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Abstract

The filtering distribution captures the statistics of the state of a dynamical system from partial and

noisy observations. Classical particle filters provably approximate this distribution in quite general set-

tings; however they behave poorly for high dimensional problems, suffering weight collapse. This issue is

circumvented by the ensemble Kalman filter which is an equal-weight interacting particle system. How-

ever, this finite particle system is only proven to approximate the true filter in the linear Gaussian case.

In practice, however, it is applied in much broader settings; as a result, establishing its approximation

properties more generally is important. There has been recent progress in the theoretical analysis of the

algorithm, establishing stability and error estimates in non-Gaussian settings, but the assumptions on

the dynamics and observation models rule out the unbounded vector fields that arise in practice and the

analysis applies only to the mean field limit of the ensemble Kalman filter. The present work establishes

error bounds between the filtering distribution and the finite particle ensemble Kalman filter when the

model exhibits linear growth.

Keywords. Ensemble Kalman filter, Stochastic filtering, Weighted total variation metric, Stability esti-

mates, Accuracy estimates, Near-Linear setting.

AMS subject classification. 60G35, 62F15, 65C35, 70F45, 93E11.

1 Introduction

1.1 Literature Review, Contributions and Outline

Algorithms for filtering employ noisy observations arising from a possibly random dynamical system to es-

timate the distribution of the state of the dynamical system conditional on the observations. The Kalman

filter [15] determines the filtering distribution exactly for linear Gaussian dynamics and observations. The

extended Kalman filter was developed as an extension of the Kalman filtering technique to nonlinear prob-

lems and is based on a linearization approximation; see [14] and [2]. The linearization approximation leads

to an inexact distribution for nonlinear problems, and furthermore requires evaluation of covariance matrices,

making the methodology impractical for large-scale geophysical applications [13]. Particle filters or sequential

Monte Carlo methods [10, 9] offer an alternative methodology for nonlinear filtering problems, allowing recov-

ery of the exact filtering distribution in the large particle limit. However, this class of methods scales poorly

with dimension, and in particular suffer weight collapse, making their application to geophysical problems

prohibitive; see for example [21, 5, 19, 1].
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The ensemble Kalman filter was introduced in the seminal paper [11]. Its success stems from the low-

rank approximation of large covariances, cheaply computed using an ensemble of particles and allowing it

to be deployed in geophysical applications. However analysis of its accuracy, in relation to the true filtering

distribution, remains in its infancy. The papers [17, 18] studied this issue in the linear Gaussian setting

where the mean field limit of the Kalman filter is exact; they demonstrate that the ensemble Kalman filter

may be viewed as an interacting particle system approximation of the mean field limit, and establish Monte

Carlo type error bounds. The recent article [7] overviews the formulation of ensemble Kalman methods using

mean field dynamical systems and provides a platform from which the analyses of [17, 18] may be generalized

beyond the linear Gaussian setting. In the recent paper [8] the authors establish stability properties of the

mean field ensemble Kalman filter and use them to prove accuracy of the filter in a near-Gaussian setting.

However the paper does not consider finite particle approximations of the mean field, and the conditions on

the dynamics-observation model require boundedness of the vector fields arising. In this paper we address

both these issues, establishing error bounds between the finite particle ensemble Kalman filter and the true

filtering distribution in settings where the dynamics and observation vector fields grow linearly. We make the

following contributions.

1. Theorem 2.1 is a stability result for the mean field ensemble Kalman filter in the setting of dynamical

models and Lipschitz obervation operators that grow at most linearly at infinity.

2. Theorem 2.3 quantifies the error between the mean field ensemble Kalman filter and the true filter in

the setting of dynamical models and Lipschitz observation operators that are near-linear.

3. Theorem 2.4 quantifies the error between the finite particle ensemble Kalman filter (found as an inter-

acting particle system approximation of the mean field) and the true filter in the setting of near-linear,

Lipschitz dynamical models and linear observation operators.

In going beyond the work in [8], the current paper simultaneously addresses a more applicable problem

class, by allowing linear growth in the dynamics and observations operators, and confronts the substantial

technical challenges which arise from doing so. Bounds on moments of the filtering distribution and mean

field ensemble Kalman filter must be established; these bounds grow in the number of iterations which is in

contrast to [8] where the L∞ bounds on model and observation operator ensure a uniform bound on moments.

A further challenge is presented by the need to establish stability bounds for the conditioning map, giving

rise to the true filter, and the transport map giving rise to the ensemble Kalman filter. These results exhibit

dependence on moments in the stability constants and require control of the growth given by the dynamics;

this is again in contrast to [8] where the L∞ bounds allow for a uniform control.

After discussing notation that will be used throughout the paper in Subsection 1.2, we introduce the

filtering problem in Subsection 1.3. In Section 2 we outline the main results of the paper concerning the

ensemble Kalman filter. In Subsection 2.1 we formulate the ensemble Kalman filter that we consider in this

paper along with the relevant assumptions we will use in the analysis. We state a stability theorem for the

mean field formulation of the ensemble Kalman filter in Subsection 2.2, hence Contribution 1. We leverage this

result in Subsection 2.3 to derive a theorem quantifying the error between the mean field ensemble Kalman

filter and the true filter, Contribution 2. Finally, in Subsection 2.4, we make use of the results of the previous

subsections to state a theorem quantifying the error between the (finite particle) ensemble Kalman filter itself

and the true filter, yielding Contribution 3. Various technical results, used in the proof of our three main

theorems, may be found in the appendices. We conclude with closing remarks in Section 3.

1.2 Notation

The Euclidean norm on R
n is denoted by |•|, and the induced operator norm on matrices is denoted by ‖•‖.

For a symmetric positive definite matrix S ∈ R
n×n, the notation |•|S refers to the weighted norm |S−1/2•|.
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Given an L∞ function f : Rn → R and r > 0, we let BL∞(f, r) denote the L∞ ball of radius r centered at f .

Similarly, for (f, g) ∈ L∞(Rn) × L∞(Rd) and r > 0, we denote by BL∞

(
(f, g), r

)
the L∞ ball of radius r

centered at (f, g), on the product space, i.e. the set of all (f, g) ∈ L∞(Rn)× L∞(Rd) satisfying

‖f− f‖L∞(Rn) 6 r, ‖g− g‖L∞(Rd) 6 r.

We let |•|C0,1 denote the C0,1 semi-norm, namely the Lipschitz constant.

We use symbol ⊥⊥ to denote independence of two random variables. The notation N (m,C), for m ∈ R
n

and C ∈ R
n×n, denotes the Gaussian distribution with mean m and covariance C. The notation P(Rn)

denotes the set of probability measures over Rn, while G(Rn) denotes the set of Gaussian probability measures

over Rn. Throughout this paper all probability measures have a Lebesgue density, because of our assumptions

concerning the noise structure in the dynamics model and the data acquisition model. Thus we abuse notation

by using the same symbols for probability measures and their densities. For µ ∈ P(Rn), the notation µ(x)

for x ∈ R
n refers to the Lebesgue density of µ evaluated at x, whereas µ[f ] for a function f : Rn → R is a

short-hand notation for
∫
Rn f dµ.

For a probability measure µ ∈ P(Rn), the notation Mq(µ) denotes the qth polynomial moment under the

measure µ, defined as

Mq(µ) :=

∫

Rn

|x|qµ(dx). (1.1)

The notations M(µ) and C(µ) denote respectively the mean and covariance under µ:

M(µ) = µ[x], C(µ) = µ
[(
x−M(µ)

)
⊗
(
x−M(µ)

)]
.

The notation PR(R
n) for R > 1 refers to the subset of P(Rn) of probability measures whose mean and

covariance satisfy the bound

|M(µ)| 6 R,
1

R2
In 4 C(µ) 4 R2In. (1.2)

Here In denotes the identity matrix in R
n×n, and 4 is the partial ordering defined by the convex cone

of positive semi-definite matrices. Similarly, GR(R
n) is the subset of G(Rn) of probability measures satis-

fying (1.2). We also introduce the set P2
≻0(R

du×dy ) of probability measures π with finite second moment

satisfying Cyy(π) ≻ 0.

For a probability measure π ∈ P(Rdu × R
dy) associated with random variable (u, y) ∈ R

du × R
dy we use

the notation Mu(π), My(π) for the means of the marginal distributions, and the notation Cuu(π), Cuy(π)

and Cyy(π) for the blocks of the covariance matrix C(π). That is to say,

M(π) =

(
Mu(π)

My(π)

)
, C(π) =

(
Cuu(π) Cuy(π)

Cuy(π)T Cyy(π)

)
. (1.3)

For h : Rdu → R
dy we also define Chh(π) to be the covariance of vector h(u), for u distributed according to

the marginal of π on u, and Cuh(π) to be the covariance between u and h(u).

We also introduce the Gaussian projection operator G : P(Rn) → G(Rn) given by Gµ = N
(
M(µ), C(µ)

)
.

We refer to G as a projection because Gµ is the Gaussian distribution closest to µ with respect to KL(µ‖•) [6],
where KL(µ‖ν) is the Kullback–Leibler (KL) divergence of µ from ν. Note that G defines a nonlinear mapping.

Throughout this work, we employ the following weighted total variation distance, shown to be useful in the

analysis of ensemble Kalman methods in [8]:

Definition 1.1. Let g : Rn → [1,∞) denote g(v) := 1 + |v|2. We define the weighted total variation met-

ric dg : P(Rn)× P(Rn) → R

dg(µ1, µ2) = sup
|f |6g

∣∣µ1[f ]− µ2[f ]
∣∣,

where the supremum is over all functions f : Rn → R which are bounded from above by g pointwise and in

3



absolute value.

Remark 1.2. The following remarks concern the distance dg:

• If µ1, µ2 have Lebesgue densities ρ1, ρ2, then

dg(µ1, µ2) =

∫
g(v)|ρ1(v) − ρ2(v)| dv.

• Unlike the usual total variation distance, the weighted metric in Definition 1.1 enables control of the

differences |M(µ1) − M(µ2)| and ‖C(µ1) − C(µ2)‖. This is the content of Lemma B.6, proved in the

appendix, which is used in the proof of a key auxiliary result (Lemma B.2).

1.3 Filtering Distribution

We consider the following stochastic dynamics and data model

uj+1 = Ψ(uj) + ξj , ξj ∼ N (0,Σ), (1.4a)

yj+1 = h(uj+1) + ηj+1, ηj+1 ∼ N (0,Γ). (1.4b)

Here {uj}j∈J0,JK is the unknown state, evolving in R
du , and {yj}j∈J1,JK are the observations, evolving in R

dy .

We assume that the initial state is distributed according to a Gaussian distribution u0 ∼ N (m0, C0) and that

the following independence assumption is satisfied:

u0 ⊥⊥ ξ0 ⊥⊥ · · · ⊥⊥ ξJ−1 ⊥⊥ η1 ⊥⊥ · · · ⊥⊥ ηJ . (1.5)

The filtering distribution µj is the conditional distribution of the state uj given a realization Y †
j := {y†1, . . . , y†j}

of the data process up to step j. Data Y †
j may be thought of as arising from a realization of (1.4); but the

case of model misspecification, where Y †
j does not necessarily arise from (1.4), is also of interest.

It is well-known [16, 20] that the true filtering distribution evolves according to

µj+1 = LjPµj . (1.6)

where P and Lj are maps on probability measures, referred to respectively as the prediction and analysis steps

in the data assimilation community [3]. The prediction operator P is linear and defined by the Markov kernel

associated with the stochastic dynamics (1.4a). Its action on a probability measure with Lebesgue density µ

reads

Pµ(u) =
1√

(2π)du det Σ

∫

Rdu

exp

(
−1

2
|u−Ψ(v)|2Σ

)
µ(v) dv. (1.7)

The operator Lj is a nonlinear map which formalizes the incorporation of the new datum y†j+1 using Bayes’

theorem. Its action reads

Ljµ(u) =

exp

(
−1

2

∣∣y†j+1 − h(u)
∣∣2
Γ

)
µ(u)

∫

Rdu

exp

(
−1

2

∣∣y†j+1 − h(U)
∣∣2
Γ

)
µ(U) dU

(1.8)

The operator Lj effects a reweighting of the measure to which it applies, with more weight assigned to the state

values that are consistent with the observation. It is convenient in this work to decompose the analysis map Lj

into the composition BjQ, where the operators Q : P(Rdu) → P(Rdu ×R
dy) and Bj : P(Rdu ×R

dy) → P(Rdu)

are defined by

Qµ(u, y) =
1√

(2π)dy det Γ
exp

(
−1

2

∣∣y − h(u)
∣∣2
Γ

)
µ(u). (1.9)
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and

Bjµ(u) =
µ(u, y†j+1)∫

Rdu

µ(U, y†j+1) dU

. (1.10)

The operator Q maps a probability measure with density µ into the density associated with the joint random

variable
(
U, h(U) + η

)
, where U ∼ µ is independent of η ∼ N (0,Γ). The operator Bj performs conditioning

on the data y†j+1. Map Q is linear whilst Bj is nonlinear. We may thus write (1.6) in the form

µj+1 = BjQPµj . (1.11)

2 The Ensemble Kalman Filter

In Subsection 2.1 we define the specific version of the mean field ensemble Kalman filter that we analyze

here; other versions may be found in [7] and will be amenable to similar analyses. In Subsection 2.2 we

prove our main stability theorem, showing that the error between the true filter and its Gaussian projection,

on the joint space of state and observations, may be used to control the error between the true filter and

the mean field ensemble Kalman filter. In Subsection 2.3 we prove a corollary to this theorem, establishing

that the mean field ensemble Kalman filter accurately approximates the true filter for a specific class of

non-Gaussian problems. In Subsection 2.4 we deploy the results of the two preceding subsections to state a

theorem quantifying the error between the finite particle ensemble Kalman filter itself and the true filtering

distribution. All of the theorems allow for linear growth of the vector fields defining the dynamics and the

observation processes.

2.1 The Algorithm

The ensemble Kalman filter may be derived as a particle approximation of various mean field dynamics [7].

The specific mean field ensemble Kalman filter that we study in this paper reads

ûj+1 = Ψ(uj) + ξj , ξj ∼ N (0,Σ), (2.1a)

ŷj+1 = h(ûj+1) + ηj+1, ηj+1 ∼ N (0,Γ), (2.1b)

uj+1 = ûj+1 + Cuy
(
π̂EK
j+1

)
Cyy

(
π̂EK
j+1

)−1 (
y†j+1 − ŷj+1

)
, (2.1c)

where π̂EK
j+1 = Law(ûj+1, ŷj+1) and independence of the noise terms (1.5) is still assumed to hold, as in (1.5).

See Subsection 1.2 for the definition of the covariance matrices that appear in (2.1c). We denote by µEK
j the

law of uj . In order to rewrite the evolution of µEK
j in terms of maps on probability measures we introduce,

for a given y†j+1, the map Tj : P2
≻0(R

du × R
dy ) → P(Rdu) defined by

Tjπ = T (•, •;π, y†j+1)♯π. (2.2)

Here the subscript ♯ denotes the pushforward and, for given π ∈ P(Rdu × R
dy ), z ∈ R

dy ,

T (•, •;π, z) : Rdu × R
dy → R

du ;

(u, y) 7→ u+ Cuy(π)Cyy(π)−1
(
z − y

)
. (2.3)

Evolution of the probability measure µEK
j may then be written as [7]

µEK
j+1 = TjQPµ

EK
j . (2.4)
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We now discuss the preceding map in relation to (1.11). The specific affine map T used in (2.1c) is determined

by measure π̂EK
j+1 (here equal to QPµEK

j ) and data y†j+1. The following observations explain why the law of uj

in (2.1) evolves according to (2.4):

• if uj ∼ µEK
j , then ûj+1 ∼ PµEK

j , by definition of P;

• random vector (ûj+1, ŷj+1) is distributed according to π̂EK
j+1 = QPµEK

j ;

• equation (2.1c) then implies that uj+1 ∼ TjQPµ
EK
j .

As we show in Lemma B.7, operator Tj coincides with conditioning operator Bj over the Gaussians G(Rdu ×
R

dy ) ⊂ P(Rdu × R
dy ). In the particular case where µ0 is Gaussian, which is a standing assumption in this

paper, and the operators Ψ and h are linear, the mean field ensemble Kalman filter (2.4) thus reproduces the

exact filtering distribution (1.11), given by the Kalman filter itself. The aim of this paper is to analyze the

accuracy of ensemble Kalman methods when Ψ and h are not assumed to be linear.

The ensemble Kalman filter as implemented in practice may be derived as a particle approximation of

the mean field dynamics as defined by sample paths in (2.1) or as an evolution on measures in (2.4). For

any π in the range of Q, Cyy(π) = Chh(π) + Γ and Cuy(π) = Cuh(π), using the notation introduced in, and

following, (1.3). This is since the noise in the observation component defining π is then independent of the

state component defining π. Using this the particle approximation of (2.1) takes the form

û
(i)
j+1 = Ψ

(
u
(i)
j

)
+ ξ

(i)
j , ξ

(i)
j ∼ N (0,Σ), (2.5a)

ŷ
(i)
j+1 = h

(
û
(i)
j+1

)
+ η

(i)
j+1, η

(i)
j+1 ∼ N (0,Γ), (2.5b)

u
(i)
j+1 = û

(i)
j+1 + Cuh

(
π̂EK,N
j+1

)(
Chh
(
π̂EK,N
j+1

)
+ Γ

)−1(
y†j+1 − ŷ

(i)
j+1

)
. (2.5c)

where π̂EK,N
j+1 is the empirical measure

π̂EK,N
j+1 =

1

N

N∑

i=1

δ(
û
(i)
j+1,ŷ

(i)
j+1

),

and ξ
(i)
j ∼ N (0,Σ) i.i.d. in both i and j and η

(i)
j+1 ∼ N (0,Γ) i.i.d. in both i and j; furthermore, the set of {ξ(i)j }

are independent from the set of {η(i)j+1}. Choosing to express the particle approximation of the covariance

in observation space through Chh and Γ ensures invertibility, provided Γ is invertible. From the particles

evolving according to the dynamics in (2.5) we define the empirical measure

µEK,N
j+1 =

1

N

N∑

i=1

δ
u
(i)
j+1

, (2.6)

whose evolution describes the ensemble Kalman filter.

Our theorems in Subsections 2.2 and 2.3 concern relationships between the true filter (1.11) and the mean

field ensemble Kalman filter (2.4). We study the setting in which Ψ and h are not assumed to be linear,

so that the true filter is not Gaussian, in Subsection 2.2; and then we study small perturbations away from

the Gaussian setting that arise when the vector fields Ψ and h are close to affine in Subsection 2.3. The

theorem in Subsection 2.4 concerns the relationship between the true filter (1.11) and the ensemble Kalman

filter (2.6). In this subsection, we combine existing analysis on the convergence of the ensemble Kalman filter

to the mean field ensemble Kalman filter with the results from the previous subsections to state and prove an

error estimate between the ensemble Kalman filter and the true filter in the non-linear setting. Specifically,

we study the case of a vector field Ψ that is a bounded perturbation away from affine and an affine vector

field h. To state our theorems we will use the following set of assumptions:

Assumption H. There exists positive constants κy, κΨ, κh, ℓh, σ and γ such that the data {y†j}, the vector

fields (Ψ, h) and the covariances (Σ,Γ) satisfy:

6



(H1) data Y † = {y†j}Jj=1 lies in set By ⊂ R
KJ defined by

By :=

{
Y † ∈ R

KJ : max
j∈J1,JK

|y†j | 6 κy

}
;

(H2) function Ψ: Rdu → R
du satisfies

∣∣Ψ(u)
∣∣ 6 κΨ

(
1 + |u|

)
for all u ∈ R

du ;

(H3) function h : Rdu → R
dy satisfies

∣∣h(u)
∣∣ 6 κh

(
1 + |u|

)
for all u ∈ R

du ;

(H4) function h : Rdu → R
dy satisfies |h|C0,1 6 ℓh < ∞;

(H5) covariance matrices Σ and Γ are positive definite: Σ < σIdu
and Γ < γIdy

for positive σ and γ.

Assumption V. The vector fields (Ψ, h) are affine, i.e. they satisfy the following

(V1) The function Ψ: Rdu → R
du satisfies Ψ(u) := Mu+ b, for some M ∈ R

du×du and b ∈ R
du .

(V2) The function h : Rdu → R
dy satisfies h(u) := Hu+ w, for some H ∈ R

dy×du and w ∈ R
dy .

2.2 Stability Theorem: Mean Field Ensemble Kalman Filter

Roughly speaking, our stability theorem states that if the true filtering distributions (µj)j∈J0,J−1K are close

to Gaussian, after appropriate lifting to the state/data space, then the distribution µEK
j given by the mean

field ensemble Kalman filter (2.4) is close to the true filtering distribution µj given by (1.11) for all j ∈ J0, JK.

Theorem 2.1 (Stability: Mean Field Ensemble Kalman Filter). Assume that the probability mea-

sures (µj)j∈J0,JK and (µEK
j )j∈J0,JK are obtained respectively from the dynamical systems (1.11) and (2.4),

initialized at the same Gaussian probability measure µ0 = µEK
0 ∈ G(Rdu). That is,

µj+1 = BjQPµj , µEK
j+1 = TjQPµ

EK
j .

If Assumption H holds, then there exists C = C
(
Mmax{3+du,4+dy}(µ0), κy, κΨ, κh, ℓh,Σ,Γ, J

)
such that

dg(µ
EK
J , µJ) 6 C max

j∈J0,J−1K
dg(QPµj ,GQPµj).

Proof of Theorem 2.1 below relies on the following auxiliary results, all proved in Appendix B.

1. For any probability measure µ with finite first and second order polynomial momentsM1(µ) andM2(µ),

the means of the probability measures Pµ and QPµ are bounded from above, and their covariances are

bounded both from above and from below. The constants in these bounds depend only on the parameters

κΨ, κh, Σ,Γ and on M1(µ) and M2(µ). See Lemmas B.1 and B.2.

2. Let (µj)j∈J1,JK and (µEK
j )j∈J1,JK denote the probability measures obtained respectively from the dynam-

ical systems (1.11) and (2.4), initialized at the same Gaussian measure µ0 = µEK
0 ∈ G(Rdu). Then for

any q ∈ N, there exist constants Mq,M
EK
q < ∞ depending on Mq(µ0), κy, κΨ, κh,Σ,Γ, J so that

max
j∈J0,JK

Mq(µj) 6 Mq and max
j∈J0,JK

Mq

(
µEK
j

)
6 MEK

q .

See Lemmas B.3 and B.5. This will facilitate use of the stability results from items 6 and 7.

3. For any Gaussian measure µ ∈ G(Rdu × R
dy ), it holds that Bjµ = Tjµ. See Lemma B.7 and also [7].

4. The map P is Lipschitz on P(Rdu) for the metric dg, with a Lipschitz constant LP depending on the

parameters κΨ and Σ. See Lemma B.8.
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5. The map Q is Lipschitz on P(Rdu) for the metric dg, with a Lipschitz constant LQ depending on the

parameters κh and Γ. See Lemma B.9.

6. The map Bj satisfies, for any π ∈ {QPµ : µ ∈ P(Rdu) and M2(µ) < ∞} ⊂ P(Rdu × R
dy), the bound

∀j ∈ J0, JK, dg(BjGπ,Bjπ) 6 CBdg(Gπ, π),

where CB = CB

(
M2(µ), κy, κΨ, κh,Σ,Γ

)
. This statement concerns the stability of the Bj operator

between a measure and its Gaussian approximation. See Lemma B.10.

7. The map Tj satisfies the following bound: for all R > 1, it holds for all probability measures π ∈
PR(R

du × R
dy ) and p ∈ {QPµ : µ ∈ P(Rdu) and Mmax{3+du,4+dy}(µ) < ∞} ⊂ P(Rdu × R

dy ) that

∀j ∈ J0, JK, dg(Tjπ,Tjp) 6 LT dg(π, p),

for a constant LT = LT

(
R,Mmax{3+du,4+dy}(µ), κy , κΨ, κh,Σ,Γ

)
. This statement may be viewed as a

local Lipschitz continuity result in the case where the second argument of dg is restricted to the range

of QP. See Lemma B.11.

Proof of Theorem 2.1. In what follows we refer to the preceding itemized list to clarify the proof. For no-

tational simplicity it is helpful to define the following measure of the difference between the true filtering

distribution and its Gaussian projection:

ε := max
j∈J0,J−1K

dg(QPµj ,GQPµj). (2.7)

Assume throughout the following that j ∈ J0, J − 1K. The proof rests on the following use of the triangle

inequality:

dg(µ
EK
j+1, µj+1) = dg

(
TjQPµ

EK
j ,BjQPµj

)

6 dg
(
TjQPµ

EK
j ,TjQPµj

)
+ dg (TjQPµj ,TjGQPµj) + dg (BjGQPµj ,BjQPµj) . (2.8a)

We have used the fact that TjGQPµj = BjGQPµj by Item 3 (Lemma B.7). Item 2 (Lemmas B.3 and B.5)

shows that, for any q ∈ N, there exist constants Mq,M
EK
q < ∞ depending on Mq(µ0), κy, κΨ, κh,Σ,Γ, J so

that

max
j∈J0,JK

Mq(µj) 6 Mq and max
j∈J0,JK

Mq

(
µEK
j

)
6 MEK

q .

Therefore by Item 1 (Lemma B.2), there is a constant R > 1, depending on the covariance matrices Σ, Γ, the

bounds κΨ and κh from Assumption H, and the moment bounds M2 and MEK
2 , such that for any j ∈ J0, J−1K

it holds that QPµj ,QPµ
EK
j ∈ PR(R

du × R
dy ). By Items 4, 5 and 7 (Lemmas B.8, B.9 and B.11), the first

term in (2.8a) satisfies

dg
(
TjQPµ

EK
j ,TjQPµj

)
6 LT

(
R,Mmax{3+du,4+dy}

)
LQLPdg

(
µEK
j , µj

)
, (2.9)

where, for conciseness, we omitted the dependence of the constants on κy, κΨ, κh,Σ,Γ.

Since it holds that GQPµj ∈ GR(R
du ×R

dy) by definition of R, the second term in (2.8a) may be bounded

using Item 7 (Lemma B.11) and the definition in (2.7) of ε:

dg (TjQPµj ,TjGQPµj) 6 LT

(
R,Mmax{3+du,4+dy}

)
dg (QPµj ,GQPµj) 6 LT

(
R,Mmax{3+du,4+dy}

)
ε.

Finally, the third term in (2.8a) can be bounded using item 6 (Lemma B.10) and the definition in (2.7) of ε:

dg (BjGQPµj ,BjQPµj) 6 CBdg (GQPµj ,QPµj) 6 CBε.
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Therefore, letting ℓ = LT

(
R,Mmax{3+du,4+dy}

)
LQLP, we have shown that

dg(µ
EK
j+1, µj+1) 6 ℓdg(µ

EK
j , µj) +

(
LT

(
R,Mmax{3+du,4+dy}

)
+ CB

)
ε

and the conclusion follows from the discrete Grönwall lemma, using the fact that µEK
0 = µ0.

2.3 Error Estimate: Mean Field Ensemble Kalman Filter

Theorem 2.1 shows that the mean field ensemble Kalman filter error can be made arbitrarily small if the true

filter is arbitrarily close to its Gaussian projection, in state-observation space. This “closeness to Gaussian”

assumption can be satisfied in our setting of unbounded vector fields by considering small perturbations of

affine vector fields, stated and proved in Proposition 2.2. Combining Proposition 2.2 with Theorem 2.1 gives

an error estimate for the mean field ensemble Kalman filter, yielding Theorem 2.3.

Proposition 2.2 (Approximation Result). Suppose that the data Y † = {y†j}Jj=1 and the matrices (Σ,Γ)

satisfy Assumptions (H1) and (H5). Fix κΨ, κh > 0 and assume that Ψ0 : R
du → R

du and h0 : R
du →

R
dy are affine functions and hence satisfy Assumptions (V1) and (V2), respectively, while also satisfy-

ing Assumptions (H2) and (H3) with κΨ, κh. Let (µj)j∈J0,JK denote the true filtering distribution asso-

ciated with functions (Ψ, h), initialized at the Gaussian probability measure µ0 = N (m0, C0) ∈ G(Rdu).

Then, for any J ∈ Z
+, there is C = C(m0, C0, κy, κΨ, κh,Σ,Γ, J) > 0 such that for all ε ∈ [0, 1] and

all (Ψ, h) ∈ BL∞

(
(Ψ0, h0), ε

)
, it holds that

max
j∈J0,J−1K

dg(GQPµj ,QPµj) 6 Cε. (2.10)

Proof. In what follows (µ0
j )j∈J0,JK and (µj)j∈J0,JK denote the true filtering distributions associated with func-

tions (Ψ0, h0) and (Ψ, h), respectively, initialized at the same Gaussian measure N (m0, C0). Furthermore, we

let P0 and Q0 denote the kernel integral operators (1.7) and (1.9) defined by the specific vector fields (Ψ0, h0).

By Lemma B.3, the filtering distributions have bounded second moments. Let

R = max
j∈J0,J−1K

(∣∣∣y†j+1

∣∣∣
2

, 1 +M2

(
µ0
j

)
, 1 +M2

(
µj

))
.

Throughout this proof, C denotes a constant whose value is irrelevant in the context, depends only on the

constants m0, C0, κy, κΨ, κh,Σ,Γ, j (in particular, it does not depend on ε, Ψ, h), and may change from line

to line. Fix j ∈ J0, J − 1K. Note that the filtering distribution defined by (Ψ0, h0) is Gaussian. Then, using

the triangle inequality and Gaussianity of Q0P0µ
0
j we obtain

dg(GQPµj ,QPµj) 6 dg(GQPµj ,GQ0P0µ
0
j) + dg(GQ0P0µ

0
j ,QPµj)

= dg(GQPµj ,GQ0P0µ
0
j) + dg(Q0P0µ

0
j ,QPµj).

We note that since the filters have bounded first and second order polynomial moments, by Lemmas B.1

and B.2 we may deduce that there exists R > 1 such that

∀j ∈ J0, J − 1K, P0µ
0
j ,∈ PR(R

du), QPµj ,Q0P0µ
0
j ∈ PR(R

du × R
dy ). (2.11)

The second part of this display allows direct application of Lemma C.1, which concerns the local Lipschitz

continuity result for the Gaussian projection operator G, to obtain

dg(GQPµj ,QPµj) 6 Cdg(Q0P0µ
0
j ,QPµj)

6 Cdg(Q0P0µ
0
j ,QP0µ

0
j) + Cdg(QP0µ

0
j ,QPµj).
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Using (C.2) from Lemma C.2, noting that since P0µ
0 ∈ PR(R

du) by (2.11) it holds that M2(P0µ
0
j) 6 duR,

and using the Lipschitz continuity of Q (Lemma B.9) we deduce that

dg(GQPµj ,QPµj) 6 Cε(1 + duR) + Cdg(P0µ
0
j ,Pµj)

6 Cε(1 + duR) + Cdg
(
P0µ

0
j ,Pµ

0
j

)
+ Cdg

(
Pµ0

j ,Pµj

)

6 Cε(1 + duR) + CεR+ Cdg(µ
0
j , µj),

where the second inequality follows by the triangle inequality and the third inequality follows from bound-

ing dg(P0µ
0
j ,Pµj) using (C.1) from Lemma C.2 and from the Lipschitz continuity of P (Lemma B.9). The

statement then follows from Lemma C.3.

Theorem 2.3 (Error Estimate: Mean Field Ensemble Kalman Filter). Assume that the probability

measures (µj)j∈J0,JK and (µEK
j )j∈J0,JK are obtained respectively from the dynamical systems (1.11) and (2.4)

initialized at the same Gaussian probability measure µ0 = µEK
0 ∈ G(Rdu). That is,

µj+1 = BjQPµj , µEK
j+1 = TjQPµ

EK
j .

Suppose that the data Y † = {y†j}Jj=1 and the matrices (Σ,Γ) satisfy Assumptions (H1) and (H5). Fix κΨ, κh, ℓh >

0 and let the vector fields Ψ0, h0 be affine functions satisfying Assumptions (V1) and (V2), respectively,

while also satisfying Assumptions (H2) and (H3) with κΨ, κh. Then for all ε ∈ [0, 1], there exists a con-

stant C = C
(
Mq(µ0), κy, κΨ, κh, ℓh,Σ,Γ, J

)
, where q := max{3 + du, 4 + dy}, such that for any (Ψ, h) ∈

BL∞

(
(Ψ0, h0), ε

)
with h satisfying Assumption (H4), it holds that

dg(µ
EK
J , µJ) 6 Cε.

Proof. Since Assumption H is satisfied, it is possible to apply the result of Theorem 2.1 to deduce that there

exists C = C
(
Mmax{3+du,4+dy}(µ0), J, κy, κΨ, κh, ℓh,Σ,Γ

)
such that

dg(µ
EK
J , µJ) 6 C max

j∈J0,J−1K
dg(QPµj ,GQPµj).

Additionally, since (Ψ, h) ∈ BL∞

(
(Ψ0, h0), ε

)
for Ψ0, h0 satisfying Assumptions (V1) and (V2), and moreover

Assumptions (H2) and (H3), we may apply Proposition 2.2 to deduce the result.

2.4 Error Estimate: Finite Particle Ensemble Kalman Filter

In this subsection, we combine the results from the work in [17] with stability Theorem 2.1, together with

approximation Theorem 2.3, to derive a quantitative error estimate between the finite particle ensemble

Kalman filter and the true filter in the non-linear setting. In order to define an appropriate metric we

introduce the following class of vector fields.

Assumption P1. The vector field φ : Rdu → R satisfies for any u, v ∈ R
du the condition

|φ(u)− φ(v)| 6 Lφ|u− v|
(
1 + |u|ς + |v|ς

)
,

for some ς > 0 and for some Lφ > 0. We note that for any such φ, there exists Rφ > 0 which depends on Lφ

so that |φ(u)| 6 Rφ

(
1 + |u|ς+1

)
for any u ∈ R

du .

We will prove various technical lemmas under the Assumption P1; these may be useful beyond the confines

of this paper. However for our theorems we use the more specific Assumption P2 which enables the control

of first and second moments.
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Assumption P2. The vector field φ : Rdu → R satisfies for any u, v ∈ R
du the condition

|φ(u)− φ(v)| 6 Lφ|u− v|
(
1 + |u|+ |v|

)
,

for some Lφ > 0. Note that for any such φ, there exists Rφ > 0 depending on Lφ so that |φ(u)| 6 Rφ

(
1+ |u|2

)

for any u ∈ R
du .

Theorem 2.4 (Error Estimate: Finite Particle Ensemble Kalman Filter). Assume that the prob-

ability measures (µj)j∈J0,JK and (µEK,N
j )j∈J0,JK are obtained respectively from the dynamical systems (1.11)

and (2.6), initialized at the Gaussian probability measure µ0 ∈ G(Rdu) and at the empirical measure µEK,N
0 =

1
N

∑N
i=1 δu(i)

0
for u

(i)
0 ∼ µ0 i.i.d. samples, respectively. That is,

µj+1 = BjQPµj , µEK,N
j+1 =

1

N

N∑

i=1

δ
u
(i)
j+1

,

where u
(i)
j+1 evolve according to the iteration in (2.5). Suppose that the data Y † = {y†j}Jj=1 and the matri-

ces (Σ,Γ) satisfy Assumptions (H1) and (H5). Assume that the vector field h is linear, and let κh, ℓh be positive

constants such that Assumptions (H3) and (H4) are satisfied. Furthermore, let the vector field Ψ0 be an affine

function satisfying Assumption (V1) as well as Assumption (H2) with κΨ > 0. Additionally, let ℓΨ > 0 be a

constant. Then, for all ε ∈ [0, 1], it holds that for any Ψ ∈ BL∞

(
Ψ0, ε

)
satisfying |Ψ|C0,1 6 ℓΨ < ∞, there ex-

ists a constant C = C
(
Mq(µ0), Rφ, Lφ, κy, κΨ, κh, ℓh, ℓΨ,Σ,Γ, J

)
, where q := max{3 + du, 4 + dy, 16 · 3J−1},

such that (
E

∣∣∣µEK,N
J [φ]− µJ [φ]

∣∣∣
2
)1/2

6 C
( 1√

N
+ ε
)
,

for any φ satisfying Assumption P2.

The proof presented hereafter relies on the following elements.

1. We apply the triangle inequality in order to employ two distinct results concerning the mean field

ensemble Kalman filter. The proof thus involves quantifying the error between finite particle ensemble

Kalman filter and the mean field ensemble Kalman filter, as discussed in Item 2, and the error between

the mean field ensemble Kalman filter and the true filter, as discussed in Item 3.

2. The work in [17] establishes a Monte Carlo error estimate, with rate of 1/
√
N , between the empirical mea-

sure µEK,N , representing the particle ensemble Kalman filter, and the measure µEK describing the evolu-

tion of the mean field ensemble Kalman filter. In particular, this holds under Assumptions (H1) and (H5)

on the data and covariances of the noise processes, the linearity of the vector field h and Assumption (H2)

on Ψ with the additional assumption that |Ψ|C0,1 6 ℓΨ < ∞. In Lemma D.1 we mimic the proof of [17,

Proposition 4.4] and [17, Theorem 5.2] to gain insight into the dependence of the constant prefactor

multiplying 1/
√
N on the parameters of the Gaussian initial condition and the number of steps J .

3. We assume that the data Y † = {y†j}Jj=1 and the matrices (Σ,Γ) satisfy Assumptions (H1) and (H5),

and assume that h satisfies Assumption (V2). Furthermore, we assume Ψ satisfies Assumption (H2)

and Ψ ∈ BL∞(Ψ0, ε) with Ψ0 satisfying Assumption (V1). These assumptions allow us to apply the the

result from Theorem 2.3.

Proof. Recall that µEK
j is the mean field ensemble Kalman filter, here initialized at the same Gaussian µ0 as

the true filter. We fix a function φ satisfying Assumption P2 and apply the triangle inequality to deduce that

(
E

∣∣∣µEK,N
J [φ]− µJ [φ]

∣∣∣
2
)1/2

6

(
E

∣∣∣µEK,N
J [φ]− µEK

J [φ]
∣∣∣
2
)1/2

+

(
E

∣∣∣µEK
J [φ]− µJ [φ]

∣∣∣
2
)1/2

. (2.12)
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Since µEK
J and µJ are deterministic probability measures, it holds that

(
E

∣∣∣µEK
J [φ]− µJ [φ]

∣∣∣
2
)1/2

=
∣∣∣µEK

J [φ]− µJ [φ]
∣∣∣.

Since φ satisfies Assumption P2, it follows that

∣∣∣µEK
J [φ]− µJ [φ]

∣∣∣ 6 sup
|φ|6Rφ(1+|u|2)

∣∣∣µEK
J [φ]− µJ [φ]

∣∣∣ = Rφ · dg
(
µEK
J , µJ

)
.

We note that Assumption H holds as h is assumed to be affine; since we additionally assume that Ψ ∈
BL∞

(
Ψ0, ε

)
, where Ψ0 is an affine function, we may apply the result of Theorem 2.3 to deduce that

dg
(
µEK
J , µJ

)
6 Cε, (2.13)

where C is a constant depending on Mmax{3+du,4+dy}(µ0), J, κy, κΨ, κh, ℓh,Σ,Γ.

The fact that h is assumed to be linear and the additional assumption that |Ψ|C0,1 6 ℓΨ < ∞ allows us

to apply the result of Lemma D.1, so that

(
E

∣∣∣µEK,N
J [φ]− µEK

J [φ]
∣∣∣
2
)1/2

6
C√
N

, (2.14)

where C is a constant depending on M16·3J−1(µ0), J, Rφ, Lφ, κy, κΨ, κh,Σ,Γ. In view of (2.12), combin-

ing (2.13) and (2.14) yields the desired result.

3 Discussion and Future Directions

In this paper we have presented the first analysis, in the setting of a filtering problem defined by nonlinear

state space dynamics, quantifying the error between the empirical measure obtained by the ensemble Kalman

filter and the true filtering distribution. The analysis for the EnKF outlined is based on the proof methodology

developed for particle filters in [19]. This work extends the initial results of [8] to a setting of practical interest,

for which dynamical models and observation operators are allowed to be unbounded and nonlinear. The work

opens a new avenue for analysis in the quantitative understanding of the performance of the ensemble Kalman

methodology applied to nonlinear problems. To this end, we identify the following avenues for further work.

1. As surveyed in [7], the ensemble Kalman filtering methodology may be used for solving inverse problems

and for sampling; it is of interest to extend this analysis to the ensemble Kalman based inversion

algorithms outlined in that paper.

2. There is a substantial body of literature studying the continuous time limits of ensemble Kalman meth-

ods; see [7] for a review. Performing analysis analogous to that presented here, but in the continuous

time setting, would be of interest.

3. For large scale applications, there has been recent wide interest in replacing the dynamical model Ψ,

representing the solution operator obtained via a high fidelity numerical solver, with a cheap to evaluate

surrogate. Multifidelity ensemble methods [4] allow the use of a small number of particles evolved

according to the high fidelity solver and a large number evolved according to the surrogate. Extending

our error analysis to incorporate the effect of model error would be of interest in this context.
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A Auxiliary Results

We first state and prove a standard result that will be used throughout the paper.

Lemma A.1. Let X be a random variable taking values in R
du with finite second moment, and let m := E[X ].

Then it holds that

E

[
(X −m)(X −m)T

]
= E

[
XXT

]
−mmT (A.1)

and

∀a ∈ R
du , E

[
(X − a)(X − a)T

]
< E

[
(X −m)(X −m)T

]
. (A.2)

Proof. It holds that

E

[
(X − a)(X − a)T

]
= E

[(
(X −m) + (m− a)

)(
(X −m) + (m− a)

)T]

= E

[
(X −m)(X −m)T

]
+ (m− a)(m− a)T.

Setting a = 0, we obtain (A.1). The inequality (A.2) follows by noting that the second term in the last

expression is positive semidefinite.

Lemma A.2. Denote by g(•;m,S) the Lebesgue density of N (m,S) and by Sn
α the set of symmetric n × n

matrices M satisfying
1

α
In 4 M 4 αIn. (A.3)

Then for all n ∈ N
+ and α > 1, there exists Ln,α > 0 such that for all parameters (c1,m1, S1) ∈ R×R

n ×Sn
α

and (c2,m2, S2) ∈ R× R
n × Sn

α ,

‖h‖∞ 6 Ln,α‖h‖1, h(y) = c1g(y;m1, S1)− c2g(y;m2, S2). (A.4)

Proof. The lemma as stated may be found in [8, Lemma 14], where a complete proof is given.

Lemma A.3. Let P and Q denote the operators on probability measures given respectively in (1.7) and (1.9).

Let Assumptions (H2) to (H5) be satisfied and suppose that µ ∈ P(Rdu) satisfies, for some q > 0, the moment

bound

Mq(µ) =

∫

Rdu

|x|q µ(dx) < ∞. (A.5)

Then there is L = L(Mq(µ), κΨ, κh, ℓh,Σ,Γ) > 0 such that for all (u1, u2, y) ∈ R
du×R

du×R
dy , the probability

density of p = QPµ satisfies

∣∣p(u1, y)− p(u2, y)
∣∣ 6 L|u1 − u2|min

{
max

{
1

1 + |u1|q
,

1

1 + |u2|q
}
,

1

1 + |y|q
}
. (A.6)

Proof. Throughout this proof, C denotes a constant whose value is irrelevant in the context, depends only

on Mq(µ), κΨ, κh, ℓh,Σ,Γ, and may change from line to line. Sometimes we write the dependence explicitly

to indicate which parameters are involved.
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Step 1. Bounding the density of Pµ. We first rewrite

(
1 + |u|q

)
Pµ(u) = C(Σ)

∫

Rdu

exp

(
−1

2
|u−Ψ(v)|2Σ

)
1 + |u|q
1 + |v|q

(
1 + |v|q

)
µ(dv).

We note that

S(Σ, κΨ) := sup
(u,v)∈Rdu×Rdu

exp

(
−1

2
|u−Ψ(v)|2Σ

)
1 + |u|q
1 + |v|q < ∞;

this may be seen observing that

exp

(
−1

2
|u−Ψ(v)|2Σ

)
1 + |u|q
1 + |v|q 6 exp

(
−1

2
|u−Ψ(v)|2Σ

)
(1 + 2q−1|u−Ψ(v)|q) + 2q−1|Ψ(v)|q

1 + |v|q . (A.7)

The first term on the righthand side of (A.7) may be bounded by noting that 1 + 2q−1e−x2

xq is uniformly

bounded in x ∈ R; on the other hand the second term may be bounded by applying Assumption (H2). Now,

using (A.5), we obtain that

Pµ(u) 6
C
(
Σ, κΨ,Mq(µ)

)

1 + |u|q . (A.8)

Step 2. Establishing Lipschitz continuity of u 7→ Pµ(u). Since g(x) := e−x2

has derivative 2x e−x2

and |x e−x2 | 6 e−
x2

2 for all x ∈ R, it holds for some ξ between |a| and |b| that

∀(a, b) ∈ R× R,
∣∣∣e−a2 − e−b2

∣∣∣ = |b− a| |g′(ξ)| 6 2|b− a|
(
e−

a2

2 +e−
b2

2

)
. (A.9)

Using this inequality with a2 = 1
2 |u1 −Ψ(v)|2Σ and b2 = 1

2 |u2 −Ψ(v)|2Σ, the triangle inequality, and equivalence

of norms, we deduce that, for all (u1, u2, v) ∈ R
du × R

du × R
du ,

∣∣∣∣exp
(
−1

2
|u1 −Ψ(v)|2Σ

)
− exp

(
−1

2
|u2 −Ψ(v)|2Σ

)∣∣∣∣

6 C|u2 − u1|
(
exp

(
−1

4
|u1 −Ψ(v)|2Σ

)
+ exp

(
−1

4
|u2 −Ψ(v)|2Σ

))

for constant C = C(Σ). Integrating out the v variable with respect to µ we obtain that

|Pµ(u1)− Pµ(u2)| 6 C|u1 − u2|
∫

Rdu

exp

(
−1

4
|u1 −Ψ(v)|2Σ

)
µ(dv)

+ C|u1 − u2|
∫

Rdu

exp

(
−1

4
|u2 −Ψ(v)|2Σ

)
µ(dv).

The integrals on the right-hand side can be bounded as in the first step, which leads to the inequality

∀(u1, u2) ∈ R
du × R

du , |Pµ(u1)− Pµ(u2)| 6 C|u1 − u2|max

{
1

1 + |u1|q
,

1

1 + |u2|q
}
. (A.10)

Step 3. Obtaining a coarse estimate. In view of the elementary inequality (A.9) and the assumed

Lipschitz continuity of h, it holds that, for constant C = C(Γ, ℓh)

∣∣∣N
(
h(u1),Γ

)
(y)−N

(
h(u2),Γ

)
(y)
∣∣∣

6 C|u1 − u2| exp
(
−1

4
|y − h(u1)|2Γ

)
+ C|u1 − u2| exp

(
−1

4
|y − h(u2)|2Γ

)
. (A.11)
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Using the decomposition

p(u1, y)− p(u2, y) = Pµ(u1)N
(
h(u1),Γ

)
(y)− Pµ(u2)N

(
h(u2),Γ

)
(y)

=
(
Pµ(u1)− Pµ(u2)

)
N
(
h(u1),Γ

)
(y)

+ Pµ(u2)
(
N
(
h(u1),Γ

)
(y)−N

(
h(u2),Γ

)
(y)
)
.

and employing (A.8), (A.10) and (A.11), we deduce that

|p(u1, y)− p(u2, y)| 6 C|u1 − u2|max

{
1

1 + |u1|q
,

1

1 + |u2|q
}

×max

{
exp

(
−1

4
|y − h(u1)|2Γ

)
, exp

(
−1

4
|y − h(u2)|2Γ

)}
. (A.12)

Note that, for the function h(u) = u, the quantity multiplying |u1 − u2| on the right-hand does not tend

to 0 along the sequence
(
u
(n)
1 , u

(n)
2 , y(n)

)
= (0, n, n). For our purposes in this work, we need the finer

estimate (A.6); establishing this bound is the aim of the next two steps.

Step 4. Bounding the density p(u, y). Recall that p(u, y) = Pµ(u)N
(
h(u),Γ

)
(y). We prove in this step

the inequality

p(u, y) 6 Cmin

{
1

1 + |u|q ,
1

1 + |y|q
}
, (A.13)

or equivalently

sup
(u,y)∈Rdu×R

dy

p(u, y) max {1 + |u|q, 1 + |y|q} < ∞.

To this end, note that

p(u, y)max {|u|q, |y|q} = Pµ(u)N
(
h(u),Γ

)
(y)max {|u|q, |y|q}

6 Pµ(u)N
(
h(u),Γ

)
(y)|u|q + Pµ(u)N

(
h(u),Γ

)
(y)|y|q.

The first term is bounded uniformly by Step 1, estimate (A.8). For the second term, we use that

|y|q 6 2q−1
∣∣h(u)

∣∣q + 2q−1
∣∣y − h(u)

∣∣q, (A.14)

to obtain

Pµ(u)N
(
h(u),Γ

)
(y)|y|q 6 CPµ(u)N

(
h(u),Γ

)
(y)
(
|h(u)|q + |y − h(u)|q

)
.

The first term on the right-hand side is bounded uniformly, again by Step 1, estimate (A.8), and us-

ing Assumption (H3). The second term is also bounded uniformly because the function x 7→ N (0,Γ)(x)|x|q
is uniformly bounded in x, by a value depending only on Γ and q.

Step 5. Obtaining the estimate (A.6). The claimed inequality is equivalent to

sup
u1,u2,y

∣∣p(u1, y)− p(u2, y)
∣∣

|u1 − u2|
max

{
min {1 + |u1|q, 1 + |u2|q} , 1 + |y|q

}
< ∞,

where the supremum is over Rdu × R
du × R

dy . By (A.12), it holds that

sup
u1,u2,y

∣∣p(u1, y)− p(u2, y)
∣∣

|u1 − u2|
min {1 + |u1|q, 1 + |u2|q} < ∞,
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so it remains to show that

sup
u1,u2,y

∣∣p(u1, y)− p(u2, y)
∣∣

|u1 − u2|
|y|q < ∞.

By (A.13), it is clear that the supremum is uniformly bounded if restricted to the set |u1 − u2| > 1, so it

suffices to show that

sup
(u,δ,y)∈Rdu×B(0,1)×R

dy

∣∣p(u, y)− p(u+ δ, y)
∣∣

|δ| |y|q < ∞,

where B(0, 1) is the open ball of radius 1 centered radius at the origin in R
du . We use again (A.14) in order

to bound

∣∣p(u, y)− p(u+ δ, y)
∣∣

|δ| |y|q 6 C

∣∣p(u, y)− p(u+ δ, y)
∣∣

|δ|
∣∣h(u)

∣∣q

+ C

∣∣p(u, y)− p(u+ δ, y)
∣∣

|δ| |y − h(u)|q.

The first term is bounded uniformly by (A.12) and the assumption that
∣∣h(u)

∣∣ 6 κh

(
1 + |u|

)
. To conclude

the proof, it remains to show that

sup
(u,δ,y)∈Rdu×B(0,1)×R

dy

C

∣∣p(u, y)− p(u+ δ, y)
∣∣

|δ| |y − h(u)|q < ∞. (A.15)

By (A.12) it holds that

∣∣p(u, y)− p(u+ δ, y)
∣∣

6
C|δ|

1 + |u|q max

{
exp

(
−1

4
|y − h(u)|2Γ

)
, exp

(
−1

4
|y − h(u+ δ)|2Γ

)}
.

6
C|δ|

1 + |u|q exp

(
−1

8
|y − h(u)|2Γ +

1

4

∣∣∣h(u)− h(u+ δ)
∣∣∣
2

Γ

)
.

In the last line we used the inequality |a+ b|2 >
1
2 |a|2 − |b|2, which follows from Young’s inequality. Since the

function x 7→ e−
x2

8 +C xq is bounded uniformly in x ∈ R and by Assumption (H4), the bound (A.15) easily

follows, concluding the proof.

B Technical Results for Theorem 2.1

We show moment bounds in Appendix B.1, we recall that on Gaussian measures the action of the condi-

tioning map and the Kalman transport map are equivalent in Appendix B.2, and we prove stability results

in Appendix B.3.

B.1 Moment Bounds

Lemma B.1 (Moment Bounds). Let µ be a probability measure on R
du with bounded first and second

order polynomial moments M1(µ),M2(µ) < ∞. Under Assumption H, it holds that

∣∣M(Pµ)
∣∣ 6 κΨ

(
1 +M1(µ)

)
, Σ 4 C(Pµ) 4 Σ+ 2κ2

Ψ

(
1 +M2(µ)

)
Idu

. (B.1)
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Proof. Using the definition of P in (1.7), it holds that

M(Pµ) =

∫

Rdu

uPµ(u) du =
1√

(2π)du detΣ

∫

Rdu

∫

Rdu

u exp

(
−1

2

∣∣u−Ψ(v)
∣∣2
Σ

)
µ(dv) du

=

∫

Rdu

Ψ(v)µ(dv),

where application of Fubini’s theorem yields the last equality. The first inequality in (B.1) then follows

from Assumption (H2). For the second inequality in (B.1), we first note that for any a, v ∈ R
du it holds that

∫

Rdu

(u− a)⊗ (u− a) exp
(
−1

2
|u−Ψ(v)|2Σ

)
du

<

∫

Rdu

(
u−Ψ(v)

)
⊗
(
u−Ψ(v)

)
exp
(
−1

2
|u−Ψ(v)|2Σ

)
du; (B.2)

this follows from Lemma A.1 by noting that Ψ(v) is the mean under the Gaussian probability measureN
(
Ψ(v),Σ

)
.

Letting now a be the mean under the measure Pµ, we observe that, by conditioning on v and using (B.2),

C(Pµ) =
∫

Rdu

(u − a)⊗ (u − a)Pµ(u) du

=
1√

(2π)du detΣ

∫

Rdu

(∫

Rdu

(u− a)⊗ (u− a) exp
(
−1

2
|u−Ψ(v)|2Σ

)
du

)
µ(dv)

<
1√

(2π)du detΣ

∫

Rdu

(∫

Rdu

(
u−Ψ(v)

)
⊗
(
u−Ψ(v)

)
exp
(
−1

2
|u−Ψ(v)|2Σ

)
du

)
µ(dv)

=

∫

Rdu

Σµ(dv) = Σ,

hence C(Pµ) < Σ. On the other hand, using Lemma A.1 again and noting that, by the Cauchy-Schwarz

inequality, wwT 4 (wTw)Idu
for any vector w ∈ R

du , we deduce that

C(Pµ) 4
∫

Rdu

u⊗ uPµ(u) du

=
1√

(2π)du detΣ

∫

Rdu

∫

Rdu

u⊗ u exp

(
−1

2
|u−Ψ(v)|2Σ

)
µ(dv) du

=

∫

Rdu

(
Ψ(v)⊗Ψ(v) + Σ

)
µ(dv)

4 Σ+

(∫

Rdu

|Ψ(v)|2µ(dv)
)
Idu

4 Σ + 2κ2
Ψ

(
1 +M2(µ)

)
Idu

, (B.3)

which yields the desired result.

Lemma B.2. Let µ be a probability measure on R
du with bounded first and second order polynomial moments

M1(µ),M2(µ) < ∞. Under Assumption H, it holds that

∣∣Mu(QPµ)
∣∣ 6 κΨ

(
1 +M1(µ)

)
, (B.4a)

∣∣My(QPµ)
∣∣ 6 κh

√
2
(
1 + tr(Σ) + 2κ2

Ψ

(
1 +M2(µ)

))
. (B.4b)
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Furthermore, it holds that

C(QPµ) 4
(
4κ2

Ψ

(
1 +M2(µ)

)
Idu

+ 2Σ 0du×dy

0dy×du
4κ2

h

(
1 + tr(Σ) + 2κ2

Ψ

(
1 +M2(µ)

))
Idy

+ Γ

)
, (B.5a)

C(QPµ) <
γ ·min

{
2σ, γ + 4κ2

h

(
1 + tr(Σ) + 2κ2

Ψ

(
1 +M2(µ)

))}

2γ + 8κ2
h

(
1 + tr(Σ) + 2κ2

Ψ

(
1 +M2(µ)

)) Idu+dy
. (B.5b)

Proof. The inequalities (B.4a) and (B.4b) follow from Assumption H and the fact that

M(QPµ) =

(
M(Pµ)

Pµ[h]

)
. (B.6)

Indeed, from Lemma B.1 we know that
∣∣M(Pµ)

∣∣ 6 κΨ

(
1 + M1(µ)

)
, which leads by Jensen’s inequality

to (B.4a). To deduce (B.4b), we note that

∣∣Pµ[h]
∣∣2 6

∫

Rdu

|h(u)|2 Pµ(du)

6 2κ2
h + 2κ2

h

∫

Rdu

|u|2 Pµ(du) (B.7a)

= 2κ2
h + 2κ2

h

∫

Rdu

(
|Ψ(v)|2 + tr(Σ)

)
µ(dv), (B.7b)

where (B.7a) follows by applying Assumption (H3) and Young’s inequality and (B.7b) follows by applying

the properties of the Gaussian transition density. The result then follows by applying Assumption (H2).

We now turn our attention to establishing inequality (B.5a). To this end, let φ : Rdu → R
du+dy define the

map φ(u) =
(
u, h(u)

)
, and let φ♯ denote the associated pushforward map on measures. We note that

C(QPµ) = C(φ♯Pµ) +

(
0du×du

0du×dy

0dy×du
Γ

)
=

(
Cuu(φ♯Pµ) Cuy(φ♯Pµ)

Cyu(φ♯Pµ) Cyy(φ♯Pµ) + Γ

)
. (B.8)

It holds for any (a, b) ∈ R
du × R

dy that

2

(
aaT 0du×dy

0dy×du
bbT

)
−
(
a

b

)
⊗
(
a

b

)
=

(
a

−b

)
⊗
(

a

−b

)
< 0(du+dy)×(du+dy).

Hence, it follows that (
a

b

)
⊗
(
a

b

)
4 2

(
aaT 0du×dy

0dy×du
bbT

)
,

which enables to deduce, using Lemmas A.1 and B.1 and Assumption H, that

C(φ♯Pµ) 4

∫

Rdu

(
u

h(u)

)
⊗
(

u

h(u)

)
Pµ(u) du

4 2

∫

Rdu

(
uuT 0du×dy

0dy×du
h(u)h(u)T

)
Pµ(u) du

4 2

(
Σ+ 2κ2

Ψ

(
1 +M2(µ)

)
Idu

0du×dy

0dy×du
2κ2

h

(
1 + tr(Σ) + 2κ2

Ψ

(
1 +M2(µ)

))
Idy

)
, (B.9)

where we used (B.3) and the calculation resulting in (B.7a) in the last inequality. Noting this inequality in

combination with (B.8) yields the upper bound (B.5a). To establish the lower bound (B.5b), we first note
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that by the Cauchy–Schwarz inequality, for any π ∈ P(Rdu × R
dy) and all (a, b) ∈ R

du × R
dy it holds that

∣∣aTCuy(π)b
∣∣ =

∫

Rdu×R
dy

(
aT
(
u−Mu(π)

))(
bT
(
y −My(π)

))
π(dudy)

6

√
aTCuu(π)a

√
bTCyy(π)b.

Hence, by Young’s inequality, we deduce that for all ε ∈ (0, 1) and for all (a, b) ∈ R
du × R

dy it holds that

(
a

b

)T

C(φ♯Pµ)

(
a

b

)
> (1− ε)aTCuu(φ♯Pµ)a−

(
1

ε
− 1

)
bTCyy(φ♯Pµ)b

> (1− ε)aTΣa−
(
1

ε
− 1

)
Pµ
[
|h|2

]
,

where we applied (B.1) and the bound Cyy(φ♯Pµ) 4 Pµ
[
|h|2
]
Idy

in the last inequality. We then use (B.8) to

deduce that

(
a

b

)T

C(QPµ)
(
a

b

)
> (1 − ε)aTΣa−

(
1

ε
− 1

)
Pµ
[
|h|2

]
+ bTΓb

> (1 − ε)σ|a|2 +
(
γ −

(
1

ε
− 1

)
Pµ
[
|h|2
])

|b|2.

Taking ε =
2Pµ
[
|h|2
]

γ+2Pµ
[
|h|2
] , so that the coefficient of |b|2 is γ

2 , we obtain

(
a

b

)T

C(QPµ)
(
a

b

)
>

γσ

γ + 2Pµ
[
|h|2
] |a|2 + γ

2
|b|2 > min

{
γσ

γ + 2Pµ
[
|h|2
] , γ

2

}
(
|a|2 + |b|2

)
. (B.10)

Since this is true for any (a, b) ∈ R
du × R

dy , it follows that

C(QPµ) < γ
min

{
2σ, γ + 2Pµ

[
|h|2
]}

2γ + 4Pµ
[
|h|2
] Idu+dy

.

In order to finally obtain (B.5b), we use (B.7b) to deduce that

Pµ
[
|h|2
]
6 2κ2

h

(
1 + tr(Σ) + 2κ2

Ψ

(
1 +M2(µ)

))
,

which concludes the proof.

Lemma B.3 (Moment Bound for the True Filtering Distribution). Assume that the probability

measures (µj)j∈J0,JK are obtained from the dynamical system (1.11) initialized at the probability measure

µ0 ∈ P(Rdu) with bounded qth order polynomial moment Mq(µ0) < ∞. If Assumption H holds then there

exists C = C
(
Mq(µ0), J, κy, κΨ, κh,Σ,Γ

)
such that

max
j∈J0,JK

Mq(µj) 6 C.

Proof. We have µj+1 = BjQPµj , for j ∈ J0, J − 1K. Equivalently, using the notation from (1.6), it holds that

µj+1 = LjPµj for each j ∈ J0, J − 1K. Hence, we note that

µj+1 =

exp

(
−1

2

∣∣y†j+1 − h(u)
∣∣2
Γ

)
Pµj(u)

∫

Rdu

exp

(
−1

2

∣∣y†j+1 − h(U)
∣∣2
Γ

)
Pµj(U) dU

. (B.11)
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It is readily observed that

Mq(µj+1) =

∫

Rdu

|u|q exp
(
−1

2

∣∣y†j+1 − h(u)
∣∣2
Γ

)
Pµj(u)du

∫

Rdu

exp

(
−1

2

∣∣y†j+1 − h(U)
∣∣2
Γ

)
Pµj(U) dU

6

∫

Rdu

|u|q Pµj(u)du

∫

Rdu

exp

(
−1

2

∣∣y†j+1 − h(U)
∣∣2
Γ

)
Pµj(U) dU

. (B.12)

We first bound from above the numerator of (B.12); indeed, note that

∫

Rdu

|u|qPµj(u)du =

∫

Rdu

|u|q
(∫

Rdu

exp

(
−1

2
|u−Ψ(v)|2Σ

)
µj(dv)

)
du

=

∫

Rdu

(∫

Rdu

|u|q exp
(
−1

2
|u−Ψ(v)|2Σ

)
du

)
µj(dv) (B.13a)

6 C

∫

Rdu

(
1 + |Ψ(v)|q

)
µj(dv) (B.13b)

6 C
(
1 +Mq(µj)

)
, (B.13c)

where (B.13a) follows from Fubini’s theorem, the inequality (B.13b) from properties of Gaussians, and (B.13c)

from application of Assumption H. We note that in (B.13c) the constant C depends on κΨ,Σ. Now, to obtain

a lower bound on the denominator of (B.12), we observe that

∫

Rdu

exp

(
−1

2

∣∣y†j+1 − h(u)
∣∣2
Γ

)
Pµj(u) du > exp

(
−1

2

∫

Rdu

∣∣y†j+1 − h(u)
∣∣2
Γ
Pµj(u)

)

> C exp

(
−
∥∥Γ−1

∥∥
∫

Rdu

|h(u)|2Pµj(u)

)

> C exp
(
−4κ2

hκ
2
Ψ

∥∥Γ−1
∥∥M2(µj)

)
, (B.14)

where the first inequality follows by application of Jensen’s inequality and (B.14) follows from the calculation

leading to (B.7b). We note that the C in (B.14) is a constant depending on κy, κΨ, κh,Σ,Γ. Therefore, by

combining (B.14) with (B.13c), it is possible to deduce from (B.12) that

Mq(µj+1) 6 C exp
(
4κ2

hκ
2
Ψ

∥∥Γ−1
∥∥M2(µj)

)(
1 +Mq(µj)

)
, (B.15)

where C is a constant depending on κh, κΨ, κy,Σ,Γ.

Remark B.4. • In some situations, the bound (B.15) is overly pessimistic. For example, if h satis-

fies Assumption (H3) as well as the inequality
∣∣h(u) − y†j+1

∣∣ > cℓ (|u| − 1) for all u ∈ R
du for some

positive cℓ, then by [12, Proposition A.3] for all q > 0 there is C = C(cℓ, q) such that

∀µ ∈ P(Rdu), Ljµ
[
|x|q
]
6 Cµ

[
|x|q
]
.

In this setting, better control of the moments can be achieved than in (B.15).

• In obtaining (B.15), we did not use any information on Pµj other than the moment bound (B.13c). With

this approach, the presence of an exponential in the bound (B.15) is to be expected. Indeed, consider the

case where du = 2, dy = 1, Γ = 1
4 , y

†
j+1 = 0, and

h(u) = u1, u =

(
u1

u2

)
, µR =

x2
Rδ(R,0) + δ(0,xR)

x2
R + 1

, xR = e
R2

2 .
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Then, as R → ∞, µR

[
|u|2
]
∼ R2, while

LjµR

[
|u|2
]
=

∫
R2(u

2
1 + u2

2) exp
(
−2u2

1

)
µR(du1du2)∫

R2 exp (−2u2
1) µR(du1du2)

=
x2
R e−2R2

R2 + x2
R

x2
R e−2R2 +1

∼ x2
R = eR

2

.

Thus, for large R, the second moment of LjµR is approximately equal to the exponential of the second

moment of µR.

Lemma B.5 (Moment Bound for the Approximate Filtering Distribution). Assume that the proba-

bility measures (µEK
j )j∈J0,JK are obtained from the dynamical system (2.4) initialized at the probability measure

µEK
0 ∈ P(Rdu) with bounded qth polynomial order moment Mq

(
µEK
0

)
< ∞. If Assumption H holds then there

exists C = C
(
Mq

(
µEK
0

)
, J, κy, κΨ, κh,Σ,Γ

)
such that

max
j∈J0,JK

Mq

(
µEK
j

)
6 C.

Proof. We begin by noting that µEK
j+1 = TjQPµ

EK
j , for j ∈ J0, J − 1K. Thus

Mq

(
µEK
j+1

)
=

∫

Rdu

|u|qTjQPµ
EK
j (du)

=

∫

Rdu×R
dy

∣∣∣T (u, y;QPµEK
j , y†j+1)

∣∣∣
q

QPµEK
j (u, y) dy du

=

∫

Rdu×R
dy

∣∣∣u+ Cuy(QPµEK
j )Cyy(QPµEK

j )−1
(
y†j+1 − y

)∣∣∣
q

QPµEK
j (u, y) dy du

6 C

∫

Rdu×R
dy

|u|q QPµEK
j (u, y) dy du

+ C
(
1 +M2

(
µEK
j

))2q
·
(
1 +

∫

Rdu×R
dy

|y|q QPµEK
j (u, y) dy du

)
, (B.16)

where in (B.16) the constant C depends on κy, κΨ, κh,Σ,Γ and where the dependence on the second moment

of µEK
j in the second term is derived from (B.5a) and (B.5b). By using the definitions of Q and P and by

applying reasoning analogous to (B.13c), we deduce that

Mq

(
µEK
j+1

)
6 C

(
1 +M2

(
µEK
j

))2q
·
(
1 +Mq

(
µEK
j

))
,

6 C
(
1 +Mq

(
µEK
j

))2q+1

where C is a constant depending on κy, κΨ, κh,Σ,Γ. Iteration gives the desired result.

Lemma B.6. For µ1, µ2 ∈ P(Rn) with finite second moments, it holds that

∣∣M(µ1)−M(µ2)
∣∣ 6 1

2
dg(µ1, µ2),

∥∥C(µ1)− C(µ2)
∥∥ 6

(
1 +

1

2
|M(µ1) +M(µ2)|

)
dg(µ1, µ2).

Proof. The lemma as stated may be found in [8, Lemma 20], where a complete proof is given.

B.2 Action of Tj on Gaussians

Lemma B.7 (BjG = TjG). Fix y†j+1 ∈ R
dy and let π be a Gaussian measure over Rdu×R

dy . Then the proba-

bility measure Bjπ, with Bj defined in (1.10), coincides with the probability measure Tjπ = T (•, •;π, y†j+1)♯π,

where T is defined in (2.3).

Proof. The lemma as stated may be found in [8, Lemma 21], where a complete proof is given.
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B.3 Stability Results

Lemma B.8 (Map P is Lischitz). Suppose that Ψ and Σ satisfy Assumptions (H2) and (H5), respectively.

Then it holds that

∀(µ, ν) ∈ P(Rdu)× P(Rdu), dg(Pµ,Pν) 6
(
1 + 2κ2

Ψ + tr(Σ)
)
dg(µ, ν).

Proof. By definition of P, it holds that

Pµ(du) =

∫

Rdu

p(v, du)µ(dv), where p(v, du) :=
exp

(
− 1

2 |u−Ψ(v)|2Σ
)

√
(2π)du det Σ

du.

Let g(u) = 1+|u|2, as in Definition 1.1, and take any function f : Rdu → R such that |f | 6 g. Assumption (H2)

implies that

∣∣∣∣
∫

Rdu

f(u) p(v, du)

∣∣∣∣ 6
∫

Rdu

g(u) p(v, du) = 1 + |Ψ(v)|2 + tr(Σ)

6 1 + 2κ2
Ψ + 2κ2

Ψ|v|2 + tr(Σ) 6
(
1 + 2κ2

Ψ + tr(Σ)
)
g(v).

By Fubini’s theorem, it follows that

∣∣∣Pµ[f ]− Pν[f ]
∣∣∣ =

∣∣∣∣
∫

Rdu

(∫

Rdu

f(u) p(v, du)

)(
µ(dv)− ν(dv)

)∣∣∣∣

=
(
1 + 2κ2

Ψ + tr(Σ)
)∣∣∣µ[g]− ν[g]

∣∣∣ 6
(
1 + 2κ2

Ψ + tr(Σ)
)
dg(µ, ν),

which concludes the proof.

Lemma B.9 (Map Q is Lipschitz). Suppose that h and Γ satisfy Assumptions (H3) and (H5), respectively.

Then it holds that

∀(µ, ν) ∈ P(Rdu)× P(Rdu), dg(Qµ,Qν) 6
(
1 + 2κ2

h + tr(Γ)
)
dg(µ, ν). (B.17)

Proof. Take f : Rdu × R
dy → R satisfying |f | 6 g, where g(u, v) = 1 + |u|2 + |y|2. By Fubini’s theorem, it

holds that

Qµ[f ]− Qν[f ] =

∫

Rdu

Πf(u)
(
µ(du)− ν(du)

)
, where Πf(u) :=

∫

R
dy

f(u, y)N
(
h(u),Γ

)
(dy).

The function Πf : Rdu → R satisfies

∀u ∈ R
du , |Πf(u)| 6

∫

R
dy

∣∣f(u, y)
∣∣N
(
h(u),Γ

)
(dy)

6

∫

R
dy

(
1 + |u|2 + |y|2

)
N
(
h(u),Γ

)
(dy)

= 1 + |u|2 +
∣∣h(u)

∣∣2 + tr(Γ) 6
(
1 + 2κ2

h + tr(Γ)
) (

1 + |u|2
)
.

Therefore, we deduce that ∣∣∣Qµ[f ]− Qν[f ]
∣∣∣ 6 (1 + 2κ2

h + tr(Γ)
)
dg(µ, ν),

which concludes the proof.

Lemma B.10 (Stability of Map Bj). Under Assumption H, for any probability measure µ ∈ P(Rdu) with
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M2(µ) < ∞ there exists a constant CB = CB

(
M2(µ), κy , κΨ, κh,Σ,Γ

)
> 0 such that

∀j ∈ J0, JK, dg(BjGQPµ,BjQPµ) 6 CBdg(GQPµ,QPµ).

Proof. For ease of exposition we write y† = y†j+1. We define the y-marginal densities

αµ(y) :=

∫

Rdu

GQPµ(u, y) du , βµ(y) :=

∫

Rdu

QPµ(u, y) du .

It holds that

dg(BjGQPµ,BjQPµ) =

∫

Rdu

(
1 + |u|2

) ∣∣∣∣
GQPµ(u, y†)

αµ(y†)
− QPµ(u, y†)

βµ(y†)

∣∣∣∣ du

6
1

αµ(y†)

∫

Rdu

(
1 + |u|2

) ∣∣GQPµ(u, y†)− QPµ(u, y†)
∣∣ du

+

∣∣∣∣
αµ(y

†)− βµ(y
†)

αµ(y†)βµ(y†)

∣∣∣∣
∫

Rdu

(
1 + |u|2

)
QPµ(u, y†) du. (B.18)

Step 1: bounding αµ(y
†) and βµ(y

†) from below. The distribution αµ(•) is Gaussian with mean

My(QPµ) and covariance

Cyy(QPµ) = Γ + Pµ
[
h(•)⊗ h(•)

]
− Pµ

[
h(•)

]
⊗ Pµ

[
h(•)

]
, (B.19)

which by Assumption H is bounded from below by Γ and from above by Γ+2κ2
h

(
1+tr(Σ)+2κ2

Ψ

(
1+M2(µ)

))
Idy

.

To deduce this we have again made use of the fact that aaT 4 (aTa)Id for any vector a ∈ R
du , by the Cauchy-

Schwarz inequality. Therefore, noting that (B.4b) implies that |My(QPµ)| 6 C for a constant C depending

only on the parameters M2(µ), κh, κΨ,Σ, we obtain

αµ(y) =
1√

(2π)du det
(
Cyy(QPµ)

) exp
(
−1

2

(
y −My(QPµ)

)TCyy(QPµ)−1
(
y −My(QPµ)

))

>

exp
(
− 1

2

(
|y|+ C

)2∥∥Γ−1
∥∥
)

√
(2π)dy det

(
Γ + 2κ2

h

(
1 + tr(Σ) + 2κ2

Ψ

(
1 +M2(µ)

))
Idy

) . (B.20)

The function βµ can be bounded from below using similar reasoning. Indeed, by Assumption H we have that

for all y ∈ R
dy ,

βµ(y) =

∫

Rdu

QPµ(u, y) du =

∫

Rdu

exp
(
− 1

2

(
y − h(u)

)T
Γ−1

(
y − h(u)

))

√
(2π)dy det(Γ)

Pµ(u) du

>

C exp
(
−
∥∥Γ−1

∥∥|y|2 −
∥∥Γ−1

∥∥κ2
h

∫
Rdu

|u|2Pµdu
)

√
(2π)dy det(Γ)

(B.21a)

> C exp
(
−
∥∥Γ−1

∥∥|y|2
)
, (B.21b)

where we applied Jensen’s inequality in (B.21a) and the constant in (B.21b) depends on M2(µ), κh, κΨ,Σ,Γ.

Step 2: bounding the first term in (B.18). We begin by noting that for fixed u ∈ R
du , the functions

y 7→ QPµ(u, y) and y 7→ GQPµ(u, y) are Gaussians up to constant factors. The covariance matrix of the

former is Γ; it is possible to deduce that the covariance of the latter is given by

Cyy(QPµ)− Cyu(QPµ)Cuu(QPµ)−1Cuy(QPµ), (B.22)
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where we have used the formula for the covariance of the conditional distribution of a Gaussian. We note

that Cyu(QPµ)Cuu(QPµ)−1Cuy(QPµ) is positive semi-definite, hence by (B.19) and its upper bound it follows

that the matrix (B.22) is bounded from above by 2κ2
h

(
1 + tr(Σ) + 2κ2

Ψ

(
1 +M2(µ)

))
Idy

+ Γ. With the same

notation as in (B.8), we find that

Cyy(QPµ)− Cyu(QPµ)Cuu(QPµ)−1Cuy(QPµ) (B.23)

= Γ +
(
Cyy(φ♯Pµ)− Cyu(φ♯Pµ)Cuu(φ♯Pµ)

−1Cuy(φ♯Pµ)
)
< Γ; (B.24)

here, to deduce that the term in brackets is positive semi-definite, we observe that the term is the Schur com-

plement of the block Cuu(φ♯Pµ) of the matrix C(φ♯Pµ). Hence, (B.22) is bounded from below by Γ. Therefore

the integral in the first term of (B.18) may be bounded from above by applying the result of Lemma A.2

in Appendix A with parameter α = α
(
M2(µ), κh, κΨ,Σ,Γ

)
, yielding

∫

Rdu

(
1 + |u|2

)
|GQPµ(u, y)− QPµ(u, y)| du

6 C

∫

R
dy

∫

Rdu

(
1 + |u|2

) ∣∣GQPµ(u, y)− QPµ(u, y)
∣∣ du dy

6 C

∫

R
dy

∫

Rdu

(
1 + |u|2 + |y|2

) ∣∣GQPµ(u, y)− QPµ(u, y)
∣∣du dy

= Cdg(GQPµ,QPµ), (B.25)

where C depends on M2(µ), κh, κΨ,Σ,Γ.

Step 3: bounding the second term in (B.18). By (B.25), it holds that

∣∣αµ(y)− βµ(y)
∣∣ =

∣∣∣∣
∫

Rdu

GQPµ(u, y)− QPµ(u, y) du

∣∣∣∣

6

∫

Rdu

(
1 + |u|2

) ∣∣GQPµ(u, y)− QPµ(u, y)
∣∣du 6 Cdg(GQPµ,QPµ).

Now, since y 7→ QPµ(u, y)/Pµ(u) is a Gaussian density with covariance Γ, which is bounded uniformly from

above by
(
(2π)dy det(Γ)

)−1/2
, we also have that

∫

Rdu

(
1 + |u|2

)
QPµ(u, y) du = βµ(y) +

∫

Rdu

|u|2QPµ(u, y) du

6 βµ(y) +

∫

Rdu

|u|2Pµ(u)√
(2π)dy det(Γ)

du

= βµ(y) +
tr
(
C(Pµ)

)
+ |M(Pµ)|2√

(2π)dy det(Γ)
.

We proceed by noting the result of Lemma B.1, which gives that the first and second moments of Pµ are

bounded from above by a constant which depends on M2(µ), κΨ,Σ.

Step 4: concluding the proof. Putting together the above bounds, we conclude that

dg(BjGQPµ,BjQPµ) 6
C
(
M2(µ), κΨ, κh,Σ,Γ

)

αµ(y
†
j+1)

(
1 +

1

βµ(y
†
j+1)

)
dg(GQPµ,QPµ).

Applying the inequalities (B.20) and (B.21b) yields the desired result.

Lemma B.11 (Stability of Map Tj). Suppose that Assumption H is satisfied. Then, for all R > 1, it holds

that for any π ∈ PR(R
du ×R

dy) and p ∈ {QPµ : µ ∈ P(Rdu) and Mmax{3+du,4+dy}(µ) < ∞} ⊂ P(Rdu ×R
dy),
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there is LT := LT

(
R,Mmax{3+du,4+dy}(µ), κy, κΨ, κh, ℓh,Σ,Γ

)
, such that

∀j ∈ J1, JK, dg(Tjπ,Tjp) 6 LT dg(π, p).

Proof. By the results of Lemma B.2, it holds that the probability measure QPµ belongs to PR̃(R
du × R

dy)

for some R̃ > 1. Define

r = max
{
R, R̃, κy

}
.

We denote by T π and T p the affine maps corresponding to evaluation of covariance information at the

probability measures π and p = QPµ, respectively. Namely, letting K = C(π), S = C(p) and y† = y†j+1, we

write

T
π(u, y) = u+Aπ(y

† − y), Aπ := KuyK
−1
yy ,

T
p(u, y) = u+Ap(y

† − y), Ap := SuyS
−1
yy .

By a straightforward application of the triangle inequality, it holds that

dg(Tjπ,Tjp) 6 dg(T
π
♯ π,T π

♯ p) + dg(T
π
♯ p,T p

♯ p). (B.26)

Before bounding each term on the right-hand side of (B.26), we derive some inequalities that we will use in

the proof. It holds that

‖Aπ‖ 6 ‖Kuy‖‖K−1
yy ‖ 6 ‖K‖‖K−1‖ 6 r4, (B.27)

and similarly for Ap. This can easily be seen by noting that the matrix norm (induced by the Euclidean

vector norm) of any submatrix is bounded from above by the norm of the full matrix. Using this bound again

and assuming without loss of generality that r > 1, we deduce that

‖Aπ −Ap‖ = ‖KuyK
−1
yy − SuyS

−1
yy ‖ 6 ‖(Kuy − Suy)K

−1
yy ‖+ ‖Suy

(
K−1

yy − S−1
yy

)
‖

6 r2
(
‖Kuy − Suy‖+ ‖K−1

yy − S−1
yy ‖

)

= r2
(
‖Kuy − Suy‖+ ‖K−1

yy (Syy −Kyy)S
−1
yy ‖

)

6 r2
(
‖Kuy − Suy‖+ ‖K−1

yy ‖‖Syy −Kyy‖‖S−1
yy ‖

)

6 2r6‖K − S‖ 6 2r6(1 + 2r) dg(π, p), (B.28)

where the last line follows from the result in Lemma B.6.

Bounding the first term in (B.26). Let f : Rdu → R be a function such that |f | 6 g with g(u) = 1+ |u|2.
It follows from the definition of the pushforward measure that

∣∣T π
♯ π[f ]− T

π
♯ p[f ]

∣∣ =
∣∣π[f ◦ T

π]− p[f ◦ T
π ]
∣∣.

For any (u, y) ∈ R
du × R

dy , we have that

∣∣f ◦ T
π(u, y)

∣∣ =
∣∣∣f
(
u+Aπ

(
y† − y

))∣∣∣ 6 g
(
u+Aπ

(
y† − y

))

= 1 +
∣∣u+Aπ(y

† − y)
∣∣2 6 1 + 3|u|2 + 3|Aπy

†|2 + 3|Aπy|2

6 3
(
1 + |Aπy

†|2
)
max

{
1, ‖Aπ‖2

}
g(u, y).

Hence, by (B.27) we conclude that

dg(T
π
♯ π,T π

♯ p) 6 3
(
1 + r10

)
r8 dg(π, p). (B.29)
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Bounding the second term in (B.26). Let f : Rdu → R again be a function such that the inequality |f | 6
g, with g(u) = 1 + |u|2, is satisfied. We note that

∣∣∣T π
♯ p[f ]− T

p
♯ p[f ]

∣∣∣ =
∣∣∣p[f ◦ T

π]− p[f ◦ T
p]
∣∣∣ =

∣∣∣p[f ◦ T
π − f ◦ T

p]
∣∣∣.

The right-hand side may be rewritten as

∣∣∣p[f ◦ T
π − f ◦ T

p]
∣∣∣ =

∣∣∣∣
∫

R
dy

∫

Rdu

f
(
u+Aπ

(
y† − y

))
− f

(
u+Ap

(
y† − y

))
p(u, y) du dy

∣∣∣∣.

A change of variable yields

∫

R
dy

∫

Rdu

(
f(u+Aπz)− f(u+Apz)

)
p(u, y† − z) du dz

=

∫

R
dy

∫

Rdu

f(v)
(
p(v −Aπz, y

† − z)− p(v −Apz, y
† − z)

)
dv dz. (B.30)

Since Mmax{3+du,4+dy}(µ) < ∞ by assumption, from Lemma A.3 it follows that

∣∣∣p(v − Aπz, y
† − z)− p(v − Apz, y

† − z)
∣∣∣

6 C|Aπz −Apz| ·max

{
1

1 + |v −Aπz|max{3+du,4+dy}
,

1

1 + |v −Apz|max{3+du,4+dy}

}
·

· 1

1 + |y† − z|max{3+du,4+dy}
.

We apply this inequality to bound for fixed z ∈ R
dy the inner integral in (B.30). Keeping only the terms that

depend on v, we obtain that

∫

Rdu

|f(v)|max

{
1

1 + |v −Aπz|max{3+du,4+dy}
,

1

1 + |v −Apz|max{3+du,4+dy}

}
dv

6

∫

Rdu

|f(v)|
1 + |v −Aπz|max{3+du,4+dy}

dv +

∫

Rdu

|f(v)|
1 + |v −Apz|max{3+du,4+dy}

dv.

Since |f(v)| 6 1 + |v|2, proceeding by substitution gives that this expression is bounded from above by

C
(
1 + |Aπz|2 + |Apz|2

)
6 Cr8

(
1 + |z|2

)
,

where the last inequality follows from (B.27). The remaining integral in the z variable can be bounded in a

similar way:

dg(T
π
♯ p,T p

♯ p) 6 Cr8
∫

R
dy

1 + |z|2
1 + |y† − z|max{3+du,4+dy}

|Aπz −Apz| dz

6 Cr11‖Aπ −Ap‖ 6 Cr18dg(π, p), (B.31)

where the last inequality follows from (B.28). Combining (B.29) and (B.31) yields the desired result.

C Technical Results for Approximation Result in Proposition 2.2

In Lemma C.1 we recall the local Lipschitz continuity result for the operator G established in [8]. Lemma C.3

establishes that the filtering distribution is a locally Lipschitz function of (Ψ, h), viewed as a mapping from

Banach space equipped with the ‖ · ‖∞ norm into the space of probability measures metrized using the dg

distance. This is preceded by Lemma C.2 which establishes bounds used to prove this Lipschitz property. The

two lemmas do not require Ψ0 and h0 to be affine, but simply require that they both satisfy Assumptions (H2)
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and (H3). This is in contrast with the more specific setting of Proposition 2.2, which imposes an affine

assumption on (Ψ0, h0).

Lemma C.1. For all R > 1, there exists LG = LG(R, n) so that for any µ1, µ2 ∈ PR(R
n) it holds that

dg(Gµ1,Gµ2) 6 LG(R, n) · dg(µ1, µ2).

Proof. The lemma as stated may be found in [8, Lemma 28], where a complete proof is given.

Lemma C.2. Suppose that the matrices (Σ,Γ) satisfy Assumption (H5). Fix κΨ, κh > 0 and assume

that Ψ0 : R
du → R

du and h0 : R
du → R

dy are functions satisfying Assumptions (H2) and (H3). Then the

following statements hold:

• There is a constant Cp = Cp(κΨ,Σ) such that for all ε ∈ [0, 1] and all (Ψ, h) ∈ BL∞

(
(Ψ0, h0), ε

)
,

∀µ ∈ P(Rdu), dg(P0µ,Pµ) 6 Cpε ·
(
1 +M2(µ)

)
(C.1)

• There is a constant Cq = Cq(κh,Γ) such that for all ε ∈ [0, 1] and all (Ψ, h) ∈ BL∞

(
(Ψ0, h0), ε

)
,

∀µ ∈ P(Rdu), dg(Q0µ,Qµ) 6 Cqε ·
(
1 +M2(µ)

)
(C.2)

• There is Cb = Cb(κh,Γ) such that for all y† ∈ R
dy , all ε ∈ [0, 1], all (Ψ, h) ∈ BL∞

(
(Ψ0, h0), ε

)
, and all

probability measures (µ0, µ) ∈ P(Rdu)× P(Rdu),

dg

(
B(Q0µ0; y

†),B(Qµ, y†)
)
6 exp(CbR)

(
ε+ dg(µ0, µ)

)
, (C.3)

where R ∈ [1,∞] is given by

R = max
{∣∣y†

∣∣2 , 1 +M2(µ0), 1 +M2(µ)
}
.

Here P0 and Q0 denote the maps associated to (Ψ0, h0), and P and Q are the maps associated to (Ψ, h).

Proof. Throughout this proof, Cp denotes a constant depending only on (κΨ,Σ), and Cq is a constant that

depends only on (κh,Γ). Both may change from line to line.

Proof of (C.1). It holds that

P0µ(u)− Pµ(u) = Cp

∫

Rdu

exp

(
−1

2

∣∣u−Ψ0(v)
∣∣2
Σ

)
− exp

(
−1

2

∣∣u−Ψ(v)
∣∣2
Σ

)
µ(dv).

By the elementary inequality (A.9), the integrand on the right-hand side is bounded in absolute value by

2
∣∣Ψ0(v)−Ψ(v)

∣∣
(
exp

(
−1

4

∣∣u−Ψ0(v)
∣∣2
Σ

)
+ exp

(
−1

4

∣∣u−Ψ(v)
∣∣2
Σ

))
.

By Young’s inequality, it holds that |a+ b|2 >
1
2 |a|2 − |b|2, and so this is bounded by

4
∣∣Ψ0(v)−Ψ(v)

∣∣
(
exp

(
−1

8

∣∣u−Ψ0(v)
∣∣2
Σ
+

1

4

∣∣Ψ0(v)−Ψ(v)
∣∣2
Σ

))
6 Cpε exp

(
−1

8

∣∣u−Ψ0(v)
∣∣2
Σ

)
.
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It follows, by Fubini’s theorem, that

dg(P0µ,Pµ) 6 Cpε

∫

Rdu

∫

Rdu

(
1 + |u|2

)
exp

(
−1

8

∣∣u−Ψ0(v)
∣∣2
Σ

)
duµ(dv)

6 Cpε

∫

Rdu

(
1 +

∣∣Ψ0(v)
∣∣2
)
µ(dv) 6 Cpε (1 + κ2

Ψ)

∫

Rdu

(
1 + |v|2

)
µ(dv).

This concludes the proof of (C.1).

Proof of (C.2). Recall that

dg(Q0µ,Qµ) = Cq

∫

Rdu

∫

R
dy

g(u, y)

(
exp

(
−1

2

∣∣y − h0(u)
∣∣2
Γ

)
− exp

(
−1

2

∣∣y − h(u)
∣∣2
Γ

))
dy µ(du),

where g(u, y) = 1 + |u|2 + |v|2. Using the same reasoning as above we obtain that

∣∣∣∣exp
(
−1

2

∣∣y − h0(u)
∣∣2
Γ

)
− exp

(
−1

2

∣∣y − h(u)
∣∣2
Γ

)∣∣∣∣ 6 Cqε exp

(
−1

8

∣∣y − h0(u)
∣∣2
Γ

)
. (C.4)

Therefore, we deduce that

dg(Q0µ,Qµ) 6 Cqε

∫

Rdu

(
1 +

∣∣h0(u)
∣∣2
)
µ(du) 6 Cqε(1 + κ2

h)

∫

Rdu

(
1 + |u|2

)
µ(du),

which proves (C.2).

Proof of (C.3). We assume for simplicity that µ0 and µ have densities, but note that this is not required.

Let ν0 = B(Q0µ0; y
†) and ν = B(Qµ, y†) and recall that

ν0(u) =
exp

(
− 1

2

∣∣y† − h0(u)
∣∣2
Γ

)
µ0(u)

∫
Rdu

exp
(
− 1

2

∣∣y† − h0(U)
∣∣2
Γ

)
µ0(U) dU

=:
f0(u)∫

Rdu
f0(U) dU

=:
f0(u)

Z0

and similarly

ν(u) =
exp

(
− 1

2

∣∣y† − h(u)
∣∣2
Γ

)
µ(u)

∫
Rdu

exp
(
− 1

2

∣∣y† − h(U)
∣∣2
Γ

)
µ(U) dU

=:
f(u)∫

Rdu
f(U) dU

=:
f0(u)

Z
.

Note that

dg(ν0, ν) =

∫

Rdu

(
1 + |u|2

) ∣∣∣∣
f0(u)

Z0
− f(u)

Z

∣∣∣∣ du

=
1

Z

∫

Rdu

(
1 + |u|2

)∣∣f0(u)− f(u)
∣∣ du+

∣∣∣∣
1

Z0
− 1

Z

∣∣∣∣
∫

Rdu

(
1 + |u|2

)
f0(u) du.

In order to bound the first term, we write

f0(u)− f(u) =

(
exp

(
−1

2

∣∣y† − h0(u)
∣∣2
Γ

)
− exp

(
−1

2

∣∣y† − h(u)
∣∣2
Γ

))
µ0(u)

+ exp

(
−1

2

∣∣y† − h(u)
∣∣2
Γ

)(
µ0(u)− µ(u)

)
. (C.5)

Using (C.4), we obtain that

∣∣f0(u)− f(u)
∣∣ 6 Cqε exp

(
−1

8

∣∣y† − h0(u)
∣∣2
Γ

)
µ0(u) + exp

(
−1

2

∣∣y† − h(u)
∣∣2
Γ

) ∣∣∣µ0(u)− µ(u)
∣∣∣, (C.6)
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and so

∫

Rdu

(
1 + |u|2

)∣∣f0(u)− f(u)
∣∣du 6 CqεR+ dg(µ0, µ).

Therefore it holds that

dg(ν0, ν) 6 R
(
Cqε

Z
+

|Z0 − Z|
Z0Z

)
+

1

Z
dg(µ0, µ).

By (C.6) it holds that

|Z0 − Z| 6
∫

Rdu

|f0(U)− f(U)| dU 6 Cqε+ dg(µ0, µ),

and so we obtain finally

dg(ν0, ν) 6 R
(
1

Z
+

1

Z0Z

)(
Cqε+ dg(µ0, µ)

)
.

Furthermore Z0 is bounded from below because, by Jensen’s inequality,

Z0 =

∫

Rdu

exp

(
−1

2

∣∣y† − h0(U)
∣∣2
Γ

)
µ0(U) dU > exp

(
−1

2

∫

Rdu

∣∣y† − h0(U)
∣∣2
Γ
µ0(U) dU

)

> exp

(
−
∣∣y†
∣∣2
Γ
− Cqκ

2
h

∫

Rdu

(
1 + |u|2

)
µ0(U) dU

)
= exp (−CqR) .

The same bound holds for Z, and so we obtain the result.

Lemma C.3. Suppose that the data Y † = {y†j}Jj=1 and the matrices (Σ,Γ) satisfy Assumptions (H1)

and (H5). Fix κΨ, κh > 0 and assume that Ψ0 : R
du → R

du and h0 : R
du → R

dy are functions satisfy-

ing Assumptions (H2) and (H3), respectively. Let (µ0
j )j∈J1,JK and (µj)j∈J1,JK denote the true filtering distri-

butions associated with functions (Ψ0, h0) and (Ψ, h), respectively, initialized at the same Gaussian probability

measure µ0 = N (m0, C0) ∈ G(Rdu). For all J ∈ Z
+ there is C = C(m0, C0, κy, κΨ, κh,Σ,Γ, J) > 0 such that

for all ε ∈ [0, 1] and all (Ψ, h) ∈ BL∞

(
(Ψ0, h0), ε

)
, it holds that

max
j∈J0,JK

dg(µ
0
j , µj) 6 Cε. (C.7)

Proof. By Lemma B.3, the filtering distributions have bounded second moments. Let

R = max
j∈J0,J−1K

(∣∣∣y†j+1

∣∣∣
2

, 1 +M2

(
µ0
j

)
, 1 +M2

(
µj

))
.

Throughout this proof, C denotes a constant whose value is irrelevant in the context, depends only on the

constants m0, C0, κy, κΨ, κh,Σ,Γ, k (but neither on ε, nor on Ψ and h) and may change from line to line.

The statement is obviously true for J = 0. Reasoning by induction, we assume that the statement is true

up to J = k and show that there is C > 0 such that

∀ε ∈ [0, 1], ∀(Ψ, h) ∈ BL∞

(
(Ψ0, h0), ε

)
, dg(µ

0
k+1, µk+1) 6 Cε.

To this end, let P0 andQ0 denote the maps associated to (Ψ0, h0), fix ε ∈ [0, 1], and fix (Ψ, h) ∈ BL∞

(
(Ψ0, h0), ε

)
.

Using (C.3), then the triangle inequality, and finally (C.1) and Lemma B.8, we have that

dg(µ
0
k+1, µk+1) = dg

(
BkQ0P0µ

0
k,BkQPµk

)

6 eCR
(
ε+ dg

(
P0µ

0
k,Pµk

))

6 eCR
(
ε+ dg

(
P0µ

0
k,Pµ

0
k

)
+ dg

(
Pµ0

k,Pµk

))

6 eCR
(
ε+ CεR+ Cdg(µ

0
k, µk)

)
.
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Using the induction hypothesis gives us the desired bound.

D Technical Result for Theorem 2.4

In [17] machinery is established to prove Monte Carlo error estimates between the finite particle ensemble

Kalman filter and its mean field limit. We use such results as a component in proving Theorem 2.4 and, in so-

doing, explicit dependence on moments must be tracked. In this section we detail proofs of the result in [17,

Proposition 4.4] and [17, Theorem 5.2] , following the analysis closely and, in addition, tracking dependence

on moments. This leads to the following error estimate stating the desired Monte Carlo error estimate.

Lemma D.1. Assume that the probability measures (µEK
j )j∈J0,JK and (µEK,N

j )j∈J0,JK are obtained, respectively,

from the dynamical systems (2.4) and (2.6), initialized at the Gaussian probability measure µEK
0 ∈ G(Rdu)

and at the empirical measure µEK,N
0 = 1

N

∑N
i=1 δu(i)

0
for u

(i)
0 ∼ µEK

0 i.i.d. samples. That is,

µEK
j+1 = TjQPµ

EK
j , µEK,N

j+1 =
1

N

N∑

i=1

δ
u
(i)
j+1

,

where u
(i)
j+1 evolve according to the iteration in (2.5). Suppose that the data Y † = {y†j}Jj=1 and the matrices

(Σ,Γ) satisfy Assumptions (H1) and (H5). We assume that the vector field h is a linear transformation, i.e.

that Assumption (V2) is satisfied. Furthermore, if the vector field Ψ additionally satisfies |Ψ|C0,1 6 ℓΨ < ∞,

then for all φ satisfying Assumption P1, there exists a constant C = C
(
Mq(µ

EK
0 ), J, Rφ, Lφ, κy, κΨ, κh, ℓΨ,Σ,Γ

)

where q := max{16 · 3J−1, 8(ς + 1)3J−1} such that

(
E

∣∣∣µEK,N
J [φ]− µEK

J [φ]
∣∣∣
2
)1/2

6
C√
N

.

Proof. To prove the proposition, we apply the coupling argument used in [17]. Using similar notation to

the one in [17], to the interacting N -particle system {u(i)
j }Nn=1 evolving according to the ensemble Kalman

dynamics (2.5) , we couple N copies of the mean field dynamics {u(j)
j }Nn=1 evolving according to the mean

field ensemble Kalman dynamics (2.1). The mean field replicas are synchronously coupled to the interacting

particle system, in the sense that they are initialized at the same initial condition and driven by the same

noises; namely, the two particle systems are initialized at i.i.d. samples u
(i)
0 = u

(i)
0 ∼ µEK

0 for i = 1, . . . , N .

For simplicity of notation, the forecast particles are denoted by the letter v, and we drop the hat notation

from the forecast and simulated observations. Furthermore, we add a bar • to all the variables related

to the synchronously coupled mean field particles, including the probability measures πEK
j . We define for

π ∈ P(Rdu×dy ) the Kalman gain

K(π) := Cuh (π)
(
Chh (π) + Γ

)−1

.

With this notation, the interacting particle system, and synchronously coupled system read as follows:

Interacting particle system

Initialization: u
(i)
0 = u

(i)
0

v
(i)
j+1 = Ψ

(
u
(i)
j

)
+ ξ

(i)
j ,

y
(i)
j+1 = h

(
v
(i)
j+1

)
+ η

(i)
j+1,

u
(i)
j+1 = v

(i)
j+1 +K

(
πEK,N
j+1

)(
y†j+1 − y

(i)
j+1

)
.

Synchronous coupling

Initialization: u
(i)
0 = u

(i)
0

v
(i)
j+1 = Ψ

(
u
(i)
j

)
+ ξ

(i)
j ,

y
(i)
j+1 = h

(
v
(i)
j+1

)
+ η

(i)
j+1,

u
(i)
j+1 = v

(i)
j+1 +K

(
πEK
j+1

) (
y†j+1 − y

(i)
j+1

)
.

Note that the synchronously coupled particles are independent and identically distributed. With this
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set-up we proceed with the proof. We first define

DN,p
j :=

(
E

∣∣∣u(i)
j − u

(i)
j

∣∣∣
p)1/p

.

We now let φ satisfy Assumption P1. By applying the triangle inequality, we deduce that

(
E

∣∣∣µEK,N
J [φ]− µEK

J [φ]
∣∣∣
2
)1/2

6

(
E

∣∣∣µEK,N
J [φ]− 1

N

N∑

i=1

φ
(
u
(i)
J

)∣∣∣
2
)1/2

+

(
E

∣∣∣ 1
N

N∑

i=1

φ
(
u
(i)
J

)
− µEK

J [φ]
∣∣∣
2
)1/2

.

(D.3)

The proof of [17, Theorem 5.2] uses the law of large numbers in L2 to establish the bound for the second term

of the right hand side of (D.3)

(
E

∣∣∣ 1
N

N∑

i=1

φ
(
u
(i)
J

)
− µEK

J [φ]
∣∣∣
2
)1/2

6

C
(
M2(ς+1)

(
µEK
J

)
, Rφ

)

√
N

; (D.4)

furthermore, in the proof of [17, Theorem 5.2], the following bound on the first term of the right hand side

of (D.3) may be deduced:

(
E

∣∣∣µEK,N
J [φ]− 1

N

N∑

i=1

φ
(
u
(i)
J

)∣∣∣
2
)1/2

6 LφD
N,4
J ·

(
1 +

∣∣M1/4
4ς

(
µEK
J

)∣∣
)
+ Lφ|DN,2(ς+1)

J |ς+1. (D.5)

Under the assumptions of the proposition, the result of [17, Proposition 4.4] shows by induction that for any

j ∈ N, it holds that 1

DN,p
j 6 CDN,p

j−1 + CD
N,2∨(pr)
j−1

(
D

N,2∨(pr′)
j−1 +

(
M
(
PµEK

j−1

))2∨(pr′)
)
·
(
D

N,2∨(pr′′)
j−1 + S

pr′′

j

)

+ C
(
E
∣∣ZN

j

∣∣pq
)1/pq

·
(
DN,pq′

j−1 + S
pq′

j

)
,

(D.6)

for any j ∈ N, where C is a constant depending on Σ,Γ, ℓΨ, κΨ, κh,M2

(
µEK
j−1

)
. We note that the specific form

of C may be deduced using the proof of [17, Lemma 4.1]. Furthermore, we note that

1

q
+

1

q′
= 1,

1

r
+

1

r′
+

1

r′′
= 1,

and that S
t

j and ZN
j are defined as

S
t

j :=
(
E
∣∣y†j − h

(
v
(i)
j

)
− η

(i)
j

∣∣t
)1/t

,

ZN
j :=

∥∥∥∥∥C
( 1

N

N∑

i=1

δ
v
(i)
j

)
− C

(
PµEK

j−1

)
∥∥∥∥∥ .

By applying the triangle inequality it is straightforward to deduce that

S
t

j 6

(∫

Rdu

∣∣y†j − h(u)
∣∣tPµEK

j−1(du)

)1/t

+
(
E|ηj |t

)1/t
6 C

(
Mt

(
µEK
j−1

)
, κΨ, κh, κy,Σ,Γ

)
, (D.7)

1The result of [17, Proposition 4.4] holds more generally for functions Ψ that are locally Lipschitz and that grow at most
polynomially at infinity [17, Assumption B]. However, to obtain (D.6) from the result of [17, Proposition 4.4] we use that Ψ is
assumed to be globally Lipschitz.
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for any t ∈ N. On the other hand, [17, Lemma 3.3] shows that

(
E
∣∣ZN

j

∣∣t
)1/t

6

C
(
M2t

(
µEK
j−1

)
, κΨ,Σ

)

√
N

, (D.8)

for any N ∈ N and any t ∈ N. Combining the results from (D.7) and (D.8) with the one in (D.6), and choosing

for convenience q = q′ = 2 and r = r′ = r′′ = 3 for any j ∈ N we obtain

DN,p
j 6 CDN,p

j−1 + CDN,3p
j−1

(
DN,3p

j−1 + 1
)
·
(
DN,3p

j−1 + 1
)
+

C√
N

·
(
DN,2p

j−1 + 1
)
, (D.9)

for a constant C depending on M4p

(
µEK
j−1

)
, κΨ, κh, κy, ℓΨ,Σ,Γ. Since DN,p

0 = 0 for any p ∈ N, by iterating in

j the result in (D.9), we find that

DN,4
J 6

C√
N

,

where C is a constant depending on M16·3J−1

(
µEK
0

)
, J, κΨ, κh, κy, ℓΨ,Σ,Γ. Hence, by combining the results

of (D.5) and (D.4) with the decomposition (D.3), we deduce that

(
E

∣∣∣µEK,N
J [φ]− µEK

J [φ]
∣∣∣
2
)1/2

6
C√
N

,

where C is a constant depending on Mq

(
µEK
0

)
, J, Rφ, Lφ, ς, κΨ, κh, κy, ℓΨ,Σ,Γ for a constant q defined as

q := max{16 · 3J−1, 8(ς + 1)3J−1}.
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