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Generalized Drude–Lorentz Model Complying with the
Singularity Expansion Method

Isam Ben Soltane,* Félice Dierick, Brian Stout, and Nicolas Bonod*

Deriving analytical expressions of dielectric permittivities is required for
numerical and physical modeling of optical systems and the soar of
non-Hermitian photonics motivates their prolongation in the complex plane.
Analytical models are based on the association of microscopic models to
describe macroscopic effects. However, the question is to know whether the
resulting Debye–Drude–Lorentz models are not too restrictive. Here, it is
shown that the permittivity must be treated as a meromorphic transfer
function that complies with the requirements of complex analysis. This
function can be naturally expanded on a set of complex singularities. This
singularity expansion of the dielectric permittivity allows to derive a
generalized expression of the Debye–Drude–Lorentz model that complies
with the requirements of complex analysis and the constraints of physical
systems. It is shown that the complex singularities and other parameters of
this generalized expression can be retrieved from experimental data acquired
along the real frequency axis. The accuracy of this expression is assessed for a
wide range of materials including metals, 2D materials and dielectrics, and it
is shown how the distribution of the retrieved poles helps in characterizing
the materials.

1. Introduction

The description of the permittivity of materials via analytical ex-
pressions is of fundamental interest in the field of optics and
electromagnetism. Analytical models are relevant to provide sim-
ple and relevant descriptions of the interaction between materi-
als and excitation fields.[1,2] They are also of strong interest for
computational modeling and numerical methods such as time-
domain numerical methods.[3,4] Besides the need of analytical de-
scription of the dielectric permittivity on real frequencies, modal
analysis of open systems and non-Hermitian photonics requires
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the description of the dielectric permittiv-
ities on the complex frequency plane.[5–9]

Common tools or models rely on combina-
tions of the Drude, Lorentz and sometimes
Debye models to describe the permittivity
on spectral windows extending over a few
dozens of wavelengths.[10–13]

Alternatively, one can derive an expres-
sion of the permittivity (or the susceptibil-
ity) as a singularity expansion.[14,15] When
real-valued fields are considered in the tem-
poral domain, this becomes equivalent to
the complex-conjugate pole-residue pairs
model (ccprp),[16–19] which approximates
the permittivity using a finite set of complex
conjugated pairs of poles contained within
or close to a spectral window of interest,
with the aim of providing simple analytical
expressions to numerical methods.[16,20,21]

By expressing the permittivity as the
transfer function of a physical system,
we generalize these approaches and show
that the singularity expansion method
(SEM)[22,23] is the natural way to obtain an

exact expression of the permittivity. The SEM can be recast into
a form including the Drude, Lorentz, and Debye models which
we refer to as the generalized Drude–Lorentz model (GDL). We
discuss in particular what the additional terms appearing in the
generalized Lorentz model translates into when we revert back to
the temporal domain. We propose an approach to retrieve the pa-
rameters of the GDL model. It is an optimization method relying
on the auto-differentiation tools from current machine-learning
libraries, and more specifically PyTorch.[24] We test this approach
and show its accuracy with experimental data corresponding to
the dielectric permittivity of nine materials including metals, di-
electrics and 2D materials. Finally, we show how the distribution
of the poles associated with Debye, Drude, or Lorentz terms can
characterize the behavior of the material at different frequencies.
While we focus on non-magnetic, isotropic media for simplicity
but also and mainly because these account for most of the reg-
ularly encountered media, the study presented in this work can
also be applied to non-isotropic media with tensors for both the
permittivity and the permeability.

2. Singularity Expansion of the Permittivity

2.1. Drude–Lorentz Model

The dielectric permittivity is often expressed as a combination
of the Lorentz, Debye, and Drude models. The Debye model
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Figure 1. The linear dielectric permittivity of a material is defined in the
constitutive relations by a transfer function linking the output displace-
ment field D⃗ to the input electric field E⃗. It shares the properties of a linear
transfer and can be analytically expressed using the singularity expansion
method.

being a special case of the Drude model, we will focus on Drude
and Lorentz models. The Lorentz model is often used to model
the behavior of the electric charges of a medium excited by an
electromagnetic-field. It leads to an expression of the permittivity
as a sum of Ne Lorentz functions, each associated with a group
of electric charges possessing a different behavior. The Drude
model describes free charges in a metal or a gas of charged par-
ticles. By simply putting them together, we obtain the classical
Drude–Lorentz (DL) model

(𝜔) = 𝜀0

(
∞ −

𝜔2
b

𝜔2 + i𝜔𝛾
−

Ne∑
m=1

𝜔2
p,m

(𝜔2 − 𝜔2
0,m) + i𝜔Γm

fm

)
(1)

The Drude term is characterized by its plasma frequency 𝜔b
and 𝛾 which corresponds to a friction-like term acting on the
free charged particles within the medium. The Ne Lorentz
terms have a similar expression, but are associated with forces
acting upon bound charged particles. They mainly differ by
the presence of the frequency 𝜔0, m which is associated with a
spring-like force restoring the particles to their equilibrium posi-
tion. Ne usually ranging from 1 and 5, with the usual convention
that

∑Ne
m=1 fm = 1, which corresponds to Ne groups of charged

particles with different behaviors[25]

2.2. The Dielectric Permittivity as a Transfer Function

The permittivity (𝜔) is defined by the constitutive equation link-
ing the electric field E⃗ to the displacement field D⃗. It has the form
of a tensor and can be reduced to a scalar in isotropic media. The
elements of this tensor link components of the exciting electric
field to the components of the displacement field. Each compo-
nent of the dielectric tensor behaves as a transfer function of a
physical system. Transfer functions of linear and time invariant
systems permit to retrieve the output field, here the displacement
field D⃗, when the physical material is excited by an incoming
field, here the electric field E⃗ (see Figure 1). In this study, we will
consider isotropic, non-magnetic, linear and time invariant op-
tical materials for which the dielectric permittivity reduces to a
scalar that is obtained by taking the square of the refractive index
n(𝜔).

The singularity expansion method has been developed to
expand the transfer functions in terms of their complex
singularities.[14,22,23,26–28] Under the assumptions described in

Equations (S3)– (S7), Supporting Information, it yields

(𝜔) ≈ NR +
M∑
𝓁=1

r(𝓁)
I

𝜔 − 𝜔
(𝓁)
I

+
N∑

𝓁=1

[
r(𝓁)

p

𝜔 − 𝜔
(𝓁)
p

−
rp

(𝓁)

𝜔 + 𝜔p
(𝓁)

]
(2)

where r(𝓁)
p (resp. r(𝓁)

I ) is the residue of  at the complex singu-

larity or pole 𝜔
(𝓁)
p (resp. imaginary pole 𝜔

(𝓁)
I ), and NR is the non-

resonant term, a constant with a known expression depending
on all the poles. Let us point out that, due to the inherent Hermi-
tian symmetry, that is, H(𝜔) = H(−𝜔) of physical system result-
ing from the consideration of real-valued temporal signals,[29] the
complex poles come in pairs (𝜔(𝓁)

p , −𝜔p
(𝓁)) and so do their associ-

ated residues (r(𝓁)
p , −rp

(𝓁)).[16,18,23]

2.3. Generalized Drude–Lorentz Expression

We now aim at demonstrating that the singularity expansion in
Equation (2) can be cast into a form that encompasses the Drude–
Lorentz expression in Equation (1). For that purpose, we separate
three different contributions in Equation (2) regarding the posi-
tion of the poles in the complex plane. In agreement with the final
value theorem, we impose a pole at the origin (the detailed justifi-
cation can be found in Supporting Information), and we separate
the complex pairs of poles from the poles on the imaginary axis,
which account for the contribution of (almost) free charges in the
media. The purely imaginary poles, including the one at the ori-
gin, are associated with terms equivalent to the usual Drude or
Debye relaxation terms as will be shown later. Let us call ̂ the
expansion of 

̂(𝜔) = NR + 𝜀0

×

(
r0

𝜔
+

M∑
𝓁=1

r(𝓁)
I

𝜔 − 𝜔
(𝓁)
I

+
N∑

𝓁=1

[
r(𝓁)

p

𝜔 − 𝜔
(𝓁)
p

−
rp

(𝓁)

𝜔 + 𝜔p
(𝓁)

])

(3)

where r0 is the residue of  at 0. Let us stress that Equation (3)
would be the exact expression of the permittivity  if the expan-
sion were not truncated for numerical reasons.

The imaginary poles in the truncated singularity expansion,
including 0, can be written as Drude terms. Let us consider
the couple (𝜔(𝓁)

I , r(𝓁)
I ) of an imaginary pole and its associated

imaginary residue. Setting 𝛾l = −Im(𝜔(𝓁)
I ) and 𝜔b,𝓁 ∈ ℂ such that

−i𝜔2
b,𝓁∕𝛾𝓁 = r(𝓁)

I leads to

r(𝓁)
I

𝜔 − 𝜔
(𝓁)
I

= −
𝜔2

b,𝓁

i𝛾𝓁

[
1
𝜔

− 1
𝜔 + i𝛾𝓁

]
+

𝜔2
b,𝓁

i𝛾𝓁

1
𝜔

(4)

Finally, we give an expression of 𝛾0, the residue of the pole 0,
taking into account r0 and the residues of the other imaginary
poles

𝛾0 = r0 −
M∑
𝓁=1

𝜔2
b,𝓁

i𝛾𝓁
(5)
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Thus, all the terms associated with the imaginary poles can be
written as

r0

𝜔
+

M∑
𝓁=1

r(𝓁)
I

𝜔 − 𝜔
(𝓁)
I

=
𝛾0

w
−

M∑
𝓁=1

𝜔2
b,𝓁

𝜔2 + i𝜔𝛾𝓁
(6)

The sum over ℓ is equivalent to considering M groups of freely
moving charges, each associated with different parameters 𝛾

ℓ

and 𝜔b, ℓ
. Since 𝜔2

b,𝓁 can be negative, Equation (6) spans a larger
set of functions than the regular Drude model written in Equa-
tion (1) and for which 𝜔b, ℓ

is a positive frequency.
Similarly, the terms involving the complex poles 𝜔

(𝓁)
p can be

written as Lorentz-like terms. For any pole 𝜔
(𝓁)
p , we have

r(𝓁)
p

𝜔 − 𝜔
(𝓁)
p

−
rp

(𝓁)

𝜔 + 𝜔p
(𝓁)

= 2
i𝜔Im(r(𝓁)

p ) + Re(r(𝓁)
p 𝜔p

(𝓁))

𝜔2 − |𝜔(𝓁)
p |2 − 2i𝜔Im (𝜔(𝓁)

p )
(7)

Let us set 𝜔0,𝓁 = |𝜔(𝓁)
p | and Γ𝓁 = −2Im(𝜔(𝓁)

p ), and two con-

stants s1, ℓ
and s2, ℓ

such that s1,𝓁Γl = −2Im(r(𝓁)
p ) and s2,𝓁𝜔

2
0,𝓁 =

−2Re(r(𝓁)
p 𝜔p

(𝓁)). The previous expression becomes

r(𝓁)
p

𝜔 − 𝜔
(𝓁)
p

−
rp

(𝓁)

𝜔 + 𝜔p
(𝓁)

= −
is1,𝓁𝜔Γ𝓁 + s2,𝓁𝜔

2
0,𝓁

(𝜔2 − 𝜔2
0,𝓁) + i𝜔Γ𝓁

=
P(𝓁)(𝜔)

Q(𝓁)(𝜔)
(8)

to provide the generalized Drude–Lorentz expression

̂(𝜔) = NR + 𝜀0

(
𝛾0

w
−

M∑
𝓁=1

𝜔2
b,𝓁

𝜔2 + i𝜔𝛾𝓁

−
N∑

𝓁=1

is1,𝓁𝜔Γ𝓁 + s2,𝓁𝜔
2
0,𝓁

(𝜔2 − 𝜔2
0,𝓁) + i𝜔Γ𝓁

) (9)

The N generalized Lorentz function in Equation (9) differ from
the classical Lorentz functions in Equation (1) by the frequency-
dependent imaginary terms is1, ℓ

𝜔Γ
ℓ

in the numerator P(ℓ) which
are tantamount to non-real valued residues associated with the
Lorentz poles r(𝓁)

p . Let us look at the contribution of only one
generalized Lorentz function P(ℓ)/Q(ℓ) to the permittivity. The re-

lationship between the displacement field D⃗(𝜔) and the electric
field E⃗(𝜔) now reads as

Q(𝓁)(𝜔)D⃗(𝜔) = 𝜀0 P(𝓁)(𝜔)E⃗(𝜔) (10)

Or, by replacing P(ℓ) and Q(ℓ) by their expressions

−
(

(𝜔2 − 𝜔2
0,𝓁) + i𝜔Γ𝓁

)
D⃗(𝜔) = 𝜀0

(
is1,𝓁𝜔Γ𝓁 + s2,𝓁𝜔

2
0,𝓁

)
E⃗(𝜔) (11)

It follows that the additional imaginary term i𝜔Γ
ℓ

accounts for
a new contribution of the electric field to the displacement field
when we compare it to the classical Lorentz function numerator
s2,𝓁𝜔

2
0,𝓁 . We can perform an inverse Laplace transform of Equa-

tion (11)(
(𝜕2

t + 𝜔2
0,𝓁) + Γ𝓁𝜕t

)
[d⃗](t) = 𝜀0

(
s1,𝓁Γ𝓁𝜕t − s2,𝓁𝜔

2
0,𝓁

)
[e⃗](t) (12)

In the temporal domain, the imaginary term translates into a con-
tribution of the scaled derivative of the electric field s1,𝓁Γ𝓁𝜕t[e⃗](t)

to the displacement field d⃗(t). This new dependency can be ex-
plained via the constitutive relation linking the displacement
field, the electric field, and the polarization density field p⃗: d⃗ =
𝜀0e⃗ + p⃗. The polarization density vector is connected to the elec-
tric field via the electric susceptibility. As stated in reference,[15]

this is equivalent to considering two linear operators 1 and 2

such that 1[p⃗](t) = 𝜀02[e⃗](t), which results in 1[d⃗](t) = 𝜀0(1 +
2)[e⃗](t). 1 and 2 can be retrieved via identification in Equa-
tion (12)

1 =
(
𝜕2

t + 𝜔2
0,𝓁

)
+ Γ𝓁𝜕t(

1 + 2

)
= s1,𝓁Γ𝓁𝜕t − s2,𝓁𝜔

2
0,𝓁

(13)

In the classical Lorentz approach, the last term reduces to (1 +
2) = −s2,𝓁𝜔

2
0,𝓁 .

Let us combine Equations (4) and (6) to obtain the following
alternative form of the truncated SEM expression

̂(𝜔) = NR + 𝜀0

(
𝛾0

𝜔
−

M∑
𝓁=1

𝜔2
b,𝓁

𝜔2 + i𝜔𝛾𝓁
−

N∑
𝓁=1

is1,𝓁𝜔Γ𝓁 + s2,𝓁𝜔
2
0,𝓁

(𝜔2 − 𝜔2
0,𝓁) + i𝜔Γ𝓁

)

(14)

Equation (14) is what we refer to as the generalized Drude–
Lorentz (GDL) model as it encompasses both models (and also
the Debye model) and generalizes the Lorentz terms via the ad-
ditional imaginary terms. It follows that the permittivity can be
equivalently approximated equivalently as a pole expansion with
Equation (3), and as a GDL expression with Equation (14).

3. Retrieving the Parameters from Experimental
Data

We show how to retrieve the parameters of the GDL model using
experimental data at real frequencies. This approach is tested on
the nine materials listed in Table S1, Supporting Information,
which include oxides, metals and 2D materials.

3.1. Analytical Continuation of the Permittivity from Experimental
Data

Each material is associated with a set of experimental data points
(𝜔i, 𝜖i) with 𝜀i = (𝜔i) the permittivity measured at the real
frequency 𝜔i. Starting from the expression of the GDL model
in Equation (14), we wish to find the set of parameters  =
{NR, 𝛾0,𝜔b,𝓁 , 𝛾𝓁 , s1,𝓁 ,Γ𝓁 , s2,𝓁 ,𝜔0,𝓁}, which analytically expands the
permittivity into the complex frequency plane while minimiz-
ing the distance between the experimental points 𝜖i and the
estimated GDL value 𝜀̃i, = ̃(𝜔i,). The distance between the
model and experimental data is defined by error or loss function
L


∗ = arg min



L(𝜀i, 𝜀̃i, ) (15)
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Figure 2. Optimization of a model for the dielectric permittivity of TiO2 using experimental data. a) Classical 1D optimization by a curve that fits
experimental data available at low frequencies (below 5 eV). The 1D model provides a value of the dielectric permittivity at any real frequency. b) Retrieval
of the GDL parameters by auto-differentiation based on gradient-descent-like optimization. The parameters are chosen to minimize a loss function L as
described in Equation (15). The process is equivalent to the optimization of a surface in the complex frequency plane by moving the poles 𝜔(𝓁)

p to fit the
experimental data available at real frequencies only.

The final set of parameters 
∗ is obtained with auto-

differentiation, a method that has been increasingly used in op-
timization problems in electromagnetism thanks to the versa-
tility and efficiency that this tool offers.[30–33] In this study, we
use the open-source tools provided by the machine-learning li-
brary PyTorch. The loss function L, and the optimization process
are described in Equations (S8)– (S18), Supporting Information.
The analytical continuation of the permittivity using experimen-
tal data is illustrated in Figure 2 in the case of TiO2, where the cal-
culated function is represented by a 1D curve at real frequencies
in Figure 2a, and as a surface in the complex frequency plane in
Figure 2b. Let us stress that by setting the coefficients s1, ℓ

to 0 in
Equation (14), we end up reducing the generalized Lorentz terms
to the classical Lorentz terms. To justify the use of the GDL model
rather than the classical DL model, the two of them are compared
in Figures S1 and S2, Supporting Information, where we observe
that the GDL model provides more accurate expressions than the
DL model when a small number of singularities are involved.
This is especially true in non-metallic media. As we add more and
more singularities, the models both start to account for the noise
rather than the dielectric permittivity data itself, which leaves no
room for comparison.

We quantify the accuracy of the approach via the calculation
of the relative L2 and L

∞
errors between the experimental data

and the optimized models (see Equations (S8) and (S9), Support-
ing Information). The errors are summarized in Table 1, and
show the excellent accuracy reached with the GDL model in a
broad spectral range and for a large set of materials.We observe
an excellent agreement of the GDL model with the experimen-
tal data for all nine materials in a large spectral window, using
a very small set of poles. In addition, the GDL model outper-

Table 1. Relative L2 error (error2) and L∞ error (error∞) of the optimized
GDL expressions of the permittivity for the nine materials listed in Table
S1, Supporting Information. The lower the errors, the higher the accuracy.
The parameters N and M represent respectively the number of generalized
Lorentz terms and the number of Drude/Debye terms in Equation (14).

Relative errors of the fitting

Material N M Error2 [%] Error
∞

[%]

Au 5 1 0.272 0.247

Ag 3 2 0.854 0.964

Co 5 1 0.145 0.070

Cr 3 1 0.542 0.834

HfO2 2 0 0.074 0.276

SiO2 2 0 0.287 1.192

TiO2 3 0 0.237 0.763

Ta2O5 6 0 0.515 1.180

Graphene 5 1 0.331 0.843

forms the DL model due to the presence of the imaginary terms
contained within the generalized Lorentz terms in Equation (8),
which are required for the GDL model to comply with the SEM.
Figures S1 and S2, Supporting Information support this observa-
tion by showing that the classical DL model struggles to reach the
same accuracy with small sets of poles. The applicability of this
expansion for a wide range of materials comes from its compli-
ance with complex analysis required by the fact that the dielectric
permittivity is a linear transfer function. We graphically highlight
these results for SiO2 and Ag in Figure 3 where their associated
GDL model are compared to the experimental data.

Adv. Optical Mater. 2024, 12, 2400093 2400093 (4 of 7) © 2024 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
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Figure 3. Real (red line, left axis) and imaginary (blue line, right axis) parts of the permittivity functions of Ag and SiO2 calculated with the optimized GDL
model (full line) and compared to the experimental data (dotted line). The permittivity functions are expressed as functions of the wavelength instead
of the frequency, to better highlight the spectral windows of the experimental data ranging from the UV to the NIR. The amplitude of the permittivity of
Ag quickly increases for wavelength above 380 nm, in agreement with its metallic behavior. In the case of SiO2, the permittivity is quasi-constant in the
whole spectral window, with an imaginary part close to 0 as one would expect in an absorption-free dielectric material.

3.2. Characterization of the Materials with the Distribution of the
Poles

By inverting the relations introduced in Equations (6) and (4), we
convert the Debye, Drude, and generalized Lorentz terms back
into complex poles and residues which are then highlighted in
the complex frequency plane. The poles and residues which do
not contribute to significantly improving the matching between
the model and the experimental data mostly help in fitting ex-
perimental or numerical noise and are therefore removed. The
numbers of imaginary poles M and pairs of poles N are given in
Table 1. We plot in Figure 4 the log-amplitude of the permittivity
of Au and TiO2 in the complex frequency-plane and show quali-
tatively the correlation between the distribution of the poles and
the amplitude of the permittivity at real frequencies.

At first glance, the real part of the poles is a good indicator of
resonances and anti-resonances phenomena at real-frequencies.
The distribution of the poles can be used to directly assess the
behavior of the material, that is, dielectric or metal, as one would
expect. Let us first consider the case of gold (Au). At low frequen-
cies, the free electrons of the metal allow for a great reflectivity,
and thus a high amplitude of the permittivity, and in particu-
lar a real part far below −1. This observation is associated with
the presence of Drude poles on the imaginary axis along with a
singularity at the origin. After 2.7 eV, which corresponds to ap-
proximately 430 nm, the material starts behaving like a dielec-
tric with a rapidly varying and sign-changing real part. This phe-
nomenon occurs at the real frequency of the first Lorentz pole.
In low-absorption dielectrics such as TiO2, the imaginary part of
the permittivity is close to 0, and the permittivity is quasi-constant
on a wide spectral window. In this case, the Lorentz poles are lo-
cated far from that window, and thus weakly affect them. Overall,
the Lorentz poles mostly mark the transitions between the differ-
ent regimes, that is, the metallic regime, the dispersive dielectric

Table 2. Parameters of the optimized GDL expression from Equation (14)
obtained via auto-differentiation for the permittivity of Au. The frequencies
𝜔0, ℓ are the moduli of the Lorentz poles, and are thus systematically larger
than the imaginary partsΓℓ of the poles. Since Au is a metal, the coefficient
𝛾0 is null, and only the Drude terms remain instead of the Drude/Debye
terms. −i𝛾ℓ are purely imaginary Drude poles, while the frequencies 𝜔b, ℓ

appear in the residues associated with the poles and are related to the
frequency range within which the material still behaves as a metal.

Au

Drude/Debye terms

M 𝜔b, ℓ
[eV] 𝛾

ℓ
[eV]

1 6.0e+00+0.0e+00j 1.8e−02

Lorentz terms

N s1, ℓ
Γ

ℓ
[eV] 𝜔0, ℓ

[eV] s2, ℓ

1 −9.0e−01 3.0e-01 2.7e+00 1.4e−01

2 −2.1e+00 1.4e+00 3.0e+00 2.7e+00

3 −3.6e+00 1.3e+00 3.7e+00 6.9e−01

4 −7.9e−01 5.4e+00 5.4e+00 9.5e−02

5 2.3e+00 1.9e+00 1.3e+01 5.3e−01

Non-resonant term

NR 4.7e−01

regime, and the near-constant regime, while the Drude poles are
associated with extremely high values of the permittivity due to
the free charged particles within a metal. Therefore, it is possible
to characterize the nature of the materials based on the position
the poles.

The values of the poles put forth in Figure 4 for Au and their
associated residues are presented in Table 2. The moduli of the

Adv. Optical Mater. 2024, 12, 2400093 2400093 (5 of 7) © 2024 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
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Figure 4. a,b) Real and imaginary parts of the permittivity of Au (a) and TiO2 (b) at real frequencies, calculated using the optimized GDL. c,d) Log-
amplitudes of the dielectric permittivity function in the complex frequency plane obtained with the GDL model. The poles associated with Lorentz or
Drude terms are indicated by red dots in the complex 𝜔-plane. Vertical dashed lines highlight the link between the real parts of the poles and the spectral
features of the real and imaginary parts of the dielectric permittivity at real frequencies.

Lorentz poles 𝜔0, ℓ
located in the studied frequency window (≈1–

10 eV) are in concordance with the tabulated band gaps found
in the literature,[34] which goes to show that the retrieved poles
hold information regarding the behavior of the materials at the
microscopic scale and below.

4. Conclusion

To conclude, the dielectric permittivity is a transfer function
that is naturally described by its singularity expansion in the
harmonic domain, which encompasses the ccprp method. We
have shown that this expansion can be recast into a generalized
Drude–Lorentz model, which fully complies with the require-
ments and constraints of physical systems. The generalized
Lorentz model, in particular, contains an additional frequency-
dependent imaginary term which corresponds to a contribution
of the first derivative of the electric field to the displacement

field in the temporal domain. This additional imaginary term
is associated with a complex residue if the harmonic domain,
which sets the generalized Lorentz terms apart from the clas-
sical Lorentz terms. We have proposed a method relying on
auto-differentiation to retrieve the parameters of the generalized
Drude–Lorentz model and have applied it to the retrieval of
the permittivity of nine different materials including oxides,
metals and 2D materials. We systematically obtained very low
errors using a small set of Drude and generalized Lorentz terms
in a wide spectral window extending from the UV to the NIR,
showcasing not only the efficiency of the method, but also the
high-accuracy of the generalized model. Finally, we have shown
that, by converting back the parameters of the generalized
Drude–Lorentz model into poles and residues, it is possible to
characterize a medium via the distribution of singularities of the
permittivity. Drude singularities are associated with a singularity
at the origin and purely imaginary poles and residues very close

Adv. Optical Mater. 2024, 12, 2400093 2400093 (6 of 7) © 2024 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
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to the origin. In transparent medium, a near-constant permittiv-
ity over a frequency range translates into a lack of singularities
into and close to the associated complex frequency window. The
transition from one regime to another (for instance metallic
to dielectric behavior) comes along with a Lorentz pole with a
relatively small imaginary part corresponding to a resonance
phenomenon, hence a rapidly varying permittivity. Far from only
adding degrees of freedom in the generalized Drude–Lorentz
model, the imaginary parts of the residues associated with
Lorentz poles are what allows the expression of the permittivity
to be so accurate with so few of singularities.
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