
HAL Id: hal-04703773
https://hal.science/hal-04703773v1

Submitted on 20 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TS-Pothole: Automated Imputation of Missing Values in
Univariate Time Series

Brell Sanwouo, Clément Quinton, Romain Rouvoy

To cite this version:
Brell Sanwouo, Clément Quinton, Romain Rouvoy. TS-Pothole: Automated Imputation of Missing
Values in Univariate Time Series. Neural Computing and Applications, In press. �hal-04703773�

https://hal.science/hal-04703773v1
https://hal.archives-ouvertes.fr

TS-Pothole: Automated Imputation of
Missing Values in Univariate Time Series

Brell Sanwouo, Clément Quinton, and Romain Rouvoy

Univ. Lille, CNRS, Inria, UMR 9189 CRIStAL, F-59000 Lille, France
{brellpeclard.sanwouochekam;clement.quinton;romain.rouvoy}@univ-lille.fr

Abstract. Time series data are pivotal in diverse fields such as finance,
meteorology, and health data analysis. Accurate analysis of these data is
crucial for identifying temporal trends and making informed decisions.
However, frequent occurrences of missing values, often due to device
failures or data collection errors, pose a significant challenge. In this
work, we introduce TS-Pothole, a method for imputing missing values
in univariate time series. This method leverages cyclic pattern analysis
and a recursive strategy to handle univariate datasets in which miss-
ing values are distributed both continuously and randomly. We evaluate
TS-Pothole on four real-world datasets representing different configu-
rations of missing values, and assess its performance in terms of accuracy
and execution speed. In particular, we compare our approach with state-
of-the-art methods, such as GANs and autoencoders. Our experiments
show that TS-Pothole outperforms such methods by providing more
accurate (up to 1.5 times) and faster (up to 2 times) imputations, even
as the proportion of missing data increases, representing the best alter-
native in handling univariate time series with missing values.

Keywords: Time series · Imputation · Machine Learning.

1 Introduction

In various fields, such as finance, meteorology, and health data analysis, analyz-
ing time series and how variables change over time is critical to reveal temporal
trends and make informed decisions [1]. However, due to various issues, such as
e.g., device breakage or data collection errors, time series often report missing
values, preventing a fine-grained and accurate analysis. To fix this problem, sev-
eral approaches have been proposed for imputing missing data in the case of
incomplete time series, including multivariate time series approaches (imputing
several variables at once) or univariate approaches (imputing a single variable
at a time) [2]. Furthermore, while many methods focus on imputing data with
defined trends and seasonalities, few tackle the imputation of data characterized
by the lack of fixed trends and seasonalities.

Yet, classical methods exhibit limitations, specifically when dealing with the
inherent complexity of many real-world time series [3]. As a result, deep learn-
ing techniques, such as Generative Adversarial Networks (GANs) and Auto-
Encoders (AEs), have been explored to address these shortcomings [4–12].

2 B. Sanwouo et al.

This article addresses the problem of imputing missing values in univariate
time series with no fixed trends or seasonal patterns. Our main contributions
are:

1. we propose TS-Pothole, an imputation method that covers long- and
short-gap missing values;

2. we assess TS-Pothole on 4 real-world datasets of varying sizes, demon-
strating its applicability to real-life scenarios, whether the missing values
are randomly or continuously distributed in the dataset;

3. we discuss the limitations of TS-Pothole, particularly in contexts with
weak or non-linear temporal patterns, and avenues for future research.

The experimental results are promising. Compared with the best state-of-
the-art approaches, we observe that:

– TS-Pothole maintains consistent performance and low error rates, even
when missing data increases, showing its reliability and relevance for real-
life applications,

– TS-Pothole consistently outperforms other methods, such as GANs and
AEs [4] to impute missing values in time series.

In the remainder of this article, Section 2 introduces the fundamentals of
missing data mechanisms and describes the addressed problem. Section 3 ana-
lyzes related work and highlights limitations of existing approaches. Section 4
describes TS-Pothole and details how it leverages the extraction and imputa-
tion of valued sequences. Section 5 presents the design of our experiments, and
Section 6 provides our experimental results. Section 8 concludes the article and
highlights future research opportunities.

2 Fundamentals

This section provides an overview of the fundamental concepts related to missing
data mechanisms and explains the data imputation problem we address in this
paper.

2.1 Mechanisms Causing Missing Data

Various mechanisms contributing to the occurrence of missing data values must
be taken into account when attempting to retrieve such values. Accordingly, defi-
nitions of missing data are formulated in the literature based on these underlying
mechanisms. Rubin established the theory of missing data imputation [13], clas-
sifying it into three main mechanisms, each defined according to data availability
or missingness. To define these mechanisms more comprehensibly, we adopt the
definitions proposed by Emmanuel et al. [14].

TS-Pothole 3

Let S be a vector of all the data, decomposed into So and Sm, with |S| =
|So|+ |Sm|. So represents the observed data and Sm the missing data. Let R be
a vector of missing values defined by:

∀i ∈ |S|, R(i) :=

{
0, if S(i) ∈ So

1, if S(i) ∈ Sm

(1)

To illustrate the concept of observed data So and missing data Sm, we rep-
resent a vector S and a vector R in Table 1. The vector R indicates for each
observation whether the data is missing or not. The vector S represents a data
set of 10 observations, some of which are missing. A "0" as value of R indicates
observed data (present in So), while a "1" indicates missing data (present in
Sm).

Index Values of S Values of R
1 5 0
2 7 0
3 NA 1
4 10 0
5 13 0
6 NA 1
7 4 0
8 21 0
9 23 0
10 NA 1

Table 1. Observations (S) and missingness (R)

Let q be a vector of values that indicates the association between the absence
in R and the dataset S. Missing value mechanisms are, therefore, defined by the
probability that a value is observed or missing. One can distinguish between 3
missing data mechanisms [13]:

– Missing Completely At Random (MCAR): This happens when missing ob-
servations do not depend on observed and unobserved measurements. The
probability of MCAR is defined as follows: p(R|q);

– Missing At Random (MAR): The probability of a missing value in MAR
is mainly related to the observable data. The probability of MAR can be
defined as p(R|So, q);

– Missing Not At Random (MNAR): This applies when the missing data is
neither MCAR nor MAR. Missing data depends equally on missing and
observed values. The MNAR probability is defined as p(R|So, Sm, q). The
probability that a position R is missing or observed depends on So and Sm.

4 B. Sanwouo et al.

2.2 Problem Statement

Our study focuses on solving the fundamental problem of imputing missing val-
ues in univariate time series with missing or weakly fixed trends and seasonality.

Initially, we consider the more general case of multivariate time series, where
we have a set of series, S1, S2, . . . , Sk, defined over the same time interval T =
{1, 2, . . . , n}. Each series Si consists of observations si,t at each time t ∈ T . The
multivariate imputation problem can be formulated as follows: let M ⊂ T be
the set of time indices for which observations in one or more of the series Si are
missing. The goal is to define an imputation function I : M → Rk such that, for
each t ∈ M , I(t) is a precise estimate of the set of observations (s1,t, s2,t, . . . , sk,t)
that would have been observed in the absence of gaps. Formally, our multivariate
optimization problem can be expressed as the minimization of a global cost
function C defined over M :

min
I

C =
∑
t∈M

L(I(t), (s1,t, s2,t, . . . , sk,t))

where L is a loss function measuring the discrepancy between the imputed value
I(t) and the grounded observation (s1,t, s2,t, . . . , sk,t).

Considering the univariate case, we can reduce the problem by considering a
single time series variable, S, with missing or weakly fixed trend and seasonality.
This is justified when the missing data follows a pattern of either MCAR or
MAR. Thus, S becomes the main series, and the missing time indices are defined
by M ⊂ T . The goal remains the same: to define an imputation function I : M →
R minimizing the global cost C according to the following formulation:

min
I

C =
∑
t∈M

L(I(t), st)

This transition from the multivariate to the univariate case allows us to spe-
cialize our approach while focusing on the specific problem of imputing missing
values in a univariate time series with missing or weakly fixed trends and sea-
sonality.

3 Related Work

Recovering missing values in time series poses a persistent challenge in the field of
temporal data analysis [15–18]. State-of-the-art approaches [4,14,19–21] exhibit
limitations in their ability to handle the inherent complexity of many real-world
time series. In this regard, recent research has explored innovative avenues, rang-
ing from traditional methods to advanced techniques borrowed from machine
learning.

3.1 Statistical Approaches for Missing Data

In the field of missing data, statistical methodologies serve as integral tools,
employing descriptive statistics to address the challenge of missing values in

TS-Pothole 5

datasets. This literature review examines fundamental techniques, starting with
the deletion case (DC) [19], a method imposing a complete analysis through
the systematic removal of observations or features containing missing values.
However, judicious application is required, particularly in cases characterized by
MCAR. The simple imputation method [4,14] offers an alternative, involving the
substitution of missing values with features derived from the available data. De-
spite its simplicity, this method should be used with caution due to its potential
consequences, such as artificially reducing variance and overlooking correlation
structures. Furthermore, an exploration of similarity-based methods [20, 21], in-
cluding k-Nearest Neighbors Imputation (kNNI), Hot Deck Imputation (HDI)
and Cold Deck Imputation (CDI), unveils strategies that replace missing values
with estimates derived from analogous samples. kNNI relies on sample similarity,
HDI favors samples with fewer missing values, and CDI requires an additional
dataset for imputation. These methodologies emphasize the crucial importance
of similarity measures and distance calculations in addressing the complex chal-
lenge of missing data but neglect more subtle patterns, such as temporality,
seasonality, cycles, or correlation between missing data.

3.2 Machine Learning-based Imputation Methods

Machine learning-based missing data imputation methods exploit machine learn-
ing techniques to estimate and replace missing values in a dataset. This section
explores 4 commonly-used methods:

1. Decision tree methods [22, 23], introduced by Breiman et al. [24], can be
used for classification (Decision Tree Classifier) and regression (Decision
Tree Regressor) problems [25]. In data imputation, they build trees based
on non-missing values to predict missing values. Variants include XGBoost
imputation (XGBI) [26] and MissForest imputation (MissFI) [27] using the
XGBoost [26] and Random Forest [28] algorithms to predict missing values,
respectively;

2. Regression methods [14] rely on the creation of regression models to predict
missing values based on features containing values. Multivariate methods,
such as Multivariate Imputation by Chained Equations (MICE) [29], build
several linear regression models for each feature containing missing values;

3. Compression models [4, 21] involve a compression step followed by recon-
struction [30]. These methods, such as Soft-impute (SI) [31], Matrix Factor-
ization Imputation (MFI) [32] and Principal Component Analysis Imputation
(PCAI) [33], focus on creating models to compress incomplete data. While
effective for high-dimensional data, they can require significant computing
resources;

4. Multilayer neural networks (MLP) [34] : The Multilayer Perceptron Impu-
tation (MLPI) approach [35] involves the individual creation of an MLP
model [34] for each incomplete feature. MLPI uses these models to esti-
mate missing values. The choice of error function during training depends
on the nature of the features, with options such as mean square error or
cross-entropy error [36].

6 B. Sanwouo et al.

These machine learning-based approaches present robust alternatives to tra-
ditional methods of imputing missing data. While decision tree and regression
methods exploit predictive models to estimate missing values, they can be sensi-
tive to data complexity and non-linear relationships. Compression models, while
effective for high-dimensional data, can require significant computational re-
sources.

3.3 Deep Learning-Based Imputation Methods

Deep learning-based missing data imputation methods take advantage of neural
networks and deep learning techniques to estimate and replace missing values in
a dataset. In this section, we explore Generative Adversarial Network (GANs)
and Auto-Encoders (AEs), the two main approaches for learning deep generative
imputation models [4].

AE-based Imputation Methods The fundamental structure of AE-based impu-
tation involves taking an incomplete data matrix and its corresponding mask
matrix as inputs. The AE architecture [37] consists of two main components:
an encoder and a decoder. The encoder module compresses the input data into
a latent representation, while the decoder module reconstructs this latent rep-
resentation into an output that closely resembles the original input data ma-
trix. In the AE-based imputation algorithm, both the encoder and decoder are
trained by minimizing a loss function, which quantifies the reconstruction er-
ror between the observed values in the input data matrix (X) and the values
generated by the decoder to ensure an accurate reconstruction of missing or in-
complete data. Many methods are emerging from AE. Variational AutoEncoder
Imputation (VAEI) [5] uses the Variational AutoEncoder (VAE) [6] for single
imputation. VAE introduces a prior distribution over latent variables. VAEI in-
volves two phases: model training, where VAE is trained using initially imputed
data, and iteration imputation, which iteratively imputes missing components
using the trained VAEs. Heterogeneous-Incomplete VAE (HI-VAE) [7] is another
single imputation framework based on VAE designed for handling missing data.
It uses an input dropout encoder to address missing values and a decoder with
different likelihood models for diverse data types. It captures statistical depen-
dencies among features using a neural network. HI-VAE optimizes parameters
through an evidence lower bound computed on observed components.

However, it is important to note some limitations of VAEI. While this method
may be effective in certain scenarios, it can pose challenges when confronted with
complex data structures [9, 10] or non-linear dependency models [8]. Addition-
ally, the quality of imputation may be sensitive to the parameters of the VAE
model [11], and the iterative nature may introduce cumulative errors. These as-
pects underscore the need for a thorough evaluation of the performance of VAEI
in specific contexts before widespread adoption.

GAN Imputation methods GANs [38] are a groundbreaking innovation in the
field of machine learning. First proposed by Good et al. [38], GANs provide a

TS-Pothole 7

powerful approach to generating realistic data from scratch. The central concept
of GANs revolves around the idea of a competition between two neural networks:
the generator and the discriminator. The generator creates synthetic data, while
the discriminator tries to distinguish this synthetic data from real data. This
rivalry drives both networks to continuously improve, with the generator be-
coming increasingly skilled at producing data that is indistinguishable from real
data, and the discriminator becoming more competent at telling them apart. For
imputation, some GAN-based techniques have already been proposed, such as
GAIN and VGAIN.

Generative Adversarial Imputation Network (GAIN) [12] is an innovative ap-
proach that comprises two fundamental components. Firstly, there is a generator
responsible for imputing missing data, a process conditioned on the observed
data, ultimately generating a completed vector. Secondly, a discriminator eval-
uates the output from the generator and endeavors to pinpoint the parts of the
data that have been imputed. To guarantee the uniqueness of the distribution
produced by the generator, the authors introduced a hint vector that correlates
with the missing data pattern. This hint vector plays a crucial role in enhancing
the imputation process, ensuring that the generated data aligns with the missing
pattern.

Variational autoencoder Generative Adversarial Imputation Network (VGAIN)
builds on the GAN model by adding a VAE to the generator [39]. The VAE en-
coder is regularized by imposing a prior on the latent distribution, which means
adding Gaussian noise to the latent distribution. This makes the features learned
by the generator more robust and effective. VGAIN also uses the reconstruction
error of the VAE to encourage the model to better represent the training data.

Overall, imputation methods address the handling of missing data through
various approaches, each with its own specific limitations. Statistical techniques,
while effective, sometimes struggle to capture subtle nuances such as trends
or seasonality. Machine learning-based methods, capable of handling non-linear
relationships and data complexity, require considerable computational resources.
deep learning strategies, such as AE, may be less effective when faced with
complex data structures. Finally, GAN-based [40] and AE approaches are limited
by their ability to handle a high level of missing data and are strongly influenced
by model architecture and parameters.

While these methods are generally designed to handle data with fixed trends
and seasonality, and dominant features in traditional datasets, they may be in-
sufficient for univariate datasets where these patterns are undefined or absent. In
the following, we propose a method named TS-Pothole that distinguishes from
other approaches by focusing exclusively on univariate datasets, offering a robust
solution when traditional methods fail to capture the underlying dynamics.

8 B. Sanwouo et al.

4 TS-Pothole

This section outlines TS-Pothole, our approach for recursively imputing miss-
ing values in univariate time series.

4.1 Overview

TS-Pothole utilizes cyclic pattern analysis and a recursive methodology. The
process starts by identifying and extracting sequences from the data. It then
determines the longest sequence and uses the Partial AutoCorrelation Function
(PACF) to measure the direct relationship between an observation and its pre-
vious values at different lag levels. Applying this function, TS-Pothole recur-
sively determines the optimal number of lags to take into account, starting with
the longest available sequence. From the optimal number of lags, it creates new
lagged features representing previous observations of the time variable lagged by
several time steps. The lagged features enhance the dataset and provide a solid
basis for TS-Pothole to form a linear regression model, which is continuously
validated with subsequent sequences to ensure accuracy and robustness. This
validation enables dynamic adjustments to be made to the model in response to
new data. Once validated, the model is used recursively to impute missing val-
ues, relying on the relationships identified to predict these gaps. This recursive
application progressively refines the model, guaranteeing imputation accuracy
and adaptability.

4.2 Extraction of Sequences without Missing Values

The essential prerequisite of TS-Pothole lies in dividing the univariate time
series S into continuous sequences, denoted s1, s2, ..., sn. Each sequence si is
rigorously defined as a subpart of S characterized by the consecutive presence
of data. In the example proposed in Table 1, three sequences are presented.
Sequence s1 covers indices 1 to 2 inclusive, sequence s2 extends from indices 4
to 5 inclusive, and sequence s3 spans from indices 7 to 9 inclusive.

Formally, each si is represented as follows:

si = {si,1, si,2, ..., si,k} with si,j ∈ S, ∀j

Thus, si encapsulates a data sequence where each observation follows uninter-
ruptedly from the previous one, establishing a fundamental temporal continuity.
Mathematically, the complete set of extracted sequences, denoted Sextracted, is
formalized as follows:

Sextracted = {s1, s2, ..., sn}
This initial step serves as a robust foundation for our analysis of cyclic pat-

terns and guides the implementation of the missing value imputation strategy.
Each si ∈ Sextracted represents a continuous temporal unit, devoid of gaps, thus
constituting crucial elements for the subsequent steps of TS-Pothole. For ex-
ample, in Fig. 1, the grey areas represent present valued data, while the white
areas reflect missing data.

TS-Pothole 9

Fig. 1. TS-Pothole Imputation Process

4.3 Selection of the Longest Sequence (smax)

After extracting continuous sequences without missing values from the input
univariate time series S, the longest sequence, denoted smax, is identified as the
basis for model training and subsequent prediction. This sequence is essential
for TS-Pothole, as it provides a substantial representation of the time series,
capturing extended cyclic patterns and significant temporal structures.

Mathematically, the longest sequence smax is determined by evaluating the
length of each sequence si in the set Sextracted as follows:

smax = arg max
si∈Sextracted

|si| (2)

Here, |si| represents the length of sequence si, and argmax indicates that we
select the sequence si that maximizes this length. Thus, we identify smax as the
sequence with the greatest number of consecutive observations. Fig. 1 depicts the
maximum sequence S3 among all sequences we used as an example {S1, ..., S5}.

Once the maximum sequence has been captured, the rest of our approach
revolves around the prediction of missing values on both the right (forward
imputation) and left (backward imputation) sides of this bootstrap sequence,
as depicted in Fig. 1.

4.4 Forward Imputation

Forward imputation in TS-Pothole begins by determining the optimal number
of lagged features by analyzing partial autocorrelations. Next, a linear regres-
sion model is built and validated with additional data. The final step consists
of iteratively imputing the missing values, and adjusting and re-evaluating the
model until the missing data is complete.

Determination of the optimal number of lagged features This phase
aims to determine the optimal number of lagged features, leveraging the potential
of the PACF [41, 42] in modeling time series. The process is divided into three

10 B. Sanwouo et al.

steps: Step 1.1 - Calculation of PACF. First, we compute the PACF for potential
lags of the maximum sequence (smax). According to Gasparini et al. [43], lags
refer to a delay—or time gap—between cause and effect in a series of data
observations. It is defined as a temporal lag embedded in the data observation,
where each lag represents a time interval separating two consecutive data points.
PACF measures the correlation between observations at specific lags as follows,
eliminating the influence of intermediate lags:

PACF(smax, k) =
cov(smax[t], smax[t− k])√

var(smax[t]) · var(smax[t− k])
(3)

Equation 3 describes the computation of the PACF at lag k. In statistics,
partial autocorrelation measures the correlation between 2 variables (here, the
values of a time series at different points in time), while controlling for the ef-
fects of other lags up to k − 1. cov(smax[t], smax[t− k]) represents the covariance
between the time series values at time t and at time t − k—i.e., to what ex-
tent smax vary. If the values tend to vary in the same direction, the covariance
is positive; if they vary in opposite directions, it is negative. var(smax[t]) and
var(smax[t − k]) represent the variances of the time series values at times t and
t− k, respectively—i.e., how much such values are spread out from their mean.
Finally,

√
var(smax[t]) · var(smax[t− k]) normalizes the covariance, the whole for-

mula resulting in a correlation coefficient. Overall, the PACF at lag k is the
correlation between the values of the time series separated by k time units, after
removing the effect of correlations at intermediate lags.

Step 1.2 - Identification of significant lags. This step is guided by the sta-
tistical confidence threshold, typically set at ±1.96/

√
N , as recommended by

Herrey [44]. 1.96 corresponds to the limits within which 95% of the values of a
standard normal distribution lie and N represents the sample size.

Lags whose PACF exceeds this threshold indicate a significant partial cor-
relation, revealing potential relationships useful for prediction or imputation.
Precise identification is crucial for model quality: insufficient lags can reduce
accuracy, while too many lags can introduce noise and unnecessarily complicate
the model, leading to overfitting. Therefore, an informed choice of significant
lags ensures a balance between accuracy and complexity, guaranteeing robust
and reliable time series modeling. Fig. 2 shows a graph of partial autocorre-
lation. The vertical blue lines depict the range of potential changes. The light
blue band illustrates the confidence interval, while the vertical bars outside this
interval indicate significant lagged features.

Step 1.3 - Selection of the optimal number of lagged features. The optimal
lag selection process is critical in time series modeling. It is generally performed
after plotting the PACF. This graph aids in identifying lags with statistically
significant partial correlations. The optimal lag is generally the largest lag where
the value of PACF (on the y-axis) surpasses the confidence threshold, suggesting
a significant impact on the series. This selection aims to include enough historical
data for modeling temporal dependencies while minimizing model complexity.
For example, in Fig. 2, the optimal number of lagged features is 4.

TS-Pothole 11

Fig. 2. Confidence interval (partial autocorrelation) used to determine significant lags
and optimal lag.

To perform this selection and determine the optimal number of lagged features
(loptimal), we rely on Algorithm 1. The algorithm initiates with the loading of
time series data (line 1), a critical step to ensure the readiness of necessary
data for subsequent analysis. After loading data, the function calculatePACF()
(line 2) is executed to compute the PACF for various lags.

Next, the statistical significance threshold is determined using the setSigni-
ficanceThreshold() function (line 3), establishing a criterion to distinguish
significant temporal correlations from random fluctuations. This threshold is
computed based on the specific properties of the data, allowing a tailored adap-
tation to the unique characteristics of each time series data set.

From line 5 to line 9, Algorithm 1 proceeds to analyze the computed PACF
values. For each lag lag, we check whether the absolute value of the correlation
at this specific lag, PACF(lag), exceeds the significance threshold. This step is
crucial, as it determines whether the influence of a past lag on the current value
is statistically significant or not. If a PACF value surpasses the threshold, it
indicates that the corresponding lag has a significant impact on the current
values of the time series.

The optimal lag loptimal is initially set to zero and is updated as the algorithm
iterates through the lag values. If a lag value exceeds the significance threshold,
loptimal is adjusted to match this lag. This iterative approach ensures that the re-
turned lag is the one with the strongest significant correlation, thereby providing
a solid foundation for further analyses.

In short, the initial stage of forward imputation in TS-Pothole begins with
an analysis using the partial autocorrelation function to identify significant de-
pendencies between observations. The most relevant lags are then selected based
on their influence and statistical relevance. This process allows the model to ef-
fectively capture and leverage the inherent dynamics in the data, enabling reliable
and accurate prediction of future trends.

12 B. Sanwouo et al.

Algorithm 1 Computing Optimal Number of Lagged Features
1: TS ← loadTimeSeriesData()
2: PACF_Values ← calculatePACF(TS)
3: λ← setSignificanceThreshold(TS)
4: loptimal ← 0
5: for lag ∈ PACF_Values do
6: if |PACF(lag)| > λ then
7: loptimal ← lag
8: end if
9: end for

10: return loptimal

Building the Linear Regression model This phase consists of building a
linear regression model and validating it with the following sequence.

Step 2.1 - Initial model training. The lagged features retrieved from loptimal
are then used as training features to train a linear regression model. Relying on
these features, one can create a model able to make decisions based on previous
observations.

Step 2.2 - Validation with sequence smax+1. Finally, to validate the relevance
of the selected features, we use smax+1 as validation data. Using this approach,
we can see how well the model predicts missing values between smax and smax+1.
By doing so, we use PACF to guide the feature selection, hence improving time
series modeling in TS-Pothole.

Step 2.3 - Model saving. After training the model, we save the model for
potential future use. To do this, we create a dictionary model_dict that contains
the following information for each item:

– loptimal, the optimal lag number for the training data,
– training_data_start_index, the starting index of the training data,
– training_data_end_index, the ending index of the training data,
– model, the linear regression model itself.

Through this phase, we can determine how well the model predicts missing
values between smax and smax+1.

In summary, the second stage of forward imputation in TS-Pothole con-
sists of building the linear regression model. This stage begins with the initial
training of the model, using the previously selected lagged features to learn the
underlying relationships in the data. Next, the model is validated using the fol-
lowing sequence, represented by smax+1, to test its performance and ability to
generalize to new data.

Iterative Imputation of Missing Values In this phase, we adopt an iterative
imputation strategy using a dynamic dataset formed from smax,1 to smax+1,k.
The procedure unfolds as follows:

TS-Pothole 13

Step 3.1 - Adjustment of lagged features. At each iteration, we reevaluate
the optimal number of lagged features, using the sequence smax as a starting
point. This ensures constant adaptation to potential changes in the temporal
structure. Precisely, the optimal number of lagged features loptimal at iteration t
is determined by:

l
(t)
optimal = argmax

l
PACF(l) (4)

Step 3.2 - Iterative model training. At this step, if the new loptimal is already
present in the model_dict dictionary, then the corresponding model is updated
with the new data. This involves adjusting the existing model to reflect the
recent trends in the time series. Conversely, if the new loptimal is not present
in model_dict, then a new temporal configuration is handled. In such a case, a
new linear regression model is trained with the current data, and the information
related to this new model is saved in the dictionary, including the number of lags,
the start and end indices of the training data, and the model itself.

Step 3.3 - Prediction of missing values. Using the newly trained model, we
predict the missing values between smax and smax+1. This is formulated as:

Y
(t)
predicted = Model(X(t)

current) (5)

where Y
(t)
predicted represents the predicted values, and X

(t)
current is the current

dataset.
Step 3.4 - Update of maximum sequence (smax+1). The new maximal sequence

(from smax,1 to smax+1,k) becomes the new basis for the next iteration. This
allows for continuous adaptation to changes in the time series.

Step 3.5 - Repetition of the process. This iterative process (steps 3.1 to 3.4) is
repeated using each new sequence (smax+1,1 to smax+2,k, smax+2,1 to smax+3,k,
etc.) until all missing values up to sn are imputed.

This iterative approach ensures progressive and adaptive imputation, opti-
mizing the quality of predictions at each iteration and adjusting to potential
variations in the time series.

The final stage of forward imputation in TS-Pothole is the iterative im-
putation of missing values, crucial for maintaining the integrity and efficiency
of the linear regression model in time series analysis. This process starts by ad-
justing the lagged features to accurately fit the existing data. The model is then
trained iteratively, ensuring each version is optimized for the fitted data context.
Missing values are predicted using the current model, and the maximum sequence
is updated by incorporating new observations, denoted by smax+1. This cycle con-
tinues until all missing values are imputed, ensuring the model’s robustness and
the data’s completeness for further analysis.

4.5 Backward Imputation

This phase consists of predicting time sequences before the maximum sequence.
This process involves reversing the time series from the maximum sequence
(smax) and repeating the imputation process. The procedure unfolds as follows.

14 B. Sanwouo et al.

Reversal of the series. The time series is reversed from the maximum sequence
(smax). This reversal allows for considering the data preceding the maximum
sequence as the new portion of the series to be imputed.

Application of the imputation step in a loop. In this step, we apply all
steps of forward imputations on the inverted series, starting from the maximum
sequence seqmax. These steps, presented in Section 4.4, include adjusting the
optimal number of lagged features, training the model, predicting missing values,
and updating the maximum sequence.

Restoration of temporal order. Once the preceding sequences are imputed,
the time series is restored to its original temporal order using Algorithm 2. This
iterative process of predicting preceding sequences is executed until all missing
values before the maximum sequence are imputed. This approach strengthens
the model’s ability to reliably anticipate and complete missing data throughout
the time series.

Backward imputation in TS-Pothole begins by reversing the temporal order
of the series to handle the data as if they were progressing backward in time.
Next, the imputation steps are applied in a loop, using similar techniques as
for Forward Imputation, but with the series reversed. Finally, once the missing
values have been filled, the original temporal order of the series is restored, thus
ensuring the integrity and continuity of the temporal data.

Initially, Algorithm 2 employs the function extractSequences(series) (line 1)
to partition the time series data, series, into distinct sequences. It then utilizes
selectLongestSequence(sequences) (line 2) to determine seqmax, the longest
sequence among these, which sets a benchmark for subsequent imputation steps.
The selectOptimalNbLaggedFeatures(seqmax) function then calculates the op-
timal number of lagged features, denoted as loptimal (line 3). This number is es-
sential in defining the span of past values to be considered for imputation and
prediction in the sequences. Using functions getForwardSequences(sequences)
(line 4) and getBackwardSequences(sequences) (line 5), Algorithm 2 creates
two sets forwardseq and backwardseq. forwardseq contains all the sequences
that are next to the maximal sequence (including the seqmax sequence) and
backwardseq contains all the sequences that precede the maximal sequence (in-
cluding the seqmax).

During the forward imputation process (line 6 to 14), Algorithm 2 iter-
ates through each sequence seq in forwardseq. If seq matches seqmax, it calls
createLaggingFeatures(seq, loptimal) to generate new features based on the
computed lags. It then progresses to trainModel(seq) for model training, using
seq + 1 for model validation. This is followed by imputeMissingValues(seq) to
impute missing values between seq and seq+1. The imputed sequence is stored in
the variable sforward_imputed. If the optimal number of lagged features is already
present in the dictionary model_dict, the corresponding model is retrieved and
updated with the new data. Otherwise, a new linear regression model is trained

TS-Pothole 15

Algorithm 2 Forward & Backward Data Imputation
1: sequences← extractSequences(series)
2: seqmax ← selectLongestSequence(sequences)
3: loptimal ← selectOptimalNbLaggedFeatures(seqmax)
4: forwardseq ← getForwardSequences(sequences)
5: backwardseq ← getBackwardSequences(sequences)

6: for seq ∈ forwardseq do
7: if seq = seqmax then
8: createLaggingFeatures(seq, loptimal)
9: model_dict← trainModel(seq)

10: sforward_imputed ← imputeMissingValues(seq)
11: else
12: sforward_imputed ←imputeAuto(seq, loptimal)
13: end if
14: end for

15: sinverse ← reverseTimeSeries(backwardseq)
16: for seqrev ∈ sinverse do
17: loptimal ← selectOptimalNbLaggedFeatures(seqrev)
18: createLaggingFeatures(seqrev, loptimal)
19: model_dict← trainModel(seqrev)
20: sbackward_imputed ← imputeMissingValues(seqrev)
21: end for
22: simputed ← concatenate(sforward_imputed, sbackward_imputed)
23: return simputed

with the current data and the information of this new model is saved in the
dictionary.

In cases where seq differs from seqmax, function imputeAuto(seq, loptimal)
automatically imputes missing values that are next to the maximal sequence.
The value of the updated sequence is stored in the variable sforward_imputed.

Subsequently, for backward imputation (line 15 to 21), the algorithm reverses
backwardseq using reverseTimeSeries(backwardseq) to put the maximal se-
quence (initially at the end of backwardseq) at the beginning of the sequence.
It then processes each sequence seqrev in the reversed set with the same succes-
sion of functions (selectOptimalNbLaggedFeatures, createLaggingFeatures,
trainModel, and imputeMissingValues), finally returning srev_imputed.

Finally, the imputed sequences from the forward and backward imputation
phases are concatenated to form simputed, the final dataset (line 22).

5 Experimental Methodology

This section describes our hardware settings and our experimental protocol. All
experimental materials and performance data monitored during our experiments

16 B. Sanwouo et al.

as well as a TS-Pothole implementation are publicly accessible at https:
//zenodo.org/records/10518265.

5.1 Hardware Settings

In our experimental setup, two consistent hardware configurations were em-
ployed for training our deep learning and traditional machine learning models.
For deep learning tasks, we utilized the Kaggle platform, leveraging an NVIDIA
Tesla P100 GPU featuring 3584 CUDA cores and 16 GB of dedicated memory.
For traditional machine learning, a DELL Latitude 7520 laptop was employed,
equipped with an 11th generation Intel® Core™ i7-1185G7 vPro® processor, 32
GB of LPDDR4x memory clocked at 4267 MHz in a dual-channel configuration,
and a 512 GB M.2 PCIe x4 NVMe SSD with self-encrypting drive capabilities.
This deliberate selection of distinct hardware configurations catered to the spe-
cific requirements of each task, facilitating a comprehensive and comparative
assessment of TS-Pothole’s performance.

5.2 Datasets

We evaluated TS-Pothole on two incomplete data scenarios, with either ran-
dom or continuous missing values. These scenarios were assessed with 4 different
datasets, as reported by Table 2. In particular, we used the Beijing air qual-
ity dataset [45] as the baseline to assess TS-Pothole on missing data. This
dataset covers the period from March 1, 2013, to February 28, 2017, and is
sourced from 12 nationally monitored sites managed by the Beijing Munici-
pal Environmental Monitoring Center. As this dataset does not exhibit missing
values, we deliberately removed some data from the dataset by voiding val-
ues following a continuous (all values are introduced one after the other) and
random distribution, focusing on the fine particulates PM2.5 variable, essential
for assessing air quality due to its impact on human health. We then applied
TS-Pothole to the resulting dataset, i.e., the one where missing values were
introduced. We then relied on three datasets commonly used in the literature
to compare univariate time series imputation methods [46]. On the one hand,
the Groundwater1 dataset includes a time series containing more than five
million samples of groundwater levels from a monitoring wall in Butte County,
California, spanning from 1919 to 2023. This dataset represents the groundwater
elevation above the mean sea level, critical for understanding environmental and
climatic influences on groundwater resources. On the other hand, the Fluxnet2

dataset encompasses measurements of CO2 and water levels, energy exchange,
and other meteorological and biological variables from 1999 to 2014 at the Mor-
gan Monroe State Forest site, Indiana, United States. This dataset focuses on the
vapor pressure deficit variable, key for studying atmosphere-biosphere interac-
tions. In this study, we focused on the CO2 variable and two derived subsets: the
1 https://data.cnra.ca.gov/dataset/periodic-groundwater-level-measurements
2 https://fluxnet.org/data/fluxnet2015-dataset/

TS-Pothole 17

Dataset Metric Size (# samples)

Beijing [45] PM2.5 ∼ 35, 065

Fluxnet500 [46] CO2 ∼ 500, 000

Fluxnet2M [46] CO2 ∼ 2, 000, 000

Groundwater [46] Water elevation ∼ 5, 400, 000

Table 2. Datasets considered in this study.

first, designated Fluxnet500, comprises ∼ 500, 000 samples, while the second,
designated Fluxnet2M, contains two million samples.

These datasets, presented in Figure 3, were chosen for their relevance in as-
sessing the effectiveness of time series imputation methods, such as TS-Pothole,
in handling missing data. We continuously and randomly introduced missing val-
ues across different features in each of these two datasets to simulate realistic
incomplete data scenarios and evaluate the robustness and versatility of TS-
Pothole.

(a) PM2.5 from Beijing Air Quality

(b) Air temperature from Fluxnet

(c) Water level from Groundwater

Fig. 3. Plot of datasets

18 B. Sanwouo et al.

5.3 Implementation and Configuration

To build TS-Pothole, we integrated several machine learning models, each
with distinct architectures and configurations, to address the challenges of im-
putation. In particular, we implemented a Python-based linear regression model,
using Python version 3.10.9. This linear regression model is developed using the
Scikit-learn library, version 1.3.2. This particular version of Scikit-learn is se-
lected to leverage its latest advancements and optimizations in machine learning
algorithms. We have adopted the following parameters for the linear regression
model in Scikit-learn, which provides a standardized baseline for our study.

– fit_intercept : True,
– copy_X : True,
– n_jobs: -1,
– positive: True.

The GAN-based models we evaluated, specifically GAIN and VGAIN ar-
chitectures, have been developed using generative adversarial networks. These
GAN-based models, as well as AE-based models, VAEI, and HI-VAEI models,
were constructed using TensorFlow 2.15.0 and Keras 2.14.0. Each of them was
built using the following parameters:

– latent_dim ∈ {100, 200, . . . , 500, 600},
– Epochs ∈ {50, 100, . . . , 250, 300},
– learning_rate ∈ {0.0001, 0.001, 0.01},
– activation_discriminator ∈ {′sigmoid′,′ linear′},
– activation_generator ∈ {′tanh′,′ relu′},
– layers ∈ {2, 3, 4},
– Dropout rate ∈ {0.0, 0.1, . . . , 0.4, 0.5},
– optimizer ∈ {′Adam′,′ SGD′},
– loss_function ∈ {′mean_squared_error′}.

These parameter ranges were selected by common practice in deep learn-
ing to ensure a comprehensive yet manageable experimental setup. Applying a
method similar to GridSearch CV3, we were able to train 62, 208 distinct model
configurations for each dataset, totaling 248, 832 deep learning models over four
datasets. This ensured exhaustive coverage of the usual parameter space used
while limiting experimentation time to around 1, 085 hours.

5.4 Systems under Study

In the development of our GAIN model, we anchored our implementation on the
codebase available in the GAIN-Pytorch repository.4 This repository served as a
foundational framework, which we adapted and enhanced to align with the spe-
cific requirements and objectives of our research. Similarly, for the construction
3 https://scikit-learn.org/stable/modules/grid_search.html
4 https://github.com/dhanajitb/GAIN-Pytorch

TS-Pothole 19

Algorithm 3 Creating Missing Values in Time Series
1: validateInputs(series, rate, dis)
2: missingind ← getMissingIndices(series, rate, dis)
3: for index ∈ missingind do
4: if dis is continuous then
5: series ← createContMissValues(series, index)
6: else if dis is random then
7: series ← createRandMissValues(series, index)
8: end if
9: end for

10: return series

of our VAE models, we drew inspiration from and built upon the code found in
the PyTorch-VAE repository.5 This source provided a valuable starting point,
enabling us to integrate advanced features and customize the models following
our study’s needs.

For the VGAIN and HI-VAE models, our development strategy was based
predominantly on their descriptions in the scientific articles [7,39], respectively.
These articles provided the essential theoretical and architectural guidelines,
directing our model construction. We meticulously analyzed the methodologies
detailed in these publications, developing our VGAIN and HI-VAE models from
the ground up. This approach ensured that our implementations were not only
theoretically sound, as per the descriptions in the respective articles, but also
finely tuned to fit the particularities and objectives of our study.

5.5 Experimental protocol

Step 1 - Missing data generation. In the initial phase of our time-series ex-
perimentation, we systematically introduced missing values into our univariate
datasets, ensuring that the modified datasets retained the same distribution
as the original data. This process involved the random deletion of 10%, 15%,
20% and 25% of the selected features data points. Using Algorithm 3, we dis-
tributed these missing values in two distinct patterns: continuously, to simulate
interruptions or gaps in data collection, and randomly, to mimic irregular data
loss. Algorithm 3 relies on three variables: the time series (series), the missing
rate to be introduced (rate), and the distribution type (dis) which determines
how missing values will be introduced into the dataset. The creation of miss-
ing values begins with validateInputs (line 1), a subroutine that ensures the
inputs are within acceptable ranges and formats. This step is critical to main-
tain data integrity and prevent computational errors. Subsequently, the function
getMissingIndices (line 2) computes a set of indices in the time series where
missing values will be introduced, based on the specified rate and distribution
type (dis).

5 https://github.com/AntixK/PyTorch-VAE

20 B. Sanwouo et al.

The algorithm then iterates through each index of the missingind set and, de-
pending on the distribution specified, it employs either createContMissValues
(line 5) or createRandMissValues (line 7). The former introduces missing values
in a continuous block, mimicking scenarios like sensor outages or data transmis-
sion losses. The latter randomly distributes missing values throughout the series,
representing scenarios where data is missing randomly and without a specific
pattern. This dual distribution strategy provides a comprehensive assessment of
TS-Pothole’s capability to handle different missing data scenarios, thus re-
flecting a variety of real-life situations. For each type of distribution and ratio of
missing data, we ran 100 generations to ensure robust statistical significance. Fi-
nally, the series now containing the specified percentage of missing values as per
the chosen distribution type, is returned. This output is pivotal for subsequent
analyses, e.g., for testing the efficacy of imputation algorithms under different
conditions of missing data.

Step 2 - Identification of continuous / longest sequences. The resulting time
series is then analyzed to identify present sequences and determine the longest
continuous one. We sought these sequences within the time series after introduc-
ing missing values. The emphasis was placed on identifying continuous sequences
of non-missing data.

Step 3 - Determination of the optimal number of lagged features. During this
phase, the goal is to define the optimal number of lagged features for the con-
sidered time series data by carefully examining the inherent cycles in the time
series and analyzing the PACF. To achieve this, Algorithm 1 is used together
with the protocol described in Section 4.4 to determine such an optimal number
of lagged features.

Step 4 - Recursive imputation. The fourth step of TS-Pothole involves re-
cursively training a machine learning model on data from different sequences to
impute missing values and progressively expand the dataset. To achieve this, we
relied on Algorithm 2 following the protocol described in Sections 4.5 and 4.4 to
recursively impute data.

5.6 Evaluation Metrics

Upon completing the iterative process of imputing missing values, one needs to
assess the effectiveness of TS-Pothole in such an imputation process. This
assessment is performed by comparing TS-Pothole imputed data with actual
data from the initial time series. In particular, we considered some of the evalua-
tion metrics most commonly used to assess prediction accuracy in the context of
time series, namely the Root Mean Squared Error (RMSE), the Mean Absolute
Error (MAE), and the NashSutcliffe Model Efficiency (NSE). In the remainder of
this section, Ŷt denotes predicted values at a given point in time and Yt denotes
observed values at a given point in time.

– RMSE (Root Mean Squared Error): This metric evaluates the square
root of the mean of the squares of the deviations between the predicted
values and the actual values. It is particularly sensitive to large deviations,

TS-Pothole 21

making it ideal for identifying significant errors in imputations. The formula
for computing the RMSE is as follows:

RMSE =

√∑n
t=1(Ŷt − Yt)2

n

– MAE (Mean Absolute Error): The MAE measures the mean of the
absolute deviations between the predictions and the real values, providing
a direct and easily interpretable perspective on mean errors in imputations.
The MAE is computed as follows:

MAE =

∑n
t=1 |Ŷt − Yt|

n

– NSE (Nash-Sutcliffe Efficiency): The NSE is a normalized metric that
compares the variance of the errors with the variance of the original observa-
tions. It is often used to assess the performance of hydrological models, but
adapts well to other temporal contexts. A perfect NSE score is 1, indicating
a perfect match between the imputed values and the real values. The formula
for computing the NSE is:

NSE = 1−
∑n

t=1(Ŷt − Yt)
2∑n

t=1(Yt − Ȳ)2

These three metrics provide a quantitative understanding of the fidelity of our
imputations to ground truth. Lower RMSE and MAE values indicate a better
fit between model predictions and observed reality, while higher NSE values
indicate better predictive performance.

In addition to utilizing these metrics to assess the accuracy of our imputa-
tions, we will also employ mean imputation, standard deviation imputation, and
linear interpolation imputation as baseline methods, as they are among the most
commonly used techniques in the field.

The first baseline method, mean imputation, involves replacing missing
values in the dataset with the overall mean (Ȳ) of the observed data. This
method is particularly straightforward and well-suited for datasets with mini-
mal variations and without strong trends or seasonality. The formula for mean
imputation is :

Imputed value = Ȳ =

∑n
i=1 Yi

n

where Yi represents the observed values and n is the number of observed data
points.

The second method, standard deviation imputation (σ), involves replac-
ing missing values with the mean of the observed values plus or minus a multiple
of the standard deviation of the observed data. This method is useful when one
wishes to retain some variability in the imputed data. The formula for standard
deviation imputation is:

22 B. Sanwouo et al.

Imputed value = Ȳ ± kσ

where k is a factor determined based on the distribution of the data and the
desired level of confidence, Ȳ is the mean of the observed values, and σ is the
standard deviation of the observed values, defined as:

σ =

√√√√ 1

n

n∑
i=1

(Yi − Ȳ)2

The third method, linear interpolation, estimates missing values by cre-
ating a function that mathematically models the existing data points. Linear
interpolation new data points within the range of a discrete set of known data
points. The formula for linear interpolation between two points Ya and Yb at
times ta and tb respectively, and estimating the value at time t is:

Imputed value = Ya +
(Yb − Ya)

(tb − ta)
× (t− ta)

Finally, we will use the calculation of mean ranks, as used in the Nemenyi
test, to rank the different methods. The Nemenyi test calculates the mean ranks
of the methods to determine their relative performance order. The formula for
calculating the mean rank Ri for a method i is:

Ri =
1

N

N∑
j=1

rij

where:

– rij is the rank of the i-th method on the j-th data set.
– N is the number of data sets or experiments on which the methods were

tested.

The parameter N therefore represents the number of comparisons or exper-
iments carried out, not the number of individual data sets. By using only the
calculation of mean ranks, we can establish a ranking of the imputation methods
according to their performance, without performing a full statistical comparison
between each pair of methods. In our case, the methods are compared using
three metrics (RMSE, MAE, and NSE) in contexts where the missing values are
either continuously or randomly distributed. Therefore, we have six comparisons
(N = 6) presented in Figures 4, 5 and 6.

6 Results

6.1 Results Overview

Table 3 to Table 10 present a comparison of the performance of various im-
putation methods on the four datasets detailed in Table 2 (F-500 stands for

TS-Pothole 23

Fluxnet500, F-2M for Fluxnet2M and Ground. for Groundwater), with
missing data rates ranging from 10% to 25%. Each table illustrates a specific
evaluation metric (see Section 5.6) based on the distribution of missing values,
either randomly or continuously. The imputation methods evaluated include TS-
Pothole (TS-P), GAIN, VGAIN, VAE, HI-VAE, as well as commonly used
basic methods such as mean imputation, standard deviation imputation (Std),
and linear interpolation (L.I).

The values in the tables represent the means of 100 executions of each
method. For each missing data rate, each dataset, and each metric, each method
was executed and evaluated 100 times. The values presented in the tables are the
means of these 100 evaluations, ensuring that the performance comparison is ro-
bust and not influenced by random variations. For each row, green cells indicate
that TS-Pothole has the best performance compared to the other methods,
while red cells indicate that a method other than TS-Pothole is better.

Although the imputation methods used as baselines present a very low execu-
tion time (Table 5 and Table 6), they are less efficient than the other imputation
methods as shown in Figure 11, Figure 12, Figure 13, Figure 14, Table 3 and
Table 10.

To better present these results, we have ranked all imputation methods using
the mean rank method. This method involves assigning a rank to each method for
each data sample, based on performance: the best-performing method receives
rank 1, the next best receives rank 2, and so on. In the event of a tie, the
methods receive the mean rank of the positions they occupy. Figure 4, Figure 5
and Figure 6 show the mean RMSE, MAE, and NSE ranking for continuous and
random missing data.

We observe that missing data imputations made by linear interpolation (col-
umn L.I), mean (Mean) and standard (Std) deviation perform less well than the
other methods. de même, Similarly, in Tables 3 to 10, the error rates of these
baseline methods are very high compared to the other methods.

Although imputation by linear interpolation, mean, and standard deviation
are generally used, they are not suitable for efficient imputation of missing values
in datasets with scenarios similar to those used in our experiments.

In the following, Figure 7 to 10 thus show the application of each imputation
method but the baseline ones (i.e., TS-P, GAIN, VGAIN, VAE, and HI-VAE)
for each evaluation metric (RMSE, MAE, and NSE) and each dataset described
in Section 5.2, with different ratios of missing values and for both continuous
and random distributions. Additionally, to facilitate reading, some of the figures
and tables have been moved to the Appendices. Each row relates to a missing
rate, and each column to an imputation method. The darker and greener, the
better (low error rate), and conversely, dark red cells indicate a higher error rate.

24 B. Sanwouo et al.

(a) Mean RMSE ranking for continuous missing data

(b) Mean RMSE ranking for random missing data

Fig. 4. Mean RMSE ranking for continuous and random missing data

TS-Pothole 25

(a) Mean MAE ranking for continuous missing data

(b) Mean MAE ranking for random missing data

Fig. 5. Mean MAE ranking for continuous and random missing data

26 B. Sanwouo et al.

(a) Mean NSE ranking for continious missing data

(b) Mean NSE ranking for random missing data

Fig. 6. Mean NSE ranking for continuous and random missing data

TS-Pothole 27

Set Rate Continuous
Mean Std L.I TS-P GAIN VGAIN VAE HI-VAE

B
ei

ji
n
g 10% 43.31 44.32 24.027 0.10585 0.109350 0.133650 0.156860 0.128340

15% 46.72 50.83 24.005 0.150000 0.116550 0.142450 0.243870 0.199530
20% 48.75 52.03 24.815 0.226500 0.229365 0.280335 0.399685 0.327015
25% 52.07 54.96 26.74 0.421500 0.441000 0.539000 0.561275 0.459225

F
-5

00

10% 32.870 41.628 28.342 0.20413 0.20561 0.22372 0.2536 0.22073
15% 38.5301 44.0613 33.4657 0.24585 0.2105 0.23586 0.33828 0.29586
20% 38.912 43.9008 37.7563 0.32029 0.32189 0.37341 0.49194 0.41965
25% 41.671 44.71102 37.9472 0.53934 0.51171 0.63665 0.65237 0.55897

F
-2

M

10% 38.729 33.1271 34.5011 0.6611 0.624 0.8118 0.8359 0.6612
15% 41.470 38.6003 37.3876 0.6118 0.6837 0.8076 0.8733 0.6496
20% 41.7999 35.0014 39.3135 0.6667 0.6485 0.8901 0.8908 0.6699
25% 43.002 35.73399 39.8404 0.6973 0.6666 0.8873 0.924 0.685

G
ro

u
n
d
. 10% 45.615 53.71 33.6298 0.905602 0.874206 1.068474 1.077731 0.881779

15% 51.121 55.12 34.7468 0.908360 0.883930 1.080358 1.087955 0.890145
20% 51.9299 52.90027 34.8774 0.907488 0.933650 1.141128 1.116327 0.913359
25% 56.001 55.625 37.2109 0.928000 0.950984 1.162314 1.127798 0.922744

Table 3. RMSE for continuous distribution over 100 iterations for all datasets with
different rates of missing values.

Set Rate Random
Mean Std L.I TS-P GAIN VGAIN VAE HI-VAE

B
ei

ji
n
g 10% 22.1854 21.4890 15.9271 0.50040 0.69273 0.84667 0.80113 0.65547

15% 24.6379 21.3142 16.1942 0.51475 0.73458 0.89782 0.90662 0.74178
20% 23.9821 23.5283 15.7853 0.56325 0.80946 0.98934 0.99726 0.81594
25% 25.2567 23.6745 17.3618 0.60670 0.89190 1.09010 1.10605 0.90495

F
-5

00

10% 27.3462 317410. 19.4414 0.59303 0.78992 0.94655 0.89696 0.75433
15% 28.2109 35.6291 18.0305 0.60516 0.82508 0.9933 1.00655 0.83716
20% 31.8625 33.4728 20.3204 0.91287 0.9065 1.08589 1.09586 0.90974
25% 31.4756 38.1427 20.2844 0.99515 0.98308 1.1885 1.19794 0.99006

F
-2

M

10% 28.1254 36.3313 15.6266 0.9083 0.7931 1.0551 0.9953 0.7676
15% 29.1734 34.7462 15.4583 0.9457 0.8036 1.0907 1.0508 0.8034
20% 28.1002 39.5127 20.4657 0.9514 0.9446 1.2553 1.222 0.9603
25% 28.2898 35.9021 20.3862 0.9217 1.0218 1.282 1.2623 0.9834

G
ro

u
n
d
. 10% 25.8323 38.969 17.2867 1.170750 1.044320 1.276391 1.268825 1.038129

15% 25.568 36.7121 17.7492 1.177600 1.076355 1.315545 1.290483 1.055849
20% 26.7812 33.4228 20.0127 1.181451 1.227332 1.500072 1.462126 1.196285
25% 30.5891 39.1144 21.36 1.184001 1.259971 1.539965 1.529440 1.251360

Table 4. RMSE for random distribution over 100 iterations for all datasets with dif-
ferent percentages of missing values

28 B. Sanwouo et al.

6.2 Small Univariate Datasets (∼ 35, 000 samples)

Figure 7 provides an overview of error rate for each imputation method evaluated
in this study for the Beijing dataset, representing a small univariate dataset
(∼ 35, 000 samples). Overall, when missing values are continuously or randomly
distributed, TS-Pothole outperforms the other methods as presented in Fig-
ure 11. For example, TS-Pothole achieves a lower MAE and RMSE than com-
peting techniques such as GAIN, V-GAIN, VAE, and HI-VAE in various missing
value percentage configurations as shown in Figure 7(a) to 7(d).

TS-Pothole thus more accurately estimates missing values while minimiz-
ing deviations between predicted and actual values. Regarding Nash-Sutcliffe
Normalized Efficiency (NSE) in Figure 7(e) and Figure 7(f), although TS-
Pothole does not always achieve the highest performance, it always maintains
scores above 0.70, and in some cases reaches 0.84. These scores demonstrate
that TS-Pothole is capable of capturing a large proportion of the variance in
real data, even in the presence of large missing values. The proximity of these
NSE values to the ideal of 1 indicates a very good match between predicted and
observed values.

TS-Pothole offers an efficient alternative for imputing continuously or
randomly distributed missing data, especially for small datasets (∼ 35, 000
samples) with up to 25% missing values (Figure 11).

6.3 Medium univariate datasets (∼ 500, 000 samples)

Figure 8 provides an overview of the error rate for each evaluated imputation
method for the Fluxnet500 dataset representing a medium univariate dataset
(∼ 500, 000 samples). Regarding continuously distributed missing values, the
heatmaps shown in Fig. 8(a) and 8(c) illustrate that TS-Pothole generally
underperforms compared to the GAIN method, though it still surpasses VGAIN,
VAE, and HI-VAE. However, the difference in performance between GAIN and
TS-Pothole is not statistically significant given their difference, unlike the
one with other methods as shown in Figure 12(a). Regarding the NSE index,
Figure 8(e) reveals that values approach the ideal one (1), indicating that TS-
Pothole achieves an excellent match between predicted and observed values.
When missing values are randomly distributed, TS-Pothole shows improved
performance compared to a continuous distribution (Figure 12(b)). According to
Fig. 8(b) and 8(d), TS-Pothole outperforms other methods at missing rates of
10% and 15%, with the lowest MAE errors rate and the smallest RMSE errors
rate. At missing rates of 20% and 25%, its RMSE remains very close to the
best-recorded score. As for the NSE value, Figure 7(f) indicates that values are
nearing the ideal (1), also reflecting the accuracy of TS-Pothole in predicting
observed values.

TS-Pothole 29

(a) RMSE,Beijing, continuous (b) RMSE, Beijing, random

(c) MAE, Beijing, continuous (d) MAE, Beijing, random

(e) NSE, Beijing, continuous (f) NSE, Beijing, random

Fig. 7. Mean of evaluations metrics for continuous & random distributions over 100
iterations for the Beijing dataset.

Although TS-Pothole is only the second-best option for medium-sized
datasets (∼ 500, 000 samples) with continuous distributions, it proves to be
the overall best alternative when missing values are randomly distributed.

6.4 Large univariate datasets (∼ 2, 000, 000 samples)

Figure 9 provides an overview of the error rate for each evaluated imputation
method for the Fluxnet2M dataset representing a large univariate dataset
(∼ 2, 000, 000 samples). When the missing values are continuously distributed,
TS-Pothole always comes close to the smallest error, although it does not get
the best score. Figure 9(a), 9(c), 13(a) show that TS-Pothole overall gets sec-
ond or third place, and therefore rarely achieves the lowest error. However, the
difference in performance between GAIN and TS-Pothole is not statistically
significant, unlike the other methods. As for the NSE index, Figure 9(e) reveals

30 B. Sanwouo et al.

(a) RMSE,Fluxnet500, continuous (b) RMSE, Fluxnet500, random

(c) MAE, Fluxnet500, continuous (d) MAE, Fluxnet500, random

(e) NSE, Fluxnet500, continuous (f) NSE, Fluxnet500, random

Fig. 8. Mean of evaluations metrics for continuous & random distributions over 100
iterations for the Fluxnet500 datasets.

that the values approach the ideal (1), once again indicating that TS-Pothole
achieves an excellent match between predicted and observed values. When miss-
ing values are randomly distributed, the performance of TS-Pothole decreases
considerably. As illustrated in Figure 9(b), 9(d) and 13(b), TS-Pothole does
not prove to be the best option in these cases. This observation is corroborated
by the NSE index shown in Figure 9(f), which indicates that TS-Pothole is
often the least efficient of the evaluated alternatives.

Although TS-Pothole is not the most efficient method for imputing miss-
ing values in large univariate datasets (∼ 2, 000, 000 samples), it is neverthe-
less not the worst option and remains superior to the baselines imputation
methods considered in previous work as shown in Figure 13.

TS-Pothole 31

(a) RMSE,Fluxnet2M, continuous (b) RMSE, Fluxnet2M, random

(c) MAE, Fluxnet2M, continuous (d) MAE, Fluxnet2M, random

(e) NSE, Fluxnet2M, continuous (f) NSE, Fluxnet2M, random

Fig. 9. Mean of evaluations metrics for continuous & random distributions over 100
iterations for the Fluxnet2M datasets.

6.5 Very large univariate datasets (∼ 5, 000, 000 samples)

Figure 10 provides an overview of the error rate for each evaluated imputation
method, regarding the Groundwater dataset representing a very large univari-
ate dataset (∼ 5, 000, 000 samples). When the distribution of missing values is
continuous, the TS-Pothole method has the lowest error rate at 20% missing
data rate, both in terms of mean absolute error (MAE) and root mean square
error (RMSE). For other rates of missing values, TS-Pothole approaches the
best performance, as shown by Figure 10(a) and 10(c). Regarding the random
distribution of missing values, TS-Pothole shows the lowest error rate at high
missing value rates (20% and 25%), for both MAE and RMSE. At lower missing
value rates (10% and 15%), the performance of TS-Pothole is less optimal.
These results are illustrated in Figure 10(b) and 10(d). Regardless of the mode
of distribution of the missing values, the NSE index of TS-Pothole remains
relatively high, fluctuating between 0.7 and 0.8. This demonstrates that TS-
Pothole maintains good predictive capability, whatever the conditions of the
missing value distribution.

32 B. Sanwouo et al.

When it comes to very large datasets (∼ 5, 000, 000 samples), TS-Pothole
overall exhibits best performances when missing values are continuously
distributed (Figure 14(a)). TS-Pothole is particularly well suited to ran-
domly distributed data with a high rate of missing values(Figure 14(b)).

(a) RMSE,Groundwater, continuous (b) RMSE, Groundwater, random

(c) MAE, Groundwater, continuous (d) MAE, Groundwater, random

(e) NSE, Groundwater, continuous (f) NSE, Groundwater, random

Fig. 10. Mean of evaluations metrics for continuous & random distributions over 100
iterations for the Groundwater datasets.

6.6 Execution Time

Tables 5 and 6 show the mean imputation time in seconds for the four assessed
datasets with varying missing value rates, whether they are datasets with con-
tinuous or random missing value distributions.

TS-Pothole 33

The methods used as baselines exhibit very low execution times. For exam-
ple, for continuous missing values, imputation by the mean method is around
27 times faster than TS-Pothole. And when these values are randomly dis-
tributed, mean imputation runs around 135 times faster than TS-Pothole. As
presented in section 6.1, these baseline methods, although very fast, make sig-
nificant errors in the imputation process, showing a large difference between the
actual and predicted values. Regarding other methods (TS-Pothole, GAIN,
VGAIN, VAE, HI-VAE), the execution time is admittedly higher, but we saw
that the error rate is lower. Cell highlighted in green in Tables 5 and 6 indicate
that TS-Pothole has the best execution time among these methods, while red-
colored cells indicate that another method executes faster.

When missing values are continuously distributed, TS-Pothole has slower
execution times for small (∼ 35, 000 samples), medium (∼ 500, 000 samples),
and even large (∼ 2, 000, 000 samples) datasets. However, for very large datasets
(∼ 5, 000, 000 samples), TS-Pothole is more than twice as fast as the other
methods, regardless of the rate of missing values. When missing values are ran-
domly distributed, TS-Pothole becomes faster for small datasets (∼ 35, 000
samples). On the Beijing dataset, it demonstrates an execution speed nearly
1.5 times faster than other methods.

Set Rate Continuous
Mean Std L.I TS-P GAIN VGAIN VAE HI-VAE

B
ei

ji
n
g 10% 41 52 110 485 460 470 445 455

15% 65 75 160 510 490 455 470 440
20% 95 100 230 530 485 450 495 465
25% 130 150 280 740 570 545 660 635

F
-5

00

10% 64 71 130 1,630 1,390 1,648 1,312 1,156
15% 80 86 165 1,810 1,486 1,774 1,697 1,404
20% 93 92 177 1,930 1,990 1,918 2,024 1,649
25% 143 156 196 2,410 2,350 2,597 2,089 1,810

F
-2

M

10% 87 93 121 4,180 3,854 3,745 2,902 2,765
15% 123 157 235 4,192 3,891 4,138 2,945 4,811
20% 154 159 289 4,337 4,454 4,848 4,244 4,958
25% 158 157 333 4,641 5,118 5,312 5,209 5,059

G
ro

u
n
d
. 10% 158 149 238 10,915 23,612 23,542 16,958 16,932

15% 247 260 340 12,545 24,188 24,190 18,432 18,499
20% 348 360 430 12,778 24,768 24,753 20,545 20,492
25% 570 560 742 13,710 26,230 26,218 22,667 22,680

Table 5. Mean execution time (in seconds) for a continuous distribution over 100
iterations for all datasets with all methods at different percentage of missing values.

34 B. Sanwouo et al.

Set Rate Random
Mean Std L.I TS-P GAIN VGAIN VAE HI-VAE

B
ei

ji
n
g 10% 44 50 125 1,308 3,690 3,701 3,047 3,049

15% 67 73 192 2,290 3,965 3,978 3,628 3,604
20% 102 94 235 3,030 4,289 4,313 4,077 4,092
25% 135 145 288 4,021 4,404 4,426 4,346 4,327

F
-5

00
10% 68 66 137 4,145 5,221 3,611 6,252 5,168
15% 85 88 159 6,920 6,013 4,151 7,074 7,841
20% 97 95 181 7,873 7,676 6,965 7,442 8,725
25% 147 153 192 8,053 8,587 8,278 8,355 10,735

F
-2

M

10% 90 85 124 29,118 28,255 27,968 25,717 25,339
15% 119 150 229 29,159 28,345 29,002 25,833 30,809
20% 149 165 294 29,548 29,845 30,905 29,297 31,189
25% 153 163 328 30,357 31,614 32,130 31,872 31,470

G
ro

u
n
d
. 10% 163 155 234 48,138 40,801 40,820 47,474 47,479

15% 250 253 345 53,448 42,154 42,136 48,879 48,911
20% 355 355 428 56,838 47,068 47,086 49,630 49,648
25% 575 553 748 75,610 52,662 52,675 58,518 58,530

Table 6. Mean execution time (in seconds) for a random distribution over 100 itera-
tions for all datasets with all methods at different percentages of missing values.

Overall, TS-Pothole stands out as an efficient method for imputing data
in univariate datasets with randomly or continuously distributed missing
values.
- Small datasets (∼ 35, 000 samples): TS-Pothole performs particularly
well for imputing continuously or randomly distributed missing data, up to
25% of missing values. It is also nearly 1.5 times faster than other methods
for randomly distributed data.
- Medium datasets (∼ 500, 000 samples): Although TS-Pothole is not
the fastest method, it remains close to the mean in terms of execution
time. Regarding imputation performance, TS-Pothole ranks second for
sets with continuously distributed missing values but is the best option for
those whose missing values follow a random distribution.
- Large datasets (∼ 2, 000, 000 samples): TS-Pothole is not the most
efficient method in terms of accuracy and execution time. Not being the
worst method in this case, TS-Pothole is close to the mean error and
mean execution time, and remains superior to the baseline methods.
- Very large datasets (∼ 5, 000, 000 samples): TS-Pothole achieves
optimal performance with very large sets, especially when missing values
are continuously distributed. Moreover, TS-Pothole proves to be almost
twice as fast as conventional methods.

TS-Pothole 35

7 Discussion

The results of our study demonstrate that TS-Pothole is an effective method
for data imputation in univariate datasets with randomly or continuously dis-
tributed missing values exhibiting little or no trend and seasonality. TS-Pothole
outperforms other methods, with a generally low error rate and fast execution
time on real-world datasets. As a result, it stands out as a better-performing al-
ternative in certain contexts compared with well-known methods such as GAIN
and VGAIN, based on generative adversarial networks (GANs), and VAE and
HI-VAE, based on autoencoders. This performance can be attributed to TS-
Pothole’s ability to fully leverage the temporal structure of univariate data
through linear regression optimized by the optimal number of lags. By contrast
with methods based on GANs and autoencoders, which can introduce biases and
distortions by attempting to capture complex relationships via neural networks,
TS-Pothole focuses on linear relationships and precise temporal lags, enabling
the statistical and dynamic properties of time series to be better preserved. Our
study shows that it is crucial to choose TS-Pothole for data with specific char-
acteristics, such as low seasonality and low trend. In addition, TS-Pothole
simplifies the imputation process for practitioners by reducing the need for com-
plex configurations required by GAN-based models and autoencoders, making
TS-Pothole more accessible to analysts without deep expertise in artificial
intelligence. This simplification also means faster implementation and reduced
costs associated with training and fine-tuning sophisticated models. In addition,
TS-Pothole is less sensitive to overfitting and the need for large amounts of
training data, a major challenge for GAN and autoencoder-based methods.

Despite the promising results, our study has some limitations that need to be
taken into consideration. First of all, our evaluation focused only on univariate
datasets. It would be interesting to examine the performance of TS-Pothole
in multivariate contexts to assess its generalizability. Furthermore, although TS-
Pothole showed superior performance in our experiments, this method relies
strongly on the assumption of linearity and optimal lag, which may not apply
to any time series, especially those exhibiting complex non-linear behaviors.

For example, we could take advantage of the multi-level feature de-interleaving
method mentioned by Chen et al. [47], which could be adapted to improve the
understanding of complex patterns in univariate time series. Similarly, the two-
stream convolutional LSTM technique described in [48] could offer valuable in-
sights for developing imputation models that account for dynamic variations
within time series.

Another limitation is that our study did not exhaustively explore the impact
of the configuration parameters of the other methods compared (GAIN, VGAIN,
VAE, HI-VAE), which could potentially influence the results. We applied the
TS-Pothole method to four real datasets of varying sizes, which may not rep-
resent the diversity and complexity of all possible time series. Thus, results could
differ for datasets with different characteristics. In addition, although we used
standard metrics such as MAE, RMSE, and NSE to assess the performance of
imputation methods, these metrics may not capture all aspects of imputation

36 B. Sanwouo et al.

quality. Finally, although TS-Pothole is relatively simple to implement, fur-
ther research is needed to develop practical guides and software tools to facilitate
its adoption. For large-scale applications running in resource-constrained envi-
ronments, it is essential to ensure that the model can operate efficiently without
requiring excessive computational resources. Optimizing memory usage and im-
proving scalability will be key aspects to address in future research to make
TS-Pothole even more applicable.

8 Conclusion

In this article, we introduced TS-Pothole, an automated approach for imput-
ing missing data in univariate time series. TS-Pothole is based on the analysis
of cyclical patterns and relies on a recursive strategy to impute missing values
efficiently and accurately. TS-Pothole first seeks the longest sequence of con-
tinuous data, which then serves as the basis for the imputation of missing data
before (backward imputation) and after (forward imputation) that sequence. By
assessing TS-Pothole on four real-world data sets of varying sizes, we have
demonstrated its applicability to real-life scenarios, whether the missing values
are randomly or continuously distributed in the dataset. Our study also revealed
that, although TS-Pothole can occasionally be slightly less rapid and precise
than other methods in rare cases, it generally proves to be the most effective
alternative in terms of precision and execution time, regardless of the dataset
size. In certain situations, TS-Pothole has demonstrated the ability to achieve
twice the precision in a reduced time or to execute twice as fast. This perfor-
mance attests to the competitiveness of TS-Pothole in terms of precision, even
in the case of large datasets, thereby highlighting its versatility and adaptability,
making it an invaluable tool for a wide range of data processing applications.

For future work, we plan to improve TS-Pothole, especially regarding how
the longest data sequence is handled and the lag information is identified when
the sequence size is reduced. This may involve optimizing current algorithms,
using data augmentation methods, generating synthetic data, or creating new
techniques to efficiently manage large volumes of temporal data. Finally, we will
extend TS-Pothole for multivariate data imputation. This task will involve
adapting the algorithm to handle several variables simultaneously and testing
its effectiveness in more complex scenarios.

Data Availability

The data that support the findings of this study are publicly available from
https://zenodo.org/records/10518265.

Conflict of Interests/Competing Interests

The authors have no competing interests to declare that are relevant to the
content of this article.

TS-Pothole 37

References

1. R. Wu, S. D. Hamshaw, L. Yang, D. W. Kincaid, R. Etheridge, and
A. Ghasemkhani, “Data imputation for multivariate time series sensor data with
large gaps of missing data,” IEEE Sensors Journal, vol. 22, no. 11, pp. 10 671–
10 683, 2022.

2. A. Zainuddin, M. A. Hairuddin, A. I. M. Yassin, Z. I. Abd Latiff, and A. Azhar,
“Time series data and recent imputation techniques for missing data: A review,”
in 2022 International Conference on Green Energy, Computing and Sustainable
Technology (GECOST). IEEE, 2022, pp. 346–350.

3. R. Garg, S. Barpanda et al., “Machine learning algorithms for time series analysis
and forecasting,” arXiv preprint arXiv:2211.14387, 2022.

4. X. Miao, Y. Wu, L. Chen, Y. Gao, and J. Yin, “An experimental survey of missing
data imputation algorithms,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 35, no. 7, pp. 6630–6650, 2023.

5. J. T. McCoy, S. Kroon, and L. Auret, “Variational autoencoders for missing data
imputation with application to a simulated milling circuit,” IFAC-PapersOnLine,
vol. 51, no. 21, pp. 141–146, 2018.

6. M. J. Kusner, B. Paige, and J. M. Hernández-Lobato, “Grammar variational au-
toencoder,” in International conference on machine learning. PMLR, 2017, pp.
1945–1954.

7. A. Nazabal, P. M. Olmos, Z. Ghahramani, and I. Valera, “Handling incomplete
heterogeneous data using vaes,” Pattern Recognition, vol. 107, p. 107501, 2020.

8. V. Simkus and M. U. Gutmann, “Conditional sampling of variational autoencoders
via iterated approximate ancestral sampling,” arXiv preprint arXiv:2308.09078,
2023.

9. I. Peis, C. Ma, and J. M. Hernández-Lobato, “Missing data imputation and acqui-
sition with deep hierarchical models and hamiltonian monte carlo,” Advances in
Neural Information Processing Systems, vol. 35, pp. 35 839–35 851, 2022.

10. S. Kumar, P. Payne, and A. Sotiras, “Improving normative modeling for multi-
modal neuroimaging data using mixture-of-product-of-experts variational autoen-
coders,” arXiv preprint arXiv:2312.00992, 2023.

11. R. C. Pereira, P. H. Abreu, and P. P. Rodrigues, “Partial multiple imputation with
variational autoencoders: Tackling not at randomness in healthcare data,” IEEE
Journal of Biomedical and Health Informatics, vol. 26, no. 8, pp. 4218–4227, 2022.

12. J. Yoon, J. Jordon, and M. Schaar, “Gain: Missing data imputation using generative
adversarial nets,” in International conference on machine learning. PMLR, 2018,
pp. 5689–5698.

13. D. B. Rubin, “Inference and missing data,” ETS Research Bulletin Series, vol. 1975,
no. 1, pp. i–19, 1975.

14. T. Emmanuel, T. Maupong, D. Mpoeleng, T. Semong, B. Mphago, and O. Tabona,
“A survey on missing data in machine learning,” Journal of Big Data, vol. 8, no. 1,
pp. 1–37, 2021.

15. S. Wu, L. Wang, T. Wu, X. Tao, and J. Lu, “Hankel matrix factorization for
tagged time series to recover missing values during blackouts,” in 2019 IEEE 35th
International Conference on Data Engineering (ICDE), 2019, pp. 1654–1657.

16. X. Xu, J. Wang, X. Xu, Y. Sun, Q. Chen, X. Li, and G. Xie, “Estimating miss-
ing values in multivariate-time-series clinical data using gradient boosting tree on
temporal and cross-variable features,” in 2019 IEEE International Conference on
Healthcare Informatics (ICHI), 2019, pp. 1–3.

38 B. Sanwouo et al.

17. P. B. Weerakody, K. W. Wong, and G. Wang, “Cyclic gate recurrent neural
networks for time series data with missing values,” Neural Processing Letters,
vol. 55, pp. 1527–1554, 2023. [Online]. Available: https://doi.org/10.1007/
s11063-022-10950-2

18. M. Kazijevs and M. D. Samad, “Deep imputation of missing values in time series
health data: A review with benchmarking,” arXiv preprint arXiv:2302.10902, 2023.

19. E. Acuna and C. Rodriguez, “The treatment of missing values and its effect on
classifier accuracy,” in Classification, Clustering, and Data Mining Applications:
Proceedings of the Meeting of the International Federation of Classification Soci-
eties (IFCS), Illinois Institute of Technology, Chicago, 15–18 July 2004. Springer,
2004, pp. 639–647.

20. G. Chhabra, V. Vashisht, and J. Ranjan, “A comparison of multiple imputation
methods for data with missing values,” Indian Journal of Science and Technology,
vol. 10, no. 19, pp. 1–7, 2017.

21. W. M. Hameed and N. A. Ali, “Missing value imputation techniques: A survey,”
UHD Journal of Science and Technology, vol. 7, no. 1, p. 72–81, Mar. 2023. [Online].
Available: https://journals.uhd.edu.iq/index.php/uhdjst/article/view/1086

22. P. Vateekul and K. Sarinnapakorn, “Tree-based approach to missing data imputa-
tion,” in 2009 IEEE International Conference on Data Mining Workshops. IEEE,
2009, pp. 70–75.

23. M. G. Rahman and M. Z. Islam, “A decision tree-based missing value imputation
technique for data pre-processing,” in The 9th Australasian Data Mining Confer-
ence: AusDM 2011. Australian Computer Society Inc, 2011, pp. 41–50.

24. L. Breiman, J. Friedman, R. Olshen, and C. Stone, “Classification and regression
t rees (monterey, california: Wadsworth),” 1984.

25. G. James, D. Witten, T. Hastie, R. Tibshirani, and J. Taylor, “Tree-based meth-
ods,” in An Introduction to Statistical Learning: with Applications in Python.
Springer, 2023, pp. 331–366.

26. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceed-
ings of the 22nd acm sigkdd international conference on knowledge discovery and
data mining, 2016, pp. 785–794.

27. D. J. Stekhoven and P. Bühlmann, “Missforest—non-parametric missing value im-
putation for mixed-type data,” Bioinformatics, vol. 28, no. 1, pp. 112–118, 2012.

28. M. Pal, “Random forest classifier for remote sensing classification,” International
journal of remote sensing, vol. 26, no. 1, pp. 217–222, 2005.

29. P. Royston and I. R. White, “Multiple imputation by chained equations (mice):
implementation in stata,” Journal of statistical software, vol. 45, pp. 1–20, 2011.

30. D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix
factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

31. R. Mazumder, T. Hastie, and R. Tibshirani, “Spectral regularization algorithms for
learning large incomplete matrices,” The Journal of Machine Learning Research,
vol. 11, pp. 2287–2322, 2010.

32. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” Ad-
vances in neural information processing systems, vol. 13, 2000.

33. J. Josse, J. Pagès, and F. Husson, “Multiple imputation in principal component
analysis,” Advances in data analysis and classification, vol. 5, pp. 231–246, 2011.

34. S. Mitra and S. K. Pal, “Fuzzy multi-layer perceptron, inferencing and rule gener-
ation,” IEEE Transactions on Neural Networks, vol. 6, no. 1, pp. 51–63, 1995.

35. P. J. García-Laencina, J.-L. Sancho-Gómez, and A. R. Figueiras-Vidal, “Pattern
classification with missing data: a review,” Neural Computing and Applications,
vol. 19, pp. 263–282, 2010.

TS-Pothole 39

36. P. Golik, P. Doetsch, and H. Ney, “Cross-entropy vs. squared error training: a
theoretical and experimental comparison.” in Interspeech, vol. 13, 2013, pp. 1756–
1760.

37. M. A. Kramer, “Nonlinear principal component analysis using autoassociative neu-
ral networks,” AIChE journal, vol. 37, no. 2, pp. 233–243, 1991.

38. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural
information processing systems, vol. 27, 2014.

39. W. Li, L. Fan, Z. Wang, C. Ma, and X. Cui, “Tackling mode collapse in multi-
generator gans with orthogonal vectors,” Pattern Recognition, vol. 110, p. 107646,
2021.

40. Y. Li, A. Dogan, and C. Liu, “Ensemble generative adversarial imputation net-
work with selective multi-generator (esm-gain) for missing data imputation,” in
2022 IEEE 18th International Conference on Automation Science and Engineer-
ing (CASE), 2022, pp. 807–812.

41. F. L. Ramsey, “Characterization of the partial autocorrelation function,” The
Annals of Statistics, vol. 2, no. 6, pp. 1296–1301, 1974. [Online]. Available:
http://www.jstor.org/stable/2958346

42. Y.-H. Xue, R. Chen, J.-G. Wang, W. Liu, Y. Yao, J.-L. Liu, and H.-L. Chen,
“Granger-based root cause diagnosis with improved backward-in-time selection,” in
2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS),
2023, pp. 1853–1858.

43. A. Gasparrini, “Modeling exposure–lag–response associations with distributed lag
non-linear models,” Statistics in medicine, vol. 33, no. 5, pp. 881–899, 2014.

44. E. M. Herrey, “Confidence intervals based on the mean absolute deviation of a
normal sample,” Journal of the American Statistical Association, vol. 60, no. 309,
pp. 257–269, 1965.

45. S. Chen, “Beijing Multi-Site Air-Quality Data,” UCI Machine Learning Repository,
2019, DOI: https://doi.org/10.24432/C5RK5G.

46. J. Park, J. Müller, B. Arora, B. Faybishenko, G. Pastorello, C. Varadharajan,
R. Sahu, and D. Agarwal, “Long-term missing value imputation for time series
data using deep neural networks,” Neural Computing and Applications, vol. 35,
no. 12, pp. 9071–9091, 2023.

47. S. Chen, Y. Bo, and X. Wu, “A spatiotemporal motion prediction network based
on multi-level feature disentanglement,” Image and Vision Computing, vol. 146, p.
105005, 2024.

48. S. Chen, X. Xu, Y. Zhang, D. Shao, S. Zhang, and M. Zeng, “Two-stream convo-
lutional lstm for precipitation nowcasting,” Neural Computing and Applications,
vol. 34, no. 16, pp. 13 281–13 290, 2022.

40 B. Sanwouo et al.

A Appendix

(a) Imputations of continuous missing values, Beijing Dataset

(b) Imputations of random missing values, Beijing Dataset

Fig. 11. Imputation of Beijing Air Quality Dataset

TS-Pothole 41

(a) Imputations of continuous missing values, Fluxnet500 Dataset

(b) Imputations of random missing values, Fluxnet500 Dataset

Fig. 12. Imputations of Fluxnet500 Dataset

42 B. Sanwouo et al.

(a) Imputations of continuous missing values, Fluxnet2M Dataset

(b) Imputations of random missing values, Fluxnet2M Dataset

Fig. 13. Imputations of Fluxnet2M Dataset

TS-Pothole 43

(a) Imputations of continuous missing values, Groundwater Dataset

(b) Imputations of continuous missing values, Groundwater Dataset

Fig. 14. Plot of imputation methods apply to different datasets

44 B. Sanwouo et al.

Set Rate Continuous
Mean Std L.I TS-P GAIN VGAIN VAE HI-VAE

B
ei

ji
n
g 10% 43.31 44.32 24.027 0.0761 0.1257 0.1658 0.1504 0.1386

15% 46.72 50.83 24.005 0.1387 0.1146 0.162 0.237 0.189
20% 48.75 52.03 24.815 0.2548 0.2837 0.3109 0.3787 0.327
25% 52.07 54.96 26.74 0.4158 0.4565 0.5328 0.5365 0.4728

F
-5

00

10% 32.870 41.628 28.342 0.2225 0.1302 0.2152 0.2831 0.2106
15% 38.5301 44.0613 33.4657 0.2536 0.2215 0.2205 0.3509 0.3086
20% 38.912 43.9008 37.7563 0.3397 0.2924 0.3754 0.4662 0.4279
25% 41.671 44.71102 37.9472 0.5116 0.5531 0.6057 0.6520 0.5987

F
-2

M

10% 38.729 33.1271 34.5011 0.6472 0.6261 0.7875 0.8132 0.7245
15% 41.470 38.6003 33.378 0.5934 0.6474 0.8197 0.8747 0.5900
20% 41.7999 35.0014 39.3135 0.6542 0.5837 0.8489 0.9375 0.7009
25% 43.002 35.73399 39.8404 0.722 0.691 0.9284 0.8845 0.6884

G
ro

u
n
d
. 10% 45.615 53.71 33.6298 0.8966 0.8661 1.0324 1.0442 0.8504

15% 51.121 55.12 34.7468 0.8668 0.804 1.0375 1.1379 0.8633
20% 51.9299 52.90027 34.8774 0.9546 0.9863 1.0638 1.1583 0.9894
25% 56.001 55.625 37.2109 1.0007 0.9991 1.1661 1.1554 0.9613

Table 7. MAE for continuous distribution over 100 iterations for all datasets with
different percentages of missing values

Set Rate Random
Mean Std L.I TS-P GAIN VGAIN VAE HI-VAE

B
ei

ji
n
g 10% 22.1854 21.4890 15.9271 0.4713 0.7054 0.9003 0.7777 0.6247

15% 24.6379 21.3142 16.1942 0.4515 0.7266 0.8292 0.9518 0.7702
20% 23.9821 23.5283 15.7853 0.6147 0.7708 0.9733 0.9843 0.7811
25% 25.2567 23.6745 17.3618 0.6183 0.8826 1.0913 1.1379 0.9083

F
-5

00

10% 27.3462 317410. 19.4414 0.5431 0.8064 0.9718 0.9003 0.7765
15% 28.2109 35.6291 18.0305 0.5823 0.9826 0.9826 0.9546 0.8522
20% 31.8625 33.4728 20.3204 0.8683 1.0998 1.0998 1.0716 1.102
25% 31.4756 38.1427 20.2844 1.0307 1.2483 1.2483 1.2359 1.2889

F
-2

M

10% 28.1254 36.3313 15.6266 0.8845 0.7492 0.9989 0.9868 0.7661
15% 29.1734 34.7462 15.4583 0.914 0.7878 1.1315 1.0675 0.8545
20% 28.1002 39.5127 20.4657 0.9797 0.9182 1.2104 1.286 0.9638
25% 28.2898 35.9021 20.3862 0.9937 1.0322 1.3059 1.23 0.9349

G
ro

u
n
d
. 10% 25.8323 38.969 17.2867 1.1666 1.0904 1.2679 1.2444 1.0223

15% 25.568 36.7121 17.7492 1.1395 1.1285 1.3539 1.2871 0.9977
20% 26.7812 33.4228 20.0127 1.1307 1.2056 1.4884 1.4718 1.1339
25% 30.5891 39.1144 21.36 1.1900 1.2782 1.4876 1.4979 1.1952

Table 8. MAE for random distribution over 100 iterations for all datasets with different
percentages of missing values

TS-Pothole 45

Set Rate Continuous
Mean Std L.I TS-P GAIN VGAIN VAE HI-VAE

B
ei

ji
n
g 10% 43.31 44.32 24.027 0.7985 0.7474 0.8090 0.8658 0.7164

15% 46.72 50.83 24.005 0.7109 0.7840 0.7692 0.8180 0.8021
20% 48.75 52.03 24.815 0.8444 0.7823 0.8474 0.8583 0.8364
25% 52.07 54.96 26.74 0.7980 0.8088 0.7905 0.8280 0.8076

F
-5

00

10% 32.870 41.628 28.342 0.7795 0.7652 0.8217 0.7904 0.7385
15% 38.5301 44.0613 33.4657 0.8461 0.7984 0.7717 0.8523 0.7227
20% 38.912 43.9008 37.7563 0.7573 0.8200 0.8220 0.8406 0.7278
25% 41.671 44.71102 37.9472 0.7725 0.8288 0.7905 0.7509 0.8256

F
-2

M

10% 38.729 33.1271 34.5011 0.7932 0.7825 0.784 0.7669 0.7765
15% 41.470 38.6003 36.3102 0.8001 0.8271 0.8038 0.7831 0.7482
20% 41.7999 35.0014 39.3135 0.7622 0.7488 0.8498 0.8355 0.8518
25% 43.002 35.73399 39.8404 0.7514 0.7981 0.8066 0.803 0.8015

G
ro

u
n
d
. 10% 45.615 53.71 33.6298 0.7988 0.8423 0.7587 0.7771 0.8375

15% 51.121 55.12 34.7468 0.7931 0.7981 0.8229 0.8206 0.7843
20% 51.9299 52.90027 34.8774 0.7954 0.8365 0.7914 0.7683 0.7781
25% 56.001 55.625 37.2109 0.7767 0.8238 0.7652 0.7953 0.7682

Table 9. NSE for continuous distribution over 100 iterations for all datasets with
different percentages of missing values

Set Rate Random
Mean Std L.I TS-P GAIN VGAIN VAE HI-VAE

B
ei

ji
n
g 10% 22.1854 21.4890 15.9271 0.8121 0.822 0.8279 0.844 0.8047

15% 24.6379 21.3142 16.1942 0.8172 0.8068 0.8477 0.8323 0.7295
20% 23.9821 23.5283 15.7853 0.8494 0.8327 0.8458 0.8279 0.8293
25% 25.2567 23.6745 17.3618 0.8146 0.862 0.8494 0.7965 0.8298

F
-5

00

10% 27.3462 31.7410 19.4414 0.7584 0.8026 0.7596 0.7855 0.7854
15% 28.2109 35.6291 18.0305 0.8141 0.8459 0.7681 0.8474 0.791
20% 31.8625 33.4728 20.3204 0.8306 0.818 0.8361 0.7697 0.7999
25% 31.4756 38.1427 20.2844 0.7922 0.7273 0.7963 0.8065 0.791

F
-2

M

10% 28.1254 36.3313 15.6266 0.7725 0.8379 0.7508 0.8556 0.844
15% 29.1734 34.7462 15.4583 0.7716 0.8102 0.8002 0.8639 0.746
20% 28.1002 39.5127 20.4657 0.728 0.786 0.792 0.8261 0.7474
25% 28.2898 35.9021 20.3862 0.7559 0.7851 0.7177 0.7834 0.7957

G
ro

u
n
d
. 10% 25.8323 38.969 17.2867 0.7158 0.8163 0.8594 0.7451 0.7712

15% 25.568 36.7121 17.7492 0.8002 0.8589 0.7668 0.7696 0.7977
20% 26.7812 33.4228 20.0127 0.7394 0.7854 0.7981 0.7910 0.7899
25% 30.5891 39.1144 21.36 0.7693 0.7492 0.7441 0.7899 0.7814

Table 10. NSE for random distribution over 100 iterations for all datasets with dif-
ferent percentages of missing values

