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ABSTRACT

Electricity is difficult to store, except at prohibitive cost, and therefore the balance between generation
and load must be maintained at all times. Electricity is traditionally managed by anticipating demand
and intermittent production (wind, solar) and matching flexible production (hydro, nuclear, coal and
gas). Accurate forecasting of electricity load and renewable production is therefore essential to ensure
grid performance and stability. Both are highly dependent on meteorological variables (temperature,
wind, sunshine). These dependencies are complex and difficult to model. On the one hand, spatial
variations do not have a uniform impact because population, industry, and wind and solar farms are
not evenly distributed across the territory. On the other hand, temporal variations can have delayed
effects on load (due to the thermal inertia of buildings). With access to observations from different
weather stations and simulated data from meteorological models, we believe that both phenomena can
be modeled together. In today’s state-of-the-art load forecasting models, the spatio-temporal modeling
of the weather is fixed. In this work, we aim to take advantage of the automated representation and
spatio-temporal feature extraction capabilities of deep neural networks to improve spatio-temporal
weather modeling for load forecasting. We compare our deep learning-based methodology with the
state-of-the-art on French national load. This methodology could also be fully adapted to forecasting
renewable energy production.

1 Introduction

The cost of large-scale electricity storage remains high, and the current systems in use remain inefficient. Furthermore,
the secure and smooth operation of the power grid depends on maintaining a constant and precise balance between
electricity production and demand. The aforementioned equilibrium is achieved via the adaptability of programmable
power plants, which modify their production in accordance with load forecasts. It is therefore essential to have accurate
forecasts of both electricity demand and the output of renewable energy sources in order to schedule power plants and
maintain grid stability. The two signals depend on meteorological variables, specifically temperature, wind speed, and
solar radiation, which vary in both space and time. As consumer demand and renewable energy generation facilities are
not evenly distributed across a given area, variations in meteorological conditions at a particular location will affect
these signals. In addition, temporal weather variations can have a delayed effect, particularly with regard to the load, due
to the thermal inertia of buildings and the reactivity of consumers. It can be assumed that the manner in which temporal
and spatial variations in weather patterns are modelled has a significant impact on the efficacy of the forecasting models.

This article concentrates on short-term load forecasting with a forecast time horizon of one day. Such forecasts enable
power system operators to make adjustments to production and spot market prices. This signal is challenging to forecast
due to its dependence on a multitude of variables, including meteorological factors (temperature, wind, etc.) and
calendar-related elements (holidays, weekdays, etc.). Consequently, the models employed in the industry and those
that have been successful in load forecasting competitions (see Farrokhabadi et al. [2022], for a recent example) are
regression-based models, such as Generalized Additive Models (GAMs) or tree-based models. In general, lagged load
is not employed. While this variable offers valuable insight, it can also limit the model’s interpretability by reducing the
importance of other variables. Furthermore, the model would become unusable in case of data stream issues. To address
this challenge while leveraging the insights offered by lagged load, a promising approach is to construct a static model



only based on the explanatory variables and then recalibrate this model by adjusting certain parameters a posteriori
using lagged load. For instance, Ba et al. [2012] proposes adaptive learning algorithms that combine additive models
with a recursive least squares filter, while Vilmarest [2022] employs a Kalman filter to perform an online adaptation of
the weights of their models.

Despite their impressive performance in various fields, such as computer vision and natural language processing, deep
neural networks (DNNs)are still not widely used in the load forecasting community. However, recent work presents
promising results for load forecasting using DNNs. In particular, Keisler et al. [2024a] proposed EnergyDragon,
a deep neural network optimization framework designed for load forecasting. EnergyDragon automatically finds
high-performance neural networks for the static part of load forecasting models and is able to outperform state-of-the-art
regression models. Since neural networks have demonstrated their ability to extract relevant features from data in a
variety of formats, we thought it would be interesting to try them on raw spatio-temporal weather data to see if they
could automatically find more relevant spatio-temporal representations than the fixed ones used in the state of the art. In
summary, our contributions are as follows:

• A DNN-based spatio-temporal weather modeling for load forecasting, which improves on the static modeling
currently in use while remaining interpretable.

• The integration of this weather modeling approach into the framework EnergyDragon.
• An application of our results to a concrete use case: the day-ahead French load forecasting over a turbulent

period: sobriety during the year 2023.

We start this paper by presenting in section 2 the state of the art in short-term load forecasting: regression-based
models, EnergyDragon and recalibration methods. In Section 3, we show how to learn the actual spatio-temporal
modeling approach with DNN. Section 4 introduce how to incorporate the spatio-temporal weather modeling into
EnergyDragon. Finally, Section 5 details our experimental results obtained on a real-world use case: the French national
load forecasting. Section 6 concludes the paper and presents further research opportunities.

2 Related Work

The load signal can be explained almost entirely by a set of explanatory variables that do not include the past target
data. Consequently, the majority of performing models are based on regression rather than time series techniques.
Multiple Linear Regressions (MLRs) can be used to calculate the relationships between multiple variables. However, the
relationships between load and some exogenous variables are not linear, and thus, these models require the specification
of functional forms for these variables. For instance, Generalized Additive Models (GAMs) employ a spline basis to
model the nonlinear effects, as detailed in [Pierrot and Goude, 2011]. These models, which are highly accurate for load
forecasting, are used in industry and have been the winners of several competitions (see, for example, Nedellec et al.
[2014]).

DNNs have dominated the fields of computer vision and natural language processing for some years now. They offer
the ability to process data in a variety of formats - e.g., text, images, graphs - make them particularly interesting
for load forecasting, which depends on a large number of explanatory variables that may come from data sets in a
variety of formats. Recently, they have also revolutionized the field of weather forecasting, proving more effective than
Numerical Weather Prediction (see for example [Pathak et al., 2022] and [Lam et al., 2022]).While the initial work was
based on gridded reanalysis data, McNally et al. [2024] have shown that DNNs could also be effective in extracting
spatio-temporal features directly from raw weather data. In the field of load forecasting, they are currently less widely
used than multilinear regression models. However, Keisler et al. [2024a] have demonstrated that by optimizing the
structure and hyperparameters of DNNs, it is possible to develop models that surpass the current state of the art. In
their article, the authors optimize DNNs using the DRAGON package1 (see Keisler et al. [2024b]). The models are
represented using Directed Acyclic Graphs (DAGs). The search space is defined as Ω = (A × {Λ(α), α ∈ A}),
where A is the set of all considered architectures and Λ(α) is the set of all considered hyperparameters induced by the
architecture α. Each architecture α ∈ A is represented by a DAG Γ, where the nodes are the DNN layers and the edges
are the connections between them. See Keisler et al. [2024b] for more information about this search space.

Finally, this paper deals with short-term forecasting of electricity consumption. The COVID crisis and recent european
energy crises have highlighted the importance of models that can rapidly adapt to new contexts. This is why research in
the field has focused on different techniques for online model adaptation. These include the Kalman filter adaptation
of Generalized Additive Models (GAMs), which won the post-covid electricity load forecasting competition (see
Farrokhabadi et al. [2022] and De Vilmarest and Goude [2022]). The adaptation is done by multiplying the GAM

1https://dragon-tutorial.readthedocs.io/en/latest/
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effects vector by a linear correction. Let’s have xt ∈ RD our features vector, with D ∈ N⋆, yt ∈ R the target and
ŷt ∈ R the forecasted target. The static GAM model can be defined as:

ŷt =

D∑
i=1

fi(xt).

Let’s have f(xt) = [fi(xt)]
D
i=1 the GAM effects vector, the adaptation is done by fitting a vector θt ∈ RD called state,

such that:

ŷt =

D∑
i=1

θi,tfi(xt) + ϵt = θTt f(xt) + ϵt (1)

θt+1 = θt + ηt, (2)

where ϵt ∼ N (0, σ2) and ηt ∼ N (0, Q), with σ2 and Q are time-invariant and assumed to be known. The algo-
rithm achieves the estimation of the state θt by computing its state posterior distribution as a Gaussian distribution:
θt|(xs, ys)s<t ∼ N (θ̂t, Pt). The algorithm relies on the choice of σ and Q. Vilmarest [2022] suggests an iterative grid
search. In this work, we propose to apply a state vector θt on the last layer of a DNN and to optimize σ and Q directly
through the EnergyDragon framework, as any other hyperparameter.

3 Weather Modeling with Deep Neural Networks for load forecasting

In this work, we aim to forecast at each time step t ∈ [1, . . . , T ], with T ∈ N⋆ a daily load variable yt ∈ RH , using a
features vector xt = (wt, ct) ∈ (RH×V×I × RH×F ), where T represents the number of days in the data set and H the
number of time steps within a day. The features vector xt is made of two elements: wt gathering the spatio-temporal
weather data and ct containing the other F ∈ N explanatory variables such as calendar data (e.g., months, years
holidays). The vector wt ∈ RH×V×I contains the forecasts at time t from different weather stations, or to a weather
forecast grid, produced by, for example, a NWP model. The dimension I ∈ N⋆ corresponds to the number of spatial
points (i.e., the number of weather stations in the first case and the number of grid points in the second) and V ∈ N⋆ to
the number of weather variables present in wt (e.g., temperature, wind speed, solar radiation).

3.1 Spatio-temporal weather modeling

In order to be integrated into load forecasting models, spatio-temporal weather is deterministically transformed into
"electrical" weather. Several functions are applied in order to reduce the information and extract what will be most
useful for load forecasting. These functions have been defined with industry expertise, but are not adapted to a particular
dataset or period. An example of such functions for the french load signal are given by the French Transmission System
Operator called RTE2.

Ponderation The first step is to switch back from the multi-variate, spatial signal to an aggregated univariate signal.
The I spatial locations are not necessarily evenly distributed throughout the considered region and do not contribute
equally to the electrical weather. For instance locations in densely-populated parts have more weights than others
located in isolated areas. Let’s denote wv,i

h ∈ R the forecast of the weather variable v (e.g. temperature) at time step
h of the location i, and ai ∈ [0, 1] the weight of the location i. The weights are shared accross the variables v. The
aggregated signal at time h can then be written as:

wv
h =

I∑
i=1

aiwv,i
h , with:

I∑
i=1

ai = 1. (3)

This behavior can easily be reproduced with a Multi-Layer Perceptron (MLP):

wv
h = Awv

h + b, with wv
h = [wv,i

h ]Ii=1, A = [ai]Ii=1 and b = 0 (4)

However, a Deep Neural Networks requires the scaling of the input data. Each v variable is scaled independently, so that
variables with large amplitudes (e.g. temperature) don’t override the others. We scale each location i independently and
denote w̃v,i

h = (wv,i
h −minv,i)/(maxv,i−minv,i) the min-max scaled version of wv,i

h , with minv,i = min
h∈[1,...,H]

wv,i
h ∈ R

2https://www.services-rte.com/files/live/sites/services-rte/files/documentsLibrary/2022-04-01_
REGLES_MA-RE_SECTION_2_F_3590_en
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and maxv,i = max
h∈[1,...,H]

wv,i
h ∈ R. If we consider the aggregated target to also be scaled, with minv = min

h∈[1,...,H]
wv

h ∈ R

and maxv = max
h∈[1,...,H]

wv
h ∈ R, we have:

w̃v
h =

wv
h − minv

maxv − minv
= (

I∑
i=1

aiwv,i
h − minv)/(maxv − minv)

=
( I∑
i=1

w̃v,i
h (maxv,i − minv,i) + minv,i − minv

)
/(maxv − minv)

=

I∑
i=1

ai
maxv,i − minv,i

maxv − minv w̃v,i
h +

I∑
i=1

minv,i − minv

maxv − minv

= Avw̃v
h + bv

,

with w̃v
h = [w̃v,i

h ]Ii=1, Av = [ai(maxv,i−minv,i)/(maxv−minv)]Ii=1 and bv =
∑I

i=1(minv,i−minv)/(maxv−minv).
Therefore, we need V MLP layers to aggregate the data variable by variable.

3.2 Temperature smoothing

Load does not respond instantaneously to changes in the weather. In particular, temperature effects are more gradual
due to the thermal inertia of buildings. This is why the concept of smoothed temperature is useful for understanding the
factors that influence electricity consumption. Exponential smoothing is typically employed in this context. We denote,
for a day t, Tt = [Tt,1, . . . , Tt,H ] ∈ RH the aggregated temperature and T t = [T t,1, . . . , T t,H ] ∈ RH the smoothed
version. We define:

T t,1 = (1− α)Tt,1 + αT t−1,H , and, ∀i ∈ [2, H] : T t,i = (1− α)Tt,i + αT t,i−1, (5)

where α ∈ [0, 1] is the smooth coefficient, which can be optimized.

Recurrent Neural Networks Smoothed temperature requires at each time step t to pass T t,H ∈ R to the next time
step t+ 1. Such information passing can be reproduced by Recurrent Neural Networks (RNNs), which are designed
with a memory vector. The equations of a recurrent neural network with input Tt ∈ RH and output T t ∈ RH can be
written as:

T t = ϕ(TtW
T
1 + b1 + T t−1W

T
2 + b2) ,

where ϕ is an activation function (typically non-linear), and W1 ∈ RH×H , W2 ∈ RH×H , b1 ∈ RH and b2 ∈ RH are
some parameters which can be learned through gradient descent. For writing simplicity, we now index our temperature
by t⋆, such that, if t⋆ = {t, i}, we have, if i < H:{

t⋆ = {t, i+ 1}
else, t⋆ + 1 = {t+ 1, 1}.

Let τ > 0. To compute T t⋆ based on the smoothed temperature at instant t⋆ − τ , T t⋆−τ , and the sequence of
temperatures Tt⋆−τ+1, . . . , Tt⋆ , we have:

T t⋆−τ+1 = T t⋆−τ

T t⋆−τ+1 = (1− α)Tt⋆−τ+1 + αT t⋆−τ

... =
...

T t⋆ =

τ−1∑
s=0

αs(1− α)Tt⋆−s + ατT t⋆−τ . (6)
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Based on Equation 6, by setting:

W1 =


(1− α) 0 0 . . . 0
α(1− α) (1− α) 0 . . . 0

...
...

...
...

...
αH−1(1− α) αH−2(1− α) αH−3(1− α) . . . (1− α)

 ,

W2 =


0 . . . 0 α
0 . . . 0 α2

...
...

...
...

0
... 0 αH

 ,

and b1 = b2 = 0,

It is possible to induce a recurrent neural network (RNN) to learn the behaviour defined by the exponential smoothing
model, as set out in Equation 5. Nevertheless, this configuration results in the network optimizing a total of O(H2)
parameters. In the context of seeking novel approaches to temperature smoothing, the utilization of a recurrent neural
network (RNN) is a logical choice. On the other hand, if the objective is to restrict the network to exponential smoothing,
with optimization limited to the α smoothing coefficient, the necessity for optimizing a vast number of parameters
renders the process complex and may ultimately prove inefficient. For this reason, we propose a new DNN layer that
enables the efficient computation of one or more exponential smoothings over several batches, with only the smoothing
coefficients as parameters to optimize.

Exponential Smoothing Layer Let’s consider a batched input of size B ∈ N⋆, containing the temperature from the
days t−B to t: Tt−B:t = [Tt−B , . . . , Tt] ∈ RB×H . The exponential smoothing layer first reshape this data into a size
BH , to treat all sequences at once. We then use Equation 6, with τ = H ×B − 1 to compute Tt−B:t:

T t⋆−τ

T t⋆−τ+1

...
T t

 =


1 0 0 . . . 0
α 1 0 . . . 0
...

...
...

...
...

ατ ατ−1 ατ−2 . . . 1




T t⋆−τ

(1− α)Tt⋆−τ+1

...
(1− α)Tt⋆

 ,

Tt⋆−τ :t⋆ = M ×
[
T t⋆−τ | (1− α)Tt⋆−τ+1:t⋆

]
, with,∀i ≥ j : Mi,j = αi−j . (7)

Finally, we reshape Tt⋆−τ :t⋆ ∈ RHB back to the original shape Tt−B:t ∈ RH×B . The matrix M is constructed during
the forward pass as its shape and formula depend on the batch size B. Given that the coefficient α belongs to [0, 1], it is
encoded through a sigmoid: α = Sigmoid(α) = 1/(1 + exp(−α)) ∈ [0, 1] for α ∈ R, where α would be the weight
optimized through back-propagation.

In our search space we let the optimization framework choose between the Exponential Smoothing Layer, a RNN
layer, a Long-Short Term Memory (LSTM) layer and a Gated Recurrent Unit (GRU) layer, to perform the smoothing
operation (see Section 4.2).

3.3 Online learning

The last layer of the search space from Keisler et al. [2024a] is a linear layer, transforming an input ht ∈ RH×D into an
output yt ∈ RH , where yt is the load consumption for the day t, H the number of instants during the day and D ∈ N⋆

is the hidden dimension within the network before the last layer. Let’s name AF ∈ RD and bF ∈ R respectively the
weights and bias matrices of this last MLP layer, we have:

yt = AFht + bF =

D∑
i=1

aiFh
i
t + bF . (8)

To adapt our DNN, we use a daily Kalman state vector θt ∈ RD to adapt the coefficients of equation 8:

ỹt = θTt (AFht + bF ) =

D∑
i=1

θit(a
i
Fh

i
t + bF ) + ϵt (9)

θt+1 = θt + ηt, (10)
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where ϵt ∼ N (0, σ2) and ηt ∼ N (0, Q). Vilmarest [2022] suggests to use iterative grid search for σ ∈ R the diagonal
coefficients of Q ∈ RD×D. This search can be quite expensive, with a complexity of O(LD2), where L is number of
values that the coefficients of Q may take. We experimented empirically that the number of coefficients of the last MLP
layer is usually larger than the number of coefficient of the GAMs. The iterative grid search was not usuable in this
case, therefore we included the optimization of σ and the coefficients of Q within EnergyDragon search space (see
Section 4.2.

4 Automated weather modeling

This Section presents the integration of the various elements presented in Section 3, namely the weather modeling and
Kalman adaptation modules, into EnergyDragon with the objective of optimizing them.

4.1 Objective function

The objective is to identify the optimal DNN f̂ ∈ Ω with the lowest forecast error on a given load signal with a short
forecast horizon (e.g., 24 hours). The load dataset, denoted by D, contains the spatio-temporal W data, the explanatory
variables C and the target (the load signal) Y . For any subset D0 = ((W0, C0), Y0), the forecast error ℓMSE is defined
as:

ℓMSE : Ω×D → R
f ×D0 7→ ℓMSE

(
f(D0)

)
= ℓMSE

(
Y0, f(W0, C0)

)
= MSE

(
Y0, f(W0, C0)

)
.

Where MSE is the Mean Squared Error. Each DNN f ∈ Ω is parameterized by:

• α ∈ A, its architecture, optimized by the framework.
• λ ∈ Λ(α), its hyperparameters, optimized by the framework, where Λ(α) is induced by α. The hyperparam-

eters include Q and σ from the Kalman adaptation. It should be noted that the shape of Q depends on the
architecture and hyperparameters of the networks.

• δ ∈ ∆(α, λ), the DNN weights, where ∆(α, λ) is generated by α and λ and optimized by gradient descent
when training the model.

The optimization process is done in several steps. First, the optimal DNN weights δ̂ ∈ ∆(α, λ) for a given ar-
chitecture α ∈ A and set of hyperparameters λ ∈ Λ(α) are found using gradient descent over the training set
Dtrain =

(
(Wtrain, Ctrain), Ytrain)

)
= (Xtrain, Ytrain):

δ̂ ∈ argmin
δ∈∆(α,λ)

(
ℓMSE

(
fα,λ
δ (Xtrain, Ytrain)

))
.

Once the DNN is trained, the performance of the selected α and λ are evaluated on Dvalid. As Q and σ are part of λ, the
evaluation is done using the- Kalman recalibration of the model First, the state vector θ ∈ RT×D is estimated on the
last MLP layer of the trained DNN fα,λ

δ̂
using Equations 9 and 10. Let’s have Θλ

(
fα,λ

δ̂
(Xvalid)

)
the recalibration of

fα,λ

δ̂
(Xvalid) as defined Equation 9. The architecture α and hyperparameters λ are optimized as:

(α̂, λ̂) ∈ argmin
(α,λ)∈(A×Λ(α))

(
ℓMSE

(
Θλ

(
fα,λ

δ̂
(Xvalid)

)
, Yvalid

))
.

The framework output will be ℓMAPE , the Mean Absolute Percentage Error. Given a load series Y = (y1 . . .yn) and
the predictions Ŷ = (ŷ1, . . . ŷn), MAPE(Y, Ŷ ) = 1/n

∑n
i=1

∣∣(yi − ŷi)/yi

∣∣ . The MAPE is computed using the DNN
with the best architecture, hyperparameters, weights and calibration using Kalman on the test dataset:

ℓMAPE

(
Θλ̂

(
f α̂,λ̂

δ̂
(Xtest)

)
, Ytest

)
.

In the following section (4.2), we explicit our search space, defined by A and Λ(α).

4.2 Search space

The search space used in this work extends the one from Keisler et al. [2024a] by adding a weather modeling and a
Kalman module, and is depicted Figure 1. Each DNN f ∈ Ω maps two batched inputs: wb ∈ RB×H×V×I containing
the spatio-temporal weather and cb ∈ RB×H×F containing the other explanatory variables into a target yb ∈ RB×H ,
where B ∈ N⋆ represents the size of the batch.
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Weather input: wb ∈ RB×H×V ×I Features input: cb ∈ RB×H×F

DNN: fα,λ
δ

Weather Modeling: λw

Ponderation Layer

Smoothing Layer 2D DAG: Γ1 = fα1,λ1

Flatten

1D DAG: Γ2 = fα2,λ2

Feed-forward layer

Kalman adaptation: λK

Forecasted load: yb ∈ RB×H

Concatenation

Figure 1: Daily meta-model for load datasets from Keisler et al. [2024a], with the integration of the weather modeling
and the Kalman adaptation modules.

Weather Modeling Tdesignated as wb, is initially processed by a Weather Modeling module containing V ponderation
layers and a smoothing layer as defined Section 3. Each of the V weighting layers, designated as v is associated with
an MLP layer, enabling the I signals to be weighted into Fv signals, with I >> Fv. This enables the network to
identify multiple potential weightings. The FW =

∑V
v=1 Fv weighted signals are then concatenated into a vector of

size B ×H ×FW . The FT signals corresponding to aggregated temperatures are smoothed by a smoothing layer being
either a recurrent network (RNN, LSTM or GRU), or an exponential smoothing layer as defined in Section 3. They
are then concatenated to the vector, now of size B ×H × (Fw + FT ). The set of hyperparameters for the Weather
Modeling module is called λw and include the V output dimensions of the weighting layers for each of the V variables,
as well as the type of layer used for smoothing along, with the hyperparameters associated with that layer.

Load Forecasting Network The vector generated by the Weather Modeling module is merged with the other vector
of features, designated as cb, resulting in a vector xb of size B ×H × (FW + FT + F ), which is then fed to the load
forecasting model. This model is identical to the one used by Keisler et al. [2024a]. The load forecasting network
should map xb ∈ RB×H×(FW+FT+F ) into the target yb ∈ RB×H . For this, two DAGs Γ1 and Γ2 are used. The graph
Γ1 is made of 2-dimensional layers operations to treat the 2-dimensional input and is parameterized by α1 and λ1. A
flattened layer follows Γ1 to transform the 2-dimensional latent representation into a 1-dimensional one. The graph
Γ2 is then made of 1-dimensional layers operations and is parameterized by α2 and λ2. We have α = [α1, α2] and
λ = [λ1, λ2]. A final output layer maps the output shape of Γ2 to H .

Finally, a Kalman adaptation is made using two last hyperparameters Q and σ. We call λK this hyperparameter set. To
summarize, our search space can be written as: (α, λ) = ({α1, α2}, {λw, λ1, λ2, λK}) ∈

(
A× Λ(α)

)
.

5 Experiments

In this section, we evaluate the efficacy of our weather modeling and Kalman adaptation techniques on the French load
dataset from January 2023 to May 2024. In contrast with the paper by Keisler et al. [2024a], which compares data from
a relatively stable and distant period, our analysis focuses on a more dynamic and operational context. The training
period spans from 2018 to 2022 and encompasses both the global pandemic caused by the SARS-CoV-2 virus and the
subsequent energy crisis at the end of 2022. The test period encompasses the winter of 2023, during which consumers
were encouraged to voluntarily reduce their consumption, a period commonly referred to as the “sobriety period”.
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5.1 Data

The load dataset was obtained from the website of the French Transmission System Operator (RTE)3 and contains
the French national load data at half-hourly intervals. Therefore, each day contains H = 48 time steps. The models
were trained from January 2018 to December 2022 and subsequently evaluated from January 2023 to May 2024 using
the MAPE. The weather data set comprises three-hourly weather forecasts for 32 weather stations across France (see
Figure 2). These forecasts are provided by Meteo France 4. Prior to employing this data in our forecasting models, we
performed a temporal linear interpolation. The other explanatory features used to explain the load data are calendar
features including the day of the week, the month, the year, and whether the day in question fell on a public holiday or a
surrounding day.

Figure 2: Location of the 32 french weather stations from our spatio-temporal weather dataset.

5.2 Baseline

We compare our results to models at the state-of-the-art in load forecasting: the day-ahead load forecast provided on
RTE website, a Generalized Additive Model (GAM) used in the industry and EnergyDragon as proposed by Keisler
et al. [2024a]. In the case of the GAM model, a single model is calibrated for each instant, resulting in a total of
48 models. The training set was modified by removing periods corresponding to lockdowns that were implemented
during the pandemic caused by the novel coronavirus. EnergyDragon produces daily forecasts of H = 48 values,
necessitating the use of a single model for all instants. A “Covid” feature has been incorporated into the model to
indicate which periods corresponding to lockdowns are retained in the training set. With the exception of the “Covid”
variable, the features are identical between the GAM and EnergyDragon models. The weather variables utilized in
this study correspond to the weather at the 32 stations, with the data weighted and smoothed in accordance with the
recommendations outlined in the RTE report on incorporating climatic contingencies into consumption forecasts5. Both
models are recalibrated in an identical manner, utilising a Kalman filter that is updated on a daily basis with data from
two days ago. To optimize Q and σ for the GAM model, an Iterative Grid Search was employed with the years 2020 to
2022 as validation set. For EnergyDragon, the years 2018 to 2020 were used as training dataset (Dtrain) and the years
2021 and 2022 as validation set (Dvalid). Concerning the RTE model, no information is given on the structure of the
model or its recalibration. For our model, later called ED Weather Modeling (for EnergyDragon Weather Modeling),
which includes space-time weather modeling, we remove all weather-related features from EnergyDragon (all weather
variables and their smoothed versions).
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Model MAPE Recalibration MAPE

RTE - Not specified 2.316
GAM 7.429 Kalman 2.019

EnergyDragon 2.988 Kalman 1.947
ED Weather Modeling 3.501 Kalman 1.848

Table 1: Results over 2023 - May 2024

5.3 Results

We evaluated each algorithm from the baseline on the French load signal. Both versions from EnergyDragon were run
using 20 GPUs V100. The search algorithm used for the optimisation is the steady-state evolutionary algorithm used in
[Keisler et al., 2024a]. The initial population is of size 100. Each algorithm was run with a global seed of 0 to ensure
reproducibility. The results can be found in Table 1 and support the findings of [Keisler et al., 2024a]. Indeed, even
during an erratic period, EnergyDragon managed to beat the static version of GAM. As anticipated, GAM’s Kalman
recalibration is superior to EnergyDragon’s static version, thereby validating the incorporation of a DNN recalibration
brick. This addition, in combination with the optimization of σ and Q, have proven to be effective, as evidenced by the
superior performance of the recalibrated EnergyDragon model in comparison to both RTE and GAM-Kalman. With
regard to the incorporation of the weather modeling module, in the recalibrated version it enables us to achieve a slight
improvement (5%) in mean absolute percentage error (MAPE) compared to EnergyDragon.

During the optimization phase, we noticed that the exponential smoothing layer exhibits superior performance in
comparison to alternative modules. As Figure 3 shows, there are rapidly no RNNs left in the new DNNs created. We
noticed they are no longer employed after the 200th neural network is created (the initial population is 100 individuals,
and ultimately, more than 2.000 models are evaluated during optimization). An examination of the output of the weather
modeling module reveals the manner in which the DNN has modeled the weather. This modeled weather can then be
compared to the data supplied by RTE, which was used in the GAMs and EnergyDragon models. Figures 4 and 5 show
a comparison between the data as modeled by the functions given by RTE, and the one found by two DNNs using the
Weather Modeling modules and achieving good performance (respectively 2.1% and 1.85% of MAPE). We can see that
DNN’s modeling close from that proposed by RTE, without being identical. It’s interesting to notice, for example, that
wind is almost identically represented, while for temperature we have two different aggregations. One is very close
to the signal proposed by RTE, the other is opposite and larger in amplitude. As for smoothing, while Figure 5 has a
smoothing fairly close to that used in the GAM and EnergyDragon models, for Figure 4 the first smoothing coefficient
is much lower.

Finally Figure 6 shows the models found by EnergyDragon with and without the weather modeling part. We focused on
the core of the network without showing the weather modeling brick, to only compare the load forecasting network.
The structure of EnergyDragon with the weather modeling network shown Figure 6b is a lot simpler than the one
without shown Figure 6a. It can be hypothesized that the weather is represented in a more comprehensible way for the
DNN thanks to the weather modeling module. As a result, fewer transformations would be required to output the load
forecast.

6 Conclusion

In conclusion, this article builds upon the work initiated by Keisler et al. [2024a] on automated deep learning for load
forecasting. In this initial article, a framework, designated as EnergyDragon, was proposed for the optimization of both
the architecture and hyperparameters of Deep Neural Networks, specifically designed for load forecasting. This article
improves upon the previous work by incorporating an automated spatio-temporal weather modeling approach based
on DNN and a recalibration module based on Kalman filtering. The efficacy of our approach is evaluated in a more
dynamic and operational context, namely the national French load during the sobriety period.

3https://www.rte-france.com/eco2mix
4https://www.data.gouv.fr/fr/organizations/meteo-france/
5https://www.services-rte.com/files/live/sites/services-rte/files/documentsLibrary/2022-04-01_

REGLES_MA-RE_SECTION_2_F_3590_en
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Figure 3: Number of DNNs created having a Recurrent Neural Network as smoothing layer through time.

To automate the spatio-temporal representation of weather, we have maintained a close alignment with the functions
employed in the state of the art for load forecasting. In the Section 5, we demonstrate that the representations identified
by our DNNs are close to those used in the other models from our baseling. This approach offers the advantage of
remaining interpretable, enabling a comparison between the DNN-generated model and the insights derived from
domain expertise. However, these preliminary results could probably be further enhanced by incorporating more
sophisticated DNNs layers and employing over-parameterization.
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(a) Dotted line: the wind signal aggregated using weights from RTE, used in the GAM and EnergyDragon models. Solid line:
the wind signal aggregated by the weather modeling module.
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(b) Dotted line: the temperature signal aggregated using weights from RTE, used in the GAM and EnergyDragon models.
Solid lines: two aggregated temperature signals found by the weather modeling module.
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(c) Dotted line: the smoothed temperature signals used in the GAM and EnergyDragon models. Solid lines: the two aggregated
temperature signals smoothed by the weather modeling modeling module.

Figure 4: Comparison between the weather as modeled within the GAM and EnergyDragon models, versus the weather
modeled by the DNN based Weather Modeling module, for a model having a MAPE of 2.1%
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(a) Dotted line: the wind signal aggregated using weights from RTE, used in the GAM and EnergyDragon models. Solid line:
the wind signal aggregated by the weather modeling module.
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(b) Dotted line: the temperature signal aggregated using weights from RTE, used in the GAM and EnergyDragon models.
Solid line: the aggregated temperature signal found by the weather modeling module.
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(c) Dotted line: the smoothed temperature signals used in the GAM and EnergyDragon models. Solid line: the aggregated
temperature signal smoothed by the weather modeling modeling module.

Figure 5: Comparison between the weather as modeled within the GAM and EnergyDragon models, versus the weather
modeled by the DNN based Weather Modeling module, for a model having a MAPE of 1.85%
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Input Features

add,Identity,Tanh

add,MLP,34,LeakyReLU

mul,Dropout,0.0607993869225379,SiLU

Flatten

add,Attention1D,9,random,493,GELU

mul,MLP,205,Identity add,LayerNorm1d,SiLU

add,LayerNorm1d,SiLU 1

concat,BatchNorm1d,ReLU

concat,MaxPooling1D,8,SiLU

MLP,48,Identity()

(a) Best model found by EnergyDragon without the auto-
mated weather modeling part.

Weather Modeling +
Input Features

mul,TemporalAttention,8,2,random,SiLU

add,Identity,SiLU

concat,MLP,17,SiLU

add,Identity,SiLU 1

add,Identity,SiLU 2

Flatten

concat,Identity,SiLU

MLP,48,Identity()

(b) Best model found by EnergyDragon with the automated
weather modeling part.

Figure 6: Best models found by EnergyDragon without and with the automated weather modeling module.
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