
Beyond the Code: Unraveling the Applicability of
Graph Neural Networks in Smell Detection

Djamel Mesbah123, Nour El Madhoun34, Khaldoun Al Agha2, and Hani
Chalouati1

1 Adservio Group, T. Franklin, 100 101 Terr. Boieldieu Ét. 9, 92800, Puteaux, France
{djamel.mesbah,hani.chalouati}@adservio.fr

2 Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du
Numérique, 91190, Gif-sur-Yvette, France

djamel.mesbah@universite-paris-saclay.fr
alagha@lisn.fr

3 LISITE Laboratory, ISEP, 10 Rue de Vanves, 92130, Issy-les-Moulineaux, France
{djamel.mesbah, nour.el-madhoun}@isep.fr

4 Sorbonne Université, CNRS, LIP6, 4 place Jussieu, 75005, Paris, France
nour.el_madhoun@sorbonne-universite.fr

Abstract. Code smells signify suboptimal software design and imple-
mentation practices that can severely impact code maintainability. While
traditional approaches to code smell detection have largely relied on
heuristic and metric-based evaluations, recent advancements have ex-
plored the efficacy of Machine Learning (ML) techniques, specifically
through the lens of Graph Neural Networks (GNNs) and Abstract Syn-
tax Trees (ASTs). This paper critiques and synthesizes findings from two
recent studies that employ these technologies to improve the automated
detection of code smells. By tacking a close look to these approaches, we
aim to highlight their contributions as well as their limitations within
the context of current ML methodologies in software engineering. We
provide a comparative analysis of the AST representations and GNN
models utilized, exploring how they address the challenges of code smell
detection and suggesting directions for future research. Our goal is to
check the potential of these models to set new benchmarks in the field.

Keywords: Code Smells · Machine Learning · Graph Neural Networks
· Abstract Syntax Trees.

1 Introduction

Code smells refer to bad design and bad practices in the code, indicating signs of
code quality problems. These issues particularly impact readability and adapt-
ability, often pointing at the need for refactoring. Detecting and addressing code
smells is therefore fundamental to integrating evaluation and improvement into
the software evolution process. Software engineering researchers have explored
this concept extensively, looking at its roots, implications and detection methods.



2 Authors Suppressed Due to Excessive Length

Many strategies have been developed to identify code smells in source code.
Traditional approaches such as metric-based methods [1] and heuristic-based
methods [2] rely heavily on manually defined rules to extract features of rele-
vance from the code. However, these methods face significant challenges as it
is difficult to reach consensus on the right rules and metrics and often involves
a substantial amount of work. Machine Learning (ML) techniques, including
Support Vector Machines, Naive Bayes and Logistic Regression, have also been
applied to code smell detection [3–5]. Nevertheless, they still rely on manually
crafting specific features and require additional tools and steps for feature ex-
traction and processing. More recently, deep learning models [6] have entered
the scene, reducing the need for extensive manual feature engineering as seen in
ML techniques.

Despite the emergence of feature-based [7] and token-based [8] techniques for
detecting code smells, significant challenges remain in effectively identifying these
smells due to the complexity of software structures. Feature-based techniques are
strongly supported by manually selected metrics which often lack flexibility and
struggle to capture nuanced design flaws. Token-based methods attempt to solve
these problems but may lack essential syntactic and semantic relationships within
the code. Graph Neural Networks (GNNs) and Abstract Syntax Trees (ASTs)
offer a promising solution by taking advantage of the inherent syntactic structure
of programs. Indeed, GNNs are being gradually more used in a large spectrum of
applications due to their versatility in handling graph like data structure enabling
node, edge and graph classification, they are used in recommendation systems [9],
molecular biology and chemistry such as molecular property prediction [10],
network and security such as intrusion detection [11], malware detection [12]
provide a framework that can learn directly from data that can be represented
as graphs, which the AST provide through its representation of code snippets
after the parsing phase.

Our aim in this paper is to critically analyze two recent studies that use
GNNs and ASTs for the detection of code smells [13, 14]. By understanding
their methodologies, contributions and challenges, this analysis aims to grasp
the effectiveness of the application of ASTs to detect code smells by leveraging
the syntactic and semantic structure of source code, as well as using GNNs which
allows the model to better understand the complex relationships and data flow
in the code.

The paper is organized as follows. Section 1 introduces the study, while Sec-
tion 2 provides the background on Code Smells, Machine Learning in the software
landscape and the Abstract Syntax Tree. Section 3 analyzes the work of the two
papers under review. Section 4 presents a detailed discussion of the evaluation
results, highlighting the strengths and limitations of the HMML and ASTNN
models. Section 5 suggests areas for future investigation. Finally, Section 6 con-
cludes the study.



Title Suppressed Due to Excessive Length 3

2 Background

2.1 Code Smells

Code smells, a term coined by Kent Beck 5 in the context of refactoring [15], refer
to certain structures in the code that suggest (but do not guarantee) a potential
problem. They are often seen as symptoms of poor design or bad programming
practices which, without being bugs (as the code is still functioning in their
presence), can harm the readability of the code, increase its complexity and
hinder its maintainability. Code smells detection is thus important because they
can make code more difficult to understand and modify [16], therefore increasing
the risk of bugs.

Code smells can be classified into three categories [17–19]:

1. Implementation Smells: these arise from poor coding practices and di-
rectly affect the quality of individual functions or methods. Examples in-
clude long methods that are difficult to understand or maintain, duplicated
code that leads to redundancy and high cyclomatic complexity that makes
code error-prone and difficult to test.

2. Design Smells: these are problems related to design patterns and the mod-
ular structure of classes and their interactions. Design smells include cyclic
dependencies between classes or modules, long parameter lists that increase
complexity and feature envy, when one class makes excessive use of the meth-
ods of another.

3. Architectural Smells: these are issues that have an impact on the archi-
tecture of the system as a whole. They often lead to scalability and main-
tainability problems. Architectural smells include tightly coupled subsystems
that make modifications difficult, inappropriate layering that disrupts mod-
ularity and monolithic architectures that make the system inflexible.

2.2 Machine Learning (ML) in Software Engineering

Machine Learning (ML) has revolutionized the field of software engineering,
addressing numerous challenges with innovative solutions. In the realm of bug
prediction and localization, ML models analyze extensive historical data, code
changes, and commit logs to forecast potential defects, thereby reducing debug-
ging efforts and resource allocation significantly [20, 21]. Code smell detection,
an essential aspect of maintaining software quality, has similarly benefited from
ML techniques. Supervised learning models, including Support Vector Machines,
Naive Bayes classifiers, and ensemble methods, have been employed to train on
source code metrics, effectively identifying problematic patterns (refer to Section
2.1).

Moreover, ML extends its utility to refactoring recommendations by examin-
ing code structures and suggesting enhancements, thus improving maintainabil-
ity and readability. Natural Language Processing (NLP) techniques in ML have
5 https://martinfowler.com/bliki/CodeSmell.htmlr

https://martinfowler.com/bliki/CodeSmell.htmlr


4 Authors Suppressed Due to Excessive Length

found applications in source code summarization and generation, where large
language models generate comprehensive code summaries and even complete
functional code segments from minimal specifications [22,23].

In addition to these applications, ML optimizes the software development
process itself by analyzing data from version control systems and issue track-
ers. This analysis helps streamline workflows and predict project timelines, con-
tributing to tasks like code review [24, 25]. GNNs, which exploit the intricate
relationships depicted in ASTs, have emerged as particularly innovative tools in
this field. By leveraging the hierarchical representation of source code provided
by ASTs, GNNs enhance the understanding of syntactic and semantic structures
in programs. They have been applied to diverse tasks such as type inference in
dynamically typed languages [26], variable naming and misuse detection [27],
vulnerability identification [28], and code summarization [29].

2.3 Abstract Syntax Trees (ASTs)

The AST is a hierarchical tree structure generated by the parser during the
compilation process. It represents the abstract syntactic structure of the source
code, capturing the relationships between different programming constructs such
as declarations, assignments and expressions in a language-independent format.
Each node in the tree corresponds to a source code construct, such as a function,
class or conditional statement and includes key attributes such as variable names
or data types. Developers analyze these structures to discover important syn-
tactic features and understand program behavior. An example is shown in Fig.
1 for a function call func(arg1,arg2) which is constructed by creating an EXPR
CALL node, so that the left-hand side is the function name and the right-hand
side is an unbalanced tree of EXPR ARG nodes.

Fig. 1: AST of a Function Call



Title Suppressed Due to Excessive Length 5

2.4 Graph Neural Networks

Graph Representation Learning (GRL) is a subcategory of Deep Learning (DL)
that handles data structured in a graph. Specifically a graph can be described
as: G = (V,E, ϕv, ϕe), where a graph G consists of a set of nodes V connected to
each other by a set of edges E. Depending on the system and the problem being
tackled, the nodes might have features ϕv describing the nodes themselves, and
the edges may contain features ϕe describing the relations between each pair of
nodes. The graphs can be cyclic, acyclic, directed, undirected, or even a mixture
of these. They can also be homogeneous, where all the nodes are of the same type,
or heterogeneous, where we can have a set of types (in recommendation systems
it is typical to have a graph consisting of client nodes and product nodes [30]).

The graphs can also be spatio-temporal [31], where there are edges and node
features for each timestamp, or dynamic [32], where we have both time-varying
structure and time-varying features. Two approaches to structure the graph can
be taken:

– Continuous: each addition or removal of a node or edge is an event that is
taken into account.

– Discrete: at each timestamp t, we extract a new graph.

The principal idea behind GRL is to extract embeddings from a graph. These
embeddings can represent either node properties or structural information of the
entire graph. These learned embeddings, rich with semantic information, can
then be used in downstream tasks such as node classification [33], link prediction
[34], and graph classification [35]. This learning process relies on the Message
Passing Neural Network (MPNN) paradigm, which can be decomposed into the
steps below:

– Message computation: for each node in the graph, compute the message
by aggregating the embeddings of its neighboring nodes along with its own
previous embedding. This step involves:
• Aggregation Function: apply an aggregation function (e.g., sum, mean,

max, or a more complex learned function) to combine the embeddings
of the neighboring nodes.

• Message Function: optionally, apply a message function to the aggregated
result to transform it further.

– Update Function: apply an update function (e.g., a neural network layer
such as a GRU, LSTM, or a simple feed-forward neural network) to the
current node’s embedding and the computed message to produce the new
node representation.

There are two primary settings for learning and inference: inductive and
transductive. In the inductive setting, the model is trained on a set of graphs
or subgraphs and is capable of generalizing to unseen graphs or nodes that were
not present during the training phase. This is particularly useful in applications
where the graph structure can change over time, and the model needs to handle



6 Authors Suppressed Due to Excessive Length

new nodes or edges. The inductive setting emphasizes the model’s ability to learn
transferable representations that can be applied to different graphs.

In contrast, in the transductive setting, the model is trained and tested on the
same graph. The focus is on learning the embeddings for the nodes within this
specific graph. The model leverages the entire graph structure during training
to make predictions or classifications. This is suitable for scenarios where the
graph is static, and the goal is to understand or predict properties within this
fixed structure.

3 Analysis of Selected Papers

In this paper, we aim to critically analyze two recent studies that use GNNs
and ASTs for code smell detection [13, 14]. The reason for studying these two
papers is that the first paper was pioneering in its application of ASTs to detect
code smells by leveraging the syntactic and semantic structure of source code
to improve detection accuracy. Building on this foundation, the second paper
has extended this approach by integrating GNNs and which allows the model to
better understand the complex relationships and data flow in the code. These
two studies together demonstrate the evolution of AST-based methods where
the incorporation of GNNs allegedly results in a more nuanced and efficient
detection process that captures code smells across different granularities.

In the first paper [14], the authors address these challenges by introduc-
ing a new AST-based method for detecting code smells. Their approach, called
ASTNN, starts by generating ASTs from code snippets, then divides each com-
plete AST into several sub-trees, forming sequences of statement trees. These
sequences are encoded and a bidirectional GRU [36] with max pooling captures
semantic and structural features. This process results in complete vector repre-
sentations of the code fragments, which are then fed into fully connected layers
for final detection. They applied this technique to 500 high-quality Java projects
sourced from GitHub and observed that it outperformed existing deep learning
models across various granularities of code smells.

In the second paper [13], the authors address existing limitations by introduc-
ing a hybrid model with multi-level code representation (HMML). This model
starts by parsing the AST from source code, incorporating control and data
flow edges to construct the code property graph. A Graph Convolution Net-
work (GCN) [37] is then employed to extract information at both syntactic
and semantic levels. Simultaneously, the bidirectional Long Short-Term Mem-
ory (LSTM) [38] network with attention analyzes code tokens at the token level.
Finally, the predictions from both models are combined using weighted outputs.
The entire approach is optimized for multi-label classification, achieving supe-
rior results in multi-label code smell detection and specific single-code smell tasks
when applied to 100 high-quality Java projects from GitHub.



Title Suppressed Due to Excessive Length 7

3.1 Data Collection

Both papers tackle smell detection in the context of Java projects from open
source projects on Github. ASTNN aims to detect Insufficient Modularization,
Deficient Encapsulation as well as Feature Envy for design smells and Empty
Catch Block for implementation smell. In contrast, HMML handles 9 implemen-
tation smells. These include Magic Number, Long Identifier, Long Statement,
Missing default, Complex Method, Long Parameter List, Complex Conditional,
Long Method and Empty catch clause. Indeed, the studies use CodeSplit6 to
split all the projects downloaded from GitHub into class-level and method-level
code fragments. These fragments are later processed by Designite [39] to gener-
ate smell reports to label all instances and are further parsed through Javalang
to get the ASTs out of the code fragments (see Fig. 2).

Furthermore, the two papers reviewed rely on Designite [39] to generate
ground-truth labels for code smell detection. Designite is a static code analy-
sis tool designed to detect code smells, design smells and other quality issues in
software codebases. It uses a set of predefined heuristics and metrics to analyze
source code. In fact, using Designite offers several advantages, including automa-
tion and scalability, which are crucial for processing large codebases. This ensures
a consistent labeling process, minimizing the risk of human error and variability.
However, there are important limitations associated with the exclusive use of
Designite: the heuristic nature of Designite can lead to false positives and false
negatives, which introduce noise into the training and evaluation datasets. False
positives can cause models to learn incorrect patterns, while false negatives can
lead to incomplete training data, impairing the model’s ability to recognize cer-
tain code smells. Additionally, biases or limitations inherent in Designite can be
propagated into the machine learning model.

Then, ASTNN [14] decomposes the generated ASTs into statement trees
that are stored along with their corresponding labels. While HMML [13] uses
the generated ASTs to create graph objects containing the nodes’ indices, the
edges and the label of the graph (since it is a multi-label task, there are 9
labels, one for each smell). Moreover, the tokenization technique employed to
create the vocabularies is not mentioned or detailed in the implementation of
the two models. However, it can be inferred that vocabulary creation relied on a
standard corpus. ASTNN has a single vocabulary, while HMML has two: one for
the token-based approach (strictly semantic) and the other for the graph-based
approach (strictly syntactic).

3.2 Evaluation and Experimental Results

The evaluation was made between ASTNN [14], HMML [13] (see Fig. 3 for an
overview) and Random Forest [40], with Random Forest chosen as a baseline
because tree methods were previously the state-of-the-art models for smell de-
tection [41]. The primary metrics used to assess the performance of the models

6 https://github.com/tushartushar/CodeSplitJava

https://github.com/tushartushar/CodeSplitJava


8 Authors Suppressed Due to Excessive Length

Fig. 2: Data Preprocessing Phases

Fig. 3: Model Architecture Overview

are precision, recall and F1 measure, which provide an overview of the accuracy
and completeness of the code smell detection. To statistically validate the dif-
ferences in performance between the models, the Wilcoxon signed-rank test [42]
was employed. This non-parametric test is used to compare two related samples
to assess if their median ranks differ significantly.

The evaluation of the three models—HMML, Random-Forest and ASTNN
across various code smells demonstrates notable differences in their performance,
as shown in Table 1. HMML generally outperforms the other models in terms of
F1 scores for most code smells, indicating a balanced trade-off between precision
and recall. More specifically, HMML model performs exceptionally well in de-
tecting the "Magic Number"(P: 0.97, R: 0.93, F1: 0.95), the "Missing Default"
(P: 0.98, R: 0.99, F1: 0.99) and the "Complex Method" (P: 0.82, R: 0.66, F1:
0.73).

In contrast, the Random-Forest model shows varying performance, often
characterized by relatively high precision but lower recall leading to lower F1
scores compared to HMML. For example, Random-Forest performs decently in
detecting "Magic Number" (P: 0.89, R: 0.35, F1: 0.50) but it struggles signifi-
cantly with smells such as "Complex Method" and "Long Method." The high
precision but low recall suggests that while Random-Forest can accurately iden-



Title Suppressed Due to Excessive Length 9

tify certain code smells, it is missing a substantial number of instances resulting
in many false negatives. ASTNN generally performs better than Random-Forest
but not as well as HMML in terms of F1 scores. It has strong recall but often
lower precision, resulting in lower F1 scores for smells such as "Complex Condi-
tional" (P: 0.94, R: 0.21, F1: 0.34) and "Empty Catch Clause" (P: 0.61, R: 0.11,
F1: 0.18). This trend indicates that ASTNN is capable of detecting many true
positives, but also generates a significant number of false positives.

Indeed, a closer examination of specific code smells reveals further details.
For the "Magic Number", HMML achieves the highest F1 score (0.95), indi-
cating excellent performance. This can be attributed to its ability to effectively
capture the syntactic and semantic nuances in the code, which are key to ac-
curately identifying this type of smell. ASTNN also performs relatively well in
this category (F1: 0.62) while Random Forest lags behind (F1: 0.50) despite its
high precision. This discrepancy underlines the importance of balanced recall in
addition to precision. Moreover, for the "Long Identifier", ASTNN excels with
the highest precision (0.85) and F1 score (0.44), suggesting that its token-based
approach is particularly effective in identifying long identifiers. Howecer, HMML
and Random-Forest have lower F1 scores (0.49 and 0.43 respectively), indicating
that it is difficult to balance precision and recall for this specific smell.

In the "Complex Method" evaluation, HMML came out on top with an F1
score of 0.73, while Random-Forest and ASTNN show significantly lower per-
formance (0.26 and 0.34 respectively). HMML’s superior performance in this
category may be due to its hybrid approach which combines graph convolu-
tion networks and bidirectional long-short term memory networks to capture
both structural and token-level information. In fact, in overall multiple smell
detection, HMML outperformed both Random-Forest and ASTNN with an F1
score of 0.78, underlining its robustness in handling multiple code smells simul-
taneously. ASTNN shows moderate performance with an F1 score of 0.62 while
Random-Forest is the lowest performer (F1: 0.45). HMML’s consistently high
performance across different smells can be attributed to its ability to integrate
multi-level code representations, enabling it to capture a wide range of code
features.

In conclusion, HMML demonstrates superior performance for most code
smells, indicating its effectiveness in terms of both precision and recall. The
model’s balanced approach to syntactic and semantic analysis enables it to excel
at detecting complex smells and handling multi-label detection tasks. Random-
Forest, while having high precision in some cases, struggles with recall, resulting
in poorer overall performance. ASTNN, although better than Random-Forest,
is still outperformed by HMML, mainly due to its low precision despite strong
recall. These results suggest that HMML is the most reliable of the three models
for detecting code smells in Java projects, with performance balanced between
the different types of smells.



10 Authors Suppressed Due to Excessive Length

Code smells HMML Random-Forest ASTNN

P R F1 P R F1 P R F1

Magic Number 0.97 0.93 0.95 0.89 0.35 0.50 0.67 0.57 0.62
Long Identifier 0.44 0.55 0.49 0.52 0.36 0.43 0.85 0.30 0.44
Long Statement 0.73 0.60 0.66 0.90 0.35 0.50 0.84 0.68 0.75
Missing default 0.98 0.99 0.99 0.96 0.29 0.44 0.71 0.23 0.34
Complex Method 0.82 0.66 0.73 0.92 0.15 0.26 0.71 0.23 0.34
Long Parameter List 0.81 0.60 0.69 1.00 0.29 0.46 0.86 0.60 0.71
Complex Conditional 0.68 0.58 0.63 0.96 0.14 0.24 0.94 0.21 0.34
Long Method 0.67 0.41 0.51 1.00 0.09 0.16 0.83 0.69 0.76
Empty catch clause 0.51 0.30 0.38 0.86 0.08 0.15 0.61 0.11 0.18

Multi smells 0.83 0.74 0.78 0.90 0.30 0.45 0.76 0.52 0.62

Table 1: Comparison of precision (P), recall (R), and F1 scores for HMML,
Random-Forest, and ASTNN across different code smells.

4 Discussion

The evaluation results indicate that while HMML generally outperforms Random-
Forest and ASTNN for most code smells, the dataset used has notable limitations
and biases. Specifically the use of Designite for ground-truth labeling introduces
potential biases due to its heuristic-based nature, which may lead to false posi-
tives and false negatives. These inaccuracies can propagate through the models,
affecting their ability to generalize and accurately detect code smells in various
codebases. An alternative approach, such as manual labeling or the use of mul-
tiple static analysis tools, could potentially provide more accurate and reliable
ground truth data, reducing inherent bias and improving model performance.

Despite HMML’s overall superior performance, both HMML and ASTNN
show significant shortcomings in the detection of certain code smells. For ex-
ample, both models struggle to detect “Long Identifier” and “Complex Method”
smells, suggesting that these models may not effectively capture the nuanced
patterns associated with these specific smells. The relatively lower performance
on these smells highlights the challenges of creating comprehensive feature rep-
resentations that can generalize across different types of code smells. In addition,
the token-based nature of ASTNN, while effective in capturing semantic infor-
mation, can miss important structural details, leading to lower precision in some
cases. On the other hand, HMML’s hybrid approach, which combines syntactic
and semantic analysis, offers a more balanced performance but remains insuffi-
cient in some areas due to the inherent complexity of smells and potential noise
in the training data.

Moreover, the dataset, consisting of 100 high-quality Java projects from
GitHub, may not fully represent the diversity of real-world software projects.
This limitation could affect the generalizability of the models to other program-



Title Suppressed Due to Excessive Length 11

ming languages or less well-maintained projects, underlining the need for a more
diverse and representative dataset for future research.

In summary, while HMML demonstrates strong overall performance, the
results also reveal significant limitations in both the dataset and the models.
Addressing these limitations through improved ground-truth labeling methods,
more diverse datasets and improved feature representations could lead to more
effective and generalizable code smell detection models.

5 Future Work

For the future, several promising avenues can be pursued to improve code smell
detection. One interesting approach is to tackle the problem in a self-supervised
way. In this approach, a dataset without explicitly labeled smells can be used
to train models to integrate the code into a latent space. Once this integration
is achieved, outlier detection methods can be applied to identify code smells,
taking advantage of the fact that these smells are generally rare anomalies in
the dataset. This could reduce reliance on heuristic tools such as Designite and
provide a more robust and unbiased means of detecting code smells.

Furthermore, the integration of advanced embedding techniques like code2vec
could significantly improve the semantic representation of code features. By em-
bedding code snippets into meaningful vector representations, code2vec [43] can
capture intricate semantic relationships within the code, improving the model’s
ability to detect smells at a deeper level.

Another potential avenue for future research is to extend the analysis beyond
ASTs to include Control Flow Graphs (CFGs) [44] [45]. CFGs offer a detailed
view of execution paths within a program, providing valuable information on the
dynamic behavior of code. By combining AST-based syntax analysis with CFG-
based control flow analysis, models could achieve a more complete understanding
of the code, which could lead to more accurate smell detection.

6 Conclusion

In this paper, we analyzed two advanced methods for detecting code smells,
HMML and ASTNN. We found that the HMML model, which combines syntac-
tic and semantic analysis, generally outperforms the other model for most code
smells. However, both HMML and ASTNN have limitations, particularly in the
detection of certain smells such as “Long Identifier” and “Complex Method”. Fu-
ture research should focus on improving feature representation and model train-
ing, exploring self-supervised learning, advanced integration techniques such as
code2vec and incorporating CFGs to improve detection capabilities and over-
come current limitations.



12 Authors Suppressed Due to Excessive Length

References

1. Salehie, M., Li, S., Tahvildari, L.: A metric-based heuristic framework to detect
object-oriented design flaws. In: 14th IEEE International Conference on Program
Comprehension (ICPC’06). pp. 159–168. IEEE (2006)

2. Moha, N., Guéhéneuc, Y.G., Duchien, L., Le Meur, A.F.: Decor: A method for
the specification and detection of code and design smells. IEEE Transactions on
Software Engineering 36(1), 20–36 (2009)

3. Panigrahi, R., Kumar, L., et al.: Application of naïve bayes classifiers for refactoring
prediction at the method level. In: 2020 International Conference on Computer
Science, Engineering and Applications (ICCSEA). pp. 1–6. IEEE (2020)

4. Kaur, A., Jain, S., Goel, S.: A support vector machine based approach for code
smell detection. In: 2017 International Conference on Machine Learning and Data
Science (MLDS). pp. 9–14. IEEE (2017)

5. Jain, S., Saha, A.: Improving performance with hybrid feature selection and en-
semble machine learning techniques for code smell detection. Science of Computer
Programming 212, 102713 (2021)

6. Liu, H., Jin, J., Xu, Z., Zou, Y., Bu, Y., Zhang, L.: Deep learning based code smell
detection. IEEE transactions on Software Engineering 47(9), 1811–1837 (2019)

7. Alazba, A., Aljamaan, H.: Code smell detection using feature selection and stacking
ensemble: An empirical investigation. Information and Software Technology 138,
106648 (2021)

8. AbuHassan, A., Alshayeb, M., Ghouti, L.: Software smell detection techniques: A
systematic literature review. Journal of Software: Evolution and Process 33(3),
e2320 (2021)

9. Wu, S., Sun, F., Zhang, W., Xie, X., Cui, B.: Graph neural networks in recom-
mender systems: a survey. ACM Computing Surveys 55(5), 1–37 (2022)

10. Wieder, O., Kohlbacher, S., Kuenemann, M., Garon, A., Ducrot, P., Seidel, T.,
Langer, T.: A compact review of molecular property prediction with graph neural
networks. Drug Discovery Today: Technologies 37, 1–12 (2020)

11. Bilot, T., El Madhoun, N., Al Agha, K., Zouaoui, A.: Graph neural networks for
intrusion detection: A survey. IEEE Access (2023)

12. Bilot, T., Madhoun, N.E., Agha, K.A., Zouaoui, A.: A survey on malware detection
with graph representation learning. arXiv preprint arXiv:2303.16004 (2023)

13. Li, Y., Zhang, X.: Multi-label code smell detection with hybrid model based on
deep learning. In: SEKE. pp. 42–47 (2022)

14. Xu, W., Zhang, X.: Multi-granularity code smell detection using deep learning
method based on abstract syntax tree. In: SEKE. pp. 503–509 (2021)

15. Du Bois, B., Demeyer, S., Verelst, J.: Refactoring-improving coupling and cohesion
of existing code. In: 11th working conference on reverse engineering. pp. 144–151.
IEEE (2004)

16. Santos, J.A.M., Rocha-Junior, J.B., Prates, L.C.L., Do Nascimento, R.S., Freitas,
M.F., De Mendonça, M.G.: A systematic review on the code smell effect. Journal
of Systems and Software 144, 450–477 (2018)

17. Sharma, T., Singh, P., Spinellis, D.: An empirical investigation on the relationship
between design and architecture smells. Empirical Software Engineering 25, 4020–
4068 (2020)

18. Mumtaz, H., Singh, P., Blincoe, K.: A systematic mapping study on architectural
smells detection. Journal of Systems and Software 173, 110885 (2021)



Title Suppressed Due to Excessive Length 13

19. Sharma, T., Efstathiou, V., Louridas, P., Spinellis, D.: Code smell detection by
deep direct-learning and transfer-learning. Journal of Systems and Software 176,
110936 (2021)

20. Pandey, S.K., Mishra, R.B., Tripathi, A.K.: Bpdet: An effective software bug pre-
diction model using deep representation and ensemble learning techniques. Expert
Systems with Applications 144, 113085 (2020)

21. Lam, A.N., Nguyen, A.T., Nguyen, H.A., Nguyen, T.N.: Bug localization with
combination of deep learning and information retrieval. In: 2017 IEEE/ACM 25th
International Conference on Program Comprehension (ICPC). pp. 218–229. IEEE
(2017)

22. Wang, Y., Le, H., Gotmare, A.D., Bui, N.D., Li, J., Hoi, S.C.: Codet5+: Open
code large language models for code understanding and generation. arXiv preprint
arXiv:2305.07922 (2023)

23. Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.d.O., Kaplan, J., Edwards,
H., Burda, Y., Joseph, N., Brockman, G., et al.: Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374 (2021)

24. Tufano, R., Masiero, S., Mastropaolo, A., Pascarella, L., Poshyvanyk, D., Bavota,
G.: Using pre-trained models to boost code review automation. In: Proceedings of
the 44th international conference on software engineering. pp. 2291–2302 (2022)

25. Li, H.Y., Shi, S.T., Thung, F., Huo, X., Xu, B., Li, M., Lo, D.: Deepreview: auto-
matic code review using deep multi-instance learning. In: Advances in Knowledge
Discovery and Data Mining: 23rd Pacific-Asia Conference, PAKDD 2019, Macau,
China, April 14-17, 2019, Proceedings, Part II 23. pp. 318–330. Springer (2019)

26. Allamanis, M., Barr, E.T., Ducousso, S., Gao, Z.: Typilus: Neural type hints. In:
Proceedings of the 41st acm sigplan conference on programming language design
and implementation. pp. 91–105 (2020)

27. Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent programs
with graphs. arXiv preprint arXiv:1711.00740 (2017)

28. Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y.: Devign: Effective vulnerability identi-
fication by learning comprehensive program semantics via graph neural networks.
Advances in neural information processing systems 32 (2019)

29. LeClair, A., Haque, S., Wu, L., McMillan, C.: Improved code summarization via
a graph neural network. In: Proceedings of the 28th international conference on
program comprehension. pp. 184–195 (2020)

30. Fan, S., Zhu, J., Han, X., Shi, C., Hu, L., Ma, B., Li, Y.: Metapath-guided het-
erogeneous graph neural network for intent recommendation. In: Proceedings of
the 25th ACM SIGKDD international conference on knowledge discovery & data
mining. pp. 2478–2486 (2019)

31. Jin, G., Liang, Y., Fang, Y., Shao, Z., Huang, J., Zhang, J., Zheng, Y.: Spatio-
temporal graph neural networks for predictive learning in urban computing: A
survey. IEEE Transactions on Knowledge and Data Engineering (2023)

32. Zhang, M., Wu, S., Yu, X., Liu, Q., Wang, L.: Dynamic graph neural networks for
sequential recommendation. IEEE Transactions on Knowledge and Data Engineer-
ing 35(5), 4741–4753 (2022)

33. Xiao, S., Wang, S., Dai, Y., Guo, W.: Graph neural networks in node classification:
survey and evaluation. Machine Vision and Applications 33(1), 4 (2022)

34. Li, J., Shomer, H., Mao, H., Zeng, S., Ma, Y., Shah, N., Tang, J., Yin, D.: Eval-
uating graph neural networks for link prediction: Current pitfalls and new bench-
marking. Advances in Neural Information Processing Systems 36 (2024)

35. Errica, F., Podda, M., Bacciu, D., Micheli, A.: A fair comparison of graph neural
networks for graph classification. arXiv preprint arXiv:1912.09893 (2019)



14 Authors Suppressed Due to Excessive Length

36. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

37. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

38. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

39. Sharma, T., Mishra, P., Tiwari, R.: Designite: A software design quality assessment
tool. In: Proceedings of the 1st International Workshop on Bringing Architectural
Design Thinking into Developers’ Daily Activities. pp. 1–4 (2016)

40. Guggulothu, T., Moiz, S.A.: Code smell detection using multi-label classification
approach. Software Quality Journal 28(3), 1063–1086 (2020)

41. Arcelli Fontana, F., Mäntylä, M.V., Zanoni, M., Marino, A.: Comparing and exper-
imenting machine learning techniques for code smell detection. Empirical Software
Engineering 21, 1143–1191 (2016)

42. Woolson, R.F.: Wilcoxon signed-rank test. Encyclopedia of Biostatistics 8 (2005)
43. Alon, U., Zilberstein, M., Levy, O., Yahav, E.: code2vec: Learning distributed

representations of code. Proceedings of the ACM on Programming Languages
3(POPL), 1–29 (2019)

44. Ma, W., Liu, S., Lin, Z., Wang, W., Hu, Q., Liu, Y., Zhang, C., Nie, L., Li, L.,
Liu, Y.: Lms: Understanding code syntax and semantics for code analysis (2023),
https://api.semanticscholar.org/CorpusID:267522763

45. Xian, Z., Huang, R., Towey, D., Fang, C., Chen, Z.: Transformcode: A contrastive
learning framework for code embedding via subtree transformation. IEEE Trans-
actions on Software Engineering (2024)

https://api.semanticscholar.org/CorpusID:267522763

	Beyond the Code: Unraveling the Applicability of Graph Neural Networks in Smell Detection

