
HAL Id: hal-04703420
https://hal.science/hal-04703420v1

Submitted on 25 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Robust determination of cubic elastic constants via
nanoindentation and Bayesian inference

Y. Idrissi, Thiebaud Richeton, D. Texier, S. Stéphane Berbenni, J.-S. Lecomte

To cite this version:
Y. Idrissi, Thiebaud Richeton, D. Texier, S. Stéphane Berbenni, J.-S. Lecomte. Robust determination
of cubic elastic constants via nanoindentation and Bayesian inference. Acta Materialia, 2024, 281,
pp.120406. �10.1016/j.actamat.2024.120406�. �hal-04703420�

https://hal.science/hal-04703420v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Acta Materialia 281 (2024) 120406 

A
1
(

Contents lists available at ScienceDirect

Acta Materialia

journal homepage: www.elsevier.com/locate/actamat

Full length article

Robust determination of cubic elastic constants via nanoindentation and
Bayesian inference
Y. Idrissi a,b, T. Richeton a,b,∗, D. Texier c, S. Berbenni a,b, J.-S. Lecomte a,b

a Université de Lorraine, CNRS, Arts et Métiers, LEM3, F-57000 Metz, France
b Laboratory of Excellence on Design of Alloy Metals for low-mass Structures (DAMAS), Université de Lorraine, France
c Institut Clement Ader (ICA) - UMR CNRS 5312, Université de Toulouse, CNRS, INSA, UPS, Mines Albi, ISAE-SUPAERO, Campus Jarlard, 81013 Albi Cedex
09, France

A R T I C L E I N F O

Keywords:
Nanoindentation
Bayesian inference
Elastic anisotropy
Single crystal elastic constants
Correlative micromechanics

A B S T R A C T

Nanoindentation is a promising tool for advancing the estimation of single crystal elastic constants in
multiphase materials. In this study, a novel protocol is presented that couples high-speed nanoindentation
mapping with the Vlassak and Nix’s model and Bayesian inference simulations to statistically estimate the
elastic constants of cubic materials. The originality lies in considering ratios of indentation modulus as input
data. For cubic elasticity, these ratios depend solely on two dimensionless parameters, which can be chosen as
the Zener ratio 𝐴 and the directional Poisson’s ratio 𝜈

⟨100⟩. Using ratios mitigates the influence of experimental
calibration parameters. Only two constants are varied in the Bayesian simulations, and the computation time
is further reduced by employing an optimized Vlassak and Nix’s model. This approach has also the great
advantage to bound the search domain of 𝜈

⟨100⟩ and 𝐴 directly from elastic stability conditions. Furthermore,
the method efficiency allows for continuous variation of the uncertainty considered in the experimental moduli,
leading to stabilized Bayesian inference results. The choice of the finally retained values is thus simplified,
converging to the uniqueness of the single crystal elastic constants. This method is successfully applied to
high-purity Ni and Inconel 718, with the predicted elastic constants aligning well with literature data.
1. Introduction

Estimating the single crystal elastic constants (SEC) of crystalline
materials is a real challenge, especially when it comes to multiphase
polycrystalline materials. Standard SEC characterization can involve
experiments on large single crystals using classical methods such as
ultrasonic wave velocities [1] or supersonic pulse echo [2]. When
dealing with single-phase polycrystalline materials, inverse approaches
based on micromechanical models such as the elastic self-consistent
model must generally be used to identify the SEC from the macroscopic
elastic constants, e.g., studies based on diffraction data [3–5]. For
multiphase polycrystalline materials, the difficulty is even greater since
it is very hard, if not impossible, to produce single crystals that have the
exact same chemical composition that a specific phase can have within
a multiphase alloy. Moreover, in this case, inverse approaches involve
the development of more complex micromechanical models as the latter
should take into consideration the interaction between phases [6–9].

Because it allows the probing of uniform regions regarding phase
and crystallographic orientations, nanoindentation is a very promising
tool to make progress in such issues. Indeed, if the indented volume

∗ Corresponding author at: Université de Lorraine, CNRS, Arts et Métiers, LEM3, F-57000 Metz, France.
E-mail address: thiebaud.richeton@univ-lorraine.fr (T. Richeton).

is small enough compared to the grain and phase area, a nanoindenta-
tion test can single out an elastic property, the indentation modulus
𝐸∗, that is specific to a grain crystallographic orientation [10,11].
Hence, several recent studies coupled nanoindentation tests and elec-
tron backscatter diffraction (EBSD) measurements to trace back the SEC
of different materials [12–19]. However, 𝐸∗ is quite different from the
directional Young’s modulus 𝐸𝑌 which can be expressed as a function
of the direction 𝒏 as follows [20]:

1
𝐸𝑌 (𝒏)

= 𝑆𝑖𝑗𝑘𝑙𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙 (1)

where 𝑺 denotes the fourth-rank compliance tensor, 𝒏 is a unit-vector
and the usual rule of sum over a repeated subscript is assumed. Indeed,
a nanoindentation test is not uniaxial but enforces complex multiaxial
stress/strain fields beneath the tip, even in elasticity [10,11,21,22].
Hence, the link between the SEC and the indentation modulus 𝐸∗ is not
obvious in anisotropic elasticity. The latter relationship can be achieved
thanks to accurate but time-consuming finite element simulations [12–
14] or through semi-analytical micromechanical models like the one
of Vlassak and Nix [23–25]. The latter is based on the surface Green’s
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function derived by Barnett and Lothe [26] within the Stroh formal-
ism [27]. Still because of multiaxiality, the anisotropy displayed by 𝐸∗

s actually much more reduced than the anisotropy of the directional
oung’s modulus (e.g., for Ni, 𝐸𝑌 can double from one orientation to
he other while 𝐸∗ varies at most by 10% [10]). Given the uncertainty
n the measurement of 𝐸∗, this reduced anisotropy can be critical
or many materials to have well-defined variations of 𝐸∗ with grain
rientations measured by EBSD. Statistical approaches, like Bayesian
nference, are therefore recommended to improve the robustness of the
ethod of elastic constants determination and take into consideration

he experimental uncertainties [13,14].
In the present study, a novel protocol is presented that couples

anoindentation tests with the Vlassak and Nix’s model and Bayesian
nference simulations to statistically estimate the elastic constants of
ubic materials. The originality lies in considering ratios of indentation
odulus 𝐸∗ as input data. The interest is that these ratios just depend

n two dimensionless parameters, the Zener ratio 𝐴 and the directional
oisson’s ratio 𝜈

⟨100⟩ of which limits are well-known and material’s
ndependent. As it will be detailed in the manuscript, this approach
as many other advantages. In the first place, the computation time is
reatly reduced by considering two constants instead of three and also
y using the Vlassak and Nix’s model. Computing 𝐸∗ from this model
urns out to be far much faster than running finite element simulations.
t also avoids the need to develop surrogate models based on finite
lement simulations [13,14]. Indeed, once its numerical implementa-
ion has been optimized, the Vlassak and Nix’s model is very efficient
nd provides fast results (≪1 s, see further Section 3). Furthermore,
t is acknowledged that this model is very accurate since it agrees
ery well with predictions obtained by the finite element method in
inear elasticity at relatively small depth [14,28] or with predictions of
olecular dynamics simulations [29].

The paper is organized as follows. Section 2 first present the exper-
mental methodology consisting in a coupling between EBSD measure-
ents and high-speed nanoindentation mapping (HSNM) [30] with a
erkovich tip in continuous stiffness measurement (CSM) mode under
isplacement control. It is applied on two different cubic materials:
igh-purity Ni of which elastic constants are well documented in the
iterature and the superalloy Inconel 718 of which SEC values are
uch less well known. In Section 3, a description of the Vlassak and
ix’s model [23–25] and its numerical implementation are provided.
he originality of our approach is detailed in Section 4. After a quick
escription of the Bayesian inference theory, its application to the
lassak and Nix’s model and nanoindentation measurements through
ur original coupling is presented. Moving on to Section 5, the results
rom the correlative mechanical microscopy analyses and the Bayesian
nference simulations are shown. Section 6 then turns to a discussion of
hese results, with a specific focus on comparisons with SEC data from
he literature.

. Materials and experimental procedure

.1. Materials

Two different materials were considered for this study: a high-
urity (99.99%) nickel (Ni) provided by GoodFellow and a wrought
nconel 718 (IN718). For the high-purity Ni, a heat treatment at 900 ◦C
or 2 h was first conducted to eliminate any residual constraints stem-
ing from the casting process. The IN718 alloy was provided as a

olled plate in solid solution state. The chemical composition of the
N718 was Ni–18.5Cr–18.3Fe–5.0(Nb+Ta)–3.0Mo–1.0Ti–0.6Al–0.0.3C
wt. %). The sample was given a 5min heat treatment at 1080 ◦C fol-
owed by water quenching to favor grain growth and recrystallization
or minimal grain orientation spread. A 720 ◦C-8 h-cooling 50 ◦C⋅h−1 +
20 ◦C-8 h-furnace cooling was applied to precipitate L12-𝛾 ’-Ni3(Ti,Al)
nd DO22-𝛾 ’’-Ni3Nb phases within the 𝛾-Ni matrix. Phases distribution
nd sizes were too narrow and small for this material to be evaluated

ndividually using nanoindentation.

2 
.2. Sample preparation

Sample preparation is a crucial and critical step for nanoindentation
esting. Ensuring the accuracy and repeatability of results hinges on the
eticulous preparation of the sample surface. Both materials experi-

nced similar surface preparation procedures. The surface preparation
onsisted in mechanical polishing using a precision jig with grit paper
own to P4000 grit size to ensure flatness, parallelism and minimal
ork-hardening of the surface [31]. Manual polishing using diamond
articles from 3 μm down to 0.25 μm aimed at limiting scratches.
he surface finish consisted in a manual mechanical polishing during
0min followed by a vibratory polishing for 3 h using a colloidal silica
olution (0.05 μm particles). This surface finish was necessary for EBSD
haracterizations and nanoindentation testing. A particular care was
iven to the surface cleaning to avoid particle contamination at the
ample surface.

.3. EBSD characterization

For the Ni sample, EBSD characterizations were performed with a
tep size of 5 μm and a field of view of 3.9 × 4.8mm using a JEOL JSM
490 scanning electron microscope equipped with a tungsten filament
nd an Oxford Instruments Symmetry S2 EBSD acquisition system. For
he IN718 material, EBSD characterizations were performed with a
tep size of 0.4 μm and a field of view of 1.0 × 1.0mm using a JEOL
SM 7100F scanning electron microscope that is also equipped with
Symmetry S2 EBSD detector (Oxford Instruments). EBSD data were

ost-treated and plotted using MTex [32] and the open source Pymicro
ibrary1 [33] for further correlative mechanical microscopy [34].

.4. High speed nanoindentation mapping

High speed nanoindentation mapping (HSNM) was performed with
diamond-type Berkovich tip on both materials using a customed

TI04 and a NMT04 nanoindentation system both from Femtotools𝐴𝐺
or the pure Ni and the IN718 samples, respectively. This choice was
ade due to ‘‘point-and-shoot’’ options not available on the NMT-04,

ut necessary for the large Ni sample in order to position the indents
ithin the previously performed EBSD map. Tests were conducted

n continuous stiffness measurement (CSM) mode under displacement
ontrol allowing for similar indentation depths from indent to in-
ent, regardless of the local mechanical response. The indentation
arameters were adapted to the material to avoid stress drops due
o activation of an intense plastic event (see Table 1 summarizing
ll the nanoindentation parameters). The CSM mode corresponds to a
ynamic test in which the sample is loaded with a cyclically applied
ncreasing penetration depth. The mass of the FTI-04 system being
reater than the one of the NMT-04 system, the resonance frequency of
he NMT-04 system is higher, allowing HSNM at higher CSM frequency
or the IN718 alloy (see Table 1). The CSM mode was chosen in order
o better evaluate the indentation modulus from statistical data as it
llows the possibility to reach a stabilized modulus as a function of
he depth. A 20mN load cell with a position noise floor ±0.05 nm and

a load noise of ±0.05 μN (MEMS sensor) was used. The Berkovich tip
was calibrating using a fused silica with isotropic elastic properties
and known indentation modulus in displacement-controlled mode. For
the fused silica, the values of the reduced (or effective) modulus 𝐸𝑅
tabilized for contact depth ℎ𝑐 ranging from 20 to 300 nm.

The different steps to measure the anisotropic indentation modulus
𝐸∗ in CSM mode is explained briefly in the following. The displace-
ment of the tip ℎ(𝑡) oscillates at the CSM frequency 𝑓𝐶𝑆𝑀 . Under the
assumption of small amplitude oscillations, this generates an oscillating
force 𝐹 (𝑡) with a phase shift angle 𝜙 in a linear approximation [35].

1 https://github.com/heprom/pymicro.

https://github.com/heprom/pymicro
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Fig. 1. Examples of variation of the reduced modulus 𝐸𝑅 with the contact depth ℎ𝑐
or 5 indents in a same grain of the IN718 sample.

able 1
anoindentation parameters in CSM and displacement control mode.

Ni IN718

Array size (indents) 400 × 250 300 × 300
Step size (μm) 10.0 2.0
CSM frequency (Hz) 50 200
Max depth (nm) 120 120
Load rate (nm s−1) 100 90
Displacement amplitude (nm) const. 3 const. 5
Approach wait (s) 0.2 0.1
Unload time (s) 0.02 0.02
Trigger force (μN) 10 20
Frame stiffness (N m−1) 24 372.0 10 624.3

The stiffness 𝑆 of the sample at each cycle can then be related to 𝜙 as
follows [36]:

𝑆 = 𝛥𝐹
𝛥ℎ

cos𝜙 (2)

where 𝛥𝐹 is the load amplitude and 𝛥ℎ the displacement amplitude.
lease note that, for more clarity, the effects of frame stiffness and
ass of the instrument are not included in Eq. (2). Besides, the reduced
odulus 𝐸𝑅 is related to 𝑆 as [37]:

𝑅 =

√

𝜋
2𝛽

𝑆
√

𝐴𝑝
(3)

𝛽 is a tip shape geometric descriptor (𝛽 = 1.034 for a Berkovich
ip) and 𝐴𝑃 is the projected area of contact which is a calibrated
unction of the contact depth ℎ𝑐 . As a result, a variation of 𝐸𝑅 with
espect to ℎ𝑐 is obtained. 𝐸𝑅 tends to a stabilized behavior as depth
ncreases, as it can be observed in Fig. 1. A single value of 𝐸𝑅 was
hen evaluated for each measurement point using the average value
or contact depths between 80 and 120 nm. At the end, the values of 𝐸∗

ere deduced from the following general relation for an anisotropic
lastic material [11,24,38]:

1
𝐸𝑅

= 1
𝐸∗ +

1 − 𝜈2𝑖
𝐸𝑖

(4)

where 𝜈𝑖 = 0.07 and 𝐸𝑖 = 1141GPa denote the Poisson’s ratio and the
Young’s modulus of the isotropic diamond indenter, respectively.

For the high-purity Ni sample, a map of 400 × 250 indents was
ade with a step size of 10 μm. For the IN718 sample, a map of
00 × 300 indents was made with a step size of 2 μm. The step size was
ixed in order to adapt to the sample’s grain size. The microstructure
f the Ni sample being coarser (mean grain size of 203 μm) than the
ne of the IN718 alloy which contains a lot of thin twins (mean grain
ize of 38 μm considering the twins, see also Fig. 3), the step size was
reater. Based on the noise floor for displacement and force channels,
linear regression between 1 and 30 μN was used from the force vs.

isplacement curve to estimate the contact point for each measurement
oint as the interception between the regression line and the abscissa.
 c

3 
After performing the high speed nanoindentation mapping, cor-
elative mechanical microscopy analyses were conducted using both
BSD measurements and nanoindentation responses (see Ref. [19] for
ore details). Non-rigid registration of the EBSD maps was performed

n order to affect orientation information for each nanoindentation
easurement. Grains were segmented and labeled. Grain erosion was

arried out in such a way as to take into account only nanoindentation
ests carried out more than 4 μm away from a grain boundary. A

sampling mask was also applied on the IN718 data to remove indents
located in carbides, identified both on backscattered electron images
and indendation maps (high hardness and stiffness). Average values
per grain of 𝐸∗ along with standard deviations were subsequently
computed. In total, 158 and 176 grains were available for the high-
urity Ni and the Inconel 718 samples, respectively. However, for the
ayesian simulations, only large grains having a standard deviation on
∗ lower than 12GPa were kept. The purpose of this approach was

o increase even more the robustness of the input data by ensuring
hat average values of 𝐸∗ result mostly from indents far way from

grain boundaries. Considering the difference of grain size and step size
between the two samples (see Table 1), grains with equivalent diameter
greater than 100 μm and 6 μm were selected for the Ni and IN718
samples, resulting in reduced numbers of 57 and 69 grains used in the
Bayesian simulations, respectively.

3. Vlassak and Nix’s model based on Stroh matrix formalism

3.1. Original theory

Vlassak and Nix [23–25] developed a theory which can evaluate 𝐸∗

for a given crystallographic orientation and a set of elastic constants.
It is based on the surface Green’s function derived by Barnett and
Lothe [26] within the Stroh formalism [27]. Assuming that the indenter
geometry corresponds to a circular flat punch, Vlassak and Nix [23–25]
have shown that 𝐸∗ can be computed as:

𝐸∗ = 4𝜋

(

∫

2𝜋

0
𝑛𝑖𝐵

−1
𝑖𝑗 (𝜔)𝑛𝑗 𝑑𝜔

)−1

(5)

where 𝒏 is the unit normal to the indentation surface in the crystal’s
coordinate system which is related to the Euler angles of a given
orientation. 𝑩 is a symmetric matrix that depends on the anisotropic
elastic tensor 𝑪. 𝑩 was originally expressed as a line integral within
the Stroh integral formalism [23–25]:

𝐵𝑖𝑗 =
1
2𝜋 ∫

2𝜋

0

(

(𝑚𝑚)𝑖𝑗 − (𝑚𝑛)𝑖𝑘(𝑛𝑛)−1𝑘𝑝 (𝑛𝑚)𝑝𝑗
)

𝑑𝜔 (6)

here the tensor 𝑪 is included in the notation (𝑚𝑛)𝑗𝑘 = 𝑚𝑖𝐶𝑖𝑗𝑘𝑙𝑛𝑙. The
ector 𝒎 is obtained as 𝒎 = 𝒏 ∧ 𝒕 where 𝒕 is an arbitrary unit vector in
he plane perpendicular to 𝒏. It makes an angle 𝜔 with a fixed datum
f the plane perpendicular to 𝒏. 𝜔 corresponds to the angle that varies
rom 0 to 2𝜋 in the line integral of Eq. (5).

.2. Stroh matrix formalism

The matrix 𝑩 can however be computed more efficiently using
he Stroh matrix (or sextic) formalism (see, e.g., Refs. [10,27,39–41])
hich needs first to solve an eigenvalue problem:

𝝃𝜶 = 𝑝𝛼𝝃𝜶 (7)

here 𝑝𝛼 denotes the six eigenvalues of the matrix 𝑵 . 𝑵 is a 6 × 6
atrix related to 𝑪 and given by:

= −
[

(𝒏𝒏)−1 (𝒏𝒎) (𝒏𝒏)−1

(𝒎𝒏) (𝒏𝒏)−1 (𝒏𝒎) − (𝒎𝒎) (𝒎𝒏) (𝒏𝒏)−1

]

(8)

The six eigenvalues 𝑝𝛼 appear in the form of 3 pairs of complex
𝑝 and Im(𝑝 ) > 0 for
onjugates [27,39–41]. By convention, 𝑝𝑖+3 = 𝑖 𝑖



Y. Idrissi et al. Acta Materialia 281 (2024) 120406 
Fig. 2. IPF contour along the indentation direction of (a) 𝐸∗ computed from Eq. (5) and (b) of 𝐸𝑌 the directional Young’s modulus along the indentation axis. The Ni cubic
elastic constants of [42] were considered: 𝐶11 = 244GPa, 𝐶12 = 158GPa and 𝐶44 = 102GPa.
𝑖 = 1 to 3. 𝝃𝜶 are the eigenvectors that are split into two 3 × 1 column
vectors as:

𝝃𝜶 =
[

𝑨𝜶

𝑳𝜶

]

(9)

𝑨𝜶 and 𝑳𝜶 are then normalized according to the relation:
3
∑

𝑖=1
𝐴𝛼
𝑖 𝐿

𝛽
𝑖 + 𝐴𝛽

𝑖 𝐿
𝛼
𝑖 = 𝛿𝛼𝛽 (10)

Finally, the matrix 𝑩 is obtained as:

𝐵𝑖𝑗 = 2𝑖
3
∑

𝛼=1
𝐿𝑖𝛼𝐿𝑗𝛼 (11)

3.3. Numerical application

A Gauss–Legendre quadrature method is used to solve the line
integral of Eq. (5). An accuracy of 10−4 % is reached with 30 integration
points. In combination with the use of the matrix formalism, this results
in negligible computation times to get 𝐸∗ (≪1 s).

The above theoretical framework is rigorously valid for a circular
contact area. Even for a spherical indenter, the contact area with
an anisotropic half-space is actually only circular for surfaces with
high symmetry like (111) or (100) surfaces in cubic symmetry [23–
25]. Otherwise, the contact area is elliptic. However, the resulting
difference in 𝐸∗ value is definitely well below the experimental scatter
of a nanoindentation experiment (see, e.g. Fig. 1).

For an indenter with a triangular shape like a Berkovich tip, 𝐸∗

depends on the orientation of the indenter in the indentation surface.
Vlassak and Nix [24] have shown that these variations are very small
and can also be reasonably neglected considering the experimental
scatter. However, they have also shown that the indentation moduli for
triangular indenter are on average 6% higher than the corresponding
moduli for axisymmetric indenter [24]. Hence, a corrective multiplica-
tive factor of 1.06 is considered in this work to evaluate 𝐸∗ for a
Berkovich tip, as was done by Aspinall et al. [17].

Using this model and 𝐶𝑖𝑗 constants from the literature [42], the
inverse pole figure (IPF) of the theoretical 𝐸∗ for high-purity Ni can
be computed (see Fig. 2), showing similar results as Li et al. [10].
For comparison, the IPF of the directional Young’s modulus 𝐸𝑌 along
the indentation axis is also plotted in Fig. 2. Indeed, it is important
to show how 𝐸𝑌 can be different from 𝐸∗ since, unfortunately, it
happens that both quantities are still confused in the literature. The
most noticeable difference is the relative restricted range of 𝐸∗ values:
while the maximum value of 𝐸𝑌 is more than twice the minimum value,
the maximum value of 𝐸∗ is only about 10% higher than the minimum

value.

4 
4. Bayesian inference

4.1. Theory

Bayesian inference is an advanced statistical method based on
Bayes’ theorem. One advantage of this approach is its ability to in-
tegrate prior knowledge and beliefs in the analysis. It also manages
the inherent uncertainties in the observations. As a result, model
parameters come also with uncertainties, thus providing a proba-
bilistic framework that enables a more nuanced understanding and
interpretation of the estimations, surpassing traditional methods that
lacks context [43]. For instance, Bayesian inference was recently used
in combination with the standard linear solid model and different
mechanical tests to identify viscoelastic material parameters [44] or
in combination with reduced-order finite-element models and spherical
nanoindentation experiments to identify SEC [14]. In [9], it was used
in combination with high energy X-ray diffraction measurements and
an elastic self-consistent model (ELSC) to identify SEC. It was found
that considering grain morphology in the ELSC model had an important
effect on the determination of the SEC with this method. In the present
study, a simplified Bayes theorem is evaluated as follows [45]:

𝑃 (𝐴|𝐵) =
𝑃 (𝐵|𝐴)𝑃 (𝐴)

𝑃 (𝐵)
(12)

where 𝑃 (𝐴|𝐵) is called the posterior probability. It is the probability
that the hypothesis 𝐴 is true given that the evidence 𝐵 has occurred.
𝑃 (𝐵|𝐴) is called the likelihood. It is the probability of observing the
evidence 𝐵 given that the hypothesis 𝐴 is true. 𝑃 (𝐴) is the prior belief
which is the probability of 𝐴 being true before observing 𝐵. 𝑃 (𝐵) is
the probability of observing the evidence 𝐵. 𝑃 (𝐵) can be calculated by
integrating over all possible values of 𝐴:

𝑃 (𝐵) = ∫𝐴
𝑃 (𝐵|𝐴) 𝑑𝐴 (13)

𝑃 (𝐵) is also often discarded as a normalization factor [9,14,44], but
for some non-trivial models, 𝑃 (𝐵) can be extremely difficult to estimate
in a closed-form way.

4.2. Application to Vlassak and Nix’s model and nanoindentation measure-
ments

Regarding the Vlassak and Nix’s model, an interesting feature comes
to light by noticing that any term present as a pre-factor in the stiffness
tensor 𝑪 also appears as a pre-factor in the indentation modulus 𝐸∗.
In the crystal’s coordinates system and using Voigt notation, the cubic
stiffness matrix 𝑪 is usually written with respect to the three classical
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𝑪

(

𝑪

P
d

t

I

𝑃

)
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constants 𝐶11, 𝐶12 and 𝐶44 as:

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶11 𝐶12 𝐶12 0 0 0
𝐶12 𝐶11 𝐶12 0 0 0
𝐶12 𝐶12 𝐶11 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0
0 0 0 0 0 𝐶44

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(14)

However, in our case, it is actually more beneficial to write 𝑪 as
see the justification in Appendix):

=
𝐸

⟨100⟩
(

1 + 𝜈
⟨100⟩

) (

1 − 2𝜈
⟨100⟩

)

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − 𝜈
⟨100⟩ 𝜈

⟨100⟩ 𝜈
⟨100⟩ 0 0 0

𝜈
⟨100⟩ 1 − 𝜈

⟨100⟩ 𝜈
⟨100⟩ 0 0 0

𝜈
⟨100⟩ 𝜈

⟨100⟩ 1 − 𝜈
⟨100⟩ 0 0 0

0 0 0 𝐴 1−2𝜈
⟨100⟩

2
0 0

0 0 0 0 𝐴 1−2𝜈
⟨100⟩

2
0

0 0 0 0 0 𝐴 1−2𝜈
⟨100⟩

2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(15)

where 𝐸
⟨100⟩ and 𝜈

⟨100⟩ are, respectively, the Young’s modulus and the
oisson’s ratio considering a uniaxial test along a ⟨100⟩ crystallographic
irection, whereas 𝐴 is the Zener ratio defined as the ratio of 𝜇′′

over 𝜇′, the {001}⟨100⟩ and {001}⟨110⟩ shear resistances of the crystal
(e.g., see [46]), respectively:

𝐴 =
𝜇′′

𝜇′ =
2𝐶44

𝐶11 − 𝐶12
(16)

Indeed, from this notation of 𝑪 , it becomes clear that ratios of
𝐸∗ computed from Eq. (5) depend on only two dimensionless elastic
parameters which can be taken as 𝐴 and 𝜈

⟨100⟩. This finding proves
to be very useful when performing Bayesian inference. As a matter of
fact, the computation time is greatly reduced by varying 2 parameters
instead of 3. In addition, from Born’s elastic stability conditions, the
limits of 𝜈

⟨100⟩ and the lower limit of 𝐴 are well-known and material’s
independent: 0 < 𝜈

⟨100⟩ < 0.5 and 𝐴 > 0 whereas the upper limit of 𝐴
can be easily conjectured (𝐴 < 15) or adjusted rapidly if necessary on
the basis of a first Bayesian simulation. On the contrary, the bounds
of the 𝐶𝑖𝑗 constants for an unknown material are far much harder to
estimate a priori [9]. Hence, the present approach presents a huge ad-
vantage compared to classical ones which necessitate several Bayesian
simulations just to define the correct bounds of a given material. On top
of that, the use of ratios increases the number of input data: 𝑛 (𝑛 − 1) ∕2
independent ratios for 𝑛 values of 𝐸∗ and also mitigates the influence of
the various parameters needed to be calibrated for a nanoindentation
test, such as the projected contact area function. Indeed, considering
two measurements (1) and (2) at a same contact depth, the ratio of
indentation moduli can be expressed from Eqs. (3) and (4) as:

𝐸∗(1)

𝐸∗(2)
=

𝑆(1)

𝑆(2)
− (1 − 𝜈2𝑖 )

𝐸(1)
𝑅
𝐸𝑖

1 − (1 − 𝜈2𝑖 )
𝐸(1)
𝑅
𝐸𝑖

(17)

From this equation, it becomes clear that the ratios of indentation
moduli depend mainly on the measured stiffness ratios while the in-
fluence of the geometrical parameter 𝛽 and of the calibrated projected
contact area 𝐴𝑝 involved in the expression of the reduced modulus 𝐸(1)

𝑅
(cf. Eq. (3)) is negligible since 𝐸𝑖 ≫ 𝐸(1)

𝑅 .
In our Bayesian framework, Bayes’ theorem is thus applied as

follows:

𝑃
((

𝐴, 𝜈
⟨100⟩

)

|𝑅∗) =
𝑃
(

𝑅∗
|

(

𝐴, 𝜈
⟨100⟩

))

𝑃
((

𝐴, 𝜈
⟨100⟩

))

𝑃 (𝑅∗)
(18)

𝑅∗ denotes the 𝑚 = 𝑛(𝑛 − 1)∕2 independent ratios computed from
he 𝑛 experimental 𝐸∗ values. A given ratio, denoted as 𝑅𝑖 or 𝑅 , is
𝑗 𝑘

5 
simply defined as:

𝑅𝑘 = 𝑅𝑖
𝑗 =

𝐸∗
𝑖

𝐸∗
𝑗

(19)

For the Bayesian inference simulations, we consider only one 𝐸∗
𝑖

value per grain (see Section 2.4). The corresponding standard-deviation
is denoted 𝜎𝐸∗

𝑖
. Considering a normal approximation, the standard-

deviation of the ratio distribution can then be estimated as [47]:

𝜎𝑅𝑖
𝑗
=

𝐸∗
𝑖

𝐸∗
𝑗

√

√

√

√

√

𝜎2𝐸∗
𝑖

𝐸∗
𝑖
2
+

𝜎2𝐸∗
𝑗

𝐸∗
𝑗
2

(20)

In Eq. (18), 𝑃
(

𝑅∗
|

(

𝐴, 𝜈
⟨100⟩

))

is the likelihood and stands for the
probability of observing all the ratios 𝑅∗ for a given couple

(

𝐴, 𝜈
⟨100⟩

)

.
t is computed as:

(

𝑅∗
|

(

𝐴, 𝜈
⟨100⟩

))

=
𝑚
∏

𝑘=1
𝑃
(

𝑅𝑘|
(

𝐴, 𝜈
⟨100⟩

))

(21)

It is noteworthy that log-probabilities are actually used in the
computational framework for numerical stability. 𝑃

(

𝑅𝑘|
(

𝐴, 𝜈
⟨100⟩

))

is
evaluated by comparing the experimental value of 𝑅𝑖

𝑗 to the ratio 𝑟𝑖𝑗
obtained from the Vlassak and Nix’s model (Eq. (5)) considering the
Euler angles of the two grains and the tested values of 𝐴 and 𝜈

⟨100⟩.
Concretely, a normal distribution centered around 𝑅𝑖

𝑗 and of variance
𝜎2
𝑅𝑖
𝑗

is created while the interval
[

0, 3𝜎𝑅𝑖
𝑗

]

is discretized into 100 bins.
The likelihood corresponds to the probability of the absolute difference
|𝑟𝑖𝑗 − 𝑅𝑖

𝑗 | to fall within a given bin. If |𝑟𝑖𝑗 − 𝑅𝑖
𝑗 | does not fall within any

of the created bins, then the likelihood corresponds to the probability
of |𝑟𝑖𝑗 − 𝑅𝑖

𝑗 | to be greater than 3𝜎𝑅𝑖
𝑗
.

At the end of the Bayesian inference procedure, 𝑃 (𝑅∗) serves as a
normalization factor to come back from log-probabilities to the classical
probabilities defined within the usual [0, 1] interval. The procedure thus
provides as an output 𝑃

((

𝐴, 𝜈
⟨100⟩

)

|𝑅∗) which is the probability distri-
bution that the values of the couple

(

𝐴, 𝜈
⟨100⟩

)

are correct given the
observations of the indentation modulus ratios 𝑅∗. From this posterior
probability distribution, one can easily obtain, through summations,
𝑃 (𝐴|𝑅∗) the marginal probability distribution that the values of 𝐴
are correct given the observations of 𝑅∗, as well as 𝑃

(

𝜈
⟨100⟩|𝑅∗) the

marginal probability distribution that the values of 𝜈
⟨100⟩ are correct

given the observations of 𝑅∗.
On the other hand, the posterior probability distribution 𝑃

(

𝐸
⟨100⟩|𝑅∗

can be obtained directly by simple allocations of the probabilities
𝑃
((

𝐴, 𝜈
⟨100⟩

)

|𝑅∗). The relevant value of 𝐸
⟨100⟩ which should be as-

sociated with a given couple
(

𝐴, 𝜈
⟨100⟩

)

can indeed be evaluated as
the median of the ratios distribution between experimental indentation
moduli 𝐸∗

𝑖 and normalized theoretical moduli. The latter are obtained,
for each grain, from the Vlassak and Nix’s model considering 𝐸

⟨100⟩ = 1
and the tested couple

(

𝐴, 𝜈
⟨100⟩

)

.
For both samples, no a priori knowledge is considered for the values

of 𝐴 and 𝜈
⟨100⟩. The range of 𝐴 and 𝜈

⟨100⟩ values simply follows the
Born’s elastic stability conditions and the choice of a very high upper
limit for 𝐴 (15):

0 < 𝐴 < 15 and 0 < 𝜈
⟨100⟩ < 0.5 (22)

In order to run the Bayesian simulations, evenly spaced values of
𝐴 and 𝜈

⟨100⟩ within the above ranges are hence considered with the
exact same total number of 𝐴 and 𝜈

⟨100⟩ values. This procedure amounts
to assume a uniform distribution for the prior belief 𝑃

((

𝐴, 𝜈
⟨100⟩

))

. To
perform the Bayesian simulations, one needs also to define the values
of 𝜎𝐸∗

𝑖
. The latter could be estimated from the standard-deviations

associated to the distributions of measured indentation moduli in a
same grain. However, such values do not account for the uncertainties
related to the EBSD measurements, to the linear approximation in the

analysis of the oscillatory indentations [35] and to the tip and device
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Fig. 3. EBSD inverse pole figures of the Ni (a) and IN718 (c) samples along the indentation direction and corresponding maps of indentation modulus 𝐸∗ within the same area
(Ni (b) and IN718 (d)).
calibrations which are fixed before performing the nanoindentation
mapping. Furthermore, it accounts only partially for the uncertainties
due to the sample’s surface preparation, the detection of the contact
point or the effect of environment (temperature, vibrations, etc.). In-
stead, a fixed value of 𝜎𝐸∗ is therefore rather considered for all the
grains herein. Since such a value of 𝜎𝐸∗ is actually not well-known,
the value of 𝜎𝐸∗ is varied continuously, which is possible thanks to the
quickness of the present approach, in order to investigate its effect on
the posterior probability distributions. Varying the standard deviations
allows more flexibility in how the experimental data is interpreted,
helping the Bayesian simulation achieve a more stable and robust
convergence. This approach can also unravel the choice of the final
retained constants by looking for stabilized values.

Besides, for comparison purposes, the 𝑅2 score (or coefficient of
determination) is also computed for each tested couple

(

𝐴, 𝜈
⟨100⟩

)

as:

𝑅2 (𝐴, 𝜈
⟨100⟩

)

= 1 −
∑

𝑘
(

𝑅𝑘 − 𝑟𝑘
(

𝐴, 𝜈
⟨100⟩

))2

∑

𝑘

(

𝑅𝑘 − 𝑅
)2

(23)

where 𝑅 denotes the mean of the experimental ratios and 𝑟𝑘 the ratio
obtained from the Vlassak and Nix’s model. The 𝑅2 score increases
when the least-square error, i.e. the sum of the squared differences
between experimental and theoretical ratios, decreases.
6 
5. Results

5.1. Results from the correlative mechanical microscopy

We first present results from the correlative mechanical microscopy
analyses, i.e., how the nanoindentation measurements are correlated
to the crystallographic orientations obtained by EBSD. Regarding this
issue, Fig. 3 shows side-by-side EBSD inverse pole figures according to
the nanoindentation direction and maps of 𝐸∗ within the same area
for the two samples. From Fig. 3, it can be observed that the shape of
almost all the grains of the IN718 sample can be retrieved from the
map of 𝐸∗. The map is very clear with well-defined grains. For the Ni
sample, the map of 𝐸∗ is more blurred, probably mainly because the
surface finish was not as good as for the IN718 sample. The fact of
having worked on a larger map with a lower spatial resolution and a
lower CSM frequency (see Table 1) with a different nanoindentation
system certainly also played a role. Nevertheless, a majority of grains
can still be clearly identified. As expected from theoretical calculations
in face-centered-cubic (fcc) structures with Zener ratio greater than one
(see, e.g., Fig. 2), the softest and stiffest grains correspond to grains
with orientations nearly aligned with ⟨100⟩ (red grains) and ⟨111⟩ (blue
grains), respectively.

In addition, the average values per grain of 𝐸∗ selected for the
Bayesian inference simulations according to the procedure detailed in
Section 2.4 are plotted in an inverse pole figure along the indentation
direction for the two samples in Fig. 4. This figure shows the relevance
of our approach, with a variation of 𝐸∗ which is globally consistent
with the theoretical IPF map of Fig. 2.
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Fig. 4. Experimental average values per grain of 𝐸∗ (in GPa) considered in the Bayesian inference simulations plotted in an inverse pole figure along the indentation direction
for the two samples.
Fig. 5. 2D distributions of the 𝑅2 score and of the posterior probability 𝑃
((

𝐴, 𝜈
⟨100⟩

)

|𝑅∗) for 𝜎𝐸∗ = 50GPa with respect to 𝐴 and 𝜈
⟨100⟩ for the Ni (top) and IN718 (bottom) samples.
5.2. Results from Bayesian inference simulations

In the following, Bayesian inference simulation results are pre-
sented, starting with Fig. 5 which shows the 2D distributions of the
𝑅2 score (Eq. (23)) and of the posterior probability 𝑃

((

𝐴, 𝜈
⟨100⟩

)

|𝑅∗)

for 𝜎𝐸∗ = 50GPa. These two distributions exhibit pretty similar shapes
and the trend is also alike between Ni and IN718 samples. From these
contour plots, a majority of

(

𝐴, 𝜈
⟨100⟩

)

couples appear out of the realm
of possibility because of negative 𝑅2 score or insignificant posterior
probability. However, the shape of the high probability or high 𝑅2 score
area (e.g., 𝑅2 > 0.7) is not concentric. Hence, if the range of likely 𝐴
values is clearly restricted, it is noteworthy that the whole spectrum of
𝜈
⟨100⟩ values can be associated with a high posterior probability or a

high 𝑅2 score. This shows the difficulty to choose the most relevant
values for 𝐴 and 𝜈

⟨100⟩ just from the computation of the 𝑅2 score
when a clear and well-defined minimum does not emerge. Fortunately,
it is possible to compute the marginal posterior distributions of 𝐴
and 𝜈

⟨100⟩ by summation of 𝑃
((

𝐴, 𝜈
⟨100⟩

)

|𝑅∗) for fixed values of 𝐴 or
𝜈
⟨100⟩. Figs. 6, 7, 8 and 9 illustrate some of these marginal posterior

distributions at different values of 𝜎𝐸∗ . The marginal posterior distri-
butions of 𝐴 have all well-defined peaks but with some asymmetry.
7 
The marginal posterior distributions of 𝜈
⟨100⟩ are completely different

with strong asymmetric shapes and exhibit, almost always, a saturation
of the maximum probability at the limit of 0.5. Moreover, Figs. 10
and 11 exhibit examples of the posterior probability distributions of
𝐸
⟨100⟩ at different values of 𝜎𝐸∗ (see Section 4.2 for the details of the

calculation). Once again, these distributions are not symmetric but the
asymmetry decreases with the increase of 𝜎𝐸∗ .

Finally, the evolution with 𝜎𝐸∗ of the MAP (maximum a posteriori),
median and mean values of the posterior probability distributions of 𝐴,
𝜈
⟨100⟩ and 𝐸

⟨100⟩ are displayed in Fig. 12. For comparison, the values
of 𝐴 and 𝜈

⟨100⟩ corresponding to the maximum 𝑅2 score and to the
maximum of 𝑃

((

𝐴, 𝜈
⟨100⟩

)

|𝑅∗) are indicated as well. It is seen that
the median values of the posterior distributions of 𝐴, 𝜈

⟨100⟩ and 𝐸
⟨100⟩

always stabilize very well with the increase of 𝜎𝐸∗ , while the mean
values stabilize well for 𝜈

⟨100⟩ and 𝐸
⟨100⟩ but increase with 𝜎𝐸∗ for 𝐴.

The MAP values also increase with 𝜎𝐸∗ for 𝐴 but decrease for 𝐸
⟨100⟩

and saturate at 0.5 for 𝜈
⟨100⟩. Regarding this last point, it is important

to underline that a value of 𝜈
⟨100⟩ = 0.5 provides a high value of the

posterior probability 𝑃
((

𝐴, 𝜈
⟨100⟩

)

|𝑅∗) only in association with very
high values of 𝐴 (see Fig. 5). Such high values (𝐴 > 4) are definitively
unrealistic considering the marginal posterior distributions of 𝐴 (see
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Fig. 6. Marginal posterior distributions of 𝐴 at 4 different values of 𝜎𝐸∗ for the Ni sample.

Fig. 7. Marginal posterior distributions of 𝐴 at 4 different values of 𝜎𝐸∗ for the IN718 sample.

Fig. 8. Marginal posterior distributions of 𝜈
⟨100⟩ at 4 different values of 𝜎𝐸∗ for the Ni sample.

Acta Materialia 281 (2024) 120406 
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Fig. 9. Marginal posterior distributions of 𝜈
⟨100⟩ at 4 different values of 𝜎𝐸∗ for the IN718 sample.

Fig. 10. Posterior probability distributions of 𝐸
⟨100⟩ at 4 different values of 𝜎𝐸∗ for the Ni sample.

Fig. 11. Posterior probability distributions of 𝐸
⟨100⟩ at 4 different values of 𝜎𝐸∗ for the IN718 sample.
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Fig. 12. For the Ni (top) and IN718 (bottom) samples, evolution with 𝜎𝐸∗ of the MAP, median and mean values of the marginal posterior distributions of 𝐴 and 𝜈
⟨100⟩, along with

he values of 𝐴 and 𝜈
⟨100⟩ associated to the maximum of 𝑃

((

𝐴, 𝜈
⟨100⟩

)

|𝑅∗) (max(P)) and the ones corresponding to the maximum 𝑅2 score. The evolution of the MAP, median and
ean values of the posterior probability distributions of 𝐸

⟨100⟩ are shown as well.
T
V

igs. 6 and 7) or the literature range (see further Tables 2 and 3).
t is also observed that considering directly the values of 𝐴 and 𝜈

⟨100⟩
ssociated to the maximum posterior probability 𝑃

((

𝐴, 𝜈
⟨100⟩

)

|𝑅∗)

oes not lead to consistent results since strong variations occur when
arying 𝜎𝐸∗ (see Fig. 12).

Hence, from all the above considerations, it seems well justified to
onsider the stabilized median values of the posterior distributions of 𝐴,
⟨100⟩ and 𝐸

⟨100⟩ as the final retained values. The latter are displayed in
ables 2 and 3 for Ni and IN718 samples, respectively, and correspond
o the median values taken at 𝜎𝐸∗ = 50GPa since no or very little
ariations are observed after this value (see Fig. 12).

. Discussion

The retained SEC values for high-purity Ni can be compared to those
f the literature values present in Table 2. The latter are taken from
ef. [48]. It gathers the main literature values for the SEC of pure Ni
easured by different experimental techniques. On the whole, these

alues show a good agreement. It is seen that the SEC values obtained
y the current approach are well within the literature range, although
he values of 𝐴 (2.0) and 𝜈

⟨100⟩ (0.36) lie at the lower limit. When
erforming the conversion in terms of 𝐶11, 𝐶12 and 𝐶44 values, the
atch is actually a little bit less good for 𝐶11 and 𝐶12. This is due to the
ifference between our value of 0.36 for 𝜈

⟨100⟩ and the typical literature
alue around 0.38. Indeed, when 𝜈

⟨100⟩ get close to 0.5, 𝐶11 and 𝐶12
tart to diverge because of the presence of the

(

1 − 2𝜈
⟨100⟩

)

term in the
enominator of Eq. (15).

The main literature values for the SEC of IN718 are gathered in
able 3. Compared to pure Ni, there are much less data available and
uch more variability. It should be also emphasized that, contrary

o the Ni data, the SEC values correspond to estimations based on
ndirect methods, with results closely depending on the choice of the
icromechanical model [49–51]. The SEC values obtained by our

pproach are nevertheless well within this literature range. It can be
oticed that the value of 𝐸

⟨100⟩ (108GPa) is just a little bit below the
inimum of the literature (114GPa).

Besides, it is noteworthy that the stabilized median values of the
osterior distributions are closer to the literature ranges compared to
he stabilized mean or MAP values. Moreover, approaches that consider
10 
able 2
alues of 𝐴, 𝜈

⟨100⟩ and 𝐸
⟨100⟩ (in GPa) retained after the Bayesian inference simulations

for high purity Ni and their conversion into 𝐶11, 𝐶12 and 𝐶44 values (in GPa) (Present
study). Comparisons with literature values (found as 𝐶11, 𝐶12 and 𝐶44 values and
converted in terms of 𝐴, 𝜈

⟨100⟩ and 𝐸
⟨100⟩).

Ref. A 𝜈
⟨100⟩ 𝐸

⟨100⟩ 𝐶11 𝐶12 𝐶44

Present study 2.0 0.36 143 240 135 105
[52] 2.1 0.37 139 252 151 104
[53] 2.6 0.39 125 250 160 119
[54] 2.6 0.38 131 252 157 123
[55] 2.5 0.38 139 253 152 124
[42] 2.4 0.39 120 244 158 102
[56] 2.5 0.38 131 247 152 121
[2] 2.5 0.38 130 243 149 119
[57] 2.1 0.40 120 255 169 90
[58] 2.5 0.38 132 246 150 121
[59] 2.5 0.37 139 251 150 124
[60] 2.5 0.38 135 251 153 124
[61] 2.6 0.38 130 248 154 124
[62] 2.4 0.37 141 247 144 124
[63] 2.5 0.38 135 252 154 122
[64] 2.3 0.39 148 288 181 124

Table 3
Values of 𝐴, 𝜈

⟨100⟩ and 𝐸
⟨100⟩ (in GPa) retained after the Bayesian inference simulations

for Inconel 718 and their conversion into 𝐶11, 𝐶12 and 𝐶44 values (in GPa) (Present
study). Comparisons with literature values (found as 𝐶11, 𝐶12 and 𝐶44 values and
converted in terms of 𝐴, 𝜈

⟨100⟩ and 𝐸
⟨100⟩).

Ref. A 𝜈
⟨100⟩ 𝐸

⟨100⟩ 𝐶11 𝐶12 𝐶44

Present study 2.7 0.38 108 202 124 106
[50] 2.7 0.41 114 260 179 110
[51] 2.4 0.35 124 201 109 110
[49] 2.0 0.36 141 242 139 104

directly the best couple of
(

𝐴, 𝜈
⟨100⟩

)

, from either the maximum poste-
rior probability 𝑃

((

𝐴, 𝜈
⟨100⟩

)

|𝑅∗) or the maximum 𝑅2 score, provide
results which are in general very far from the literature ranges (see
Fig. 12). The choice to consider the median values of the marginal
posterior distributions seems thus well-justified from both the non-
symmetric shapes of the probability distributions, the stabilization of
the three SEC with 𝜎𝐸∗ and the comparisons with the literature data.
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Fig. 13. Indentation moduli 𝐸∗
𝑡ℎ𝑒𝑜 computed with the Vlassak and Nix’s model using the corrective multiplicative factor of 1.06 and the retained values for 𝐴, 𝜈

⟨100⟩ and 𝐸
⟨100⟩ in

ables 2 and 3 versus the experimental indentation moduli 𝐸∗
𝑒𝑥𝑝 (average per grain). 𝑟 denotes the Pearson correlation coefficient while the 𝑅2 score corresponds to the coefficient

f determination.
n
t

m
N
r
t
i
a
p

Next, it should be underlined that if the present results were ob-
ained by performing HSNM, the latter is not crucial for the success
f the method. The proposed procedure should work as well with
onventional nanoindentation experiments. Numerical studies based
n artificial data show, for instance, that having 4 indents per grain
n a set of about 20 grains carefully selected to cover different areas
f the IPF map (Fig. 4) should be sufficient to get accurate results
epending on the elastic anisotropy of the investigated material. In
act, the method does not necessarily work better if more data are
onsidered. By increasing the number of input data, the probability of
aving outliers is also increased. A few outliers are however enough to
nfluence the final results in the wrong direction, as can been inferred
rom the multiplication of individual probabilities to get the likelihood
Eq. (21)). The big advantage of HSNM lies in the possibility to visualize
irectly how relevant are the input data by comparing EBSD and
ndentation modulus maps, as done in Fig. 3. Considering this aspect,
t may be conjectured that the analysis made for the IN718 sample is
ertainly more reliable than the one made for the Ni sample, given the
uch better match between EBSD and 𝐸∗ maps while the two materials
ave close elastic anisotropy. The lesser accuracy of the input data for
he Ni sample might be the source of the small underestimation of 𝐴
nd 𝜈

⟨100⟩ values. On the contrary, the good accuracy of the input data
or the IN718 sample provides some trust in the SEC values found by
ur approach (Table 3). This is corroborated by the results of Fig. 13
here the indentation moduli computed with the Vlassak and Nix’s
odel using the retained values for 𝐴, 𝜈

⟨100⟩ and 𝐸
⟨100⟩ in Tables 2 and

are plotted with respect to the experimental indentation moduli. Both
he Ni and IN718 samples exhibit high values of the Pearson correlation
oefficient with 𝑟 = 0.85 and 𝑟 = 0.87, respectively. Such a strong
ositive correlation indicate that the Vlassak and Nix’s model capture
ery well the variation of 𝐸∗ with the crystallographic orientation of
he indentation surface. However, it can be noticed that the 𝑅2 score,
erein computed directly from the indentation moduli and not from the
atios as in Fig. 5, is much higher for the IN718 sample (𝑅2 = 0.70) than
or the Ni sample (𝑅2 = 0.56). This should be related to the stronger
catter of the Ni data as can be seen from the larger width of the points
loud distribution. Indeed, considering close grain orientations, the
easured indentation moduli can sometimes be very different whereas

ny physical model will predict close values. This issue unavoidably
eads to errors between predictions and observations and justify the
11 
eed to adopt a statistical approach as the Bayesian inference to handle
he experimental uncertainties.

Accordingly, given the reliability of our experimental measure-
ents for the IN718 sample and the good match with the Vlassak and
ix’s model, the SEC obtained by the present approach could serve as

eference for future studies, especially considering the few, and not
otally reliable, data currently available in the literature [49–51]. It
s important also to notice that if indents in carbides were system-
tically removed, the presence of the small and narrowly distributed
recipitates, L12-𝛾 ’-Ni3(Ti,Al) and DO22-𝛾 ’’-Ni3Nb, cannot be excluded

from the indented volumes. Hence, the SEC found for the IN718 sample
should be interpreted as effective elastic constants that include the
effect of these precipitates.

Regarding the use of the Vlassak and Nix’s model with a Berkovich
tip, it must be noticed that the value of the corrective factor of 1.06
has no influence on the distributions of 𝐴 and 𝜈

⟨100⟩ since the method
is based on 𝐸∗ ratios. However, the value of this corrective factor may
affect the posterior distributions of 𝐸

⟨100⟩. Moreover, it is noteworthy
that the orientation of the Berkovich tip in the indentation surface is
not considered in the current model. This can create some uncertainties
and might explain the need to consider relatively high values of 𝜎𝐸∗

in the Bayesian inference simulations to reach convergence. Indeed,
increasing the experimental variances lead to an overlapping with a
larger set of possible theoretical values, thereby improving the inclu-
sivity of the model. As mentioned in Section 3, the Vlassak and Nix’s
model should actually represent a better approximation of 𝐸∗ values
obtained by spherical indentation tests even though the contact area
is still, in general, not circular but elliptic due to anisotropic elasticity
and though a real tip is never perfectly spherical either.

7. Conclusions

In the present study, a novel protocol is presented that couples high-
speed nanoindentation mapping (HSNM) with the Vlassak and Nix’s
model and Bayesian inference simulations to statistically estimate the
elastic constants of cubic materials. The originality lies in considering
ratios of indentation modulus 𝐸∗ as input data. Indeed, for cubic
elasticity, such ratios just depend on two dimensionless parameters
which can be chosen as the Zener ratio 𝐴 and the directional Poisson’s
ratio 𝜈

⟨100⟩. Consequently, we have developed an original Bayesian

inference protocol that considers indentation modulus ratios as inputs
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and varies only the values of 𝐴 and 𝜈
⟨100⟩. This approach has many

advantages:

• The computation time is greatly reduced by considering two
constants instead of three. In addition, the use of an optimized
Vlassak and Nix’s model based on Stroh matrix formalism pro-
viding instantaneous results avoids the need to develop surrogate
models based on finite element simulations.

• The use of indentation modulus ratios increases the number of
data and mitigates the influence of the various calibration param-
eters on 𝐴 and 𝜈

⟨100⟩.
• The limits of 𝜈

⟨100⟩ and the lower limit of 𝐴 are well-known
from elastic stability conditions and are material’s independent.
Furthermore, the upper limit of 𝐴 can be easily conjectured unlike
the bounds of 𝐶𝑖𝑗 constants which are much harder to estimate a
priori for an unknown material.

• The efficiency of the method allows for continuous variation of
the uncertainty considered for the experimental moduli. Hence,
stabilized Bayesian inference results can be obtained which sim-
plifies the choice of the finally retained values.

Supported by its successful application on high-purity Ni and In-
onel 718, we think that the present approach has great potential
o investigate the single crystal elastic constants of ill-known cubic
hases of multiphase polycrystalline materials. We also think that the
eneral concept of dealing with indentation modulus ratios could be
eneralized to materials with other symmetry, like transverse isotropy,
ecause the fact that any pre-factor of the stiffness tensor is also a
re-factor of 𝐸∗ from the Vlassak and Nix’s model (cf. Eq. (5)) is not
ependent on material’s symmetry.
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12 
ppendix. Writing of the cubic stiffness tensor with respect to 𝑨,
⟨𝟏𝟎𝟎⟩ and 𝑬

⟨𝟏𝟎𝟎⟩

In the crystal’s coordinates system and using Voigt notation, the
cubic compliance matrix 𝑺 writes classically as:

𝑺 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑆11 𝑆12 𝑆12 0 0 0
𝑆12 𝑆11 𝑆12 0 0 0
𝑆12 𝑆12 𝑆11 0 0 0
0 0 0 𝑆44 0 0
0 0 0 0 𝑆44 0
0 0 0 0 0 𝑆44

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.1)

Considering a uniaxial test along the ⟨100⟩ crystallographic direction
nd a linear elastic generalized Hooke’s law, we have then:

1 = 𝑆11𝜎1 and 𝜀2 = 𝑆12𝜎1 (A.2)

By definition, the ⟨100⟩ Young’s modulus and the ⟨100⟩ Poisson’s
atio are given by:

⟨100⟩ =
𝜎1
𝜀1

= 1
𝑆11

and 𝜈
⟨100⟩ = −

𝜀2
𝜀1

= −
𝑆12
𝑆11

(A.3)

In addition, the Zener ratio 𝐴 is defined as the ratio of 𝜇′′ over
𝜇′, the {001}⟨100⟩ and {001}⟨110⟩ shear resistances of the crystal
e.g., see [46]):

𝐴 =
𝜇′′

𝜇′

with 𝜇′ = 1
2(𝑆11 − 𝑆12)

and 𝜇′′ = 1
𝑆44

(A.4)

From these definitions, we can re-write 𝑺 as:

= 1
𝐸

⟨100⟩

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −𝜈
⟨100⟩ −𝜈

⟨100⟩ 0 0 0
−𝜈

⟨100⟩ 1 −𝜈
⟨100⟩ 0 0 0

−𝜈
⟨100⟩ −𝜈

⟨100⟩ 1 0 0 0

0 0 0
2(1 + 𝜈

⟨100⟩)
𝐴

0 0

0 0 0 0
2(1 + 𝜈

⟨100⟩)
𝐴

0

0 0 0 0 0
2(1 + 𝜈

⟨100⟩)
𝐴

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.5)

ince 𝜇′ =
𝐸
⟨100⟩

2(1 + 𝜈
⟨100⟩)

. By inverting 𝑺, the expression of Eq. (15) for

the cubic stiffness matrix 𝑪 is finally obtained.
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