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Abstract. We study a general optimization problem with an uncertain
linear objective. We address the uncertainty using two models: belief
functions and, more generally, capacities. In the former model, we use the
generalized minimax regret criterion introduced by Yager, while in the
latter one, we extend this criterion, to find optimal solutions. This paper
identifies some tractable cases for the resulting problem. Furthermore,
when focal sets of the considered belief functions are Cartesian products
of intervals, we develop a 2-approximation method that mirrors the well-
known midpoint scenario method used for minimax regret optimization
problems with interval data.

Keywords: Minimax regret · Belief functions · Capacities · Linear pro-
gramming.

1 Introduction

Uncertainty is ubiquitous in optimization problems, leading to numerous frame-
works for handling it. This paper revisits the famous minimax regret criterion
within robust optimization. In essence, this criterion arises from two key motiva-
tions in decision-making under uncertainty: (i) the common human tendency to
regret choices especially if a better option is discovered later; and (ii) the desire
for an option with the best worst-case performance. The minimax regret crite-
rion, widely studied for optimization problems with uncertain coefficients in the
objectives [8], assumes a classical setting where only a so-called scenario set of
possible realizations of coefficients, is available. Under this limited information,
the criterion aims to find a solution that minimizes the maximum regret across
all scenarios.

However, some partial information is usually at hand in real-life situations.
For example, knowing the scenario set allows us to consult experts who can
assess the likelihood of each scenario occurring. In such cases, refining the min-
imax regret criterion to account for partial information becomes necessary to
better reflect real-world situations. Interestingly, under evidential uncertainty,
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i.e., when the uncertainty is modeled by belief functions [10], a notion of gen-
eralized minimax regret has already been introduced by Yager [13]. Similarly, a
recent work by Adam and Destercke [1] discussed a related notion within the
possibilistic framework.

Following our recent paper on a general optimization problem with uncer-
tain linear objective [11], we also study the same problem. Unlike [11] which
considered five other criteria, this paper uses generalized minimax regret cri-
teria to find optimal solutions. Furthermore, we address situations where the
uncertainty about the objective coefficients is severe, i.e., we cannot identify a
single probability measure to represent it. For this reason, we use more general
frameworks, namely belief functions and capacities, to model this uncertainty.

The paper is organized as follows. Section 2 presents some elements about
belief functions. In Section 3, we incorporate Yager’s criterion [13] to the con-
sidered problem. For Yager’s criterion, two types of belief functions, where (i)
their frames are finite and (ii) their frames are infinite but their focal sets take
a special form, are addressed in Section 4 and Section 5, respectively. We then
extend Yager’s criterion to a more general setting where uncertainty is modeled
by capacities or lower probabilities [6,4] in Section 6. The paper ends with a
conclusion.

2 Belief function theory

Let Ω be the set of all possible values of a variable of interest ω. In this paper, we
assume that Ω is a closed subset of Rn. In belief function theory [10], adapting
the presentation of [12], partial information about the true (unknown) value of
ω is given by a mapping m : C 7→ [0, 1] called mass function, where C is a finite
collection of closed subsets of Ω, such that

∑
A∈C m(A) = 1 and m(∅) = 0. If Ω

is finite, we usually take C = 2Ω .
Mass m(A) quantifies the amount of belief allocated to the fact of knowing

only that ω ∈ A. A focal set of m is a subset A ⊆ Ω such that m(A) > 0.
Let F = {F1, . . . , FK} be the set of all focal sets of m. The mass function m
induces a belief function Bel defined on B(Ω) the Borel subsets of Ω where
Bel(A) =

∑
B∈F :B⊆A m(B).

3 Problem Formulation

In this paper, we focus on a general problem with a linear objective:

{min cTx : x ∈ X ⊆ Rn
≥0} (P)

where X is a compact set and c ∈ Rn is the coefficient vector of the objective.
(P) is a linear programming problem if X = {x ∈ Rn

≥0 : Mx ≤ b} where M is
a q × n matrix and b is a q-vector. If X ⊆ {0, 1}n, then (P) is a combinatorial
problem. In this paper, we assume that the coefficient vector c is uncertain and
let Ω ⊆ Rn be the set of possible values of c. Each c ∈ Ω is then called a scenario.
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3.1 The minimax regret criterion

The regret R(x, c) of a solution x under a scenario c ∈ Ω is defined as R(x, c) :=
cTx−val∗(c) where val∗(c) := minx∈X cTx the optimal value of (P ) under c. The
maximum regret R(x) of x is defined as R(x) := maxc∈Ω R(x, c): it represents
the regret of x in the worst case scenario in Ω. The goal is to find a solution x
having minimum R(x) by solving the problem:

min
x∈X

R(x) = min
x∈X

max
c∈Ω

(cTx− val∗(c)) (MR)

3.2 The generalized minimax regret criterion under evidential
uncertainty

If some partial knowledge about c is given by a mass functionm, we generalize the
minimax regret criterion as follows [13]. For each focal set F of m, the maximum
regret of x is RF (x) := maxc∈F (c

Tx− val∗(c)). The expected maximal regret of
x with respect to m is then defined as

R(x) :=

K∑
r=1

m(Fr)R
Fr (x). (1)

In this paper, we focus on addressing Problem (GMR):

min
x∈X

R(x) = min
x∈X

K∑
r=1

m(F )max
c∈Fr

(cTx− val∗(c)). (GMR)

Note that if m is a vacuous mass function, i.e., Ω is the only focal set of m,
then (GMR) becomes (MR).

Remark 1. The information about the true scenario can be given by a possibil-
ity distribution π : Ω → [0, 1] with values of π representing possibility degrees
of elements in Ω, among which there exists a c such that π(c) = 1. This rep-
resentation of uncertainty is practical, as π can, for instance, be constructed
from expert assessments. Assume that 1 = α1 > . . . > αK > αK+1 = 0 are
the distinct values of π. For each αi, the associated αi cut of π is defined as:
Fαi

= {c ∈ Ω : π(c) ≥ αi}. Obviously, Fα1
⊂ . . . ⊂ FαK

. If we construct a mass
function on Ω with focal sets Fαi

and m(Fαi
) = αi − αi+1 ∀i ∈ {1, . . .K}, we

return to the version of generalized minimax regret criterion under possibilistic
framework, introduced in [1].

4 When Ω is finite

In this case, we have a mass function m on a finite set of l elements Ω =
{c1, . . . , cl} ⊂ Rn. For combinatorial optimization problems, the intractability of
(MR) has been well-documented, see e.g., [8], thereby implying the intractability
of (GMR) for such problems as well. The main result in this section, therefore,
concerns a case where (GMR) is tractable.
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Proposition 1. Assume that (P) is a linear programming problem. Then (GMR)
can be solved efficiently provided |F| is not large. In particular, if |F| is polyno-
mially bounded in l then (GMR) can be solved in polynomial time.

Proof. We reformulate (GMR) as:

min
∑
F∈F

m(F )zF

zF ≥ cTx− val∗(c) ∀F ∈ F , c ∈ F

Mx ≤ b, x ∈ Rn
≥0.

(2)

Note that (2) is a linear programming problem. Moreover, for each c ∈ Ω,
val∗(c) = min{cTx : x ∈ Rn

≥0,Mx ≤ b} can be computed efficiently by standard
linear programming solvers. Therefore,(2) can be solved efficiently provided the
number of focal sets is not large and be solvable in polynomial time if |F| is
polynomially bounded. ⊓⊔

5 When Ω is infinite and focal sets of m are Cartesian
products of intervals

In this section, we assume that each focal set Fr of m is a Cartesian product of
intervals, i.e.,

Fr = ×n
1 [l

r
i , u

r
i ] ∀r.

When m has a unique focal set of such type, we get back to the famous interval
uncertainty representation in robust optimization. We remark that under inter-
val representation, the classical minimax regret Problem (MR) is intractable in
both cases where (P) is a combinatorial or linear programming problem [8]. For-
tunately, a well-known heuristic exists to obtain a 2-approximation algorithm for
(MR): it uses an optimal solution of (P) under the so-called midpoint scenario
[5,8]. The goal here is to adapt this heuristic for our considered uncertainty
representation, for which we follow the approach in [5]. We denote

ui :=

K∑
r=1

m(Fr)u
r
i and li :=

K∑
r=1

m(Fr)l
r
i . (3)

Proposition 2. Let c be a vector in Rn such that ci =
ui+li

2 and y be an optimal

solution of (P) under c, i.e., cT y = minx∈X cTx. Let x∗ be any optimal solution
of (GMR). Then R(y) ≤ 2R(x∗).

To prove Proposition 2, we need some preliminary observations. First, notice
that for any Fr, R

Fr (x∗) = maxx∈X maxc∈Fr
cT (x∗ − x), and thus

RFr (x∗) ≥ max
c∈Fr

cT (x∗ − y). (4)
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Note also that maxc∈Fr
cT (x∗− y) =

∑
i:x∗

i >yi
ur
i (x

∗
i − yi)−

∑
i:x∗

i <yi
lri (yi−x∗

i ).

Therefore, RFr (x∗) ≥
∑

i:x∗
i >yi

ur
i (x

∗
i − yi) −

∑
i:x∗

i <yi
lri (yi − x∗

i ). Using (1)

and (3),

R(x∗) ≥
∑

i:x∗
i >yi

ui(x
∗
i − yi)−

∑
i:x∗

i <yi

li(yi − x∗
i ) (5)

In the subsequent, we use the notation δ(y − x∗, Fr) := maxc∈Fr
cT (y − x∗).

Referring to [5, Property 2.2], we have that RFr (y) ≤ RFr (x∗)+δ(y−x∗, Fr) ∀r.
From (1),

R(y) ≤ R(x∗) +

K∑
r=1

m(Fr)δ(y − x∗, Fr). (6)

We are ready to prove Proposition 2.

Proof (Proof of Proposition 2). By the optimality of y,
∑n

i=1(ui + li)x
∗
i ≥∑n

i=1(ui + li)yi. Equivalently,
∑n

i=1 ui(x
∗
i − yi) ≥

∑n
i=1 li(yi − x∗

i ). It follows
that∑
i:x∗

i >yi

ui(x
∗
i − yi)−

∑
i:x∗

i <yi

ui(yi − x∗
i ) ≥

∑
i:x∗

i <yi

li(yi − x∗
i )−

∑
i:x∗

i >yi

li(x
∗
i − yi)

(7)∑
i:x∗

i >yi

ui(x
∗
i − yi)−

∑
i:x∗

i <yi

li(yi − x∗
i ) ≥

∑
i:x∗

i <yi

ui(yi − x∗
i )−

∑
i:x∗

i >yi

li(x
∗
i − yi).

(8)

It can be easily checked that the right hand side of (8) equals
∑K

r=1 m(Fr)δ(y−
x∗, Fr). Hence, it follows from (5) thatR(x∗) ≥

∑K
r=1 m(Fr)δ(y−x∗, Fr). Finally,

Proposition 2 is true because of (6).
⊓⊔

6 Beyond belief functions

We still consider the case of finite Ω = {c1, . . . , cl} as in Section 4. However, in
this context, the partial knowledge about the true coefficient vectors is modeled
by non-additive measures, namely capacities which are more general than belief
functions. We quickly summarize some basics elements adapted from [6].

A capacity on Ω is a set function µ : 2Ω → [0, 1] such that µ(Ω) = 1, µ(∅) =
0 and if A ⊆ B, µ(A) ≤ µ(B). Note that µ is a probability measure if it is
additive, i.e., µ(A∪B) = µ(A)+µ(B) ∀A,B ∈ 2Ω with A∩B = ∅. Furthermore,
µ is a 2-monotone capacity if µ(A ∪B) + µ(A ∩B) ≥ µ(A) + µ(B) ∀A,B ⊆ Ω.
A belief function, also known as a complete monotonicity capacity, is a special
2-monotone capacity [6,10].

Remark 2. In combinatorial optimizations [7], a 2-monotone capacity µ is called
a supermodular set function while its dual µ̄, defined as µ̄(A) = 1−µ(Ω\A) ∀A ⊆
Ω, is called submodular.
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In imprecise probability [4], µ is usually called a lower probability where values of
µ are interpreted as lower bounds of values of the true (yet unknown) probability
measure P ∗ on Ω. Under this view, the so-called credal set of µ consisting of
all compatible probability measures with µ on Ω, is defined as M(µ) := {P :
P (A) ≥ µ(A) ∀A ⊆ Ω}. We will henceforth view any element in M(µ) as a
vector p ∈ [0, 1]l, and thus M(µ) is a polytope:

M(µ) = {p ∈ [0, 1]l :
∑
i∈A

pi ≥ µ({ci : i ∈ A}) ∀A ⊆ {1, . . . , l},
l∑

j=1

pi = 1}. (9)

Because explicitly listing all 2l values of µ(A) is intractable, we use a typical
assumption from optimizations [7, Chapter 10].

Assumption 1 We have access to an evaluation oracle that returns µ(A) for
each query A ⊆ Ω.

We proceed to extend the generalized minimax regret criterion, discussed
in Section 3.2, to incorporate the notion of capacity as follows. The expected
regret of a solution x ∈ X with respect to a probability measure p ∈ M(µ) is∑l

i=1 piR(x, ci). Since the only available information is that the true probability
measure lies in M(µ), a reasonable approach is to seek a solution that minimizes
the worst-case of expected regret among all compatible probabilities. In other
words, we need to solve:

min
x∈X

max
p∈M(µ)

l∑
i=1

piR(x, ci) = min
x∈X

max
p∈M(µ)

l∑
i=1

pi
(
(ci)Tx− val∗(ci)

)
. (CGMR)

If µ is a belief function on Ω andm is its associated mass function (see Section 2),
a well-known result [6] states that

max
p∈M(µ)

l∑
i=1

pi
(
(ci)Tx− val∗(ci)

)
=

K∑
r=1

m(Fr)max
c∈Fr

(cTx− val∗(c)). (10)

Thus, in this case, CGMR reverts to (GMR).

Remark 3. If µ is 2-monotone, it is well-known that a p∗ that maximizes the
left hand side of (10) can be efficiently computed by using only l accesses to the
oracle, as follows [6,7]. Reindex elements of Ω such that (c1)Tx − val∗(c1) ≥
. . . ≥ (cl)Tx − val∗(cl) and let Aj =

{
cj , . . . , cl

}
∀j ∈ {1, . . . l} and Al+1 = ∅.

Finally, take p∗j = µ(Aj)− µ(Aj+1) ∀j ∈ {1, . . . l}. Moreover, such p∗ is also an
extreme point of M(µ).

We now show that under the computational model described in Assump-
tion 1, CGMR is tractable if (P) is a linear programming problem. Let Ext(µ)
be the set of extreme points of M(µ). Note that Ext(µ) is finite but can be very
large, i.e., |Ext(µ)| is exponential in l. We first observe that

max
p∈M(µ)

l∑
i=1

pi
(
(ci)Tx− val∗(ci)

)
= max

p∈Ext(µ)

l∑
i=1

pi
(
(ci)Tx− val∗(ci)

)
. (11)
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Proposition 3. If (P) is a linear programming problem and assume that µ is
2-monotone. Then (CGMR) can be solved in polynomial time.

Proof. Using (11), we reformulate (CGMR) as:

min t (12)

t ≥
l∑

i=1

pi
(
(ci)Tx− val∗(ci)

)
∀p ∈ Ext(µ) (13)

Mx ≤ b, x ∈ Rn
≥0. (14)

Problem (12-14) is a linear programming problem but it has a vast number of
constraints due to (13). Because (P) is a linear programming problem, val∗(ci) is
computed in polynomial time. To demonstrate the polynomial solvability of (12-
14), we employ the celebrated ellipsoid method [7]. According to this method, we
need to show that the separation problem associated with (12-14) can be solved
in polynomial time: either confirms if given a point (x0, t0) ∈ Rn satisfies all the
constraints (13-14) or return a constraint that it violates. Checking if (x0, t0) sat-
isfies (14) can be easily done in polynomial time. Furthermore, checking if (x0, t0)

satisfies (13) amounts to testing if t0 ≥ maxp∈M(µ)

∑l
i=1 pi

(
(ci)Tx0 − val∗(ci)

)
,

which can be done in polynomial time because of Remark 3. We conclude that
the separation problem, and thus (12-14) is polynomial solvable. ⊓⊔
Remark 4. Because of the popularity of the minimax regret criterion, similar
forms to (CGMR) have already appeared in the literature of optimization under
distributional uncertainty, to cite only a few [2,3]. However, to the best of our
knowledge, Proposition 3 is new.

While the ellipsoid algorithm is theoretically polynomial, it is known to be
slow in practice [7]. Consequently, alternative approaches are necessary. Note

that the function f(x) := maxp∈M(µ)

∑l
i=1 pi

(
(ci)Tx− val∗(ci)

)
is convex in x

(it is a pointwise maximum of affine functions). Therefore, (CGMR) is a convex
optimization problem. A standard approach to solving it is using subgradient
methods [9], where a subgradient of f is required at each iteration. Recall that
a subgradient of f at x is a vector η such that f(y) ≥ f(x) + ηT (y − x) ∀y.
The next result follows from standard calculations in convex analysis. For the
completeness, we include a proof.

Proposition 4. For any x, let p∗ ∈ argmaxp∈M(µ)

∑l
i=1 pi

(
(ci)Tx− val∗(ci)

)
.

Then η :=
∑l

i=1 p
∗
i c

i is a subgradient of f .

Proof. For any y, f(y) = maxp∈M(µ)

∑l
i=1 pi

(
(ci)Tx− val∗(ci) + (ci)T (y − x)

)
.

By the optimality of p∗,

f(y) ≥
l∑

i=1

p∗i
(
(ci)Tx− val∗(ci)

)
+

l∑
i=1

(p∗i c
i)T (y − x) = f(x) + ηT (y − x).

⊓⊔
Thanks to Remark 3 and Proposition 4, in case of 2-monotone capacities, a

subgradient of f can be computed efficiently.
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7 Conclusion

In this paper, we have used the generalized minimax regret criteria for optimiza-
tion problems with uncertain objectives, where the uncertainty is modeled by
belief functions and, more generally, capacities. We have identified some tractable
cases and developed a 2-approximation method when focal sets of the considered
belief functions are Catersian products of intervals. Future work includes apply-
ing subgradient methods to problem (CGMR) for linear programming problems
or investigating problems (GMR) and (CGMR) for some practical combinatorial
problems.
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