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Abstract: This paper suggests a model for evaluating the operational capability of a system
to accomplish a mission. This model involves a dynamic equation defined on the space of
multi-graphs, associated with a weak discrete metric. It could be analysed further using the
framework of control theory. This modeling is based on a definition of the operational capability
that includes three keywords: system, mission and ability. These keywords are defined and
represented by appropriate mathematical objects. The paper focuses on justifying the use of the
proposed mathematical objects to represent these keywords.

Keywords: Operational capability, Dynamical system, Mission, Ability.

1. INTRODUCTION

What all fields of science have in common is the construc-
tion of models. Models are used to describe a phenomenon
or an object. In particular, a model can be used to assess
whether an object is capable of successfully accomplishing
a mission. In the literature, this refers to operational
capability (Najgebauer et al. (2015)). Knowledge of the
operational capability of a system is useful for several
achievements. For example, it can be used to authorize
and plan a mission to be carried out by the system. It
is an important piece of information for decision-making
in both the military and industrial sectors. The aim of
this paper is to propose a generic model for assessing the
operational capability of a system.

In capability-based planning (CBP), a framework in which
the concept of capability is often referred to, the capa-
bility of a system is directly linked to a mission (Davis
et al. (2002)). The latter defines the Required Operational
Capability (ROC), which is a transcription of a mission
scenario into requirements. The system, by satisfying these
requirements, maximizes the mission success rate (Cho
et al. (2022)). The ROC can be established by experts, by
a combination of expert opinion and analytical methods
(Hristov et al. (2010)), and by a combined optimization
and simulation approach (Cho et al. (2022)). It can be
in quantitative or descriptive form. The quantitative form
summarizes mission-related observations into a score. This
score is often determined by expert analysis, which is sub-
ject to interpretation. While, the descriptive form indicates
the state in which the system, or a part of it, should be.
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This is directly linked to the technical characteristics of
the system.

At any given time, the state of a system defines its
exact topological structure, i.e., the organisation of its
components, including their number and the various links
between them. Additionally, it defines the values taken by
its attribute, which is a vector of quantitative, qualitative,
and boolean variables of the system. Its state allows it
to produce an effect which can be synonymous with the
success or failure of a mission. It evolves over time, i.e.,
its topological structure and its attribute. Its evolution
describes a trajectory in a given state space. In this
paper, the assessment of operational capability involves
verifying if the states indicated by the system trajectory
are appropriate for the mission.

To assess the operational capability of an armed force,
Najgebauer et al. (2015) treat a capabilities allocation
problem in which they determine the ROC in quantitative
form, and then assess operational capability as a measure
of satisfaction, which is the ratio between the ROC and
the current capability of the armed force. In contrast to
Najgebauer et al. (2015), in this paper we deal with a
generic problem where the ROC is defined in a descriptive
form, and to the best of our knowledge, there is no
mathematical model for evaluating operational capability
with a descriptive form of the ROC.

In other contexts, capability refers to performance (Cho
et al. (2022)), effectiveness (Lee and Lee (2014)) and
robustness (Li et al. (2018)). The degradation of a system
due to use and the operating environment (Peysson et al.
(2008a)) is also an operational capability. These qualifiers,
to which capability refers, are for the most part evaluated
using indicators that are a function of either the system
attribute or the elements of the topological structure



of the system (components and links). However, these
indicators alone are insufficient to determine if the system
can successfully carry out a mission, as they are not
evaluated against a success criterion such as the ROC.
For example, degradation (Peysson et al. (2008a)) is not
sufficient in the sense that the absence of degradation in
a system does not imply that it is capable of carrying out
a mission. Indeed, this one assumes that the system is in
the required state to accomplish its mission and focuses
on its degradation. While, in this paper, there is already
an effort to determine if the system is in an appropriate
state and if it will maintain it throughout the completion
of the mission.

Operational capability should not be confused with relia-
bility, or even availability (Birolini (2007)). Despite having
similar intentions, they remain distinct. Reliability serves
as a statistical indicator tied to a group of identical sys-
tems operating under the same conditions. It precisely
gauges the percentage of systems within the group that
have completed the mission up to a given time t. On the
contrary, operational capability evaluates if the state of a
single system is suitable for the mission at each instance.

The purpose of this paper is to propose a mathematical
model for evaluating the operational capability of a system
in relation to the ROC defined in descriptive form. The
ROC defines a specific region within a state space, referred
to as the mission target. If the system state is within the
target, it is deemed capable; otherwise, it is not regarded
as such. To the question of whether a system is capable of
carrying out a mission, two complementary answers can be
given. The first would be to simply say yes or no, and the
second would be to indicate how much capable it is. This
paper proposes a method to address the first question at a
given time t during the mission. This naturally poses the
problem of operational capability as a decision problem,
which is a mathematical question whose answer is yes or
no for a given instance (Kozen (2007)).

In the following, the model is presented in Section 2. This
section starts with the definition of operational capability,
which comprises three key words that form the basis of the
model: System, Mission and Ability. These three keywords
are defined and associated with suitable mathematical
objects to represent them respectively in sub-sections 2.1,
2.2 and 2.3. Finally, the conclusion and perspectives are
given in Section 3.

2. OPERATIONAL CAPABILITY MODELING

There are several definitions of capability in the literature.
Whatever the field, Martin et al. (2022) point out that
each definition includes either all or some of the following
types of keywords: i) ability, capacity, power; ii) effects;
iii) standards, conditions; and iv) tasks, missions, function
and action. The definition adopted here is as follows:
Definition 2.1. Operational capability is the ability of a
system to carry out a mission.

This definition implicitly includes all the types of keywords
mentioned above. It is assumed that the keywords effects
and conditions are the prerogatives of the mission. They
appear explicitly in the modeling of the mission (cf.

subsection 2.2). The three keywords System, Mission and
Ability in this definition form the basis of the model:

< S,M, ρ >, (1)
where S, M and ρ represent the system, mission and
ability respectively. In the following, these keywords are
defined in unambiguous terms, and their mathematical
representation is proposed.

2.1 System modeling

The mathematical definition of the system has evolved
over time. Mesarovic (1964), considered as one of the
first to have established the mathematical foundations
of general systems theory, conceived of a system as a
single link connecting several objects. This conception is
generalized by Lin (1987), who believes that Mersarovic’s
conception has limitations insofar as it is reduced to a
single relationship between objects. So, he proposes a
design that consists of having a set of object on the one
hand, and a set of links on the other. This conception is
mentioned in the book of Klir (1991) as that of common
sense. However, in his paper entitled "The definition
of system", Backlund (2000) underlines the weakness of
this conception and demonstrates that it can lead to
undesirable consequences. He thus proposes the following
definition of the system:
Definition 2.2. A system S consists of a set V, and a non-
empty set of relations on V, E , satisfying the following
conditions:

(1) |V| ≥ 2;
(2) from every member of V there is a path to every other

member of V.

To instantiate this definition, Torres et al. (2021) high-
light three mathematical frameworks commonly used by
researchers to model systems, namely: graph theory, sim-
plicial complexes, and hypergraphs. Graph is probably the
most commonly used representation for modeling system.
The relationships shared by the elements of graph are
dyadic, i.e., shared by two elements, whereas simplicial
complexes and hypergraphs allow to model systems whose
relationships between elements are polyadic, i.e. shared
by several elements, for example, a biochemical network
(Klamt and Gilles (2004)). In this paper, the relationships
shared between elements are considered to be dyadic. A
system is therefore represented here by a graph.

It should be noted that the notion of a system is widely
used in the theory of control systems, but its structure
is not always emphasised. There are, however, works that
focus on the theory of structural systems, using graphs to
represent dynamic systems (Pequito et al. (2015), Ramos
et al. (2020)).

Modeling a system using a graph. Graph theory is a
powerful tool for structuring data with their correlations
and representing interactions between system components.
A system can be represented by a simple graph or by
a multi-graph. The latter allows for taking into account
the different relationships existing between two elements
of the system, which corresponds fairly well to real-world
observations. These relationships in an engineering sys-
tem can be, for example, mechanical, electrical or simply



hierarchical. To distinguish these different relationships, a
labeled graph or multi-graph is considered.
Definition 2.3. A labeled multi-graph S is defined as 4-
tuple S = (V, E ,Lv,Le), where V is the set of vertex, E ,
the set of dyadic edges between vertex of V, Lv is the set
of vertex labels and Le, the set of edge labels. To S, the
following functions are associated:

• p : E 7−→ V2, which associates with each edge, the
vertices at the ends of the edge considered;

• le : E 7−→ Le, which associates with each edge its
label, i.e., the specification of the link or interaction
between the vertices of the edge in question;

• lv : V 7−→ Lv, which associates each vertex with its
label;

• λ : V 7−→ Rni , which associates an attribute with
each vertex, where i and ni ∈ N are respectively the
index of the vertex and the dimension of the attribute.

By extension, λ (S) ∈ Rn refers to the system attribute,
which is a concatenation of the vertex attributes, with n =∑N

i=1 ni, where N is the number of vertices. A graph S is
simple if and only if the incidence mapping p is an injective
function; otherwise S is a multi-graph. More simply, S
is a multi-graph if there are vertices that share more
than one edge, as shown in Fig. 1. In the following, only
multi-graphs are discussed, with clarification provided if
a simple graph is intended. Edges can be both directed
and undirected. Each edge has a label determined by
the function le, which is not necessarily unique to it.
Furthermore, each edge can have a weight representing
the interaction between the involved vertices.

Each vertex of the multi-graph has a unique label and an
attribute vector determined respectively by the functions
lv and λ. In reality, the attribute vector of a vertex can be
made up of quantitative, qualitative and boolean variables.
Given that the sets to which the last two types of variables
belong can be put into bijection with a subset of R, it is
therefore considered here that λ directly returns the state
vector of a vertex in Rni .

For a graph to claim to represent a system, it must have
at least two vertices and be connected. These two criteria
satisfy the requirements of Definition 2.2.

v1

v2 v3 v4

v5 v6 v7

v8 v9

v10 v11

Fig. 1. Example of system modeling using a connected
multi-graph, where vertex labels are depicted using
colors, while edge labels are distinguished by lines of
various shapes.

2.2 Mission modeling

Silva et al. (2014) recommends looking at the mission
as a goal, a functionality, a set of tasks to be executed.

For example, to make a prognosis on the degradation of
system resources, Peysson et al. (2008b) consider a mission
as a succession of tasks, each associated with a given
environment. Intending to assess the success of a mission
concerning a defined outcome, the mission is formally
defined as follows:
Definition 2.4. A given mission M, is a target Tar to be
achieved in a given context Cxt.

Mission target. In the military domain, an objective,
synonymous here with target, is defined in terms of the
desired effect (Biltgen (2007)). This effect is mirrored by
the ROC, specifying the states for the system or a part of
it, to produce the effect. The target is defined as follows:
Definition 2.5. The target Tar denotes the state in terms of
both topology and attribute values, which a system S, or a
part of it, should possess or converge towards to achieve an
effect consistent with mission success. It is characterized
by the pair:

Tar = (s∗, T ∗) , (2)
where s∗ is a graph whose attribute is λ(s∗) of dimension
n∗ ∈ N, and T ∗, the region in which the attribute λ(s∗)
resides, i.e., λ(s∗) ∈ T ∗ ⊆ Rn∗

.

The target Tar provides on the one hand, through the
graph s∗, the suitable topology that one or a part of a
system S must have, and on the other hand, through λ(s∗),
the decisive variables of the mission, and by T ∗, the region
in which the attribute λ(s∗) must reside. Thus, any graph
s which satisfy:

• s ∼= s∗, i.e., s and s∗ are isomorphic graphs (cf.
similarity of topologies in sub-section 2.3),

• λ(s) ∼ λ(s∗) ⇐⇒ λ(s) and λ(s∗) ∈ T ∗, where ∼ is
an equivalence relation,

is considered as one of the states of the target Tar.

Mission context. The context defines the conditions in
which the mission is carried out. It constitutes a set of
relevant elements Cxt that interact with the system. These
elements are not part of the system, but can change the
state of the system, that is to say, the topological structure
of the system and its attribute. Amongst these elements,
examples include the environment and the operating pro-
cedure (Peysson et al. (2008b)). Under the action of the
elements of the context, the evolution of a system S can
be described by a time series{

St = f(St−1,C
1
t−1,C

2
t−1, ...),

st = g(St),
(3)

where (Ck
t−1)k=1:K ∈ CK

xt with K ∈ N, are input and st is
the output. The function f describes the combined action
of the elements of the context (Ck

t−1)k=1:K on the system,
causing it to evolve from the initial condition S0 to the
state St. The inputs (Ck

t−1)k=1:K and the outputs st can
be represented as graphs. There has been work on dynamic
graphs (Šiljak (2008)) and from a control perspective
(Zecevic and Šiljak (2010)). However, these studies assume
that the number of vertices is fixed. There is a need to
extend this work to scenarios where the structure can
evolve over time (Alippi and Zambon (2023)). In our
specific case, the evolution of our system falls within the
domain of hybrid dynamics, involving continuous flows



for attribute variables and discrete jumps for topology
changes (Goebel et al. (2012)).

2.3 Ability modeling

Ability is the information that indicates the capability
of a system to perform a mission. This information is
acquired by comparing the state of system S with that
indicated by the target Tar. This comparison takes place
at two levels: topology structure, for multi-graph similarity
between S and s∗, and attribute, for attribute equivalence
between λ(S) and λ(s∗). Therefore, in this context, ability
is associated with the concept of state proximity.
Definition 2.6. Let S be the set of systems described by
multi-graphs, ability is the distance ρ : S × S −→ R+

between the state of system S ∈ S with the state of target
Tar, denoted by s∗ ∈ S and λ(s∗) ∈ Rn∗.

For the function ρ to be considered as a distance, it
must satisfy the axioms of a metric (Arkhangel’Skii and
Fedorchuk (2012)). Under these conditions, the pair (S, ρ)
forms a metric space. In the following, we show that ρ
verifies all the axioms except those of separation and
symmetry, which makes ρ a weak distance and (S, ρ) a
weak metric space (Papadopoulos and Troyanov (2006)).
In this paper, operational capability is approached as a
decision problem (Kozen (2007)). Hence, the distance of
interest is discrete, often called trivial. Once the topolog-
ical similarity and attribute equivalence are defined, they
will be linked to distances, and the satisfied axioms will
be determined.

Similarity of topologies. The topology similarity prob-
lem boils down to checking whether the system S =
(V, E ,L, C) has the topology required to carry out the mis-
sion, i.e., that of s∗ = (V∗, E∗,L∗, C∗). The target topology
s∗ will always be smaller than the system S, in the sense
that |V∗| ≤ |V| and |E∗| ≤ |E|. This difference in size is
due to the fact that s∗ describes the minimal topology
required for the mission, while S describes the topology
of entire system. The search for a required topology s∗ in
the system S is very similar to the well-known sub-graph
isomorphism problem. This is an algorithmic problem for
which the complexity is NP-complete (Garey and Johnson
(1979)).

The sub-graph isomorphism problem, illustrated in Fig. 2,
consists in finding a sub-graph s of S, note s ⪯ S, such
that s is isomorphic to s∗, denoted s ∼= s∗. The symbol
⪯ designates an order relation that is reflexive, anti-
symmetrical and transitive. The sub-graph s is called a
signal. For s∗ and s to be isomorphic, there must exist a
sub-graph isomorphism between s∗ and S. The sub-graph
isomorphism is defined in a slightly modified form of the
definition of Moorman et al. (2021) as follows:
Definition 2.7. An injective function ψ is a sub-graph
isomorphism from a target s∗ = (V∗, E∗,L∗, C∗) to a
system S = (V, E ,L, C) if

• lv(v) = lv(ψ(v)), ∀v ∈ V∗;
• |p−1(u,v)| ≤ |p−1(ψ(u), ψ(v))|, ∀(u,v) ∈ V∗ × V∗;
• For all ϵ ∈ E∗ and (u,v) ∈ V∗ × V∗, such

that p(ϵ) = (u,v), there exists ε ∈ E verifying
p(ε) = (ψ(u), ψ(v)) , such that le(ϵ) = le(ε),

where p−1 is the inverse of the function p and returns the
set of edges shared between any two vertices u, v ∈ V∗ or
their image ψ(u), ψ(v) ∈ V. Thus, |p−1(., .)| returns the
cardinal of the antecedents of the argument of p−1.
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Fig. 2. Illustration of a sub-graph isomorphism ψ between
the topology s∗ of target Tar and that of system S to
determine signal s, such that, s ∼= s∗.

Applying a brute force algorithm to find a sub-graph
isomorphism between s∗ and S can be relatively practical
for small graphs. As larger systems are considered, time
increases exponentially with the size of the graphs. In
this case, more elaborate algorithms can be of great
help. The paper of Foggia et al. (2001) compares the
performance of five different algorithms for simple graphs.
The works of Ingalalli et al. (2016), Micale et al. (2020)
and Moorman et al. (2021) concern to the development of
efficient algorithms for multi-graphs.

Discrete distance of graph similarity. The existence of
a sub-graph isomorphism between the target s∗ and the
system S is an essential element in defining the discrete
distance ρs of similarity of topological structures. Thus, for
all couple (si, sj) ∈ S2, the following function introduced:

ρs(si, sj) =

{
0, if ∃s ⪯ si, such as s ∼= sj ;
1, otherwise. (4)

Note that ρs(si, sj) = 0 is structurally or topologically
equivalent to sj ⪯ si. Thus, |Vj | ≤ |Vi| and |Ej | ≤ |Ei|.
Proposition 2.1. ρs is a weak discrete distance.

Proof. For all si, sj and sk ∈ S such as |Vj | < |Vi|, we
check that

(1) ρs is defined: ρs(si, si) = 0, because si ∼= si;
(2) ρs does not satisfy the separation: ρs(si, sj) = 0 does

not necessarily imply si = sj . The verification is
direct through the definition of ρs;

(3) ρs is non-symmetrical: ρs(si, sj) ̸= ρs(sj , si). This
assertion can be verified by reasoning by absur-
dity. Assume that ρs(si, sj) = ρs(sj , si). Then if
ρs(si, sj) = 0, this implies that, on the one hand,
sj ⪯ si, on the other hand, ρs(sj , si) = 0. The latter
implies that si ⪯ sj . As a result, sj = si. However,
this is impossible because |Vj | < |Vi|.

So, it holds that ρs(si, sj) ̸= ρs(sj , si);
(4) ρs satisfies the triangular inequality:

ρs(si, sj) ≤ ρs(si, sk) + ρs(sk, sj). Given that ρs is
within the countable set {0, 1}, verification involves
simply determining if the paradoxical case 1 ≤ 0 is
ruled out. Suppose that ρs(si, sk) = 0 ⇐⇒ sk ⪯ si,
and ρs(sk, sj) = 0 ⇐⇒ sj ⪯ sk. So, this leads
to the fact that sj ⪯ sk ⪯ si =⇒ ρs(si, sj) = 0.



Subsequently, it is impossible to have 1 ≤ 0. Hence,
the triangular inequality holds true.

For all these reasons, ρs is a weak discrete distance
(Papadopoulos and Troyanov (2006)). Thus, (S, ρs) form
a weak space metric.

Equivalence of attributes. The attribute equivalence
problem here consists in determining whether the values
taken by the system attribute λ(S) ∈ Rn are those re-
quired by the mission. The attribute vector λ(s∗) indicates
the decisive variables involved in mission execution, whose
values are contained in T ∗ ⊆ Rn∗

. It is carried by a
canonical basis (e∗i )i=1:n∗ , such that λ(s∗) =

∑n∗

i=1 λ
∗
i e

∗
i ,

with λ∗i ∈ R. The belonging of λ(s∗) to T ∗ comes from
the fact it satisfies a certain number of constraints. For
example, the k-th constraint is defined as

ϕk(x) ∈ Ik ⊆ R, with x ∈ Rn∗
, (5)

where ϕk, is a function which gives a combination of the
coordinates of any attribute x ∈ Rn∗

. According to set
theory, constraint (5) can be written using an indicator
function so that,

ϕk(x) ∈ Ik ⇐⇒ 1Ik (ϕk(x)) = 1, (6)
where 1Ik(.) represents the indicator function and is 1 if
ϕk(x) ∈ Ik, otherwise it is 0. Thus, the set of mission
constraints on an attribute x ∈ Rn∗

is written as,
Cst = {(ϕk, Ik) : s.t. 1Ik (ϕk(x)) = 1, ∀k = 1 : nst} , (7)

where nst is the number of constraints.

To determine the number of constraints satisfied by the
attributes x ∈ Rn∗

, the following function is introduced,

h : Rn∗
−→ N

x 7−→
nst∑
k=1

(1− 1Ik (ϕk(x))) . (8)

This function is a complete invariant (Fortnow and Gro-
chow (2011)) defined using the set of constraints Cst. When
x ∈ Rn∗

satisfies all constraints Cst, h(x) = 0. The
attributes x, x̃ ∈ Rn∗ are equivalent through h, denoted
x ∼h x̃, if and only if h(x) = h(x̃). Then the region T ∗ of
eq. (2) is nothing other than ker(h), defined as,

ker(h) = {∀ z ∈ Rn∗
: h(z) = 0}, (9)

hence, Tar = (s∗, ker(h)).

The aim here is to verify if λ(S) ∈ Rn satisfies the set
of constraints Cst, or in other words, is equivalent to the
λ(s∗) ∈ Rn∗

. Note that λ(S) is carried by a canonical basis
(ei)i=1:n, such that λ(S) =

∑n
i=1 λiei, with λi ∈ R and

n, potentially greater than n∗. Therefore, it is precisely
a matter of verifying if the projection of λ(S) onto Rn∗

,
denoted as λ(S)|e∗ , is equivalent to λ(s∗). This projection
is precisely determined as follows,

λ(S)|e∗ =

n∗∑
j=1

⟨λ(S), e∗i ⟩e∗i , (10)

where ⟨., .⟩ is a scalar product.

The equivalence relation is an algorithmic problem belong-
ing to complexity class P (Fortnow and Grochow (2011)).
A relatively simple algorithm can therefore be applied.

Note that if there exists s ⪯ S such as s ∼= s∗, then
λ(s)|e∗ = λ(S)|e∗ .

Discrete distance of attribute equivalence. The attribute
equivalence problem between system S and target Tar can
be transformed as a distance search problem between the
attribute of the system λ(S) and that of the target λ(s∗),
or even, ker(h). For all (x,y) ∈ Rn × Rn the following
function is defined:

ρhe (x,y) =

{
0, if x|e∗ ∼h y|e∗ ;
1, otherwise, (11)

where x|e∗ and y|e∗ are respectively the projections x and
y on Rn∗

.
Proposition 2.2. ρhe is a discrete pseudo-distance.

Proof. For x ∈ Rn and x′, z ∈ Rn∗
, we check that

(1) ρhe is defined: ρhe (x,x) = 0, since x|e∗ ∼h x|e∗ ;
(2) ρhe does not satisfy the separation: ρhe (x,x′) = 0 does

not imply x = x′. Verification is straightforward,
especially when n ̸= n∗;

(3) ρhe is symmetrical: ρhe (x,x′) = ρhe (x
′,x). The verifi-

cation is direct through the definition of ρhe ;
(4) ρhe satisfies the triangular inequality:

ρhe (x,x
′) ≤ ρhe (x, z) + ρhe (z,x

′). This axiom is
verified simply by showing that the paradoxical case
1 ≤ 0 cannot occur. Suppose that if ρhe (x, z) = 0 ⇐⇒
x|e∗ ∼h z, and if ρhe (z,x′) = 0 ⇐⇒ z ∼h x′. Since,
∼h being a transitive relation, then x|e∗ ∼h x′ =⇒
ρhe (x,x

′) = 0. So, it is impossible to have 1 ≤ 0. Then
the triangle inequality holds.

So ρhe is indeed a discrete pseudo-distance (Howes (2012)).

Discrete distance associated with ability. This distance
pertains to the state of both the system and the target,
encompassing their respective topological structures and
attributes. It takes the following form:

ρ : S× S −→ N
(si, sj) 7−→ ρs(si, sj) + ρhe (λ(si), λ(sj)) (12)

Proposition 2.3. ρ is a weak discrete distance.

Proof. The proof is simple. Indeed, ρ inherits properties
common to ρs and ρhe , which are respectively a weak
discrete distance and a discrete pseudo-distance.

The pair (S, ρ) constitutes a weak metric space, providing
a framework enabling the utilization of mathematical tools
associated with weak metric spaces to address the notion
of proximity. Assuming that the mission target Tar is
constant, the decision problem therefore boils down to
knowing at a given time t during the mission whether,
ρ(St, s

∗) = 0, the system is capable of carrying out mission
M, and if ρ(St, s

∗) ̸= 0, the system is not capable.

3. CONCLUSION

The operational capability model proposed in this paper
is based on three keywords: System, Mission and Abil-
ity. The mission consists of a Target and a Context. All
these keywords are explained and modeled using appro-
priate mathematical objects. The system and the target
of mission are states, each modeled by a multi-graph. The



context consists of elements that exert an influence on the
system and are incorporated into the evolution equation of
the system. And, the ability is seen as the distance between
the system and the target. The distance proposed in this
paper is discrete, and we show that it satisfies the axioms
of a weak distance. When the distance is equal to zero, the
system is considered capable of performing the mission
at the instant t when the distance is evaluated. Future
work will involve extending this distance to a continuous
distance and applying the model to real-life scenarios. In
this paper, we justify that the evolution of the system is
described by a dynamic equation in the space of multi-
graphs. This motivates the need to develop control theory
for the evolution equation on the multi-graph space.
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