et al., 2007; Thevenon et
al., 2009), and the Himalayas (Ming et al., 2008, 2009), as
well as in the atmosphere, and the EC values obtained using
these methods have been termed “BC” in many studies. Opti-
cal methods are also widely used for monitoring ambient BC.
BC measured using optical methods should be called “equiv-
alent BC” (eBC) since its mass concentration is indirectly de-
termined by applying a mass absorption cross-section (MAC)
of BC (Petzold et al., 2013). A few measurements have been
performed on Arctic and European Alpine ice-core samples
with such optical methods (Doherty et al., 2010; Lavanchy et
al., 1999). Recently, an incandescence method using a single-
particle soot photometer (SP2, Droplet Measurement Tech-
nologies, Boulder, Colorado) was used to measure refractory
BC (rBC) in ice cores (Bisiaux et al., 2012a, b; Kaspari et al.,
2011; Jenkins et al., 2013; McConnell et al., 2007; Sterle et
al., 2013). This technique is nearly independent of the mor-
phology of BC and of the presence of other materials, such
as light-absorbing organics. Its high sensitivity, compared to
other techniques, makes it particularly suitable for measure-
ments in snow and ice-core samples from remote areas where
BC concentrations are often low and the volume of the sam-
ple is limited. However, the use of the SP2 technique for rBC
measurements in snow and ice is not currently performed in
the same way in the different studies and still raises many
questions, ranging from the definition of calibration material
to the process of aerosolization of rBC particles in melted
snow and ice (Schwarz et al., 2012). Appropriate treatment
of the samples is also required for accurate rBC analysis to
minimize potential losses of rBC particles. Such losses occur
as rBC particles easily adhere to the walls of the container
due to their hydrophobic nature, and tend to form agglomer-
ations with each other and/or with other particles including
dust (Schwarz et al., 2012; Wang et al., 2012).

Many laboratory studies have reported that results of mea-
surements of environmental carbonaceous particles depend
not only on their source, the combustion process and mixing
state, but also on the analytical techniques and experimen-
tal procedures used (Countess, 1990; Schmid et al., 2001).
A recent review by Lack et al. (2014) describes the current
state of BC measurement instrumentation, including the lim-
itations and uncertainties of available techniques. In the past

decade, several inter-laboratory studies reported that method
inter-comparison can yield ambient EC estimates that differ
by up to 1 order of magnitude (Ten Brink et al., 2004; Schmid
et al., 2001; Viana et al., 2007).

These differences appear despite good precision of indi-
vidual laboratory analyses and are mainly attributed to or-
ganics that pyrolize during thermal analysis (Chow et al.,
2001; Schmid et al., 2001; Cavalli et al., 2010). The am-
bient eBC, provided by optical measurements, can only be
compared with EC (e.g., within a factor of 2 or less) when
proper MAC values are used, and the values depend on the
physical–chemical characteristics of the BC particles (Chow
et al., 2009; Laborde et al., 2012b). Otherwise, eBC/EC ra-
tios can easily vary by more than a factor of 3 (Jeong et al.,
2004). The main factors responsible for the high variabil-
ity of eBC/ EC ratios are the amount of organics (e.g., re-
fractory or water-soluble organic carbon) and dust, as well
as the relative humidity of sampled air (Jeong et al., 2004;
Yang et al., 2006). BC yields from the SP2 and several op-
tical instruments were compared by Slowik et al. (2007) us-
ing laboratory-generated airbone BC particles. The measure-
ments provided by the optical methods were∼ 65 % higher
depending on particle morphology and coating materials,
whereas the SP2 output was independent of these particle
characteristics. Another recent finding reported a small posi-
tive offset associated with dust content for the SP2 measure-
ment, but which was much smaller than the positive arti-
fact of the optical measurement (Schwarz et al., 2012). An
inter-comparison study between an SP2 and a filter-based
absorption photometer continuous soot monitoring system
(COSMOS, using a heated inlet) revealed the good agree-
ment within 10 % on average from measured BC concentra-
tions in Tokyo (Kondo et al., 2011). Recently, another inter-
comparison study between a thermal–optical method, an op-
tical method, and an SP2-based analysis using a standard
BC aerosol (airborne combustion aerosol standard, CAST
soot, whose mass size distribution was within the detection
range of the SP2) showed that measured rBC, EC, and esti-
mated eBC mass concentrations were comparable at∼ 10 %
(Laborde et al., 2012b). However, the detailed parameters in-
volved in the determination of BC particles in those analyses
are still not fully understood. This should encourage further
inter-comparison exercises. Such studies are even scarcer for
snow or ice analyses. Only one inter-comparison study by
Schwarz et al. (2012) between SP2 measurements and an
optical method used snow sampled in semi-rural and rural
areas. Given that rural and alpine aerosol samples exhibit
even higher variances than urban aerosol samples in EC con-
centrations between analytical methods and laboratories, it
is crucial to examine similarity and difference in BC parti-
cles in a variety of snow and ice samples according to differ-
ent analytical methods. Furthermore, SP2 measurements and
thermal–optical methods used to qualify rBC or EC in snow
and ice have never been carefully compared, despite the ob-
served discrepancy between rBC and EC concentrations even
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at the same Himalayan glacier site (e.g., Kaspari et al., 2011;
Ming et al., 2008). The different terminology used in the dif-
ferent studies also contributes to some confusion and makes
the comparison of studies somewhat difficult (Petzold et al.,
2013).

In this paper, we describe and evaluate a methodology for
rBC measurements in snow and firn samples using an SP2
technique that includes calibrating the SP2 with the most
appropriate BC standard, building the coupling of nebulizer
and SP2, and evaluating snow-sample treatment methods. We
compared the results of using this method with results us-
ing a thermal–optical method, Sunset OC/ EC aerosol an-
alyzer with the EUSAAR2 (European Supersites for Atmo-
spheric Aerosol Research) protocol of Cavalli et al. (2010)
using snow and firn samples from different locations.

2 Experimental

2.1 Single particle soot photometer

2.1.1 Principle of the SP2

The SP2 uses a laser-induced incandescence method to mea-
sure the mass of individual rBC particles (Schwarz et al.,
2006; Stephens et al., 2003) independently of particle mor-
phology or of light scattering coating materials (Cross et
al., 2010; Moteki and Kondo, 2010; Slowik et al., 2007).
Individual rBC particles pass through the intra-cavity laser
beam of a 1064 nm Nd YAG laser. The rBC particle ab-
sorbs light, reaches its vaporization temperature (∼ 3700 to
4300 K) and incandesces. The mass of individual rBC par-
ticle is proportional to its incandescence signal, as detected
by two photomultiplier tube (PMT) detectors with broadband
and narrowband detection capabilities, respectively. The par-
ticle diameter is determined as a mass-equivalent diameter
(MED) by assuming spherical morphology and an rBC par-
ticle density of 1.8 g cm−3 (Moteki and Kondo, 2010). In ad-
dition, an avalanche photodiode measures number concen-
trations and optical sizes (∼ 100–400 nm) of the laser light
scattered by individual particles. In our case, SP2 data were
processed with the SP2 measurement toolkit developed by
M. Gysel at the Paul Scherrer Institute (PSI, Switzerland;
http://aerosolsoftware.web.psi.ch/).

2.1.2 Calibration of the SP2

The SP2 was calibrated by analyzing mass-selected fullerene
soot (Alfa Aesar Inc., USA). Recent studies reported the
similarity between the physical properties of fullerene soot
and ambient rBC for urban areas in Switzerland and Tokyo
(Laborde et al., 2012a; Moteki and Kondo, 2010). The sizes
of fullerene soot were selected by their electrical mobility
diameter (Dmob) before entering the SP2 inlet by a differen-
tial mobility analyzer (DMA). The mass of mono-dispersed
particles was empirically calculated using the relationship

between the measured mobility diameter and the effective
density of standard materials (Gysel et al., 2011; Moteki and
Kondo, 2010). SP2 counts were validated by parallel mea-
surements with a condensation particle counter (CPC). The
number of concentrations obtained with both instruments
agreed within 10 % in the calibration range.

Fullerene soot with an rBC mass ranging from∼ 0.2 to
70 fg, corresponding to∼ 60 to 420 nm MED, was used for
calibration of the SP2. The lower and upper limit of mea-
surements for real rBC mass in actual samples was therefore
∼ 60–620 nm MED by extrapolating the data with a spline
fit. The calibration size range generally covers∼ 80–90 % of
observed rBC mass in the SP2 detection range for the snow
and firn samples tested (Sect. 2.4). Particles heavier than
∼ 220 fg (corresponding to∼ 620 nm MED in rBC diame-
ter) were detected by the SP2 but treated as if they had a BC
mass of∼ 220 fg due to the saturation of the A/D convert-
ers of the detectors. Note that the value 220 fg corresponds
to a fullerene calibration, and the determined rBC mass and
size at this saturation point might differ slightly depending
on the calibration materials/curves. For ease of reading, data
collected at this saturation point are not presented in figures.

Calibration was performed regularly, specifically when the
SP2 was moved, and calibration curves (for the high-gain
output of the broadband incandescence channel) are repro-
ducible within 4.5 % for fullerene soot. We used signals
from the broadband detector for rBC particle detection, as
it showed less noise and more stable calibration curves than
the narrowband detector.

2.2 SP2 and nebulizer coupling for snow
and ice samples

Coupled to a nebulizer, the SP2 can be used to measure rBC
mass concentration in liquid-phase samples. Different types
of nebulizing techniques have been used for ice-core anal-
ysis. The SP2 has been coupled to an ultrasonic nebulizer
(U5000AT, CETAC Technologies, Omaha, NE, USA) for
rBC measurements of ice cores from Greenland (McConnell
et al., 2007), Himalaya (Kaspari et al., 2011), and Antarc-
tica (Bisiaux et al., 2012a, b), and for analysis of rain water
(Ohata et al., 2011, 2013). Similarly to Wendl et al. (2014),
we introduce a jet nebulizer (APEX-Q, Elemental Scientific
Inc., Omaha, NE, USA) to aerosolize the aqueous samples
for SP2 analysis. This section describes the coupling between
SP2 and APEX-Q, as well as a comparison between APEX-
Q and U5000AT nebulizers.

2.2.1 Nebulizer configurations

Self-aspiration by a flow of compressed air of 1 L min−1 in-
troduces the liquid sample in the APEX-Q nebulizer. Wa-
ter droplets are then formed by the difference in pressure
through a capillary of a concentric glass nebulizer. Particles
are spun in the heated cyclonic spray chamber and liquid
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is desolvated in several heating (140◦C) and cooling (2◦C)
steps, finally producing aerosols. The details of the U5000AT
geometry and performance are described in previous studies
(e.g., Ohata et al., 2011; Zanatta, 2012). The liquid sample
flow rate is 70± 10 µL min−1 for the APEX-Q, and the sam-
ple at 1.1 mL min−1 is delivered by a peristaltic pump for the
U5000AT nebulizer, operated with a compressed air flow of
0.5 L min−1. In this study, compressed air flows required for
operation of both APEX-Q and U5000AT nebulizers were
regulated using mass flow controllers. Liquid flow was mon-
itored by a liquid mass flow meter (ASL 1600 series, Sen-
sirion, Switzerland) for APEX-Q, and calculated using the
peristaltic pump speed for U5000AT.

2.2.2 BC standard solutions

We used AQ (Aquadag®, Acheson Inc., USA), an aqueous-
based colloidal dispersion of ultra-fine graphite, to prepare
rBC standard solutions. AQ solid content provided by the
manufacturer is 22 %, but it slowly dries out. The solid con-
tent of our AQ increased to 28 % after being used over 2
years.

The BC content of AQ was evaluated with the Sunset
OC / EC analyzer (Sect. 2.3). 10 µg (dry mass) of AQ were
dissolved in 50 µL ultrapure water and loaded on quartz fiber
filters (1.5 cm2, n = 7). We did not actively pump through
the filters to avoid rBC losses by water penetration. Analy-
sis of these filters using the Sunset instrument indicated that
EC makes up∼ 87 % of the total mass of AQ, and this value
was later used when preparing AQ standard solutions for SP2
external calibration (see Sect. 2.2.4). In contrast, 100 % of
gravimetric mass of fullerene soot was measured as EC. Our
estimate of rBC content of dry AQ is slightly above∼ 71 and
76 %, the values reported by Gysel et al. (2011) and Wendl et
al. (2014), respectively. How the thermal–optical analyzer is
programmed can introduce some variability in the evaluation
of rBC content of dry AQ. However, dry rBC contents of an
AQ batch can vary, and we therefore suggest that each batch
needs to be individually characterized.

For nebulizer efficiency tests and calibrations (Sects. 2.2.3
and 2.2.4), an AQ rBC stock solution, with a concentration
of ∼ 10 000 µg L−1, was prepared in a 50 mL polypropylene
(PP) tube. This stock solution (10 000 µg L−1) was then di-
luted to 100 and 50 µg L−1. The 50 µg L−1 AQ solution was
diluted again to prepare low concentration standard solutions
(25, 10, 5, 1, 0.5, 0.1 µg L−1). AQ solutions were always son-
icated 15 min before dilution.

2.2.3 Size-dependence of the aerosolization efficiency

We used mono-dispersed polystyrene latex (PSL) spheres
with diameters of 150, 200, 240, 350, and 600 nm (3000 se-
ries nanosphere, Thermo scientific, USA) to specifically in-
vestigate size dependence of the aerosolization efficiency for
the APEX-Q nebulizer. Dilutions allowed to adjust particle

numbers of PSL solutions to levels similar to those ob-
served for rBC samples of concentrations ranging from 10
to 100 µg L−1. The number concentrations of the PSL so-
lutions reported by the manufacturer were used to estimate
the original number concentrations of the PSL solutions be-
fore entering the APEX-Q, and the aerosolized particle num-
ber concentrations of the diluted PSL solutions were mea-
sured by the SP2. For these SP2 measurements, we used
the specific channel for detection of scattering particles. A
size-independent aerosolization efficiency of 72± 5 % was
determined for the APEX-Q nebulizer for PSL sizes rang-
ing from 150 to 600 nm (Fig. S1 in the Supplement). This
result is consistent with the study of Wendl et al. (2014),
which reports a size-independent aerosolization of over a
100–1000 nm range for the APEX-Q.

Our PSL-based results suggest that the APEX-Q/SP2 sys-
tem preserves the rBC size information when measuring
liquid samples. Contrarily, previous studies reported size-
dependent aerosolization capability for the U5000AT nebu-
lizer (Ohata et al., 2013; Schwarz et al., 2012; Wendl et al.,
2014). The efficiency of the U5000AT for aerosolizing PSLs
was observed to suddenly drop at 500 nm (Ohata et al., 2013;
Schwarz et al., 2012) or gradually decrease from 200 nm to-
ward larger sizes (Wendl et al., 2014).We did not characterize
the U5000AT nebulizer with PSLs in this study, but we ob-
served a larger rBC mass-median diameter (MMD) for the
liquid removed during first drainage of the U5000AT when
compared to the original sample, confirming a decrease in
aerosolization efficiency for larger particles.

2.2.4 Aerosolization efficiency determined by
gravimetric rBC standard solutions

The aerosolization efficiency of rBC particles through a neb-
ulizer (EFneb) was derived by the following equation:

EFneb= MSP2× Fneb.gas/(msamp× Fneb.liq), (1)

whereMSP2 is the rBC mass concentration measured by the
SP2 (µg cm−3), Fneb.gas is the air flow rate (cm3 min−1),
msamp is the rBC mass concentration of the injected sam-
ple (µg L−1), andFneb.liq is the liquid-flow rate of the sample
(L min−1).

The repeated blank (Milli-Q®, > 18.2 M�, 0.2 µm fil-
tration) tests (N > 10 for both nebulizers) revealed for
each nebulizer similar limits of detection (LOD, mean+3σ

of blank), limits of quantification (LOQ, mean+10σ of
blank), and coefficients of variation (CV,σ/mean× 100) of
∼ 0.01 µg L−1, ∼ 0.03 µg L−1, and∼ 70 %, respectively.

Evaluation of aerosolization efficiency of the APEX-Q
was performed with eight gravimetric standards, AQ in
aqueous phase (ranging 0.1–100 µg L−1) analyzed every 2
weeks. Over a 10-month period, and independently of con-
centrations, 75± 7 % (n = 20, CV= 9 %) of rBC mass was
recovered. This value is in excellent agreement with the
aerosolization efficiency estimated from the PSL solution
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analysis (i.e., 72± 5 % in Sect. 2.2.3). The fraction of AQ
that was not aerosolized was partially identified in the
APEX-Q drains, or adhering to the internal surface of the
nebulizer (see the Supplement and Fig. S2).

The U5000AT does not demonstrate a size-independent
aerosolization capability (see Sect. 2.2.3), and thus should
strictly not be calibrated with polydispersed gravimetric rBC
standards for particle losses during nebulization. However,
such calibrations can improve our understanding of the be-
havior of the U5000AT, and have already been reported be-
fore (Bisiaux et al., 2012a, b; Jenkins et al., 2013; Kaspari
et al., 2011; McConnell et al., 2007). In this study, ap-
proximately 60–70 % of the sample volume injected to the
U5000AT was lost during the first drainage before con-
version to water droplets by the piezoelectric transducer.
When the sample volume collected during the first drainage
was subtracted from the sample volume injected into the
nebulizer, an aerosolization efficiency of 30± 3 % (n = 4,
CV = 8 %) was observed. Following a similar approach, Kas-
pari et al. (2011) reported an efficiency of∼ 50 %, a higher
value likely explained by a different setting of the U5000AT.
However, this approach may be unrealistic as there is no
evidence that rBC particles are homogeneously distributed
in between the first drainage and the aerosols that are pro-
duced. Considering sample loss during the first drainage,
EFneb of U5000AT of∼ 10 % was obtained, a value consis-
tent with that reported in Ohata et al. (2011), although these
authors operated the U5000AT with a slightly different set-
ting. Figure 1 shows mass size distributions of AQ in wa-
ter when nebulization was carried out with the APEX-Q and
the U5000AT. Both distributions show an MMD of∼ 210–
220 nm MED, but lower amplitude for the U5000AT reflects
low aerosolization efficiency. For both nebulizers, the shape
of size distribution was independent of AQ concentrations
over the 0.1–100 µg L−1 range.

In the following, we exclusively report rBC analysis ob-
tained by coupling the SP2 analyzer with the APEX-Q neb-
ulizer. Our study suggests that rBC losses during aerosoliza-
tion depend on factors that are specific to each analytical sys-
tem, underlining the crucial need for calibration. Thus, quan-
tification of rBC losses during aerosolization, i.e., calibration
of the APEX-Q/SP2 coupling, was performed regularly (ev-
ery 2 weeks) using eight AQ standards, and daily during each
analytical session using three standards. Although the results
were always within the range of 75± 7 %, we recommend
such daily calibration using three standards to ensure that
aerosolization efficiency remains stable and to ensure that
no unlikely dysfunction may be affecting the nebulizer. The
typical errors ofEFneb, MSP2, Fneb.gas, andFneb.liq were es-
timated to be around 15, 10, 5, and 10 %, respectively, based
on their repeated measurement, resulting in the overall un-
certainty of about 20 %.

Figure 1.Mass size distributions of polydispersed AQ (100 µg L−1)
measured with APEX-Q and U5000AT. The whiskers stand for one
standard deviation. Histogram bin size is 50.

2.2.5 Repeatability and stability of the
APEX-Q/SP2 coupling

The repeatability and stability of rBC detection with our
APEX-Q/SP2 system was first investigated by repeating the
measurement of a single French Alpine (Col du Dôme site,
hereafter “CDD”, Sect. 2.4.1) snow sample (n = 30, one
measurement every 2 minutes) over 1 h. The total analy-
sis time was limited to 1 h to avoid uncertainties driven by
rBC losses during liquid-phase storage at room temperature
(Sect. 3.1.5). rBC concentration averaged 6.3± 0.3 µg L−1

over 1 h, resulting in a CV of 3.9 %.
As presented in detail by Ohata et al. (2011), the evapora-

tion of water droplets in the heated zone of the nebulizer can
promote rBC particle coagulation if multiple particles have
been incorporated in a single water droplet. Thus, we also
investigated the dependence of size distributions on sample
concentrations. The MMD and the count median diameter
(CMD) of AQ obtained from lognormal fits were evaluated at
different rBC concentrations ranging from 0.1 to 100 µg L−1,
i.e., the rBC concentrations frequently observed in snow and
firn samples (see Table 2). Each measurement was made in
triplicate using new standard solutions. The mean values of
the MMD and the CMD were 220 and 67 nm MED for
rBC concentrations ranging from 0.1 to 100 µg L−1, result-
ing in a CV= 1.5 and 0.6 %, respectively. The stability ob-
served for MMD and CMD when measuring these AQ solu-
tions demonstrates that rBC size distributions are not affected
by aerosolization. This conclusion was further supported by
PSL measurements. Coagulated particles (determined when
the mean diameter increases by more than 20 %) represented
only 1–2 % of the total number of detected PSL particles
of 200, 240, and 350 nm (see Sect. 2.2.3). Consequently,
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coagulation of rBC particles is likely negligible when using
the APEX-Q nebulizer.

Different chemical species including ionic water-soluble
species, such as sulfate and calcium, are included in solid
precipitations (Preunkert et al., 2000; Savarino and Legrand,
1998) and thus coexist with rBC particles in deposited
snow and ice. AQ solutions spiked with water-soluble ionic
species were also analyzed to investigate potential arte-
facts, since water-soluble species may affect the surface ten-
sion of droplets, and hence nebulizer efficiency (Facchini et
al., 2000; Ohata et al., 2011). To assess this effect in our
system, we measured rBC concentrations of AQ solutions
(10 µg L−1) with 100–1000 ppb of sulfate and calcium, us-
ing five different concentrations. This range of sulfate and
calcium covers the typical values in ice cores collected from
the European Alpine region (Preunkert et al., 2000). The
rBC concentrations in these artificial samples were stable
within 8 % and 5 % without any trend for the AQ+ sulfate
samples and the AQ+ calcium samples, respectively. Us-
ing the U5000AT/SP2 system, Ohata et al. (2011) also con-
cluded that analytical errors due to possible changes in sur-
face tension caused by such species are negligible, how-
ever, these authors mentioned that this may not be the case
for high concentrations of water-soluble, humic-like sub-
stances (HULIS), e.g.,> 100 mg L−1. Typical water-soluble
HULIS levels are below 0.05 mg L−1 in the French Alpine
ice core over the 1920–2004 time period (Guilhermet et al.,
2013). The impact of water-soluble species on rBC parti-
cle aerosolization driven by change in water-surface tension
should thus be negligible.

2.3 Thermal–optical detection of EC applied
to snow and ice samples

One of the aims of this study was to compare SP2 and
thermal–optical methods (Sect. 3.2). Briefly, the thermal–
optical technique used for this comparison follows the EU-
SAAR2 protocol (Cavalli et al., 2010).

This protocol involves an OC / EC aerosol analyzer (Sun-
set laboratory Inc., US) that has been widely used for EC and
OC analysis. The preheated quartz fiber filter, loaded with
particles, is first heated in an oxygen-free, ultra-high purity
helium atmosphere in increasing temperature steps, which al-
lows for the detection of various organic carbon fractions.
Then, the gas is switched to a 2 % O2/ He mixture and the
filter is heated with increasing temperature steps for deter-
mination of EC. During the initial heating steps, some OC
may undergo pyrolyzation (resulting in “pyrolyzed OC”) and
be finally determined as EC due to EC-like light absorption.
This pyrolytic conversion was continuously monitored and
taken into account by measuring the transmission of a laser
beam.

Finally, sample decarbonation was conducted for all sam-
ples before analysis in the Sunset OC / EC aerosol analyzer.
Most of the samples presented in this study were collected
at sites that were potentially affected by Saharan or Asian
dust. Such dust contains calcium carbonate as one of the ma-
jor constituents of coarse particles (Karanasiou et al., 2011,
and references therein; Maupetit and Delmas, 1994). We ob-
served that a positive EC artifact from calcium carbonate
(∼ 6 µg) was efficiently removed when the chemical decar-
bonation procedure was applied to a filter loaded with both
AQ (10 µg) and calcium carbonate (200 µg, a level in the
range frequently observed in CDD ice cores: Preunkert et al.,
2000). Further results and details about the chemical decar-
bonation and filtration procedure are presented in the Supple-
ment. Filtration with 100 mL of ultrapure water and a decar-
bonation procedure led to an LOD of 4 µg C for OC and of
0.1 µg C for EC. Filtration with ultrapure water without de-
carbonation showed the same detection limits, indicating that
this process does not induce any contamination.

2.4 Origin of snow and ice samples used in the study

2.4.1 Alpine surface snow

Alpine snow samples were collected in September 2012 from
the surface and from a 1.8 m deep snow pit at the CDD
(45◦50′ N, 6◦50′ E, 4250 m a.s.l.), located close to the sum-
mit of Mont Blanc (French Alps). We collected snow sam-
ples (n = 46) from the top 2 cm snow layer across an area of
0.8 m× 1.3 m and over a period of 1 h. In addition, snow sam-
ples were collected from the top 2 cm layer (n = 5) and from
the top 5 cm layer (n = 5) in a neighboring area, measur-
ing 0.3 m× 1.9 m. The samples from the top 2 cm layer and
from the top 5 cm layer were respectively stored in 50 and
125 mL PP containers pre-rinsed with ultrapure water. The
water equivalent volume of each snow sample was∼ 10 and
30 mL for the 50 and 125 mL container, respectively. Snow
was collected in one or two 1 L glass containers (Pyrex) from
each layer of a four-layer snow pit. The snow pit was divided
into layer 1 (“fresh snow”), layer 2 (“summer layer”), layer
3 (“dust deposition”), and layer 4 (“winter layer”). The col-
lected samples were sealed in plastic bags, stored in a freezer,
and kept frozen prior to analysis. The CDD surface-snow and
snow-pit samples were used to optimize the snow-sample
treatment method (Sect. 3.1) and to compare our SP2 method
with the thermal–optical method of OC / EC aerosol analyzer
(Sect. 3.2).

2.4.2 Caucasus high-altitude firn

A 183 m ice core was drilled in September 2009 on Mt. El-
brus in the Caucasus (hereafter “ELB”, 43◦20′ N, 42◦25′ E,
5115 m a.s.l.). Five 1 m long firn sections from 7 to 12 m
in depth were selected to compare our SP2 method with
the thermal–optical method of OC / EC aerosol analyzer
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(Sect. 3.2). This is the first core from the Caucasus to be mea-
sured for rBC. Samples cover the calendar years 2006–2007,
and are affected by changes in both anthropogenic and nat-
ural aerosol emissions, such as fossil fuel and biomass com-
bustions, and dust transport from arid areas. The core was
kept frozen until analysis.

2.4.3 Greenland summit firn

A 305 m long ice core was drilled in July 1989 at Summit,
central Greenland (hereafter “SUM”, 72◦34′ N, 37◦38′ W,
3240 m a.s.l.) as part of the European EUROCORE project.
Three firn sections (29.2–30, 37.9–38.2 and 64.5–64.9 m
depth) were analyzed in this study, covering multi-year pe-
riods over the last 2 centuries (corresponding to 1918–1922,
1893–1894, and 1799–1800 in calendar years, respectively).
The sections contain records of historical changes in both an-
thropogenic and natural emissions of aerosol species in the
high-latitude Northern Hemisphere (Savarino and Legrand,
1998). The samples were kept frozen prior to analysis. The
firn samples were analyzed for the inter-comparison of two
analytical methods (Sect. 3.2).

2.4.4 Himalayan surface snow

Surface snow was collected at high-altitude sites in the Hi-
malayan region in Nepal (hereafter “HIM”). The surface-
snow samples including fresh and old snow were collected
at three sites near the Nepal Climate Observatory-Pyramid
station (NCO-P, 5079 m a.s.l.), the Changri Nup glacier
(5644 m a.s.l.), and the Kongma glacier (5600 m a.s.l.) lo-
cated in/near the Kumbu valley. All surface snow was sam-
pled from the surface to a depth of 10 cm in the period 2010–
2012. The snow was sampled somewhat randomly by time
and/or location due to difficult access to the snowfields. Eight
samples collected in 1 L glass containers were analyzed for
the inter-comparison of two analytical methods (Sect. 3.2).
Major sources of aerosols observed in the region have been
identified as biofuel combustion and transported desert dust
(Bonasoni et al., 2010; Decesari et al., 2010). These snow
samples melted during the transport from Nepal to Grenoble
(France), which lasted for more than a week, and were later
stored in the liquid phase in a refrigerator prior to analysis.
Storage time varied between 1 to 2 years, depending on sam-
ples.

3 Results and discussion

A full evaluation and understanding of the method for the
analysis of snow and ice samples with the SP2 technique
is required before it can be compared with the thermal–
optical method. Our discussion is thus organized along two
axes: (i) how sample treatments can impact rBC analysis
conducted with SP2 coupled with the APEX-Q nebulizer
(Sect. 3.1), and (ii) which uncertainties should be considered

when comparing rBC and EC data obtained with the two
methods (Sect. 3.2).

3.1 Treatment of the snow and ice samples
before SP2 analysis

Natural freeze/thaw cycles within snow packs that affect the
size and shape of snow grains (Dominé et al., 2003) may
also affect the properties of rBC particles (e.g., Flanner et
al., 2012). The rBC particles can undergo physical changes
during melting/refreezing processes in sample containers,
depending on the procedure used to transport the samples
from the field and their conservation. Recently, Schwarz et
al. (2012) tested the effects of snow-sample acidification, ag-
itation, and storage on rBC mass and size determinations.
Nevertheless, the detailed, complete evaluation of snow- and
ice-sample treatment prior to SP2 analysis is still necessary.

A series of tests using the natural CDD snow samples were
performed to identify the optimal sample treatment to min-
imize losses of rBC particles and changes in their size dis-
tributions. We investigated the variability of rBC concentra-
tions in snow samples from the top 2 cm (n = 51) and the
top 5 cm (n = 5) layers by direct measurements without pre-
treatment. All the samples had comparable rBC concentra-
tion with CV of 18 % and 17 %, respectively, indicating that
they could be used for this comparison study. The mean of
the top 2 cm samples (n = 5) in the 0.3 m× 1.9 m area was
very similar to that in the 0.8 m× 1.3 m area (n = 46), with
values only 3 % higher.

The CDD snow was thus treated using different methods
and subsequently analyzed with the SP2. We specifically in-
vestigated the impact of container condition, melting proce-
dure, multiple melting/freezing cycles, the surface / volume
ratio of the sample container, and storage procedures after
melting.

3.1.1 Choice of sample containers

Both PP and glass were tested as vial material in this study.
PP containers are widely used as snow-sample containers.
Zanatta (2012) suggested that PP containers have a less ab-
sorptive and more stable surface than glass containers for
rBC. More recently, Wendl et al. (2014) did not find any sig-
nificant difference in rBC sample storage when using PP or
glass containers.

We conducted blank rBC analyses in new PP contain-
ers that had been pre-rinsed with ultrapure water with and
without 15 min of sonication. Blank rBC levels under both
sonication conditions were< 0.01 µg L−1, based on repeated
analyses. Blank levels of∼ 0.05 µg L−1 were found after
sonication for 30–45 min, but were still much lower than
the lower limit of field snow- or ice-sample level, i.e.,
∼ 0.1 µg L−1. Thus, all new PP containers were only pre-
rinsed with ultrapure water before sampling. Conversely,
recycled glass containers that were stored and filled with
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ultrapure water, without cleaning by sonication, were found
to be significantly contaminated by rBC particles from previ-
ous samples. Blank levels of glass containers (n = 8) ranged
between 0.1 and 12 µg L−1 after 15 min of sonication, but de-
creased to∼ 0.01 µg L−1 or less after a second 15 min-long
sonication. This suggests potentially significant contamina-
tion of the following samples when sample-filled glass con-
tainers are sonicated without proper cleaning beforehand.
Consequently, if sonication of the samples is necessary, re-
cycled glass containers should be cleaned by 30 min of son-
ication with ultrapure water to avoid contamination of sub-
sequent samples. As a result, we mainly used PP containers
in this study, as low blank values are more easily and more
consistently obtained with these containers.

3.1.2 Effect of melting procedures

Previous studies involving measurements of rBC or EC in
snow and ice samples did not use standardized sample-
melting methods. For example, snow or ice was thawed at
room temperature (Jenk et al., 2006; Lavanchy et al., 1999;
Thevenon et al., 2009; Wang et al., 2012); snow was melted
in a warm bath (< 30◦C) (Ming et al., 2008) or in a mi-
crowave oven (Schwarz et al., 2012); or ice was melted into
discrete samples using a continuous melter system (Kaspari
et al., 2011).

In this work, we tested two melting procedures whose re-
sults are listed in Table 1a. The CDD snow stored in 50 mL
PP containers was (i) melted at room temperature for less
than 2 h, or (ii) melted in a warm water bath at 30◦C for
less than 20 min. Mechanical stirring during melting was not
used, as we observed that it did not cause any distinct change
in rBC concentration, which is in agreement with Schwarz
et al. (2012). Samples melted in a warm bath did not show
a significant difference in rBC concentration compared to
samples melted at room temperature, i.e., there was only a
3± 9 % increase. To investigate potential rBC losses dur-
ing melting, all the samples were measured a second time
after 15 min of sonication. No changes in rBC concentra-
tions were observed before and after sonication in samples
initially melted at room temperature. The samples melted in
a warm bath exhibited a slight increase (12± 18 %) in rBC
concentration after sonication, which we did not consider to
be critical due to a relatively larger standard deviation for the
smaller number of samples (n = 10).

These results showed that melting samples at room tem-
perature in less than 2 h caused no additional rBC losses com-
pared to melting in a warm bath for a shorter time, i.e., in
less than 20 min, although it is generally thought that faster
melting leads to fewer rBC particle losses. Sample treatment
with sonication is also unnecessary when samples are melted
rapidly (i.e., in less than 2 h). However, rapid melting in
a warm bath or applying sonication after melting does not
cause significant differences compared to more straightfor-
ward melting at room temperature without sonication.

3.1.3 Effect of multiple melting/freezing/melting cycles

Refreezing/melting processes may lead to the redistribu-
tion of particles in a sample container (e.g., particles stick-
ing to the wall of the container). To simulate a melt-
ing/freezing/melting cycle, snow samples were refrozen im-
mediately after analysis and then remelted at room tempera-
ture for less than 2 h prior to a second analysis. Interestingly,
there was a marked decrease in rBC concentrations during
this process (45± 11 %, Table 1b). We thus suggest that the
observed loss of rBC particles happened during freezing of
the sample, as we previously demonstrated that melting had
no impact if conducted within 2 h (Table 1a). The remelted
samples were then treated using different methods to investi-
gate rBC recovery after freezing (n = 5 for each method, Ta-
ble 1b): ultra-sonication (for 15, 30, and 45 min), and acid-
ification. rBC losses of 38± 16 % were still recorded after
15 min of sonication, but decreased to 14± 14 % after 30 min
of sonication. Sonication for 45 min was no more efficient.
Sonication for 30 min led to the highest rBC recovery rate ob-
served after a freezing/remelting cycle. In addition, the tested
samples (n = 3) were refrozen, remelted (thus, artificially re-
frozen two times in total) and analyzed, which showed rBC
total mass reduction of∼ 50–70 % and 30 min of sonication
helped only∼ 10 % increase in rBC mass concentration. We
observed significant rBC losses over all size ranges in the
remelted samples, and the lost rBC particles were recovered
uniformly over almost all size ranges after 30 min of sonica-
tion. We also acidified samples with 0.5 M nitric acid, follow-
ing the procedure described by Kaspari et al. (2011). Acidifi-
cation did not reduce losses of rBC after a freezing/remelting
cycle (0 % variation).

3.1.4 Effect of the surface / volume ratio of
sample containers

The surface / volume (S / V ) ratio of sample containers may
affect rBC losses that occur during a melting/freezing cycle.
This concern arose because our main assumption concerning
rBC losses in a container is particles adhering on the wall
of the container. Two types of PP containers with different
S/V ratios were used to test this hypothesis: a 50 mL PP
tube container withS = 22.9 cm2 andV = 10 mL of the sam-
ples (N = 5,S / V = 2.3 cm2 mL−1), and a 125 mL cylindri-
cal PP container withS = 75.4 cm2 andV = 30 mL of the
samples (N = 5, S / V = 2.5 cm2 mL−1). The 125 mL con-
tainers had a 10 % largerS / V than the 50 mL containers.
After refreezing/melting, average rBC mass losses from the
two containers were 37± 14 % and 55± 30 %, respectively
(Table 1c). After 30 min of sonication, rBC losses from the
125 mL container were still 41± 34 %, while more particles
were recovered from the 50 mL containers, with rBC losses
of only 11± 26 %. This result suggests that theS/V ratio
can influence rBC losses during cycles of refreezing/melting,
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Table 1. rBC concentrations in snow samples from Col du Dôme (CDD, French Alps) determined after different treatment: (a) melting
procedure, (b) freezing/melting cycle, (c) surface to volume ratios of the container, and (d) storage. rBC refers to the mean rBC (± 1 standard
deviation) concentration calculated overN samples.1(rBC) refers to % variations in rBC concentrations between the reference and the
treatment concerned. US stands for “ultrasonication”. * indicates data collected after refreezing and remelting samples.

N rBC 1 rBC Treatment Refreezing rBC 1 rBC Treatment Comments
(µg L−1) (%) description (µg L−1)* (%)* description*

(a) Melting procedure

41 4.7± 1.0 Reference Melting at room temp.
X4.7± 1.1 0± 24 and US 15 min

10 4.9± 0.4 3± 9 30◦C melting
X5.3± 0.8 12± 18 and US 15 min

(b) Freezing/melting cycle

5 5.8± 1.3 Reference
Melting at room temp. ⇒

3.5± 1.3 −40± 21 Remelting at
room temp.

3.6± 1.0 −38± 16 and US 15 min

5 5.0± 1.3 Reference
Melting at room temp. ⇒

2.4± 0.3 −52± 6 Remelting at
room temp.

4.3± 0.7 −14± 14 and US 30 min.

5 3.9± 0.4 Reference
Melting at room temp. ⇒

2.1± 0.3 −46± 7 Remelting at
room temp.

3.1± 1.0 −21± 25 and US 45 min.

5 4.0± 0.4 Reference
Melting at room temp. ⇒

2.4± 0.4 −41± 10 Remelting at
room temp.

2.4± 0.3 −41± 7 and acidification

(c) Surface / volume ratio of the container

5 4.9± 0.8 Reference Melting at room temp.
⇒

3.1± 0.7 −37± 14 Remelting at
room temp. 50 mL PP container

4.3± 1.3 −11± 26 and US 30 min.

5 7.8± 1.3 Reference Melting at room temp.
⇒

3.5± 2.4 −55± 30 Remelting at
room temp. 125 mL PP container

4.6± 2.6 −41± 34 and US 30 min.

(d) Storage

5 4.9± 0.3 Reference Melting at room temp.

X

5.0± 0.4 3± 9 and storage at room
temp. for 2 h

5.3± 1.0 9± 20 and storage at room
temp. for 4 h

4.7± 0.6 −3± 11 and storage at room
temp. for 6 h

4.4± 0.8 −9± 17 and storage at room
temp. for 24 h

5 4.7± 0.3 Reference Melting at room temp.

X

4.6± 0.3 −3± 6 and storage in the
refrigerator for 2 h

4.4± 0.1 −6± 3 and storage in the
refrigerator for 4 h

4.4± 0.1 −6± 3 and storage in the
refrigerator for 6 h

4.6± 0.3 −3± 6 and storage in the
refrigerator for 24 h
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although measuring more samples would be required to pro-
vide statistically significant conclusions.

3.1.5 Effect of storage procedures after melting

Snow samples stored in PP containers were first analyzed
without treatment (e.g., sonication or acidification) and
stored at room temperature (5–15◦C) or in a refrigerator
(4.5◦C) to evaluate rBC losses as a function of time. These
samples were analyzed 2, 4, 6, and 24 h after the first melt
cycle, without any additional treatment. Changes in mean
rBC concentrations were not significant in the samples main-
tained at room temperature, but their concentrations were
more variable than in samples kept in the refrigerator (Ta-
ble 1d). However, after 24 h at room temperature, the change
in rBC concentrations was slight (−9± 17 %), particularly
compared to the rBC losses during refreezing/melting.

When rBC concentrations were monitored in samples
stored in glass containers at room temperature for 24 h, sim-
ilar results were observed. Schwarz et al. (2012) also men-
tioned that rBC losses in glass containers stored at room tem-
perature were limited, although they showed that losses were
higher (about 50 %) in high-density polyethylene bottles.

rBC mass losses in PP containers that were kept in the re-
frigerator remained constant for 24 h with−3± 6 % change.
The same snow samples were kept in the refrigerator for a
week and rBC was then analyzed again. Changes in rBC
masses after a week were−13 % on average, a value that
was reduced to−7 % after 15 min of sonication. Sonication
thus helps recover rBC particles in samples stored in the liq-
uid phase for more than 1 day.

3.1.6 Summary

According to the series of tests described in Sect. 3.1, we
recommend the following method to minimize a reduction
in rBC concentrations and changes in associated rBC size
distributions when measuring snow or ice samples.

– Samples should ideally be stored in new polypropy-
lene (PP) containers, which are pre-rinsed with ultra-
pure water. The container should have the smallest pos-
sible surface / volume ratio. Recycled glass containers
should be cleaned by intense sonication (30 min), espe-
cially if samples need to be sonicated before analysis.

– Melting should be rapid (e.g.,< 2 h), in which case ad-
ditional treatments such as sonication are not necessary.
Refreezing samples should be avoided. Remelted sam-
ples showed rBC mass losses of−45± 11 % in 50 mL
PP containers. If samples are melted either partially or
entirely, sonication for 30 min is recommended. After
30 min of sonication, the rBC mass losses were reduced
by a factor of∼ 3.

– If samples have to be kept in the liquid phase for a few
hours prior to analysis, storing them for 1 day in a re-
frigerator or at room temperature will not lead to serious
rBC losses (< 10 %).

3.2 Comparison between the SP2 and
the thermal–optical method

Inter-comparison of the SP2-based method and the thermal–
optical method has been carried out for BC aerosol samples
(e.g., Kondo et al., 2011; Laborde et al., 2012b). Similar stud-
ies for snow and ice samples are available only for the inter-
comparison between the SP2-based method and the light-
absorption method (e.g., Schwarz et al., 2012). Here, we re-
port the results of a comparison between our SP2 method
(Sects. 2.1, 2.2 and 3.1) and the thermal–optical method of
Sunset OC / EC aerosol analyzer, operated using the EU-
SAAR2 protocol (Sects. 2.3 and 3.1). Snow and firn of var-
ious origins were used to better characterize the limitations
of the two approaches. Specifically, SUM and ELB firn, and
CDD and HIM snow (Sect. 2.4), were analyzed with both the
SP2 and the Sunset OC / EC analyzer.

Considering their large volume in 1 L glass containers,
snow and firn were melted in a warm bath to minimize melt-
ing time. Only the HIM snow was sonicated for 15 min to
avoid rBC particle loss on the container walls since they had
been stored in the liquid phase. The melted samples were
filtrated and split into aliquots for immediate rBC analy-
sis by the SP2 (10 mL PP) and dust analysis by a Coulter
Counter Multisizer 3 (10 mL accuvette) (Beckman Coulter,
Inc, USA) in a 100 class clean room. Filtration was care-
fully performed using the method described in the Supple-
ment. The EC and rBC concentrations and EC/ rBC ratios
are listed in Table 2. Note that all rBC data were corrected
for losses during the aerosolization processes through daily
calibration (see Sect. 2.2.4). We observed significant differ-
ences between the two techniques with EC/ rBC ratios rang-
ing from 0.5 to 3.4, depending on the sample origin. In the
following, we discuss the artifacts that could have led to these
discrepancies between the two techniques.

3.2.1 Measurement sensitivity to SP2 mass
detection range

Size distributions of BC particles mainly depend on emis-
sion sources and atmospheric processes, and range from a
few nanometers to a few micrometers (Bond et al., 2013).
As mentioned in Sect. 2.1.2, the SP2 used in this study
provided rBC particle size distribution between∼ 60 and
620 nm MED, and particles larger than 620 nm were consid-
ered by the analyzer to be particles with a diameter of 620 nm
due to the detector saturation. However, less than 0.1 % of
the total number of rBC particles in all the samples we tested
was found at the saturation point (620 nm). In particular, the
contribution of rBC at saturation point in the SUM and CDD
samples represented less than 0.05 % of total rBC. Assuming
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Figure 2. Mass size distributions of rBC in snow and firn samples
from the different sites investigated. They axis is dM/dlog(DMED)
with all distributions normalized to an area of 1. Histogram bin size
is 50.

that rBC size distributions in snow samples can be lognormal
fitted (e.g., Fig. 2), one can estimate that a 0.05–0.1 % con-
tribution of large particles detected at saturation represents
less than 12 % of the total rBC mass. Such calculation could
not be applied for the snow samples collected in semi-rural
and rural areas, as demonstrated by Schwarz et al. (2012).
These authors observed occurrences of particles larger than
1 µm in snow collected within 60 km of Denver (USA). Sim-
ilarly, this calculation would likely not be accurate for sam-
ples experiencing freezing/thawing cycles which might af-
fect particle sizes. In this study, the CDD, ELB, and SUM
samples were all collected at high-altitude and remote sites,
and the reference analyses on these samples (see Sect. 3.1)
were always conducted just after melting. However, the HIM
samples were transported after collection during more than 1
week at room temperature, and then stored in a refrigerator
for more than 1 year before analysis. Interestingly, the HIM
samples also showed a significant shift towards larger sizes
compared to samples from other sites (Fig. 2). These larger
rBC sizes observed for HIM snow samples may be natural,
but could also originate from the transportation at room tem-
perature and long storage. Finally, we conclude that the anal-
yses conducted in this study on CDD, ELB, and SUM are
only slightly affected by the inadequate SP2 detection range,
but that this artefact is larger for HIM samples.

Thus, an accurate determination of rBC mass in snow and
ice samples may require an optimization of the analyzer set-
tings in order to enlarge detection range up to microme-
ter particles. This is possible, as demonstrated recently by
Schwarz et al. (2012) and Wendl et al. (2014) who extended
their SP2 detection ranges to 2000 and 800 nm MED, respec-
tively.
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3.2.2 EC artifact due to inadequate filtration

To our knowledge, there is no size limitation in the thermal–
optical method, which can theoretically analyze all EC par-
ticles on the filter. However, the sample filtration step may
involve EC losses, especially of fine particles that can pass
through the filter with the sample water. The EC losses that
occurred during filtration of sample water were investigated
by Ducret and Cachier (1992), Lavanchy et al. (1999), and
Hadley et al. (2008). Overall, these authors concluded that
collection efficiency was almost above 92 %. More recently,
Torres et al. (2014) evaluated filtration efficiencies ranging
10–38 % for rainwater samples by applying SP2 analysis to
samples before and after filtration. We followed a similar ap-
proach, investigating the SP2-based filtration efficiency (FE)
of rBC particles collected on quartz fiber filter as follows:

FE= (2)

1−
rBC mass concentration in sample after filtration

rBC mass concentration in sample before filtration
.

All samples showed a significant fraction of rBC that
was not retained on the filter during filtration, and conse-
quently not measured by the thermal–optical method (Ta-
ble 2). The size of the particles filtered was found to strongly
affect the FE, and, consequently, the subsequent EC anal-
ysis with thermal–optical analyzer. Size distributions deter-
mined for all ELB and CDD samples before and after fil-
tration revealed a strong dependence of the filtration effi-
ciency with the particle MED (Fig. 3). FE decreased to 20 %
for particles< 200 nm MED, and exceeded 65 % for parti-
cles> 500 nm. Only∼ 30–40 % of rBC mass in CDD snow
samples was retained by the quartz filter. In contrast, we ob-
served a much higher filtration efficiency for the HIM sam-
ples with FE ranging from 70 to 90 %. These observations are
in good agreement with size distributions showing the occur-
rence of small particles for CDD samples, and large parti-
cles for HIM samples (Fig. 2). To support this conclusion,
the liquid collected after filtration of a CDD sample was fil-
trated again on a 0.2 µm nuclepore and observed by electron
microscopy. BC aggregates with diameters ranging between
100 and 200 nm were frequently visible in microscopy im-
ages, contrary to larger BC particles (Fig. S3 in the Supple-
ment). These images confirm that small particles can easily
pass through quartz filters during filtration.

Interestingly, our data suggest that FE might also be in-
fluenced by the amount of OC loaded on the quartz filter.
ELB and SUM samples showed intermediate filtration ef-
ficiencies (∼ 40–60 %). These samples show slightly larger
MMD (Fig. 2), which can contribute to more efficient fil-
trations. However, these samples were also characterized by
larger OC masses loaded on the filters compared to CDD
samples (67.8± 25.0 µg and 142.6± 82.6 µg for ELB and
SUM samples, respectively). We cannot rule out that OC
favors retention of rBC on filters, although this hypothesis
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Figure 3. SP2-based filtration efficiency (FE) of rBC particles col-
lected on quartz filter for CDD and ELB samples. The whiskers
stand for one standard deviation.

remains highly speculative with undetermined processes in-
volved. Contrarily, elevated dust loading on the quartz filters
did not increase FE. Highly dusty CDD samples (dust con-
centration of 10.9 ppm, corresponding to a loaded dust mass
on the filter of 1744 µg) exhibited a low FE, similar to other
CDD samples.

Finally, the sample volume filtered could also influence
FE as a consequence of the above artifact related to OC load-
ing on filters. As an illustration, the SUM samples showed
low OC concentrations, but a significant OC mass could be
loaded on the quartz filters due to their large volumes filtered
(∼ 1–2 L, Table 2).

rBC particle sizes, possibly OC loading on filters and sam-
ple volumes filtered affect FE and consequently the EC quan-
tification using a thermal–optical analyzer. Previous snow
and ice studies reporting concentrations of EC determined
using quartz filters (e.g., Hagler et al., 2007; Lavanchy et al.
1999; Ming et al., 2008, 2009; Thevenon et al. 2009) may
have underestimated EC concentration by a significant but, as
yet, unquantifiable factor. Our results further suggest that this
factor can vary depending on samples. Torres et al. (2014)
demonstrated that FE can be increased up to 95 % by adding
salts and acid into rainwater samples. Such approach should
be investigated as well for snow and ice samples.

3.2.3 Artifact due to the presence of dust

High levels of dust in liquid samples may affect both rBC
and EC determinations (Schwarz et al., 2012; Wang et al.,
2012). The impact of dust on the SP2-based rBC analysis is
not discussed in this study. Schwarz et al. (2012) conserva-
tively estimated an rBC artifact to be a+15 ng g−1 offset in
a highly dust-contaminated laboratory sample, i.e., with dust
levels reaching 50 ppm. Note that such elevated dust levels
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Figure 4. Comparison of pyrolyzed_OC/total_OC ratio and EC
concentration for all snow and firn samples showing values of py-
rolyzed_OC/total_OC ratio> 0.5.

were never observed for any CDD, ELB, SUM, or HIM sam-
ples (Table 2).

The impact of dust on the thermal–optical method has
been addressed in previous laboratory studies (e.g., Chow et
al., 2001; Wang et al., 2012). Dust particles including cat-
alytically active ions or mineral oxides (e.g., hematite) can
reduce the sensitivity of the instrument (Chow et al., 2001)
but also bias the OC / EC split point during the analysis by
delaying or preventing the laser signal from reaching its ini-
tial value (Wang et al., 2012). Consequently, EC concentra-
tions of dusty samples are generally underestimated or not
determined. In this study, however, we observed a lack of a
systematic correlation between EC and dust concentration.

The thermograms of OC / EC analysis of the dusty CDD
snow layers 2 and 3 (dust concentrations of∼ 1 and∼ 11
ppm, respectively) reveal such artifacts. The laser signal did
not return to its baseline value before the end of analysis,
resulting in no EC fraction. The yellowish or dark brown
color of these snow samples changed to red brown color after
combustion, indicating the existence of hematite. To elim-
inate the impact of dust on incomplete OC / EC splitting,
the results were revised following procedures described by
Wang et al. (2012). It should be noted that this revision was
somewhat rough, as we did it by visually modifying the ini-
tial laser transmittance value line in the thermograms, and
these revised concentrations are listed in Table 2. Interest-
ingly, we did not always observe artifacts on Sunset thermo-
grams when we analyzed highly dusty samples from other
sites (e.g., HIM samples). Consequently, we conclude that
not only the concentration but also the type of dust can lead
to analytical failure in EC measurements. Finally, we recom-
mend systematic evaluation of the thermogram during EC
analysis, particularly if the sampling site is influenced by lo-
cal or regional dust sources.

3.2.4 EC artifact due to OC pyrolyzation

OC pyrolysis, which occurs during thermal–optical EC
detection, could affect EC determination by biasing the
OC / EC split point and then generally causing a positive
EC artifact, if not properly corrected (Chow et al., 2001;
Schmid et al., 2001). 40 % of the snow and firn sam-
ples that we tested (n = 20) revealed a pyrolyzed OC frac-
tion representing more than half of the total OC, i.e., py-
rolyzed_OC/total_OC ratio≥ 0.5, which is rarely observed
in atmospheric samples at French urban sites (unpublished
data). Figure 4 illustrates the relationship between py-
rolyzed_OC/total_OC ratio and EC concentration for sam-
ples with pyrolyzed_OC/total_OC ratio≥ 0.5 (n = 8). The
EC concentration generally increased with an increase in the
pyrolyzed_OC/total_OC ratio, with a Pearson correlation co-
efficient (r2) of 0.5 (p value< 0.01). Conversely, no linear
relationship of pyrolyzed_OC/total_OC ratio and rBC con-
centration was observed for these samples (r2 < 0.1). Previ-
ous studies reported that some non-volatile OC fractions, ei-
ther OC with high-molecular weight (Miyazaki et al., 2007;
Yu et al., 2004) or HULIS (Cavalli et al., 2010; Clarke et
al., 2007; Kondo et al., 2011), are prone to pyrolysis dur-
ing the thermal analysis. We cannot confirm which organic
fractions underwent pyrolysis in our samples. However, this
result clearly suggests that the higher pyrolyzed OC fraction
probably causes a positive EC artifact in the snow and firn
samples by biasing the OC/ EC split point, and consequently
leading a fraction of pyrolyzed OC to be determined as EC.

We observed lower OC concentrations in SUM samples
(n = 3) than in ELB and HIM samples, but the large vol-
umes of SUM samples filtered for EC analysis meant that a
higher OC mass was loaded on the filter in the case of SUM
samples (143± 83 µg). The SUM samples showed a positive
relationship between pyrolyzed_OC/total_OC ratio and OC
mass loading on the filter. We consequently suggest that the
elevated EC/ rBC ratio of 2.0± 1.4 observed in the SUM
samples (Table 2) may be partially and indirectly explained
by the large sample volumes used. This means that appropri-
ate sample volumes should be carefully chosen and applied
during EC filtration for thermal–optical analysis to reduce
potential uncertainties.

4 Conclusions

We evaluated an rBC measurement methodology coupling
jet nebulizer (APEX-Q) and the SP2 analyzer, through an
extended series of tests using both rBC standard material
and various types of snow and firn collected from differ-
ent glaciers worldwide. Before applying the APEX-Q/SP2 to
field sample analysis, we compared two different nebulizers:
APEX-Q and U5000AT. We found that the APEX-Q is more
suitable for snow and ice analysis for the following reasons.
The aerosolization efficiency tests, using PSLs with known
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Table 3.Evaluation of advantages and disadvantages of the SP2-based method and the thermal–optical method.

Analytical method
(BC terminology)

Advantages Disadvantages

Single particle soot
photometer

– Precise and reproducible – rBC loss during aerosolization

(rBC) – Provide rBC size information
(mass-equivalent diameter)

– Limited detection range
(depending on SP2 detector setting)

– No interference from OC – Ununified calibration material for rBC mass
(internal calibration)

– Low detection limit (0.01 µg L−1) – Need of devices for internal calibration
(e.g., Scanning mobility particle sizer, Conden-
sation particle counter, etc.)

– Small sample volume (< 1–2 mL) – Relatively tricky data retrieval

– Fast analysis (< 10 min)

– Continuous analysis possible

Thermal–optical
analysis

– Precise and reproducible – Potential positive artifact from pyrolyzed OC

(EC) – Fast analysis (< 20 min) – Incomplete and variable filtration on quartz
filters

– No upper limit in particle size detection – Potential artifact from dust

– Useful to obtain actual rBC mass
of rBC standard for SP2 analysis

– Large sample volume required (0.1–2 L,
depending on the EC loading)

– Easy data retrieval – Sample decarbonation often required

– Contamination can occur during the long
sample preparation procedure
(e.g., filtration and drying filter, and chemical
decarbonation takes> 4 days)

diameters, revealed the particle size-independent aerosoliza-
tion capability in the APEX-Q, ensuring an accurate rBC
size-distribution determination. In contrast, the U5000AT has
a strong size-dependent efficiency (Schwarz et al., 2012;
Wendl et al., 2014). We showed that aerosolization was more
efficient with APEX-Q than with U5000AT nebulizer, with
75± 7 % and 30± 3 % efficiency, respectively. The APEX-
Q led to better aerosolization of large rBC particles with
a consumption of much smaller sample volume. Further-
more, to avoid potential rBC losses and changes in rBC
size distribution of snow and ice samples, we propose a se-
ries of recommendations concerning the choice of container,
first melting of the sample, melting/freezing/melting cycles,
surface / volume ratio of the sample container, and storage.

These sample treatment methods could also be applied be-
fore determination of EC using thermal–optical methods.

An inter-comparison between the SP2-based method and
the thermal–optical (Sunset OC / EC aerosol analyzer with
EUSAAR2 protocol) method was conducted using opti-
mized setups with four different types of samples: Green-
land summit firn core (SUM), surface high-altitude alpine
snow (CDD), firn from the Caucasus region (ELB), and Hi-
malayan surface snow (HIM). The strengths and weaknesses
of both methods are summarized in Table 3. We observed
differences between EC and rBC, which were not constant in
the different samples and reflected analytical artifacts poten-
tially affecting both analytical methods. The lowest EC/ rBC
ratio values were found for the CDD samples (0.5± 0.2; Ta-
ble 2) and highlight the incomplete retention of rBC particles
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during the sample filtrations required for thermal–optical
analyses. Our study demonstrates that filtration efficiency on
quartz fiber filters strongly decreases with decrease of rBC
particle size, causing EC underestimation by the thermal–
optical analyzer. The SUM samples showed high and vari-
able EC/ rBC ratios (2.0± 1.4; Table 2), which could be ex-
plained by elevated and variable OC loading on the quartz
filters. Such large OC loading is indirectly driven by the sam-
ple volume filtered. Although highly speculative, it is possi-
ble that both volume and OC concentration of a sample can
affect its EC determination. A good agreement between EC
and rBC was found for the ELB samples (EC/ rBC ratios:
1.0± 0.4; Table 2). Such agreement could be the result of
(i) EC underestimation driven by low filtration efficiency and
(ii) EC overestimation caused by non-negligible OC load-
ing on filters. Finally, the HIM samples exhibited the highest
EC/ rBC ratio (3.4± 1.4; Table 2), although filtration effi-
ciencies ranged between 70 and 90 %. We explain the rela-
tively lower HIM rBC values by an inadequate size-detection
range of the SP2 analyzer. It is likely that a large amount of
rBC mass in the HIM samples consisted of particles larger
than 620 nm, i.e., the upper limit of the SP2 size-detection
range in this study, but which was not clear if the large par-
ticles occurred naturally or artificially. Note that rBC under-
estimation caused by this artifact for CDD, ELB, and SUM
samples should be lower than 12 % when rBC size distribu-
tions in snow and firn samples are log-normal fitted. Thus,
this does not affect our previous interpretation.

Finally, the APEX-Q/SP2 coupling can provide an opti-
mized method for accurate measurements of rBC mass con-
centrations and size distributions in snow and ice samples, as
long as the SP2 size-detection range is adapted to the sam-
ple analyzed. Note that modification of the detector gains
allows to increase the upper limit of the SP2 size-detection
range as reported by Schwarz et al. (2012) or Wendl et
al. (2014). Thermal–optical measurements of EC in snow
samples might be more challenging, and three important rec-
ommendations can be extracted from our study: (i) specific
evaluation of the filtration efficiency is required for differ-
ent samples, (ii) monitoring and correction of thermograms
are needed for highly-dusty samples, and (iii) modification of
temperature program can limit the effect of dust or pyrolyzed
OC fraction on the OC/ EC split point. We advise that fur-
ther studies reach quantification of these artifacts by con-
ducting more tests with laboratory samples of known sizes,
concentration, and chemical content (e.g., based on AQ solu-
tions).

The Supplement related to this article is available online
at doi:10.5194/amt-7-3307-2014-supplement.
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