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Abstract: Earthworms and enchytraeids are soil organisms involved in key soil functions, such as
organic matter turnover and soil structure, at different scales. In natural soils, these
organisms are exposed and sensitive to different abiotic factors (e.g., climate, land use
and management) and are often used as bioindicators of human disturbances,
particularly chemical stress. However, the sensitivity of these two groups of
Oligochaeta (Annelida) to different stressors has never been compared. Using data
from 49 publications and 330 observations, we performed a meta‐analysis to compare
the sensitivities of earthworms and enchytraeids to all kinds of stressors under similar
test conditions. Earthworms and enchytraeids were found to be equally sensitive to
chemical stressors (mean effect size -0.61 [-2.53; 1.30]) regardless of the studied
endpoint (mortality or reproduction). Most of the observations dealt with the effects of
pesticides (42%) and heavy metals (40%) on both organisms. No difference in
sensitivity was revealed when these two stressors were considered separately.
Regarding the two most studied species of enchytraeids and earthworms, the mean
effect sizes of all the possible combinations of Eisenia fetida (41% of the studies) or
Eisenia andrei (48%) or Enchytraeus crypticus (73% of the studies) or Enchytraeus
albidus (27%) did not reveal any differences in sensitivity. This study also highlights the
lack of studies on environmentally relevant (i.e., representative of natural soils)
enchytraeid and earthworm species. We also revealed that mostly ecotoxicologists
have compared the sensitivities of these two key soil organisms when they are
exposed to and threatened by other important factors, such as agricultural practices
and climate change.
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Abstract 1 

Earthworms and enchytraeids are soil organisms involved in key soil functions, such as organic matter 2 

turnover and soil structure, at different scales. In natural soils, these organisms are exposed and 3 

sensitive to different abiotic factors (e.g., climate, land use and management) and are often used as 4 

bioindicators of human disturbances, particularly chemical stress. However, the sensitivity of these 5 

two groups of Oligochaeta (Annelida) to different stressors has never been compared. Using data from 6 

49 publications and 330 observations, we performed a meta‐analysis to compare the sensitivities of 7 

earthworms and enchytraeids to all kinds of stressors under similar test conditions. Earthworms and 8 

enchytraeids were found to be equally sensitive to chemical stressors (mean effect size -0.61 [-2.53; 9 

1.30]) regardless of the studied endpoint (mortality or reproduction). Most of the observations dealt 10 

with the effects of pesticides (42%) and heavy metals (40%) on both organisms. No difference in 11 

sensitivity was revealed when these two stressors were considered separately. Regarding the two most 12 

studied species of enchytraeids and earthworms, the mean effect sizes of all the possible combinations 13 

of Eisenia fetida (41% of the studies) or Eisenia andrei (48%) or Enchytraeus crypticus (73% of the 14 

studies) or Enchytraeus albidus (27%) did not reveal any differences in sensitivity. This study also 15 

highlights the lack of studies on environmentally relevant (i.e., representative of natural soils) 16 

enchytraeid and earthworm species. We also revealed that mostly ecotoxicologists have compared the 17 

sensitivities of these two key soil organisms when they are exposed to and threatened by other 18 

important factors, such as agricultural practices and climate change. 19 

 20 
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1. Introduction 1 

Earthworms and enchytraeids are macro- and meso-organisms, respectively, that perform several key 2 

functions in soils. At different spatial and temporal scales, both taxa are involved in litter 3 

fragmentation and organic matter decomposition (Marinissen & Didden, 1997, Brown et al., 2000), 4 

soil nutrient dynamics (Lavelle et al., 1998; Cole et al., 2002), soil formation (Lavelle et al., 1988, 5 

Topoliantz et al., 2000), soil structure dynamics via bioporosity (van Vliet et al., 1993, Edwards & 6 

Bohlen 1996), and regulation of microbial biomass (Hedlund & Augustsson, 1995, Brown et al., 7 

2000). Because they play key roles in the functioning of agroecosystems and are abundant in many 8 

ecosystems, earthworms and enchytraeids are both used as bioindicators of land use, agricultural 9 

practices and chemical stress (OECD, 1984, Paoletti, 1999, Didden & Römbke, 2001, Pelosi & 10 

Römbke, 2017). 11 

The ecological niches and behaviours of these two groups do not necessarily overlap (Didden et al., 12 

1997): For example, the earthworm Lumbricus terrestris creates extensive burrows that improve water 13 

infiltration. In contrast, enchytraeids, such as Enchytraeus albidus, play a crucial role in nutrient 14 

cycling by decomposing finer organic materials in the soil, their activities are more concentrated in the 15 

upper soil layers and leaf litter. Therefore, they can provide complementary functions in soils and 16 

complementary information on soil quality (Postma-Blaauw et al., 2012). Under natural conditions, 17 

both earthworms and enchytraeids face stressors of different origins. In agricultural soils, tillage or 18 

chemical inputs such as pesticides may harm these soil organisms (van Capelle et al., 2012, Beketov et 19 

al., 2013). Moreover, climate change has increased the vulnerability of soils and terrestrial biodiversity 20 

(IPCC 2022). Phillips et al. (2019) showed that climate variables were more important than soil 21 

properties or habitat cover in shaping earthworm communities. Drought periods and intense 22 

precipitation events now occur more frequently and cause dramatic disruptions to soil biological, 23 

physical and chemical parameters (Bellard et al., 2012). Thus, the extreme variations in soil moisture 24 

as well as the exposure to soil tillage and high quantities of chemicals—directly applied to the soil 25 
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surface—can disturb these organisms, their metabolism and the interactions between them (Mäder et 26 

al., 2002, Bengtsson et al., 2005). 27 

Earthworms and enchytraeids are both soft-bodied soil invertebrates, and enchytraeids are considered 28 

the closest relatives to earthworms according to Erséus and Källersjö (2004). Enchytraeids have been 29 

compared to other soil meso-organisms, such as springtails (Urarov & Karaban, 2015, Hlavkova et al., 30 

2020) or nematodes (Hagner et al., 2010), more often than to earthworms. Moreover, in some studies, 31 

different endpoints have been assessed for enchytraeids and earthworms to obtain additional data on 32 

the effects of stressors (Niva et al., 2021); therefore, the sensitivities of these two organismal groups 33 

cannot be compared. Among the studies that have properly compared earthworms and enchytraeids, 34 

some have shown that enchytraeid species exhibit a lower sensitivity than earthworms to certain 35 

chemicals and climatic parameters. In Bart et al. (2017), earthworms experienced a decrease in 36 

biomass, and they avoided soil contaminated with a copper fungicide at a lower concentration than 37 

enchytraeids. Holmstrup et al. (2022) noted that, in Arctic areas, the enchytraeid Enchytraeus albidus 38 

individuals had superior freezing tolerance than earthworms. Moreover, Sverdrup et al. (2002) 39 

reported that Enchytraeus crypticus exhibited a lower sensitivity to polycyclic aromatic compound 40 

exposure than the earthworm Dendrobaena veneta; however, their respective sensitivities can vary 41 

according to the compound itself. In contrast, enchytraeids reportedly exhibit a greater sensitivity to 42 

pesticides (e.g., Sechi et al., 2014 – insecticide alpha-cypermethrin) and pig manure (Segat et al., 43 

2020) than earthworms. Finally, Römbke and Moser (2002), based on the results of an international 44 

ring test involving 29 institutions from 15 European countries, noted that there was no clear answer as 45 

to the sensitivity of the species tested (Eisenia fetida/Eisenia andrei or E. albidus) to two chemicals 46 

(the fungicide carbendazim and the industrial chemical 4-nitrophenol). The authors concluded that 47 

there was no "most sensitive species”. Other studies comparing earthworms to enchytraeids have 48 

shown similar sensitivities between both soil organisms through a wide range of stress factors, such as 49 

uranium (Caetano et al., 2014), electrical conductivity (Gainer et al., 2019), polycyclic aromatic 50 

compounds (Kobeticova et al., 2008) and lindane, an insecticide (Lock et al., 2002). A report 51 

published in 2009 by Jarratt and Thompson showed mixed conclusions on the sensitivities of 52 
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enchytraeid and earthworm species to chemicals, although they suggested that the mortality test results 53 

indicate that Enchytraeidae species may be less sensitive than earthworms. They reported a lower 54 

sensitivity for enchytraeids in some cases but noted that the current data do not show consistent 55 

differences in sensitivity between Lumbricidae and Enchytraeidae in the laboratory or under 56 

semifield/field conditions. To summarize, the message is not clear, perhaps due to the non-quantitative 57 

nature of all these assessments. 58 

The aim of this study was to quantify the relative sensitivities of earthworms and enchytraeids to all 59 

kinds of stressors (i.e., any factor likely to negatively affect earthworms and enchytraeids at any level 60 

of biological organization). For that purpose, we performed a meta-analysis based on an exhaustive 61 

bibliographical review that included all the studies using both earthworms and enchytraeids under the 62 

same test conditions (e.g., same soil, tested stressor). We determined the difference in sensitivity to 63 

specific stressors according to the following assumptions: (H1) enchytraeids are generally less 64 

sensitive than earthworms to different stressors, (H2) differences in sensitivity are mainly observed 65 

when mortality is assessed compared to reproduction or avoidance, and (H3) the relative sensitivities 66 

of both groups of organisms vary according to the tested stressor and the considered species. Our 67 

findings highlight the specific gaps in the literature regarding the sensitivity of these organisms to 68 

different stressors, emphasizing the need for future research to address these gaps. 69 

2. Methods 70 

2.1. Literature search and inclusion/exclusion criteria 71 

A systematic literature review was conducted in January 2023 to find publications dealing with 72 

earthworms and enchytraeids exposed to different stressors. The literature search was carried out on 73 

the basis of keywords in the ISI Web of Knowledge, using the ‘‘All Databases’’ option, with the 74 

following scheme: ‘(enchytr* OR potworm* OR achaet* OR bryodril* OR buchlol* OR 75 

cernosvitoviel* OR cognat* OR frideric* OR guaranidril* OR lumbricil* OR hemienchytr* OR 76 

oconnorel* OR hemifrideric* OR henl* OR marionin* OR mesenchytr*) and (earthworm* OR 77 

lumbric* OR aporrect* OR eisen* OR dendrob* OR alloloboph* OR octalas* OR dendrodril* OR 78 
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diporodril* OR eophil* OR helodril* OR kritodril* OR octodril* OR prosellodril* OR scherothec* 79 

OR satchell* OR proctodril* orodril* OR postandril* OR perelia* OR andrei* OR fetid* OR foetid*)’ 80 

in Topics. From a total of 967 references, a first selection was made using titles and abstracts. The full 81 

texts were examined when the information was considered consistent for the meta-analysis. To 82 

complete the search, bibliographic reviews that included both annelids were selected, and references 83 

were carefully examined to extract any new articles that could be relevant for the meta-analysis. 84 

We considered only publications providing data on terrestrial earthworms and enchytraeids, all species 85 

included. For instance, papers dealing with aquatic and bioluminescent worm species were excluded 86 

(Rodionova et al., 2017). The data on earthworms and enchytraeids had to be from the same study to 87 

compare the sensitivity of these groups under the same conditions (e.g., active substance, type of 88 

substrate). Moreover, we did not consider studies dealing with chemical bioaccumulation in animals, 89 

as bioaccumulation cannot be easily correlated with certain factors (Tosza et al., 2010; Santorufo et al., 90 

2012). We selected only the studies where the tested factors were supposed to be harmful to soil 91 

organisms, specifically those detrimental to their life cycle parameters (e.g., survival, growth, 92 

fecundity, juvenile survival). We did not consider studies on biochar addition (possibly beneficial to 93 

them, e.g., Briones et al., 2020) or on tillage (Engell et al., 2021) because these factors can be 94 

beneficial to enchytraeid populations (e.g., Pelosi & Römbke, 2016). Regarding organic and inorganic 95 

waste, one paper was kept because it focused on contaminated incineration ash (Kobetičová et al., 96 

2010). The final set was composed of 49 publications (i.e., 48 papers and one PhD thesis), which 97 

included 330 lines in the database (Table S1). 98 

2.2. Data extraction 99 

For each of the 49 studies, the following data were recorded (Table S1): 100 

- author, date of publication, 101 

- stressor type (i.e., pesticides, metals, wastes, others); 102 

- stressor subcategory (i.e., for pesticides: fungicide, herbicide and insecticide; for metals: 103 

antimony, barium, beryllium, cadmium, chromium, copper, lanthanum, manganese, mercury, 104 
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molybdenum, nickel, lead, silver, uranium and zinc; for wastes: inorganic waste, organic waste, 105 

vinasse, pig manure waste, mineral byproducts, and dredged sediment; for others: pesticide 106 

additive, boric acid, electrical conductivity, linear alkylbenzene sulfonate, chlorinated paraffins 107 

and polycyclic aromatic compounds); 108 

- earthworm species (i.e., Aporrectodea caliginosa, Aporrectodea longa, Dendrobaena veneta, 109 

Eisenia andrei and Eisenia fetida) and enchytraeid species (i.e., Enchytraeus albidus, 110 

Enchytraeus crypticus and Enchytraeus luxurious); 111 

- the observed variable (i.e., survival, reproduction, avoidance, growth, population abundance) 112 

and its measured endpoint (LCx: lethal concentration; ECx: effect concentration; NOEC: no 113 

observed effect concentration; NEC: no effect concentration; and LOEC: lowest observed 114 

effect concentration);  115 

- the mean value of the endpoints with the standard error, standard deviation, or the respective 116 

95% confidence intervals; 117 

- and the number of replicates. 118 

As the choice was made to select studies that provided ecotoxicological endpoint values to ease the 119 

comparison between earthworms and enchytraeids, all the selected studies were laboratory 120 

experiments. 121 

First, the data were collected from available tables; otherwise, the data were collected from the text. 122 

Searching for data in the figures (graphs) was not ruled out, but none of the data matched our search 123 

criteria. Because of compliance with ISO standards (ISO, 1998, OECD, 2015), some methodological 124 

differences were tolerated when comparing data for earthworms and enchytraeids. For example, in 125 

reproduction tests, cocoons or juveniles were counted for earthworms, while the number of juveniles 126 

was counted for enchytraeids. The duration of the experiment was also not the same for standard tests 127 

of earthworms and enchytraeids, i.e., 21 and 42 days, respectively. 128 

For both earthworms and enchytraeids, when the endpoint value was not given as a precise number but 129 

was bounded by > or <, the data were adjusted as follows: in the case of LC50 > x, the data were not 130 
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considered to indicate that the sensitivity of the organism would be overestimated by considering x as 131 

the LC50 value. In the case of LC50 < x, the x value was used, and it is conservative to consider x as the 132 

LC50 value. This latter case represented 20 of the 330 observations in the database (i.e., 6% of the 133 

data). 134 

Four comparisons involving boric acid were found in two studies (Becker et al., 2011, Niemeyer et al., 135 

2018). Becker et al. (2011) characterized boric acid as a fertilizer and fungicide, but Niemeyer et al. 136 

(2018) did not mention any role or expected effect. Boric acid can be used as an insecticide, acaricide, 137 

herbicide, or fungicide (Büyükgüzel et al., 2013). Since it can be placed in different subcategories 138 

(insecticide, fungicide, and fertilizer), it was placed into the "others" category. 139 

2.3. Effect size calculation 140 

When the standard deviation (SD) was not given directly from a table, it was calculated with the t 141 

distribution for small samples (n<60) using the following formula (Higgins & Green, 2011): 142 

𝑆𝐷 = √𝑛 ∗ 
𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝐶𝐼 –  𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝐶𝐼

𝑡𝑎𝑙𝑝ℎ𝑎,𝑑𝑓  ∗  2
 143 

With talpha,df, the T.INV.2T functions in syntax with two associated arguments: probability, associated 144 

with Student's t-distribution (here, the alpha=0.05 to respect the 95% CI from extracted data), and 145 

degrees of freedom (equal to the group sample size - 1). 146 

When neither the 95% CI nor the SD were given, we used the worst-case scenario, i.e., the highest SD 147 

calculated for the same endpoint in the database (LC10, LC50, EC10, EC20, EC50). NOEC and LOEC 148 

values have no variance, so their standard deviation (SD) was set to zero. When the number of 149 

replicates was not the same between the treatments and the control, the lower number was considered 150 

to be conservative (i.e., less weight was given to the study). When the number of replicates was not 151 

given and the tests referred to ISO standards, we considered the number of replicates advised in 152 

official procedures (e.g., ISO, 1998, OECD, 2015). The confidence intervals (CIs) for each estimate of 153 

effect size were calculated using bias-corrected bootstrapping methods, which corrects for 154 

nonnormality of the data and nonconstant standard errors (Efron & Hastie, 2016). 155 
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Hedge's d is a standardized mean difference that accounts for the potential bias in estimating 156 

population effect size (Hedges & Olkin, 1985). The magnitude of the difference between earthworm 157 

and enchytraeid sensitivities was calculated with the Hedge metric using the natural logarithm of the 158 

response ratio (LRR) as follows (van Groenigen et al., 2014): 159 

𝐿𝑅𝑅 = 𝑙𝑛(
𝑥𝑖

𝑥𝑢
) 160 

with xi and xu being the values of the enchytraeid and earthworm endpoints, respectively. Therefore, 161 

when the LRR equals zero, the two organisms have the same sensitivity. 162 

The LRR variance (V) was calculated as follows (van Groenigen et al., 2014): 163 

𝑉 =
1

𝑛𝑖
∗ (

𝑆𝐷𝑖

𝑥𝑖
)

2

+  
1

𝑛𝑢
∗ (

𝑆𝐷𝑢

𝑥𝑢
)

2

 164 

where xi and xu are the mean values of the endpoints for earthworms and enchytraeids, respectively; 165 

𝑆𝐷𝑖 and 𝑆𝐷𝑢 are the standard deviations of the endpoint values for enchytraeid and earthworm, 166 

respectively; and 𝑛𝑖 and 𝑛𝑢 are the sample sizes in the enchytraeid and earthworm tests, respectively. 167 

Finally, effect sizes were weighted by the inverse of their variance in all the models, giving more 168 

weight to well-replicated studies (Koricheva et al., 2013). 169 

3. Meta-analysis 170 

3.1. General modelling approach 171 

Every model incorporated a random effect associated with the study's identity to accommodate 172 

correlated data arising from the same study (Viechtbauer, 2010). The models were selected using the 173 

Akaike information criterion (AIC). This criterion represents a compromise between bias decreasing 174 

with the number of free parameters and parsimony, the desire to describe the data with as few 175 

parameters as possible. Lower AIC values indicate a better-fit model; therefore, for each calculation, 176 

the smallest AIC was considered for the LRR calculation. Random effect models were tested for the 177 

lines (to allow the real effect to vary from one dataset to another), the authors (to allow the actual 178 
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effect to vary from one article to another), and a combination of the two (Borenstein et al., 2010). A 179 

combination of the two modalities was associated with a lower AIC for every case, and these models 180 

were systematically used. For each model, we used the restricted maximum likelihood (REML) 181 

method, which aims to provide unbiased estimates of variance components by accounting for fixed 182 

effects in the model. All analyses were performed with R Software (R Development Core Team, 2014) 183 

using the metafor package (Viechtbauer, 2010). 184 

3.2. Analysis 185 

First, a meta-analysis was carried out using estimated overall effect size in a multivariate linear model, 186 

calculated using the rma.mv function from the metafor package in R (Viechtbauer, 2010). In the 187 

context of a meta-analysis, the effect size (with its 95% confidence interval) is a standardized measure 188 

that quantifies the magnitude of the treatment effect or association across all included studies. Then, 189 

the logarithm of the response ratio (LRR) was calculated to explore, throught earthworm and 190 

enchytraeid endpoints, the results of this model on all the data, all the factors and all the species 191 

combined. This main model enabled us to test our first assumption (H1). 192 

We also compared earthworm and enchytraeid data by splitting them according to the studied 193 

endpoints (i.e., reproduction or survival rate) to test the second assumption (H2). We further 194 

investigated the effects of the different stressors (H3) on the response ratio (LRR) by stressor category, 195 

a moderator with 4 levels: pesticides, metals, wastes, and others. We finally investigated the potential 196 

"species effect" of the most represented earthworm and enchytraeid species (H3), using the response 197 

ratio of the earthworm species categorical moderator at 2 levels (i.e., E. andrei and E. fetida, which 198 

accounted for 48% and 41%, respectively; Table S1), coupled with the enchytraeid species categorical 199 

moderator at 2 levels (i.e., E. albidus and E. crypticus, which accounted for 27% and 73%, 200 

respectively; Table S1). 201 

Publication bias was assessed by Egger's regression test for funnel plot asymmetry between the 202 

standard normal deviation of the effect sizes and precision (i.e., inverse of their standard errors). We 203 

retained the multilevel linear model rma.mv by adding a standard error moderator. This test is 204 
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powerful given the fairly large number of studies. The findings demonstrated the absence of 205 

publication bias: we detected no significant asymmetry (z-value = -0.62; p value = 0.53) in the funnel 206 

plot (Fig. S1), as none of the intercepts from Egger's regression exhibited a significant deviation from 207 

zero. 208 

4. Results 209 

4.1. Data description 210 

Location Fig. 1 211 

The 49 selected studies addressed a total of 30 different stressors (Figure 1) classified into four 212 

different categories. “Metals” accounted for 39.7% of the observations, with the most represented 213 

being molybdenum (2 studies, 36 observations) and zinc (2 studies, 19 observations). “Pesticides” 214 

represented 25.5%, with subcategories including insecticides (13 studies, 52 observations), fungicides 215 

(6 studies, 31 observations) and herbicides (1 study, 1 observation). Among all the observations, 216 

14.2% were classified into the “Wastes” category, which is widely represented by vinasse (1 study, 26 217 

observations). Finally, “Others” accounted for 20.6% of the observations, with polycyclic aromatic 218 

compounds (2 studies, 30 observations) and pesticide additives (1 study, 22 observations) being the 219 

most represented. In total, 98.8% of the data concerned contaminant tests (all the stressors studied 220 

except for the 4 observations for the electrical conductivity), even though no restrictions were imposed 221 

during the literature search. 222 

The 49 selected studies reported reproduction endpoints in 71.2% of the cases (43 studies, 235 223 

observations), survival in 20.9% (20 studies, 69 observations), avoidance in 4.54% (3 studies, 15 224 

observations), growth in 2.4% (1 study, 8 observations), and population abundance in 1% (1 study, 3 225 

observations), with EC50 (106 observations) and NOEC (68 observations) calculations dominating 226 

(Table 1). 227 

Location Tab.1 228 
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In total, five earthworm species and three enchytraeid species were used in the comparisons (Table 2). 229 

Together, E. andrei and E. fetida accounted for 89% of the total number of observations. E. crypticus 230 

was the most represented enchytraeid species among the observations. 231 

Location Tab.2 232 

4.2. Meta-analysis results 233 

When considering all the stressors together, earthworms and enchytraeids were found to be equally 234 

sensitive, as the mean effect size was -0.61 [-2.53, 1.31] (Fig. 2a). The results were considered non-235 

significant because the confidence interval crosses zero, indicating no statistically significant effect. 236 

Similarly, exploration of the data across the four stressor types yielded nonsignificant results (Fig. 2b), 237 

with each confidence interval intersecting zero. 238 

Location Fig.2 239 

Similarly, when the data on mortality (i.e., LC10, LC50, and some NOEC and LOEC data) and those on 240 

reproduction (i.e., some EC10, EC20, EC25, EC50, LOEC, NEC and NOEC) were considered separately 241 

(Fig. 3), no difference in sensitivity was found between earthworms and enchytraeids. 242 

Location Fig3 243 

The sensitivities of the different species were assessed when the dataset was statistically sufficient for 244 

comparison. Therefore, E. andrei (earthworm) data were compared with E. crypticus (enchytraeid) 245 

data, E. andrei with E. albidus (enchytraeid), E. fetida (earthworm) with E. albidus and E. fetida with 246 

E. crypticus. The sensitivities of these species were similar (Fig. S2). 247 

5. Discussion 248 

This study allowed us to quantitatively compare the relative sensitivities of earthworms and 249 

enchytraeids to different types of stressors. On the basis of 49 published studies and 330 observations, 250 

we revealed similar sensitivities to stressors in these two soil organisms (H1). The conclusion was the 251 

same when considering the different stressors, species or endpoints separately (H2 and H3). Although 252 
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the differences were not significant, enchytraeids tended to be slightly more sensitive to metals, 253 

pesticide additives and electrical conductivity. In contrast, earthworms tended to be slightly more 254 

sensitive to pesticides regardless of their mode of action (fungicide or insecticide), but the differences 255 

were still nonsignificant. Large confidence intervals were found for all mean effect sizes. This 256 

variability was probably due to the variety of test conditions used for the observations; in particular, 257 

the tested substances revealed alternating greater sensitivities of enchytraeids or earthworms. 258 

Moreover, the high number of studies with no information on data uncertainty (e.g., standard 259 

deviation) (i.e., 58 observations) could explain the absence of significant differences since when 260 

neither the 95% CI nor the SD was given, we used a conservative approach by giving the highest SD 261 

calculated for the same endpoint in the database. 262 

These results are not in accordance with our assumptions that enchytraeids are less sensitive than 263 

earthworms to different stressors (H1), that differences in sensitivity are mainly observed when 264 

mortality is assessed (H2), and that the relative sensitivity of both groups of organisms varies 265 

according to the tested stressor and the considered species (H3). Enchytraeids, which are smaller than 266 

earthworms and 80% microbivorous and 20% saprovorous (Didden, 1990, 1993), ingest less material 267 

and smaller particles than earthworms in soils and thus could be less exposed to chemicals (Tourinho 268 

et al., 2021, Coleman et al., 2004). However, the relationship between size and sensitivity is debatable, 269 

as earthworms are much larger than springtails but are less sensitive to all kinds of pesticides, such as 270 

formulations or active substances (Joimel et al., 2022). Moreover, in the same study (Joimel et al., 271 

2022), differences in sensitivity were reported between springtails and enchytraeids, but both of these 272 

taxonomic groups belong to the same size class (i.e., soil mesofauna). Small animals have a greater 273 

surface area-to-volume ratio than larger organisms and are thus potentially more exposed to external 274 

stressors. Regarding chemicals, the size class would be of particular importance if the main route of 275 

exposure was dermal contact. Enchytraeids live in close contact with the soil porewater fraction, and 276 

their routes of exposure are dermal, intestinal and respiratory and earthworms one is dermal but also 277 

dietary exposure (Lock & Janssen, 2003, Römbke, 2003, Hirano & Tamae, 2011). Earthworms, which 278 

might be thought to be more sensitive to chemicals at first glance due in particular to their larger size, 279 
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can ultimately be less exposed than small enchytraeids in soils. Both earthworms and enchytraeids 280 

must maintain a moist body surface to facilitate oxygen absorption through their tegument, which is 281 

highly permeable to water. Pesticide characteristics (e.g., polarity, solubility in water) influence the 282 

available concentrations in water and in soils, leading to varying sensitivities among taxonomic 283 

groups. In accordance with our results, Römbke and Moser (2002) concluded that the overall range of 284 

sensitivities of oligochaetes to chemicals was usually quite similar. These authors linked the lack of 285 

differentiation between the sensitivities of E. albidus and E. fetida exposed to carbendazim to the high 286 

toxicity of this persistent compound. More research should be dedicated to quantifying the different 287 

routes of exposure to chemicals for soil organisms to better understand their respective sensitivities in 288 

different situations. Moreover, both earthworms and enchytraeids can be considered in risk 289 

assessments, and while earthworms are most commonly used, there are many reasons to support the 290 

use of enchytraeids in testing. Enchytraeids can thrive in soils where earthworms are scarce (Jarratt & 291 

Thompson, 2009). Moreover, Römbke et al. (1994) encouraged the use of enchytraeids when 292 

comparing laboratory results with those obtained under semifield and field conditions, as the same 293 

species (or closely related species) can be used at all test levels. Other practical and ecological points 294 

(ease of handling and rearing, short generation time, reduced soil requirements, cost-effectiveness) 295 

make them good organisms for inclusion in laboratory experiments (Römbke & Moser, 2002). 296 

Among the tested species, the earthworm Eisenia sp. represented 89% of all species included in the 297 

selected studies. E. fetida and E. andrei are composting worms that are not representative of mineral 298 

soils and are less sensitive to pesticides than species found in cultivated fields (Pelosi et al., 2013). 299 

However, these species are recommended as standard test organisms in various guidelines, such as 300 

those of the OECD (OECD, 1984) and ISO (ISO, 1993, 1998, 2019), and have been widely used in 301 

published ecotoxicological studies, mainly because they are easy to rear. A few studies have used 302 

species that are found in agricultural soils. In Bart et al. (2017), the LC50 and EC50 values were 303 

systematically lower for A. caliginosa (earthworm) than for E. albidus (enchytraeid) (Table S1). In 304 

Holmstrup and Krogh (2001), the opposite occurred, with systematically higher LC50 and EC50 values 305 

for A. caliginosa and A. longa (earthworm) than for E. albidus (Table S1). Thus, the results should be 306 
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contrasted according to the tested stressor, and additional data are needed to assess the sensitivity of 307 

earthworms and enchytraeid species commonly found in the field. 308 

The choice was made here to select studies that provided ecotoxicological endpoint values to facilitate 309 

comparisons between earthworms and enchytraeids. Potentially, interesting studies have been 310 

excluded that compared both organisms. For instance, Amossé et al. (2018) assessed the short-term 311 

effects of two fungicides (Cuprafor Micro® made of copper oxychloride and Swing Gold® made of 312 

epoxiconazole and dimoxystrobin) on enchytraeid and earthworm communities under field conditions. 313 

They found greater negative effects on the diversity and community structure of earthworms than on 314 

those of enchytraeids. Similarly, Pereira et al. (2018) studied the degree to which seawater intrusion 315 

and irrigation threaten biodiversity via a terrestrial model ecosystem (TME) approach. They found that 316 

the abundance of only enchytraeids significantly decreased, although earthworms generally suffered. 317 

These field or semifield studies allowed us to investigate the sensitivity of several species found in 318 

natural soils under realistic conditions, which offers more comprehensive insight into the ecological 319 

dynamics of the systems (Wall & Moore, 1999). TMEs, which were proposed in the 1990 s, are useful 320 

experimental systems for assessing the impact of factors such as pollution or climate change on 321 

terrestrial ecosystems. 322 

Although the literature search was performed to include all kinds of stressors in this study, the great 323 

majority of the articles in our final selection concerned chemicals. Very few data are available on the 324 

effects of climatic parameters on soil organisms (Classen et al., 2015), and data comparing their 325 

responses to these parameters remain scarce (Otomo, 2011). However, earthworms and enchytraeids, 326 

in addition to all other soil organisms, are increasingly having to cope with climate change (Pritchard, 327 

2011). Warming, changes in precipitation regimes, and changes in the quantity and quality of soil 328 

carbon inputs can disrupt the habitat and food resources of soil-living organisms, affecting their 329 

survival and reproductive capabilities (Maraldo & Holmstrup, 2009). Some species, such as the 330 

enchytraeid Cognettia sphagnetorum, which has strong potential to recover from severe drought stress 331 

events, appear to have adaptive potential to climate parameters (Maraldo & Holmstrup, 2009). They 332 

can vertically migrate as a strategy for evading dry surface layers and high temperatures (Springett et 333 
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al., 1970). However, these organisms were found to have no genetic adaptation to drought, as drought-334 

exposed populations of enchytraeids had the same high sensitivity as those from unexposed control 335 

plots (Maraldo, 2009). E. albidus has a high osmotic pressure on its body fluids and can live in 336 

environments with strong fluctuations in moisture (Maraldo, 2009), which also enables Fridericia 337 

galba to survive in soil with a water retention capacity of less than 20% (corresponding to values 338 

below -9.8 bar) for more than 49 days (Dózsa-Farkas 1973). However, additional research is needed to 339 

understand the physiological responses of enchytraeids to desiccation. Earthworms are known to be 340 

sensitive to drought and high temperatures (Bayley et al., 2010; Lima et al., 2015; González-Alcaraz 341 

& van Gestel, 2016), but they have adaptive strategies such as diapause or other physiological 342 

mechanisms, such as an increase in the free amino acid alanine, to survive long periods of drought 343 

(Holmstrup et al., 2016; Jiménez & Decaëns, 2004). Thus, in the actual context of climatic 344 

disturbances and knowing the potential effects of combined stressors on soil organisms (e.g., 345 

Bindesbøl et al., 2005; Jensen et al., 2009; Singh et al., 2019), the equilibrium between species and 346 

taxa could be modified in natural ecosystems in the future. Maraldo et al. (2006) noted that the 347 

synergistic effects of climate change factors and environmental contamination on enchytraeids have 348 

been insufficiently explored. Further studies should assess the effects of climatic parameters on 349 

functionally useful soil organisms and their relative sensitivity to desiccation or heat in realistic 350 

contexts. 351 

We also know that enchytraeids are tolerant of soil acidity (Römbke, 1991), whereas earthworm 352 

abundance and diversity are generally low in acidic soils (Chan & Mead, 2003, Moore et al., 2013, Wu 353 

and al., 2020). Enchytraeids exhibit high tolerance to other soil properties (clay and organic matter 354 

contents) (Kuperman et al., 2006; van Gestel et al., 2011, Castro-Ferreira et al., 2012) and temperature 355 

(Holmstrup et al., 2022). However, once again, there is no real comparison to date. The combined 356 

effects of stressors related to soil properties and climate were examined by Yli-Olli and Huhta (2000), 357 

who assessed the co-occurrence of soil pH, moisture and resource addition on Dendrobaena octaedra 358 

(Lumbricidae) and Cognettia sphagnetorum (Enchytraeidae). They found that D. octaedra exhibited 359 
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the highest biomass in spruce stand humus at higher pH values, while C. sphagnetorum thrived best at 360 

higher moisture levels. 361 

6. Conclusion 362 

For the first time, this exhaustive synthesis provides a quantitative comparison of the sensitivity of 363 

earthworms versus enchytraeids to extrinsic factors (such as metals and pesticides) potentially 364 

affecting soil organisms. Under laboratory conditions, comparable sensitivities were found for 365 

earthworms and enchytraeids regardless of the studied species, or endpoint. Therefore, to test the 366 

effects of metals or pesticides, we could recommend testing on one of these groups in order to limit 367 

costs and labour. However, for other stressors such as climate parameters and for a thorough 368 

understanding of soil functioning, it remains crucial to consider the physiological responses of both 369 

groups due to their distinct ecological roles and potential sensitivity difference. Moreover, to fully 370 

capture the complexity of natural habitats, it would be relevant to use species inhabiting mineral soils 371 

instead of model species commonly found in organic rich habitats. For decades, researchers have been 372 

deepening their understanding of the impacts of natural and anthropic stressors on soil fauna and their 373 

related functions, which has allowed to reveal the importance of maintaining the presence and function 374 

of biodiversity in our soils. Let’s keep digging in that direction. 375 
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Figure captions – EVERY FIGURES IN COLOR PLEASE 1 

Figure 1. Relative coverage of different stressors tested for the earthworms and enchytraeids 2 

sensitivity comparisons, in 330 observations from 49 studies. Sunburst diagram representing 3 

proportions of observations for each category. 4 

 5 

Figure 2. Log ratio of the mean effect size (in bold) and its 95% confidence interval (in square 6 

brackets) for (a) all stressors, and (b) the different stressor types separately: pesticides, metals, wastes 7 

and others stressors. The number of observations and papers are into round brackets. Error bars 8 

correspond to 95% confidence intervals computed either from the standard deviations reported by the 9 

authors when available (292 data for earthworm; 293 data for enchytraeids) or from the standard 10 

deviation using the worst-case scenario (38 data for earthworms; 37 data for enchytraeids). On the left 11 

of the 0: higher sensitivity of enchytraeids; on the right: higher sensitivity of earthworms. 12 

 13 

Figure 3. Log ratio of the mean effect size (in bold) and its 95% confidence interval (in square 14 

brackets) for (a) survival endpoints, and (b) reproduction endpoints. The number of observations and 15 

papers are into round brackets. Error bars correspond to 95% confidence intervals computed either 16 

from the standard deviations reported by the authors when available (314 data for earthworm; 309 data 17 

for enchytraeids concerning reproduction data; 316 data for earthworm; 318 data for enchytraeids 18 

concerning survival data ) or from the standard deviation using the worst-case scenario (16 data for 19 

earthworms; 21 data for enchytraeids concerning reproduction data; 14 data for earthworms; 14 data 20 

for enchytraeids concerning survival data). On the left of the 0: higher sensitivity of enchytraeids; on 21 

the right: higher sensitivity of earthworms.  22 

Figure Click here to access/download;Figure;2024_fig.docx
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TABLES 1 

Tab.1. Summary table of the number of observations relating to the different endpoints used for the 2 

comparisons of the sensitivity of earthworms and enchytraeids in 330 observations from 49 studies. 3 

ECx Effect Concentration; LCx Lethal Concentration; NOEC No Observed Effect Concentration; 4 

LOEC Lowest Observed Effect and NEC No Effect Concentration.   5 

ECx 
Number of 

observations 
LCx 

Number of 

observations 
Other 

Number of 

observations 

EC50 106 LC50 37 NOEC 68 

EC10 44 LC10 10 LOEC 36 

EC20 23   NEC 2 

EC25 4         

 6 

 7 

Tab.2. Summary table of the repartition of the species (in percent) used in for the comparisons of the 8 

sensitivity of earthworms and enchytraeids in 330 observations from 49 studies. 9 

Earthworm species % Enchytraeid species % 

Eisenia andrei 48 Enchytraeus crypticus 73 

Eisenia fetida 41 Enchytraeus albidus 27 

Dendrobaena veneta 5  Enchytraeus luxurious <1 

Aporrectodea caliginosa 4   

Aporrectodea longa 2     

 10 

Table (Editable version) Click here to access/download;Table (Editable
version);2024_tab.docx

https://www2.cloud.editorialmanager.com/ejsobi/download.aspx?id=81484&guid=8346e07a-e05c-4e37-8175-005c93bc838f&scheme=1
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1. Introduction 1 

Earthworms and enchytraeids are macro- and meso-organisms, respectively, that perform several key 2 

functions in soils. At different spatial and temporal scales, both taxa are involved in litter 3 

fragmentation and organic matter decomposition (Marinissen & Didden, 1997, Brown et al., 2000), 4 

soil nutrient dynamics (Lavelle et al., 1998; Cole et al., 2002), soil formation (Lavelle et al., 1988, 5 

Topoliantz et al., 2000), soil structure dynamics via bioporosity (van Vliet et al., 1993, Edwards & 6 

Bohlen 1996), and regulation of microbial biomass (Hedlund & Augustsson, 1995, Brown et al., 7 

2000). Because they play key roles in the functioning of agroecosystems and are abundant in many 8 

ecosystems, earthworms and enchytraeids are both used as bioindicators of land use, agricultural 9 

practices and chemical stress (OECD, 1984, Paoletti, 1999, Didden & Römbke, 2001, Pelosi & 10 

Römbke, 2017). 11 

The ecological niches and behaviours of these two groups do not necessarily overlap (Didden et al., 12 

1997): For example, the earthworm Lumbricus terrestris creates extensive burrows that improve water 13 

infiltration. In contrast, enchytraeids, such as Enchytraeus albidus, play a crucial role in nutrient 14 

cycling by decomposing finer organic materials in the soil, their activities are more concentrated in the 15 

upper soil layers and leaf litter. Therefore, they can provide complementary functions in soils and 16 

complementary information on soil quality (Postma-Blaauw et al., 2012). Under natural conditions, 17 

both earthworms and enchytraeids face stressors of different origins. In agricultural soils, tillage or 18 

chemical inputs such as pesticides may harm these soil organisms (van Capelle et al., 2012, Beketov et 19 

al., 2013). Moreover, climate change has increased the vulnerability of soils and terrestrial biodiversity 20 

(IPCC 2022). Phillips et al. (2019) showed that climate variables were more important than soil 21 

properties or habitat cover in shaping earthworm communities. Drought periods and intense 22 

precipitation events now occur more frequently and cause dramatic disruptions to soil biological, 23 

physical and chemical parameters (Bellard et al., 2012). Thus, the extreme variations in soil moisture 24 

as well as the exposure to soil tillage and high quantities of chemicals—directly applied to the soil 25 
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surface—can disturb these organisms, their metabolism and the interactions between them (Mäder et 26 

al., 2002, Bengtsson et al., 2005). 27 

Earthworms and enchytraeids are both soft-bodied soil invertebrates, and enchytraeids are considered 28 

the closest relatives to earthworms according to Erséus and Källersjö (2004). Enchytraeids have been 29 

compared to other soil meso-organisms, such as springtails (Urarov & Karaban, 2015, Hlavkova et al., 30 

2020) or nematodes (Hagner et al., 2010), more often than to earthworms. Moreover, in some studies, 31 

different endpoints have been assessed for enchytraeids and earthworms to obtain additional data on 32 

the effects of stressors (Niva et al., 2021); therefore, the sensitivities of these two organismal groups 33 

cannot be compared. Among the studies that have properly compared earthworms and enchytraeids, 34 

some have shown that enchytraeid species exhibit a lower sensitivity than earthworms to certain 35 

chemicals and climatic parameters. In Bart et al. (2017), earthworms experienced a decrease in 36 

biomass, and they avoided soil contaminated with a copper fungicide at a lower concentration than 37 

enchytraeids. Holmstrup et al. (2022) noted that, in Arctic areas, the enchytraeid Enchytraeus albidus 38 

individuals had superior freezing tolerance than earthworms. Moreover, Sverdrup et al. (2002) 39 

reported that Enchytraeus crypticus exhibited a lower sensitivity to polycyclic aromatic compound 40 

exposure than the earthworm Dendrobaena veneta; however, their respective sensitivities can vary 41 

according to the compound itself. In contrast, enchytraeids reportedly exhibit a greater sensitivity to 42 

pesticides (e.g., Sechi et al., 2014 – insecticide alpha-cypermethrin) and pig manure (Segat et al., 43 

2020) than earthworms. Finally, Römbke and Moser (2002), based on the results of an international 44 

ring test involving 29 institutions from 15 European countries, noted that there was no clear answer as 45 

to the sensitivity of the species tested (Eisenia fetida/Eisenia andrei or E. albidus) to two chemicals 46 

(the fungicide carbendazim and the industrial chemical 4-nitrophenol). The authors concluded that 47 

there was no "most sensitive species”. Other studies comparing earthworms to enchytraeids have 48 

shown similar sensitivities between both soil organisms through a wide range of stress factors, such as 49 

uranium (Caetano et al., 2014), electrical conductivity (Gainer et al., 2019), polycyclic aromatic 50 

compounds (Kobeticova et al., 2008) and lindane, an insecticide (Lock et al., 2002). A report 51 

published in 2009 by Jarratt and Thompson showed mixed conclusions on the sensitivities of 52 
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enchytraeid and earthworm species to chemicals, although they suggested that the mortality test results 53 

indicate that Enchytraeidae species may be less sensitive than earthworms. They reported a lower 54 

sensitivity for enchytraeids in some cases but noted that the current data do not show consistent 55 

differences in sensitivity between Lumbricidae and Enchytraeidae in the laboratory or under 56 

semifield/field conditions. To summarize, the message is not clear, perhaps due to the non-quantitative 57 

nature of all these assessments. 58 

The aim of this study was to quantify the relative sensitivities of earthworms and enchytraeids to all 59 

kinds of stressors (i.e., any factor likely to negatively affect earthworms and enchytraeids at any level 60 

of biological organization). For that purpose, we performed a meta-analysis based on an exhaustive 61 

bibliographical review that included all the studies using both earthworms and enchytraeids under the 62 

same test conditions (e.g., same soil, tested stressor). We determined the difference in sensitivity to 63 

specific stressors according to the following assumptions: (H1) enchytraeids are generally less 64 

sensitive than earthworms to different stressors, (H2) differences in sensitivity are mainly observed 65 

when mortality is assessed compared to reproduction or avoidance, and (H3) the relative sensitivities 66 

of both groups of organisms vary according to the tested stressor and the considered species. Our 67 

findings highlight the specific gaps in the literature regarding the sensitivity of these organisms to 68 

different stressors, emphasizing the need for future research to address these gaps. 69 

2. Methods 70 

2.1. Literature search and inclusion/exclusion criteria 71 

A systematic literature review was conducted in January 2023 to find publications dealing with 72 

earthworms and enchytraeids exposed to different stressors. The literature search was carried out on 73 

the basis of keywords in the ISI Web of Knowledge, using the ‘‘All Databases’’ option, with the 74 

following scheme: ‘(enchytr* OR potworm* OR achaet* OR bryodril* OR buchlol* OR 75 

cernosvitoviel* OR cognat* OR frideric* OR guaranidril* OR lumbricil* OR hemienchytr* OR 76 

oconnorel* OR hemifrideric* OR henl* OR marionin* OR mesenchytr*) and (earthworm* OR 77 

lumbric* OR aporrect* OR eisen* OR dendrob* OR alloloboph* OR octalas* OR dendrodril* OR 78 
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diporodril* OR eophil* OR helodril* OR kritodril* OR octodril* OR prosellodril* OR scherothec* 79 

OR satchell* OR proctodril* orodril* OR postandril* OR perelia* OR andrei* OR fetid* OR foetid*)’ 80 

in Topics. From a total of 967 references, a first selection was made using titles and abstracts. The full 81 

texts were examined when the information was considered consistent for the meta-analysis. To 82 

complete the search, bibliographic reviews that included both annelids were selected, and references 83 

were carefully examined to extract any new articles that could be relevant for the meta-analysis. 84 

We considered only publications providing data on terrestrial earthworms and enchytraeids, all species 85 

included. For instance, papers dealing with aquatic and bioluminescent worm species were excluded 86 

(Rodionova et al., 2017). The data on earthworms and enchytraeids had to be from the same study to 87 

compare the sensitivity of these groups under the same conditions (e.g., active substance, type of 88 

substrate). Moreover, we did not consider studies dealing with chemical bioaccumulation in animals, 89 

as bioaccumulation cannot be easily correlated with certain factors (Tosza et al., 2010; Santorufo et al., 90 

2012). We selected only the studies where the tested factors were supposed to be harmful to soil 91 

organisms, specifically those detrimental to their life cycle parameters (e.g., survival, growth, 92 

fecundity, juvenile survival). We did not consider studies on biochar addition (possibly beneficial to 93 

them, e.g., Briones et al., 2020) or on tillage (Engell et al., 2021) because these factors can be 94 

beneficial to enchytraeid populations (e.g., Pelosi & Römbke, 2016). Regarding organic and inorganic 95 

waste, one paper was kept because it focused on contaminated incineration ash (Kobetičová et al., 96 

2010). The final set was composed of 49 publications (i.e., 48 papers and one PhD thesis), which 97 

included 330 lines in the database (Table S1). 98 

2.2. Data extraction 99 

For each of the 49 studies, the following data were recorded (Table S1): 100 

- author, date of publication, 101 

- stressor type (i.e., pesticides, metals, wastes, others); 102 

- stressor subcategory (i.e., for pesticides: fungicide, herbicide and insecticide; for metals: 103 

antimony, barium, beryllium, cadmium, chromium, copper, lanthanum, manganese, mercury, 104 
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molybdenum, nickel, lead, silver, uranium and zinc; for wastes: inorganic waste, organic waste, 105 

vinasse, pig manure waste, mineral byproducts, and dredged sediment; for others: pesticide 106 

additive, boric acid, electrical conductivity, linear alkylbenzene sulfonate, chlorinated paraffins 107 

and polycyclic aromatic compounds); 108 

- earthworm species (i.e., Aporrectodea caliginosa, Aporrectodea longa, Dendrobaena veneta, 109 

Eisenia andrei and Eisenia fetida) and enchytraeid species (i.e., Enchytraeus albidus, 110 

Enchytraeus crypticus and Enchytraeus luxurious); 111 

- the observed variable (i.e., survival, reproduction, avoidance, growth, population abundance) 112 

and its measured endpoint (LCx: lethal concentration; ECx: effect concentration; NOEC: no 113 

observed effect concentration; NEC: no effect concentration; and LOEC: lowest observed 114 

effect concentration);  115 

- the mean value of the endpoints with the standard error, standard deviation, or the respective 116 

95% confidence intervals; 117 

- and the number of replicates. 118 

As the choice was made to select studies that provided ecotoxicological endpoint values to ease the 119 

comparison between earthworms and enchytraeids, all the selected studies were laboratory 120 

experiments. 121 

First, the data were collected from available tables; otherwise, the data were collected from the text. 122 

Searching for data in the figures (graphs) was not ruled out, but none of the data matched our search 123 

criteria. Because of compliance with ISO standards (ISO, 1998, OECD, 2015), some methodological 124 

differences were tolerated when comparing data for earthworms and enchytraeids. For example, in 125 

reproduction tests, cocoons or juveniles were counted for earthworms, while the number of juveniles 126 

was counted for enchytraeids. The duration of the experiment was also not the same for standard tests 127 

of earthworms and enchytraeids, i.e., 21 and 42 days, respectively. 128 

For both earthworms and enchytraeids, when the endpoint value was not given as a precise number but 129 

was bounded by > or <, the data were adjusted as follows: in the case of LC50 > x, the data were not 130 
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considered to indicate that the sensitivity of the organism would be overestimated by considering x as 131 

the LC50 value. In the case of LC50 < x, the x value was used, and it is conservative to consider x as the 132 

LC50 value. This latter case represented 20 of the 330 observations in the database (i.e., 6% of the 133 

data). 134 

Four comparisons involving boric acid were found in two studies (Becker et al., 2011, Niemeyer et al., 135 

2018). Becker et al. (2011) characterized boric acid as a fertilizer and fungicide, but Niemeyer et al. 136 

(2018) did not mention any role or expected effect. Boric acid can be used as an insecticide, acaricide, 137 

herbicide, or fungicide (Büyükgüzel et al., 2013). Since it can be placed in different subcategories 138 

(insecticide, fungicide, and fertilizer), it was placed into the "others" category. 139 

2.3. Effect size calculation 140 

When the standard deviation (SD) was not given directly from a table, it was calculated with the t 141 

distribution for small samples (n<60) using the following formula (Higgins & Green, 2011): 142 

𝑆𝐷 = √𝑛 ∗ 
𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝐶𝐼 –  𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝐶𝐼

𝑡𝑎𝑙𝑝ℎ𝑎,𝑑𝑓  ∗  2
 143 

With talpha,df, the T.INV.2T functions in syntax with two associated arguments: probability, associated 144 

with Student's t-distribution (here, the alpha=0.05 to respect the 95% CI from extracted data), and 145 

degrees of freedom (equal to the group sample size - 1). 146 

When neither the 95% CI nor the SD were given, we used the worst-case scenario, i.e., the highest SD 147 

calculated for the same endpoint in the database (LC10, LC50, EC10, EC20, EC50). NOEC and LOEC 148 

values have no variance, so their standard deviation (SD) was set to zero. When the number of 149 

replicates was not the same between the treatments and the control, the lower number was considered 150 

to be conservative (i.e., less weight was given to the study). When the number of replicates was not 151 

given and the tests referred to ISO standards, we considered the number of replicates advised in 152 

official procedures (e.g., ISO, 1998, OECD, 2015). The confidence intervals (CIs) for each estimate of 153 

effect size were calculated using bias-corrected bootstrapping methods, which corrects for 154 

nonnormality of the data and nonconstant standard errors (Efron & Hastie, 2016). 155 
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Hedge's d is a standardized mean difference that accounts for the potential bias in estimating 156 

population effect size (Hedges & Olkin, 1985). The magnitude of the difference between earthworm 157 

and enchytraeid sensitivities was calculated with the Hedge metric using the natural logarithm of the 158 

response ratio (LRR) as follows (van Groenigen et al., 2014): 159 

𝐿𝑅𝑅 = 𝑙𝑛(
𝑥𝑖

𝑥𝑢
) 160 

with xi and xu being the values of the enchytraeid and earthworm endpoints, respectively. Therefore, 161 

when the LRR equals zero, the two organisms have the same sensitivity. 162 

The LRR variance (V) was calculated as follows (van Groenigen et al., 2014): 163 

𝑉 =
1

𝑛𝑖
∗ (

𝑆𝐷𝑖

𝑥𝑖
)

2

+  
1

𝑛𝑢
∗ (

𝑆𝐷𝑢

𝑥𝑢
)

2

 164 

where xi and xu are the mean values of the endpoints for earthworms and enchytraeids, respectively; 165 

𝑆𝐷𝑖 and 𝑆𝐷𝑢 are the standard deviations of the endpoint values for enchytraeid and earthworm, 166 

respectively; and 𝑛𝑖 and 𝑛𝑢 are the sample sizes in the enchytraeid and earthworm tests, respectively. 167 

Finally, effect sizes were weighted by the inverse of their variance in all the models, giving more 168 

weight to well-replicated studies (Koricheva et al., 2013). 169 

3. Meta-analysis 170 

3.1. General modelling approach 171 

Every model incorporated a random effect associated with the study's identity to accommodate 172 

correlated data arising from the same study (Viechtbauer, 2010). The models were selected using the 173 

Akaike information criterion (AIC). This criterion represents a compromise between bias decreasing 174 

with the number of free parameters and parsimony, the desire to describe the data with as few 175 

parameters as possible. Lower AIC values indicate a better-fit model; therefore, for each calculation, 176 

the smallest AIC was considered for the LRR calculation. Random effect models were tested for the 177 

lines (to allow the real effect to vary from one dataset to another), the authors (to allow the actual 178 
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effect to vary from one article to another), and a combination of the two (Borenstein et al., 2010). A 179 

combination of the two modalities was associated with a lower AIC for every case, and these models 180 

were systematically used. For each model, we used the restricted maximum likelihood (REML) 181 

method, which aims to provide unbiased estimates of variance components by accounting for fixed 182 

effects in the model. All analyses were performed with R Software (R Development Core Team, 2014) 183 

using the metafor package (Viechtbauer, 2010). 184 

3.2. Analysis 185 

First, a meta-analysis was carried out using estimated overall effect size in a multivariate linear model, 186 

calculated using the rma.mv function from the metafor package in R (Viechtbauer, 2010). In the 187 

context of a meta-analysis, the effect size (with its 95% confidence interval) is a standardized measure 188 

that quantifies the magnitude of the treatment effect or association across all included studies. Then, 189 

the logarithm of the response ratio (LRR) was calculated to explore, throught earthworm and 190 

enchytraeid endpoints, the results of this model on all the data, all the factors and all the species 191 

combined. This main model enabled us to test our first assumption (H1). 192 

We also compared earthworm and enchytraeid data by splitting them according to the studied 193 

endpoints (i.e., reproduction or survival rate) to test the second assumption (H2). We further 194 

investigated the effects of the different stressors (H3) on the response ratio (LRR) by stressor category, 195 

a moderator with 4 levels: pesticides, metals, wastes, and others. We finally investigated the potential 196 

"species effect" of the most represented earthworm and enchytraeid species (H3), using the response 197 

ratio of the earthworm species categorical moderator at 2 levels (i.e., E. andrei and E. fetida, which 198 

accounted for 48% and 41%, respectively; Table S1), coupled with the enchytraeid species categorical 199 

moderator at 2 levels (i.e., E. albidus and E. crypticus, which accounted for 27% and 73%, 200 

respectively; Table S1). 201 

Publication bias was assessed by Egger's regression test for funnel plot asymmetry between the 202 

standard normal deviation of the effect sizes and precision (i.e., inverse of their standard errors). We 203 

retained the multilevel linear model rma.mv by adding a standard error moderator. This test is 204 
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powerful given the fairly large number of studies. The findings demonstrated the absence of 205 

publication bias: we detected no significant asymmetry (z-value = -0.62; p value = 0.53) in the funnel 206 

plot (Fig. S1), as none of the intercepts from Egger's regression exhibited a significant deviation from 207 

zero. 208 

4. Results 209 

4.1. Data description 210 

Location Fig. 1 211 

The 49 selected studies addressed a total of 30 different stressors (Figure 1) classified into four 212 

different categories. “Metals” accounted for 39.7% of the observations, with the most represented 213 

being molybdenum (2 studies, 36 observations) and zinc (2 studies, 19 observations). “Pesticides” 214 

represented 25.5%, with subcategories including insecticides (13 studies, 52 observations), fungicides 215 

(6 studies, 31 observations) and herbicides (1 study, 1 observation). Among all the observations, 216 

14.2% were classified into the “Wastes” category, which is widely represented by vinasse (1 study, 26 217 

observations). Finally, “Others” accounted for 20.6% of the observations, with polycyclic aromatic 218 

compounds (2 studies, 30 observations) and pesticide additives (1 study, 22 observations) being the 219 

most represented. In total, 98.8% of the data concerned contaminant tests (all the stressors studied 220 

except for the 4 observations for the electrical conductivity), even though no restrictions were imposed 221 

during the literature search. 222 

The 49 selected studies reported reproduction endpoints in 71.2% of the cases (43 studies, 235 223 

observations), survival in 20.9% (20 studies, 69 observations), avoidance in 4.54% (3 studies, 15 224 

observations), growth in 2.4% (1 study, 8 observations), and population abundance in 1% (1 study, 3 225 

observations), with EC50 (106 observations) and NOEC (68 observations) calculations dominating 226 

(Table 1). 227 

Location Tab.1 228 
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In total, five earthworm species and three enchytraeid species were used in the comparisons (Table 2). 229 

Together, E. andrei and E. fetida accounted for 89% of the total number of observations. E. crypticus 230 

was the most represented enchytraeid species among the observations. 231 

Location Tab.2 232 

4.2. Meta-analysis results 233 

When considering all the stressors together, earthworms and enchytraeids were found to be equally 234 

sensitive, as the mean effect size was -0.61 [-2.53, 1.31] (Fig. 2a). The results were considered non-235 

significant because the confidence interval crosses zero, indicating no statistically significant effect. 236 

Similarly, exploration of the data across the four stressor types yielded nonsignificant results (Fig. 2b), 237 

with each confidence interval intersecting zero. 238 

Location Fig.2 239 

Similarly, when the data on mortality (i.e., LC10, LC50, and some NOEC and LOEC data) and those on 240 

reproduction (i.e., some EC10, EC20, EC25, EC50, LOEC, NEC and NOEC) were considered separately 241 

(Fig. 3), no difference in sensitivity was found between earthworms and enchytraeids. 242 

Location Fig3 243 

The sensitivities of the different species were assessed when the dataset was statistically sufficient for 244 

comparison. Therefore, E. andrei (earthworm) data were compared with E. crypticus (enchytraeid) 245 

data, E. andrei with E. albidus (enchytraeid), E. fetida (earthworm) with E. albidus and E. fetida with 246 

E. crypticus. The sensitivities of these species were similar (Fig. S2). 247 

5. Discussion 248 

This study allowed us to quantitatively compare the relative sensitivities of earthworms and 249 

enchytraeids to different types of stressors. On the basis of 49 published studies and 330 observations, 250 

we revealed similar sensitivities to stressors in these two soil organisms (H1). The conclusion was the 251 

same when considering the different stressors, species or endpoints separately (H2 and H3). Although 252 
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the differences were not significant, enchytraeids tended to be slightly more sensitive to metals, 253 

pesticide additives and electrical conductivity. In contrast, earthworms tended to be slightly more 254 

sensitive to pesticides regardless of their mode of action (fungicide or insecticide), but the differences 255 

were still nonsignificant. Large confidence intervals were found for all mean effect sizes. This 256 

variability was probably due to the variety of test conditions used for the observations; in particular, 257 

the tested substances revealed alternating greater sensitivities of enchytraeids or earthworms. 258 

Moreover, the high number of studies with no information on data uncertainty (e.g., standard 259 

deviation) (i.e., 58 observations) could explain the absence of significant differences since when 260 

neither the 95% CI nor the SD was given, we used a conservative approach by giving the highest SD 261 

calculated for the same endpoint in the database. 262 

These results are not in accordance with our assumptions that enchytraeids are less sensitive than 263 

earthworms to different stressors (H1), that differences in sensitivity are mainly observed when 264 

mortality is assessed (H2), and that the relative sensitivity of both groups of organisms varies 265 

according to the tested stressor and the considered species (H3). Enchytraeids, which are smaller than 266 

earthworms and 80% microbivorous and 20% saprovorous (Didden, 1990, 1993), ingest less material 267 

and smaller particles than earthworms in soils and thus could be less exposed to chemicals (Tourinho 268 

et al., 2021, Coleman et al., 2004). However, the relationship between size and sensitivity is debatable, 269 

as earthworms are much larger than springtails but are less sensitive to all kinds of pesticides, such as 270 

formulations or active substances (Joimel et al., 2022). Moreover, in the same study (Joimel et al., 271 

2022), differences in sensitivity were reported between springtails and enchytraeids, but both of these 272 

taxonomic groups belong to the same size class (i.e., soil mesofauna). Small animals have a greater 273 

surface area-to-volume ratio than larger organisms and are thus potentially more exposed to external 274 

stressors. Regarding chemicals, the size class would be of particular importance if the main route of 275 

exposure was dermal contact. Enchytraeids live in close contact with the soil porewater fraction, and 276 

their routes of exposure are dermal, intestinal and respiratory and earthworms one is dermal but also 277 

dietary exposure (Lock & Janssen, 2003, Römbke, 2003, Hirano & Tamae, 2011). Earthworms, which 278 

might be thought to be more sensitive to chemicals at first glance due in particular to their larger size, 279 
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can ultimately be less exposed than small enchytraeids in soils. Both earthworms and enchytraeids 280 

must maintain a moist body surface to facilitate oxygen absorption through their tegument, which is 281 

highly permeable to water. Pesticide characteristics (e.g., polarity, solubility in water) influence the 282 

available concentrations in water and in soils, leading to varying sensitivities among taxonomic 283 

groups. In accordance with our results, Römbke and Moser (2002) concluded that the overall range of 284 

sensitivities of oligochaetes to chemicals was usually quite similar. These authors linked the lack of 285 

differentiation between the sensitivities of E. albidus and E. fetida exposed to carbendazim to the high 286 

toxicity of this persistent compound. More research should be dedicated to quantifying the different 287 

routes of exposure to chemicals for soil organisms to better understand their respective sensitivities in 288 

different situations. Moreover, both earthworms and enchytraeids can be considered in risk 289 

assessments, and while earthworms are most commonly used, there are many reasons to support the 290 

use of enchytraeids in testing. Enchytraeids can thrive in soils where earthworms are scarce (Jarratt & 291 

Thompson, 2009). Moreover, Römbke et al. (1994) encouraged the use of enchytraeids when 292 

comparing laboratory results with those obtained under semifield and field conditions, as the same 293 

species (or closely related species) can be used at all test levels. Other practical and ecological points 294 

(ease of handling and rearing, short generation time, reduced soil requirements, cost-effectiveness) 295 

make them good organisms for inclusion in laboratory experiments (Römbke & Moser, 2002). 296 

Among the tested species, the earthworm Eisenia sp. represented 89% of all species included in the 297 

selected studies. E. fetida and E. andrei are composting worms that are not representative of mineral 298 

soils and are less sensitive to pesticides than species found in cultivated fields (Pelosi et al., 2013). 299 

However, these species are recommended as standard test organisms in various guidelines, such as 300 

those of the OECD (OECD, 1984) and ISO (ISO, 1993, 1998, 2019), and have been widely used in 301 

published ecotoxicological studies, mainly because they are easy to rear. A few studies have used 302 

species that are found in agricultural soils. In Bart et al. (2017), the LC50 and EC50 values were 303 

systematically lower for A. caliginosa (earthworm) than for E. albidus (enchytraeid) (Table S1). In 304 

Holmstrup and Krogh (2001), the opposite occurred, with systematically higher LC50 and EC50 values 305 

for A. caliginosa and A. longa (earthworm) than for E. albidus (Table S1). Thus, the results should be 306 
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contrasted according to the tested stressor, and additional data are needed to assess the sensitivity of 307 

earthworms and enchytraeid species commonly found in the field. 308 

The choice was made here to select studies that provided ecotoxicological endpoint values to facilitate 309 

comparisons between earthworms and enchytraeids. Potentially, interesting studies have been 310 

excluded that compared both organisms. For instance, Amossé et al. (2018) assessed the short-term 311 

effects of two fungicides (Cuprafor Micro® made of copper oxychloride and Swing Gold® made of 312 

epoxiconazole and dimoxystrobin) on enchytraeid and earthworm communities under field conditions. 313 

They found greater negative effects on the diversity and community structure of earthworms than on 314 

those of enchytraeids. Similarly, Pereira et al. (2018) studied the degree to which seawater intrusion 315 

and irrigation threaten biodiversity via a terrestrial model ecosystem (TME) approach. They found that 316 

the abundance of only enchytraeids significantly decreased, although earthworms generally suffered. 317 

These field or semifield studies allowed us to investigate the sensitivity of several species found in 318 

natural soils under realistic conditions, which offers more comprehensive insight into the ecological 319 

dynamics of the systems (Wall & Moore, 1999). TMEs, which were proposed in the 1990 s, are useful 320 

experimental systems for assessing the impact of factors such as pollution or climate change on 321 

terrestrial ecosystems. 322 

Although the literature search was performed to include all kinds of stressors in this study, the great 323 

majority of the articles in our final selection concerned chemicals. Very few data are available on the 324 

effects of climatic parameters on soil organisms (Classen et al., 2015), and data comparing their 325 

responses to these parameters remain scarce (Otomo, 2011). However, earthworms and enchytraeids, 326 

in addition to all other soil organisms, are increasingly having to cope with climate change (Pritchard, 327 

2011). Warming, changes in precipitation regimes, and changes in the quantity and quality of soil 328 

carbon inputs can disrupt the habitat and food resources of soil-living organisms, affecting their 329 

survival and reproductive capabilities (Maraldo & Holmstrup, 2009). Some species, such as the 330 

enchytraeid Cognettia sphagnetorum, which has strong potential to recover from severe drought stress 331 

events, appear to have adaptive potential to climate parameters (Maraldo & Holmstrup, 2009). They 332 

can vertically migrate as a strategy for evading dry surface layers and high temperatures (Springett et 333 
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al., 1970). However, these organisms were found to have no genetic adaptation to drought, as drought-334 

exposed populations of enchytraeids had the same high sensitivity as those from unexposed control 335 

plots (Maraldo, 2009). E. albidus has a high osmotic pressure on its body fluids and can live in 336 

environments with strong fluctuations in moisture (Maraldo, 2009), which also enables Fridericia 337 

galba to survive in soil with a water retention capacity of less than 20% (corresponding to values 338 

below -9.8 bar) for more than 49 days (Dózsa-Farkas 1973). However, additional research is needed to 339 

understand the physiological responses of enchytraeids to desiccation. Earthworms are known to be 340 

sensitive to drought and high temperatures (Bayley et al., 2010; Lima et al., 2015; González-Alcaraz 341 

& van Gestel, 2016), but they have adaptive strategies such as diapause or other physiological 342 

mechanisms, such as an increase in the free amino acid alanine, to survive long periods of drought 343 

(Holmstrup et al., 2016; Jiménez & Decaëns, 2004). Thus, in the actual context of climatic 344 

disturbances and knowing the potential effects of combined stressors on soil organisms (e.g., 345 

Bindesbøl et al., 2005; Jensen et al., 2009; Singh et al., 2019), the equilibrium between species and 346 

taxa could be modified in natural ecosystems in the future. Maraldo et al. (2006) noted that the 347 

synergistic effects of climate change factors and environmental contamination on enchytraeids have 348 

been insufficiently explored. Further studies should assess the effects of climatic parameters on 349 

functionally useful soil organisms and their relative sensitivity to desiccation or heat in realistic 350 

contexts. 351 

We also know that enchytraeids are tolerant of soil acidity (Römbke, 1991), whereas earthworm 352 

abundance and diversity are generally low in acidic soils (Chan & Mead, 2003, Moore et al., 2013, Wu 353 

and al., 2020). Enchytraeids exhibit high tolerance to other soil properties (clay and organic matter 354 

contents) (Kuperman et al., 2006; van Gestel et al., 2011, Castro-Ferreira et al., 2012) and temperature 355 

(Holmstrup et al., 2022). However, once again, there is no real comparison to date. The combined 356 

effects of stressors related to soil properties and climate were examined by Yli-Olli and Huhta (2000), 357 

who assessed the co-occurrence of soil pH, moisture and resource addition on Dendrobaena octaedra 358 

(Lumbricidae) and Cognettia sphagnetorum (Enchytraeidae). They found that D. octaedra exhibited 359 
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the highest biomass in spruce stand humus at higher pH values, while C. sphagnetorum thrived best at 360 

higher moisture levels. 361 

6. Conclusion 362 

For the first time, this exhaustive synthesis provides a quantitative comparison of the sensitivity of 363 

earthworms versus enchytraeids to extrinsic factors (such as metals and pesticides) potentially 364 

affecting soil organisms. Under laboratory conditions, comparable sensitivities were found for 365 

earthworms and enchytraeids regardless of the studied species, or endpoint. Therefore, to test the 366 

effects of metals or pesticides, we could recommend testing on one of these groups in order to limit 367 

costs and labour. However, for other stressors such as climate parameters and for a thorough 368 

understanding of soil functioning, it remains crucial to consider the physiological responses of both 369 

groups due to their distinct ecological roles and potential sensitivity difference. Moreover, to fully 370 

capture the complexity of natural habitats, it would be relevant to use species inhabiting mineral soils 371 

instead of model species commonly found in organic rich habitatsloosen organic materials. For 372 

decades, researchers have been deepening their understanding of the impacts of natural and anthropic 373 

stressors on soil fauna and their related functions, which has allowed to reveal the importance of 374 

maintaining the presence and function of biodiversity in our soils. Let’s keep digging in that direction. 375 
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