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Modeling the propagation of beams along laser beamlines is very challenging due to the multi-dimensional
and multi-scale configuration of the problem. Spatio-temporal couplings are particularly difficult to address
with conventional numerical methods. Here we derive the Wigner function of a sum of Gaussian beams
by calculating the multi-dimensional Fourier transform of the inter-correlation function of the fields.
The matrix formulation allows for a simple propagation of the Wigner function in the framework of
matrix optics. The relevancy of this approach is assessed by applying this model to one-dimensional
and multi-dimensional configurations and by studying the influence of spatio-temporal couplings when
considering propagation and dispersion by a diffraction grating. © 2024 Optica Publishing Group
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1. INTRODUCTION1

The recent results on inertial confinement fusion [1], [2] have2

renewed interest in high-energy and high-power laser beam-3

lines [3]. Laser facilities dedicated to fusion generally operate in4

the nanosecond regime (NIF [4], LMJ [5], Shenguang III [6]) and5

are sometimes associated with high-power lasers in the picosec-6

ond regime (PETAL [7], ARC [8], Omega EP [9]) for radiography.7

The description of the laser propagation in high-energy laser8

beamlines necessitates a multi-dimensional consideration due to9

the spatial (x,y), temporal (t) and spectral characteristics of the10

beams together with its polarization states. A major challenge11

for accurately modelling the propagation of the laser beams is12

the significant coupling between these quantities, which drasti-13

cally complicates the problem. Moreover, the characterization of14

these beams involves multi-scale couplings. Typically, beams on15

the LMJ (Mega joule Laser) feature a sub-metric size while an ac-16

curate description of the beam requires to model the impacts of17

sub-millimeter spatial defects [10]. The multi-scale challenge oc-18

curs also in high-power laser facilities for which time delays span19

from a few nanoseconds for stretched beams to sub-picosecond20

for compressed beams.21

Predicting the evolution of high-power or high-energy beams22

from the source to the focal volume is important to determine the23

acceptable operating points in order not to damage the beamline,24

and to evaluate the characteristics of the beam at the focal spot25

for both nanosecond smoothed beams [11, 12], and picosecond26

beams [13]. The current models used for high-power lasers are27

based on the numerical resolution of the nonlinear Schrödinger28

equations, using the Beam Propagation Method (BPM) principle29

with multi-step Fourier transform [14], [15]. Numerical calcu-30

lations to characterize these beams therefore require significant31

computational resources. Besides, because of the numerical na-32

ture of these models, parametric studies of the beamlines require33

a large number of calculations, which can be prohibitively long.34

To avoid these difficulties, one possibility is to characterize35

the laser beamlines using analytical models, without numerical36

calculation, and in particular Gaussian beams. In this case, there37

are no sampling problems related to numerical computation,38

and the computational support is infinite. Besides, studying the39

influence of a certain parameter of the beamline on the beam40

characteristics is straightforward. The expansion of any beam41

into a sum of Gaussian beams through Gabor expansion [16,42

17] allows to generalize the properties of Gaussian fields to43

arbitrary laser beams. But other modal expansions may be more44

appropriate.45

Associating the Gaussian beam expansion with the46

Wigner [18, 19] representation of the field, instead of the field47

itself, allows to avoid Fourier transforms to calculate the beam48

propagation, which drastically simplifies the computation [20].49

Another perk of using the Wigner function is that all linear trans-50

formations of the field, e.g. through an ABCD matrix transfor-51

mation, correspond in the phase-space domain to a simple, linear52

transformation of the coordinates [21]. Moreover, for Gaussian53

beams, the Wigner function and its associated projections in the54

sub-spaces (marginals and moments [22]) are analytic and have55

a Gaussian representation. This property is particularly relevant56

in high-power laser beamlines for which beam propagation, fo-57

cusing or compression can be reduced to linear transformations.58

The Gabor expansion allows to expand any laser beam into a59
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sum of Gaussian beams. Its association with the Wigner for-60

malism would allow a simple and accurate description of the61

fields in space and time domain, but it requires to extend the62

Wigner function to a sum of coherent Gaussian beams including63

cross-terms.64

The main objective of this paper is to establish the generalized65

Wigner function for a sum of Gaussian beams. We detail here the66

Wigner formalism for the propagation of a sum of two Gaussian67

beams. The multi-dimensional Fourier transform of the inter-68

correlation function gives the Wigner function in a general form,69

called cross-term, whose reduced formulation (self-terms) is70

well known and studied in the literature [23, 24]. The method71

followed to get the Wigner function for the sum of two Gaussian72

beams can then easily be applied to a more general expansion73

with an arbitrary number of beams. We illustrate these results74

with an application of the model in the mono-dimensional and75

multi-dimensional cases.76

2. GENERALIZED WIGNER FUNCTION FOR GAUSSIAN77

STRUCTURES78

A. Normalized Gaussian field79

The most general expression of a Gaussian field can be expressed
as follows, for two fields as different as possible [24]:

E0(q) = E0exp
[
−1

2
(q − q0)

TZ0(q − q0) + ipT
0 q + iϕ0

]
(1a)

E1(q) = E1exp
[
−1

2
(q − q1)

TZ1(q − q1) + ipT
1 q + iϕ1

]
(1b)

with:

Z0 = U0 + iV0 (2a)

Z1 = U1 + iV1 (2b)

In this expression, q is a vector of dimension n that represents80

the coordinates of the field. In the case where n = 1, we will re-81

strict ourselves to a single scalar coordinate, spatial or temporal82

(x or t), whereas for n = 3, we will be able to consider simultane-83

ously the coordinates (x, y, t) in the form of a vector. q0 and q184

represent the offsets in space and/or in time of each Gaussian85

function of the field E0(q) and E1(q). p0 and p1 represent the86

linear phase shift of the field, which corresponds for example to87

a tilt in the spatial domain or a spectral shift in the time domain.88

ϕ0 and ϕ1 are the constant phase terms associated to the fields.89

The n× n matrices U0 and U1 are real symmetric and positive90

and contain the quadratic amplitudes of the fields, and will be91

restricted, in the case n = 1, to a scalar quantity, which is the92

squared inverse of the width of the beam, e.g. U0 = 1/∆x2, in93

the case of a purely spatial treatment. The n × n matrices V0 and94

V1 are real symmetric and give the quadratic phase contribution95

of the field.96

The normalization factors of the field are given by:

E0 =
√

E0
Det(Re(Z0))

1
4

π
n
4

(3a)

E1 =
√

E1
Det(Re(Z1))

1
4

π
n
4

(3b)

For the normalization of the field, we consider that the fields
have a respective energy E0 and E1:

E0 =
∫ ∞

−∞
E0 (q) E∗

0 (q) dq (4a)

E1 =
∫ ∞

−∞
E1 (q) E∗

1 (q) dq (4b)

B. Matrix expression of the intercorrelation function between97

the fields98

The intercorrelation function Γ01(q, q′) between the fields cen-99

tered at positions q − q′ and q + q′ respectively is given by100

[25, 26]:101

Γ01(q, q′) = E0
(
q − q′) E∗

1
(
q + q′) (5)

This formulation is adapted to the Wigner formalism, as the
Wigner function corresponds to its multidimensional Fourier
transform (see Section 3). Let us introduce the sums (index m)
and differences (index d) of the parameters Zi, qi and pi (with
i∈ {0; 1}):

Zm =
1
2
(Z0 + Z∗

1), Zd =
1
2
(Z0 − Z∗

1) (6a)

qm =
1
2
(q0 + q1), qd =

1
2
(q0 − q1) (6b)

pm =
1
2
(p0 + p1), pd =

1
2
(p0 − p1) (6c)

With these reduced parameters, the intercorrelation function can102

then be cast into the following matrix form:103

Γ01
(
q, q′) = E0E1exp

[
−(q−q0)

TZ(q−q0) + 2ipT
0q+ iϕd

]
(7)

with the following quantities:104

Z =

 Zm Zd

Zd Zm

 , ϕd = ϕ0 − ϕ1, (8)

105

q =

 q

−q′

 ,q0 =

 qm

qd

 ,p0 =

 pd

pm

 (9)

From the expressions of the fields described with vectors and106

matrices of dimensions n and n × n, we can calculate the inter-107

correlation function with vectors and matrices of dimensions108

2n and 2n × 2n respectively. This is a generalized form of the109

expression proposed by Bastiaans [23] for the autocorrelation110

of a Gaussian beam, to the intercorrelation of two beams with111

additional linear terms.112

In the case of the autocorrelation of the E0(q) field, the pa-
rameters will then reduce to:

Zm = U0, Zd = iV0, (10a)

qm = q0, pm = p0 (10b)

qd = 0, pd = 0, ϕd = 0 (10c)

All the linear and constant parameters associated with the differ-113

ences are then equal to zero and disappear in the autocorrelation114

function. Zm reduces to the quadratic amplitude and Zd to the115

quadratic phase of the field.116

C. Gaussian basis expansion117

Let us consider the field Etot resulting from the superposition of118

the Gaussian fields E0 and E1 defined in the previous section:119

Etot(q) = E0(q) + E1(q) (11)

Its Wigner function can be written as:120

Wtot(q, p) = W00(q, p) + W01(q, p) + W10(q, p) + W11(q, p),
(12)
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where, for (i, j) ∈ {0, 1}2,121

Wij(q, p) =
1

πn

∫ ∞

−∞
Γij

(
q, q′) exp

[
2ipTq′

]
dq′. (13)

As W∗
ij = Wji, the resulting Wigner function can be reduced to:122

Wtot(q, p) = W00(q, p) + W11(q, p) + 2Re(W01(q, p)) (14)

Here, W00 and W11 are the Wigner functions of the individual123

Gaussian fields E0 and E1 respectively, or self-terms, while W01124

is the cross-term that describes the interference between the two125

Gaussian fields [27]. In the rest of this section, we will derive the126

analytical expressions of those terms.127

The generalization of the expression of Wtot(r) to a sum of N128

of Gaussian elements is:129

Wtot(r) =
N−1

∑
i=0

Wii(r) +
N−1

∑
i=0

N−1

∑
j=0,j ̸=i

Wij(r), (15)

where r = [q, p]T allows a direct use of the Wigner function to130

the case of an arbitrary field decomposed into a Gaussian basis,131

for example through a Gabor expansion [16, 17].132

3. GENERALIZED WIGNER CROSS-TERM FORMULA-133

TION134

A. Analytical expression of the Fourier-transform of the inter-135

correlation function136

In this part, we derive the Wigner function associated with the137

cross-correlation function of the fields through a simple multidi-138

mensional Fourier transform. We obtain a compact and normal-139

ized matrix expression which describes both the cross-terms and140

self-terms. This is the basic structure that allows us to exploit141

the Gaussian expansion.142

The Wigner cross-term is given by the multi-dimensional143

Fourier transform of Γ01 with respect to variable q′:144

W01(q, p) =
1

πn

∫ ∞

−∞
Γ01

(
q, q′) exp

[
2ipTq′

]
dq′ (16)

The integration requires to group the terms into q′ while adding145

the complex term ipTq′. We can then write, for the integration146

term of the Wigner function:147

Γ01
(
q, q′) exp

[
2ipTq′

]
= E0E1exp

[
−q′TArq′ + BT

r q′ + Cr

] (17)

in this expression, Ar is a n × n complex matrix, Br is a vector of148

dimension n and Cr is a scalar. If the field is of dimension n, the149

Wigner function is of dimension 2n and the complex determinant150

is [28]:151 ∫ ∞

−∞
exp

(
−rTArr + BT

r r
)

dr =

√
πn

Det(Ar)
exp

(
1
4

BT
r A−1

r Br

)
(18)

The explicit expressions for the matrix and vector terms in the
exponential function of equation 17 are given by:

Ar =Zm (19a)

Br =2[Zd(q − qm)− Zmqd + i(p − pm)] (19b)

Cr =− (q − qm)
TZm(q − qm)− qT

d Zmqd

+ qT
d Zd(q − qm)

+ (q − qm)
TZT

d qd + 2ipT
d q + iϕd (19c)

For the integration of the intercorrelation function, with A−1
r =152

Z−1
m , Z−1

m Zm = Id, and also Zm = ZT
m we obtain:153

Cr +
1
4

BT
r A−1

r Br = −(q − qm)
T(Zm − ZT

d Z−1
m Zd)(q − qm)

−(p − pm)
TZ−1

m (p − pm)

+i(q − qm)
TZT

d Z−1
m (p − pm)

+i(p − pm)
TZ−1

m Zd(q − qm)

−i(p − pm)
Tqd − iqT

d (p − pm) + 2ipT
d q + iϕd

(20)

This expression gives the structure of the generalized cross-154

term Wigner function.155

B. Representation in the phase-space coordinates156

By applying the integration expression in Eq. 18 for multidi-157

mensional Gaussian functions, we obtain the expression of the158

generalized cross-term in a compact and matricial Gaussian159

form:160

W01(r) = C01exp
[
− (r − rm)

T Q01 (r − rm)

−2iνT
d
(
r − rpm

)
+ iϕd

] (21)

Equation 21 is a key result of this paper. Associated with the161

normalization term C01 and the cross-term matrix Q01, which are162

detailed in the following, it gives a general expression applicable163

to the intercorrelation of Gaussian fields.164

Equation 18 shows that the normalization coefficient ahead165

of the exponential function is given by:166

C01 = C∗
10 =

E0E1
πn

√
πn

Det(Zm)

=
√

2nE0E1
Det(Re(Z0))

1
4 Det(Re(Z1))

1
4

πnDet(Z0 + Z∗
1)

1
2

(22)

where n is the dimension of the direct space and 2 × n the di-167

mension of the phase-space. The explicit result of the integration168

expression in Eq. 18 is given by Eqs. 20. The first four rows169

in Eq. 20 contain the quadratic terms, and thus the matrix sub-170

blocks of the matrix Q01. These quadratic terms can be recast171

into the following matrix form:172

−(r − rm)
TQ01(r − rm) (23)

with:173

r =

 q

p

 , rm =

 qm

pm

 , (24)

174

Q01 =

 Zm − ZT
d Z−1

m Zd −iZT
d Z−1

m

−iZ−1
m Zd Z−1

m

 (25)

This matrix can also be decomposed as follows:175

Q01 = MT
−iZd

QZm M−iZd
(26)

with:176

MZ =

 1 0

Z 1

 , QZ =

 Z 0

0 Z−1

 (27)

where QZ is a diagonal matrix with Det(QZ) = 1 which contains177

the intrinsic characteristics of the beam. MZ is a triangular178
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matrix with Det(MZ) = 1 and has the properties of an ABCD179

symplectic matrix. Let us notice that the sub-matrices Zm and180

Zd can be obtained by the relations181

Zm = Q−1
[2,2]

Zd = iZmQ[2,1]

(28)

where Q[i,j] are the sub-matrices of Q01. The last term of equation182

20 contains the linear terms in q and p and can also be written183

as:184

i[−(p − pm)
Tqd − qT

d (p − pm) + 2pT
d q + iϕd]

= i[−2νT
d (r − rpm) + ϕd]

(29)

with now:185

νd =

 −pd

qd

 , rpm =

 0

pm

 , (30)

In the one dimension case, if U0 = U1 = U and if there is186

no quadratic phase terms (V0 = V1 = 0), then the cross-term187

Wigner function reduces to [29]:188

2Re(W01(q, p)) =
√

2E0E1
π

exp
[
−(q − qm)

2U − (p − pm)2

U

]
cos (2pd(q − qm)− 2qd(p − pm) + 2pdqm + ϕd)

(31)

C. Fourier transform of the autocorrelation function: Self-term189

of the Wigner function190

The previous general formulation implicitly contains the case191

of the self-term which corresponds to the Fourier transform of192

the autocorrelation function. We have, for the self-term Wigner193

function W00(r) corresponding to the field E0(q):194

rm = r0 =

 q0

p0

 , νd =

 0

0

 (32)

195

Q00 =

 U0 + VT
0 U−1

0 V0 VT
0 U−1

0

U−1
0 V0 U−1

0

 (33)

this matrix can also be decomposed as follows [21]:196

Q00 = MT
V0

QU0 MV0 (34)

with the matrix formulation of equation 27. In this case QU0 be-197

comes a real diagonal matrix. MV0 is also real, with the structure198

of an ABCD lens matrix [30]. It shows that the more general199

gaussian fields (equations 1) can be obtained by the action of a200

thin lens on a pure real Gaussian field. The final form for the201

self-term is :202

W00(r) = C00exp
[
− (r − r0)

T Q00 (r − r0)
]

(35)

with now:203

C00 =
E0
πn (36)

The self-term is thus real and positive. We have analogous204

expressions for r1, Q11, and C11.205

D. Gabor expansion in the multidimensionnal case206

In the Gabor expansion of the field [16, 17], the Wigner cross-207

terms are a particular case of the generalized Wigner function208

(equation 21). Indeed, it corresponds to the case where the209

multidimensional Gaussian functions all have the same width210

(U) and no phase curvature (V = 0)[31]. The common matrix211

corresponding to the cross-term will be given by:212

Qij =

 U 0

0 U−1

 (37)

The free parameters of the Gabor functions will be limited213

to the linear terms rm, rpm and νd, which correspond to func-214

tions spaced by a constant value in the direct q and conjugate p215

domain, which will be given by:216

rm =
1
2



(i + j)δq1

...

(k + l)δqn

(g + h)δp1

...

(m + s)δpn


, νd =

1
2



−(g − h)δp1

...

−(m − s)δpn

(i − j)δq1

...

(k − l)δqn


(38)

where the constants δq1, .., δqn, δp1, .., δpn and weights of each217

contribution Ci,j,..k,l,g,h,..,m,s (2 × n coefficients) will be given by218

the modal expansion. The total Wigner function will then be219

given by:220

Wtot = ∑
i

∑
j

.. ∑
k

∑
l

∑
g

∑
h

.. ∑
m

∑
s

Ci,j,..k,l,g,h,..,m,sWi,j,..,k,l,g,h,..m,s

(39)
It should be noted that, in the general case, the implementa-221

tion of this model requires the processing of a large number of222

components, which, in the case of numerical processing, means223

having access to substantial numerical resources [32, 33]. How-224

ever, our first objective is to have analytical formulations that de-225

scribe the major evolutions of the beam (marginal and moments).226

We will therefore seek to minimize the number of components227

involved, and the numerical aspects will be reduced here to228

the visualization of results (as is the case for the illustrations229

given in the following sections). In the case of the application230

of such a model to the numerical processing of any beam, with231

Gabor-type decompositions for example, no investigations have232

been made and evaluation work in this direction needs to be233

carried out. At this stage, we feel that this model is suited to234

certain specific multi-scale and multi-dimensional cases found235

in large-scale laser installations. For more conventional cases,236

other numerical codes are currently very effective [14]. The Ga-237

bor expansion corresponds to 2 × n sum of elementary Wigner238

functions. It is not always, especially in the multidimensional239

case, the most suitable expansion, as it requires a large number240

of components.241

4. FIRST MARGINALS242

Wigner functions are not directly measurable, and the accessible243

quantities correspond to projections of the Wigner function into244

subspaces of the total phase space (marginals [34]). The inte-245

gration of the Wigner function on the conjugate variable p will246

give an intensity, while the integration on the direct variable q247

will give the spectral power. In the case of Gaussian fields, all248
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projections will be analytically integrable, with Gaussian struc-249

tures. It is also possible to obtain other informations such as the250

moments of the beam by integrating the function over the whole251

space [35]:252

< ζk >=

∫ +∞
−∞ ζkW(q, p)dqdp∫ +∞
−∞ W(q, p)dqdp

(40)

where ζ is the variable in the (q, p) space corresponding to the253

calculated moment and k the order of the moment. We can254

obtain other quantities by integration over a defined subspace.255

For example, in a one dimensional space (temporal variable t),256

the instantaneous frequency will be given by [36]:257

< ω(t) >=

∫ +∞
−∞ ωW(t, ω)dω∫ +∞
−∞ W(t, ω)dω

(41)

For all these quantities, if the Wigner function is Gaussian,258

then the integration is analytical. As in the case of the Wigner259

function, the modal expansion can be declined on all projections260

(marginals and moments).261

In the following parts, we will limit ourselves to the study of262

the first marginals (intensity and power spectrum), which are263

the elementary quantities to describe the beam.264

A. Intensity calculation265

The calculation of the intensity requires integrating the Wigner266

function on the vector p, which allows us to obtain a function267

of the residual vector variable q. We must first isolate, in the268

Wigner function, the constant Cq, independent of the integration269

variable p, but which can depend on the variable q. This constant270

Cq can be written in the form:271

Cq = −(rq − rm)
TQ01(rq − rm)− 2iνT

d (rq − rpm) + iϕd (42)

with272

rq =

 q

0

 (43)

Let us now study the linear terms in q.The vector Bq is ob-273

tained with Eq. 18 limited to the space dimension of q :274

Bq = −2Q[2,1](q − qm) + 2Q[2,2]pm − 2iqd (44)

with (from expression 25):275

Q01 =

 Q[1,1] Q[1,2]

Q[2,1] Q[2,2]

 (45)

and with:

Q[1,1] = Zm − ZT
d Z−1

m Zd (46a)

Q[1,2] = −iZT
d Z−1

m (46b)

Q[2,1] = −iZ−1
m Zd (46c)

Q[2,2] = Z−1
m (46d)

The vector Bq is described in the n dimensional subspace.276

The Wigner function can now be written, as a function of the277

variable of integration p:278

W01(q, p) = C01exp(−pTAqp + BT
q p + Cq) (47)

with now Aq = Q[2,2]. We can then apply the formula of multi-279

dimensional Gaussian integration (equation 18) to obtain the280

intensity:281

I01(q) =
∫ ∞

−∞
W01(r)dp

= C01

√
πn

Det(Q[2,2])
exp

(
1
4

BT
q Q−1

[2,2]Bq + Cq

) (48)

The integration gives here a complex value of the intensity282

for the general form of the Wigner function. In the case of self-283

terms (i.e. qd = 0), this function becomes positive. In the case284

of crossed terms, it will be necessary to take, as for the Wigner285

function, 2Re(I01(q)). The total intensity is then:286

Itot(q) =
N−1

∑
i=0

Iii(q) +
N−1

∑
i=0

N−1

∑
j=0,j ̸=i

Iij(q), (49)

B. Power spectral density287

We can apply the same method to obtain the power spectral288

density which consists in integrating on the vector variable q.289

Here, the constant Cp is independent of the integration variable290

q, but can now depend on the variable p, can be written in an291

analogous condensed form:292

Cp = −(rp − rm)
TQ01(rp − rm)− 2iνT

d (rp − rpm) + iϕd (50)

with now293

rp =

 0

p

 (51)

Here again, we can use for the constant Cp a matrix formulation294

in the 2× n dimensions space. The vector Bp will now be written:295

Bp = −2Q[1,2](p − pm) + 2Q[1,1]qm + 2ipd (52)

The vector Bp corresponding to the linear terms in q is again296

described in the n dimensional subspace. The Wigner function297

can now be written, as a function of the variable of integration q298

:299

W01(r) = C01exp(−qTApq + BT
p q + Cp) (53)

with Ap = Q[1,1].300

301

We apply in the same way the integration formula, which302

gives the expression of the spectral power:303

S01(p) =
∫ ∞

−∞
W01(r)dq

= C01

√
πn

Det(Q[1,1])
exp

(
1
4

BT
p Q−1

[1,1]Bp + Cp

) (54)

The total power spectral density is then:304

Stot(p) =
N−1

∑
i=0

Sii(p) +
N−1

∑
i=0

N−1

∑
j=0,j ̸=i

Sij(p) (55)
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5. EVOLUTION OF THE WIGNER FUNCTION WITH LIN-305

EAR TRANSFORMATION306

A. Evolution with the same matrix transformation for the two307

Gaussian beams308

The major advantage of the Wigner function to model the prop-309

agation of laser beams is that its evolution by a linear transfor-310

mation modeled by a M matrix corresponds to a linear transfor-311

mation of its arguments, i.e. Win(r) → Wout(r) = Win(Mr) [21].312

Let us also point out that:313

Win(Mr) = Wout(r)

= C01exp
[
− (Mr − rm)

T Q01 (Mr − rm)− 2iνT
d
(
Mr − rpm

)
+ iϕd

]
= C01exp

[
−

(
r − r

′
m

)T
Q

′
01

(
r − r

′
m

)
− 2iν

′T
d

(
r − r

′
pm

)
+ iϕd

]
(56)

It can be observed that the structure of the Wigner function
that has undergone a linear transformation by the matrix M is
identical to the structure of the initial Wigner function with the
following changes:

r
′
m = M−1rm (57a)

r
′
pm = M−1rpm (57b)

ν
′

d = MTνd (57c)

Q
′
01 = MTQ01M (57d)

It is sufficient to redefine the constant terms r
′
m, r

′
pm, ν

′

d, and314

the generalized matrix Q
′
01 to obtain the new Wigner function.315

These transformations of the linear terms are essential to handle316

the propagation of equation 21.317

Since the Wigner functions are self-referential, transforma-318

tions by ABCD matrix do not account for certain modifications319

to linear terms. Typically, for a transformation corresponding to320

propagation over a distance z, the beam undergoes a time delay321

z/c which must be added to the original linear term [32]. The322

application discussed in Section 7 will illustrate this property.323

B. Evolution with different matrix transformation for the two324

Gaussian beams325

In a laser beamline, the beams considered may not always follow
the same optical sequence. For example, on the PETAL laser [7],
at the end of the beamline, the beam is segmented and injected
into four compressors, which may have different alignments,
before being recombined on target. In this case, we need to use
the parameters of the Wigner function Qij, rm, νd to find the
parameters of the fields Ui, Vi, qi and pi in order to reconstruct
a new Wigner function. This is always possible in the case of
Gaussian fields. Indeed, it should be noted that the constant
vectors for the self-terms can be found from constant vectors for
the cross-terms by the following relations:

q0 = rm[1] + νd[2], q1 = rm[1] − νd[2] (58a)

p0 = rm[2] − νd[1], p1 = rm[2] + νd[1] (58b)

It allows to obtains the vectors for the self-terms:326

r0 =

 q0

p0

 , r1 =

 q1

p1

 , ν0 =

 −p0

q0

 , ν1 =

 −p1

q1


(59)

In the case where the matrix evolution is different for the two327

beams:328

r
′
m =

1
2
(M−1

0 r0 + M−1
1 r1), ν

′

d =
1
2
(MT

0 ν0 − MT
1 ν1) (60)

In the same way, the sub-matrices Z0 and Z1 for the self-terms329

are obtained from the cross-terms with the following relations:330

Z0 = Zm + Zd, Z1 = Zm − Zd (61)

These relations allow to rebuild the original Q00 and Q11 Wigner331

matrix from the cross-terms. The evolution of the self-terms is332

given by:333

Q
′
00 = MT

0 Q00M0, Q
′
11 = MT

1 Q11M1 (62)

This expression provides the new sub-matrix self-terms Z
′
0 and334

Z
′
1 and, consequently, the new sub-matrix cross-terms Z

′
m and335

Z
′

d for Q
′
01.336

It is important to note here that, in the general case, for each337

matrix transformation M, a vector rM associated with this trans-338

formation must be added. This vector corresponds to the ab-339

solute position of the beam in phase space after the transfor-340

mation M. In this case, the r → Mr transformation must be341

replaced by r → Mr − rM. For example, in the case of a prop-342

agation in vacuum over a distance z, the associated vector is343

rM = [0, z/c, 0, 0]T , where z/c represents the propagation time344

of the beam. In the case of diffraction by a grating, the associated345

vector is rM = [0, 0, k0sin(θd − θi), 0]T , where θd represents the346

diffraction angle of the beam. In the case where we are solely347

interested in the self-terms, or in the case of a common matrix348

transformation for both beams (Section 5 A), these absolute po-349

sition terms have no impact on the result. On the other hand,350

when we are concerned with beams that follow different matrix351

evolutions, these terms become important, in particular for the352

evaluation of the vector νd, which accounts for the difference in353

position of the two beams in the phase space.354

6. ILLUSTRATIONS IN THE UNIDIMENSIONNAL CASE355

This section aims to illustrate the validity of this Wigner formal-356

ism in the spatial, one-dimensional case. Two cases are proposed.357

The first one is elementary and concerns the sum of two Gaus-358

sian beams of same width but with different phase curvature359

and linear terms. The second concerns the sum of N Gaussian360

beams of the same width (modal expansion) allowing to model361

a top-hat beam. In both cases, we represent the Wigner function362

and the associated marginals before applying a M matrix trans-363

formation of propagation. The illustrations proposed in this364

paper (Sections 6 and 7) were carried out with a relatively small365

number of elementary Gaussian components (from 2 to a few366

dozen). The kernel of the Wigner functions and the marginals367

are calculated analytically with Maple software. The numer-368

ical aspects are therefore reduced here to the visualization of369

the results in the proposed window, generally around 500x500370

points for 2d visualization. Numerical aspects of processing371

(speed, memory resources) are not optimized, as this is not the372

purpose of the paper, and will have to be studied and developed373

specifically for this type of modeling.374

A. Wigner representation and associated first marginals375

Figure 1 gives the total Wigner function and the associated376

marginals which corresponds to the interference of two Gaus-377

sian beams of equal energy (case one). The study is limited to378
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the spatial dimension q. We can observe the contribution of the379

self-terms W00 and W11 centered in (q0, p0) and (q1, p1) respec-380

tively in the phase space. The cross-term 2Re(W01) is localized381

in (qm = 0, pm = 0) in the phase space and has alternatively382

positive and negative values (interference terms).383

Fig. 1. Representation of the Wigner function W(q, p) = W(r)
(left) and the associated marginals I(q) and S(p) (right) for the
sum of two Gaussian beams (case one). The beams are defined
by, for the first beam U0 = 1 mm−2, V0 = 0 mm−2 (no phase
curvature), q0 = 3 mm, p0 = −10 mm−1 (spatial tilt) and for the
second beam U1 = 1 mm−2, V1 = −10 mm−2 (divergent beam),
q1 = −3 mm, p1 = 10 mm−1.

384

The second application in the spatial domain (case two) is385

the expansion of a top-hat function (close to Super-Gaussian386

function) into Gaussian fields (Tovar-type expansion [37]):387

E(q) =
N

∑
n=−N

En(q) =

N
∑

n=−N
exp

[
−

(
q−nδ

δ

)2
]

N
∑

n=−N
exp [−n2]

(63)

where :388

δ =
∆

N +

√
1 − ln

(
N
∑

n=−N
exp [−n2]

)
(
≈ ∆

N + 0.653
i f N > 1

) (64)

denotes both the width and the spacing between the elementary389

Gaussian beams, and ∆ represents the total width of the beam.390

The order of the corresponding Super-Gaussian beam will be391

proportional to N, number of contributions taken into account in392

the calculation. It turns out that the generalized Wigner function393

has the structure of equation 15 with the parameters of the beam394

number n : Un = 1
δ2 , Vn = 0 (no phase curvature), qn = nδ, pn =395

0. Figure 2 gives the total Wigner function and the associated396

marginals which corresponds to the addition of the 2N + 1 = 17397

Gaussian beams with ∆ = 1 mm.398

B. Evolution of the Wigner function with linear Transformation399

Figure 3 gives the total Wigner function and the associated400

marginals after propagation z for the case one. In the one dimen-401

sional case, the transfer matrix M is :402

M =

 1 −z/k0

0 1

 (65)

Fig. 2. Representation of the Wigner function W(q, p) = W(r)
(left) and the associated marginals I(q) and S(p) (right) for
Super-Gaussian beams (case two).

where k0 = 2π/λ and λ is the central wavelength (λ = 1.053 nm403

for the application). The associated Wigner function is simply404

given by W ′(q, p) = W(Mr). For the marginals, we apply the405

method of Section 4.

Fig. 3. Representation of the Wigner function W(Mr) (left) and
the associated marginals I(q) and S(p) (right) after a propaga-
tion distance z = 1.5 m (case one).

406

Figure 4 shows the evolution of the intensity I(q) with the407

variable z for the case one.

Fig. 4. Evolution of the intensity I(q) of Figure 1 as a function
of the propagation distance z (case one).

408

Figure 5 gives the total Wigner function and the associated409

marginals after propagation z = 3 m for the Super-Gaussian410

beam (case two).411

Figure 6 shows the evolution of the intensity I(q) for Super-412

Gaussian beam with the variable z/k0 for the case two.413
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Fig. 5. Representation of the Wigner function W(Mr) (left) and
the associated marginals I(q) and S(p) (right) after a propaga-
tion distance z = 3m (case two).

Fig. 6. Evolution of the intensity I(q) of Figure 2 as a function
of the propagation distance z (case two).

7. ILLUSTRATION IN THE MULTI-DIMENSIONAL CASE414

This section aims to illustrate the multidimensional (spatial and415

temporal) case with more complex optical transformations, and416

more specifically propagation and dispersion by a diffraction417

grating and propagation.418

A. Optical scheme analysed419

One of the main interests of Wigner functions is their ability to420

address multi-dimensional and multi-scale cases. To illustrate421

this property, we consider here a case limited to two-dimensional422

spatio-temporal (x, t) coordinates. Here, want to model the423

diffraction of a short pulse with Gaussian temporal envelope424

and already chirped (phase law<0) by a grating (chirp phase425

law >0), and study the resulting beam (inhomogeneous wave426

[38, 39]) as it propagates through a distance z after the grating.427

To highlight the Gaussian beam expansion of the field, we will428

use a Tovar-type spatial expansion as studied in section 6. In this429

case, we consider a spatial expansion on 2N+1=9 elementary430

Gaussian beams. In the two-dimensional case, the propagation431

without dispersion and diffraction through a grating matrix are432

given by [40], [41]:433

Mp =



1 0 −z/k0 0

0 1 0 0

0 0 1 0

0 0 0 1


Mr =



a 0 0 0

−b 1 0 0

0 0 1/a −b/a

0 0 0 1


(66)

with:434

a =
cos(θi)

cos(θd)
, b =

Nλ

cos(θd)c
, k0 =

2π

λ
(67)

Here, θi and θd are the incident and diffracted angles, N is the435

groove density, λ the central wavelength and c is the light ve-436

locity. The components of the transformation matrices must437

respect the order of the selected coordinate system r = [q, p]T =438

[x, t, kx, ω]T .439

The initial parameters of each elementary beam of the spatial440

expansion before the grating can be given by :441

U =

 δ−2 0

0 ∆t2/(∆t4 + 16α2)


V =

 0 0

0 4α/(∆t4 + 16α2)

 (68)

where α is the chirp of the incident beam which corresponds to442

a phase law iαω2 in the spectral domain for the field. Theses443

parameters allow to build the Qδ matrix for each elementary444

beam of width δ for the TOVAR-type expansion:445

Qδ =



δ−2 0 0 0

0 ∆t−2 0 4α/∆t2

0 0 δ2 0

0 4α/∆t2 0 (∆t4 + 4α2)/∆t2


(69)

The initial Wigner functions have the same structure as equation446

21:447

Wij(r) = C01exp
[
− (r − rm)

T Qδ (r − rm)

−2iνT
d
(
r − rpm

)] (70)

with :448

rm =



δ(i+j)
2

0

0

0

 , rpm =


0

0

0

0

 , νd =


0

0
δ(i−j)

2

0

 (71)

The Wigner function of the beam after the grating can be449

obtained as a function of the propagation distance z by applying450

the matrix transformation on the Wigner function described in451

Section 5-A with the total matrix sequence M = MpMr.452

B. Visualization and comparison with numerical calculus453

Let us represent the first marginals I(x, t) of the initial beam454

before (figure 7) and just after the grating with a propagation455

distance z = 0 (figure 8). For the application, the spatial and tem-456

poral properties of the beams are taken equal to δ = 0.322 mm457

(2N+1=9 elementary Gaussian for the Tovar-type expansion,458

with a total width 2∆ = 9mm), ∆t0 = 300 f s. The grating is char-459

acterized by its groove density N = 1740 g/mm. The grating is460

working at Littrow (θi = θd = 66.363◦) for λ = 1053 nm, and461

its matrix parameters are a = 1 and b = 15.23ns/m. The initial462

chirp of the beam is α = −0.9722ps−2.463
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Fig. 7. Representation of the total intensity I(x, t) in spatial
and temporal domain of the initial chirped pulse before the
grating for a spatially Super-Gaussian and temporally Gaus-
sian beam.

Fig. 8. Representation of the total intensity I(x, t) in spatial
and temporal domain just after the grating and without propa-
gation (z = 0mm).

Right after the grating, the beam takes the form of an inhomo-464

geneous wave, while retaining its square structure. At this point,465

it is interesting to plot the fluence of the beam after the grating466

as a function of the propagation distance z (fig. 9). The square467

spatial structure of the beam is lost fairly quickly to present a468

Gaussian spatial structure (spatial to spectral shape transforma-469

tion) for a propagation greater than 0.5m. The beam propagation470

after the grating has a very different structure from that seen in471

figure 6 for the simple propagation of a top-hat beam. Figure 10

Fig. 9. Fluence of the beam after the grating as a function of
the propagation distance z with fluence profile at z = 100mm,
close to super-Gaussian beam, and at z = 500mm, close to
Gaussian beam.

472

represents the intensity of the beam I(x, t) after a propagation473

z = 100mm at x = 0 after the grating. It is the position where the474

time duration of the beam is minimum (optimal compression of475

the beam). For a Gaussian beam of width ∆x, the distance for476

the optimal compression is given by:477

z0 =
4α∆x2k0

a2∆t2 + b2∆x2 (72)

This position corresponds also to the plane where a second grat-478

ing would be positioned to realise a two gratings compressor.479

In our application, with the numerical values, we have480

a2∆t2/∆x2 << b2 and then z0 ≈ 4αk0/b2 which gives z0 ≈481

100mm. At this z position, the beam features a top-hat spatial482

distribution (figure 9). The advantage of representing short pulse483

propagation with the Wigner formalism is that the characteriza-484

tion of spatio-temporal distortions (pulse front tilt, wave-front485

rotation, etc...) can be simply given by combinations of the486

Wigner function moments [42]. By way of comparison, and as487

an indication, numerical calculation of the intensity I(x,t) of an488

inhomogeneous Gaussian wave with z propagation after the489

grating with dedicated software [14] takes 11” for [x,t]=[512,512]490

points and 43” for [x,t]=[1024,1024] points. Establishing the for-491

mula for the analytical intensity I(x,t,z) with Maple software492

is almost instantaneous (0.34”), but the display takes 27” for493

[x,t]=[512,512] points. Application to the flat-top beam (multi-494

gaussian beam) takes longer to display, due to the sums to be495

performed on the number of components. But at this stage, per-496

formance comparisons with pure numerical code are not really497

relevant.

Fig. 10. Representation of the total intensity I(x, t) in spatial
and temporal domain in the plane of best compression (propa-
gation z = z0 = 100mm).

498

Another way of representing the beam is to look at the inten-499

sity distribution at a given time as a function of the propagation500

distance z. In a first approximation, this distribution I(x, t, z)501

can be given by the visualization of energy density distribution502

ρ(x, z; t) at each time t = t0, for the incident beam before the503

grating (in reflection):504

ρ(x, z; t = t0) =
1
c

I(x, t = t0 + z/c; z + ct0) (73)

and by the visualization of:505

ρ(x, z; t) =
1
c

I(x, t = t0 − z/c; z − ct0 + 3xtan(θd)) (74)

for the beam propagating after reflection on the grating. The506

3xtan(θd) correction on the z coordinate after the grating is nec-507

essary to take into account the fact that the grating is slanted508

and that the position of the incident beam on the grating is at a509

z coordinate which depends on the x transverse coordinate. The510
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Wigner formalism does not take this into account. This change511

of variables transforms an intensity in W/cm2 in the 2d space512

(x, y) into a volumetric energy density in J/cm3 in the 3d space513

(x, y, z).514

Figure 11 presents, on the same graph, the distribution of515

energy densities along z at different times and thus at different516

states of the beam. The beam profile at z = 36mm and time517

t0 = −120ps represents the initial chirped beam propagating to-518

wards negative z (left arrow). The beam profile at z = 0mm and519

time t1 = 0ps and propagating towards z positive (right arrow)520

is the beam diffracted just after the the grating and presents a521

structure of inhomogeneous wave (θinh = arctan(cb) = 77.657◦).522

By convention, the grating is positioned at z = 0mm and is rep-523

resented by a thick dashed black line at θd = 66.365◦. The beam524

profile at z = 83mm and time t2 = 276ps represents the beam525

before the optimal compression. Finally, the beam profile at posi-526

tion z = z0 = 100mm and time t3 = 333.3ps presents the optimal527

compression, equivalent to one represented in spatial an time528

domain in figure 10. The theoretical plane of best compression529

is represented on the figure by a thin dashed black line centered530

at z = 100mm. All the energy densities are normalised to the531

energy density at z = 100mm and x = 0mm. The behavior of an

Fig. 11. Energy density distribution of the beam for different
times and z position before and after the grating. The beam
before the grating (left arrow) is located at z = 36mm at time
t0 = −120ps. The diffracted beam are represented by right
arrow, in the plane of the grating (z = 0mm, t1 = 0ps), before
the best plane of compression (z = 83mm, t2 = 276ps), and in
the best plane of compression (z = 100mm, t3 = 333.3ps).

532

inhomogeneous wave near the best compression plane has been533

studied and measured [43], showing that the transverse coordi-534

nate x of the beam for which compression is maximum is located535

in the compression plane. To illustrate this, the structure of the536

compressed pulse near the best compression plane is shown in537

figure 12 : in the best compression plane centered at z = 100mm538

at a reference time t3, the pulse is perfectly compressed at the539

transverse coordinate x = 0mm. For the same inhomogeneous540

wave at the previous instant (time t3 − 34.3ps), the interception541

point with the best compression plane is located at the transverse542

coordinate x = −4.5mm and for the same inhomogeneous wave543

at the next instant (time t3 + 34.3ps), the best compression plane544

is located at the transverse coordinate x = +4.5mm.545

The energy density distribution behavior in a dispersive medium546

represented in the (x,z) space at a fixed time t and illustrated in547

figure 12) differs intensity represented in (x,t) space at a fixed548

spatial longitudinal coordinate z illustrated in figure 10.549

Fig. 12. Energy density distribution of the beam for three
different times and z positions around the optimal plane of
compression : the beam with a best compression on the trans-
verse coordinate x = −4.5mm at time t3 − 34.3ps, the beam
on the plane of best compression at time t3, and the beam of
a best compression on located on the transverse coordinate
x = +4.5mm at time t3 + 34.3ps.

8. CONCLUSION550

The propagation of laser beams in high-energy laser beamlines551

is very challenging to simulate with numerical methods due to552

its multi-dimensional and multi-scale properties. To address this553

challenge, we propose to develop a Wigner formalism based on554

a Gaussian expansion of the field. In this study, we derived the555

expression of the Wigner function corresponding to the sum of556

two independent Gaussian fields. This formalism, coupled with557

the Gaussian beam expansion, allows to describe analytically558

the beams and to model their propagation without limitations re-559

lated to the numerical resolution. The pertinence and interest of560

this approach was first evidenced by considering the elementary561

one-dimensional cases before considering the multidimensional562

case and coupling effects between the different spaces. This563

formalism turns out to be very well adapted to model the focal564

spot in high-energy lasers such as the LMJ-PETAL facility which565

imply spatio-temporal coupling of smoothed beams (LMJ), com-566

pression (PETAL) as well as multi-scale aspects present in par-567

ticular because of the small typical size of the speckle patterns568

compared to the envelope of the focal spot. In the latter case,569

the use of partially incoherent beams (Gaussian Schell Model570

[23]) in the optical sequence, compatible with the formalism571

developed in this paper, will provide relevant observables by572

avoiding an expansion over a large number of Gaussion beams.573

The formalism is also well adapted to the addition of beams with574

high angles to model cones at 33◦ and 49◦ in the LMJ configura-575

tion.This work motivates further developments of the method,576

in particular the integration of the polarization state of light and577

the product of fields, which corresponds to the convolution of578

the Wigner formalism [44]. Indeed, if the correlation is compati-579

ble with the linear transformations of the field, convolution of580

the Wigner functions is the way to deal with nonlinear effects581

like Kerr effect [45], frequency conversion, spatial filtering [46],582

or spatial phase mask [47, 48].583
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