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Abstract—The prediction of protein structures is an important
problem in molecular biology. In spite of the large efforts
from the research community, and of the recent development of
artificial intelligence tools specifically designed for this problem,
a complete and definitive solution to the problem has not been
found yet. This work is based on the observation that many
tools for the prediction of protein conformations rely on both
local and non-local geometrical information, even though the
non-local information can be very hard to identify within the
desired precision in some particular situations. For this reason,
we explore in this work the effect of local geometry on methods
capable of constructing protein conformations. This initial study
has the final aim of devising new alternative methods where
the predictions may be guided mainly by the local geometry of
proteins.

I. INTRODUCTION

THE prediction of suitable conformations for a given pro-

tein is of fundamental importance in science, in particular

in the context of drug design. Since several years the research

community has been working on this topic, with the final goal

of understanding how these three-dimensional conformations

can be “predicted” by using some of the information that

can be obtained through experimental techniques. When the

predictions rely solely on the protein sequence (i.e. on the list

of amino acids forming the main protein chain), then it is

common to refer to the problem of identifying these possible

conformations as the “protein folding” problem [5].

In spite of the large efforts in this scientific domain, the

protein folding problem remained for several years, as long

as general instances are concerned, among the practically

intractable problems. Experimental techniques that are able of

providing additional information about the molecules (and not

only its amino acid sequence) were meanwhile developed, and

methods and algorithms were thus proposed that are capable

of determining protein conformations from these experimental

data. One example, on which we have been working in the

past 15 years, is given by the experimental technique based

on Nuclear Magnetic Resonance (NMR) [2], where a Distance

Geometry Problem (DGP) [15], [17] is formulated for the

determination of the protein conformations.

These methods exploit both local structural information, as

well as long-range proximity measures [12]. Local structural

information can for example be deduced from the study of

the chemical structure of each amino acid: if two atoms are

chemically bonded, then it is possible to guess, in a rather

precise way, the distance separating the two atoms. Force

fields such as AMBER [4] and PARALLHDG [6] collect a

certain number of parameters which also comprise this kind

of local proximity information. Naturally, the given values for

such parameters are not wholly satisfied in all proteins. In

fact, terms of energy functions given by such force fields are

actually able to give a measure on the variations of these values

in protein conformations.

It is common to talk about long-range proximity measures

when we can obtain estimates on the distances between two

atoms belonging to two amino acids that may be separated

by several other amino acids in the protein sequence. The

experiments based on NMR techniques (already mentioned

above), for example, are able to give estimates on such

long-range distances, and most commonly between pairs of

hydrogen atoms [8]. Alternatively, methods based on multiple

sequence alignments [21] can also provide long-range distance

information, but they are likely to give imprecise results for

particular cases of proteins [20]. A real challenge for both

NMR experiments and methods based on protein sequence

alignments are the so-called Intrinsically Disordered Proteins

(IDPs) [19].

Nevertheless, AlphaFold (the release of the version 3 is

very recent, see [1]), the very well-known Artificial Intelli-

gence (AI) tool for protein folding, strongly relies on long-

range proximity information, normally obtained from protein

sequence alignments. The success of AlphaFold is therefore

strongly dependent on the availability of such long-range

restraints, and its actual success rate can therefore depend on

the number of alignments that it is possible to exploit in order

to derive the long-range proximity measures.
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In this work, we intend investigating the impact of local

geometry in the determination of protein folds. Our work is

motivated by some previous analysis performed by some of

us [9] where we have identified some particular situations

in which the local geometry seems to have a larger impact

on the protein folds than long-range distances (which were

identified though NMR experiments in that work). Some initial

investigations in line with the present work were already

conducted and published in [10]. Our work extends those

initial studies and uses a larger subset of protein conformations

in the computational experiments.

The remainder of the paper is organized as follows. In

Section II, we will describe in more detail what we intend

by local geometry of protein conformations, and we will

explain how to define DGP instances for protein conformations

carrying specific local geometry information. In Section III,

we will briefly describe the Branch-and-Prune (BP) [14],

used for solving the artificially generated DGP instances.

Finally, Section IV will present our preliminary computational

experiments, and Section V will briefly conclude the paper.

II. LOCAL GEOMETRY OF PROTEINS

Proteins are defined by one or more sequences of amino

acids. In this work, we focus our attention on proteins defined

by only one amino acid chain. Amino acids are the building

blocks of proteins. There are 20 different amino acids that

can be involved in the protein synthesis, and they all have

a common part, while another, named the side chain of

the amino acid, makes each amino acid different from one

another. The subset of atoms forming the protein which are

not included in the side chains is generally referred to as the

protein backbone.

The chemical composition for every of the 20 amino acids

is a priori known, and therefore the chemical composition of

the entire protein can be simply obtained from the amino acid

sequence. Part of the local geometry can be as a consequence

derived from a simple analysis of the atomic bonds that are

present in the structure. As already mentioned, bonded atoms

satisfy a relative distance (a “bond length”) that is generally

considered to depend solely on the type of the two involved

atoms.

Similarly, we can extend the same idea to the angle that

every triplet of bonded atoms can form (say the atoms are A,

B and C, where A is bonded to B, B is bonded to C, and we are

interested in the angle in B formed by the segments AB and

BC). In this case, we rather talk about “bond angles”, and it

is again generally supposed that these angles basically depend

on only the type of involved atoms. We point out, however,

that in the case of bond angles, a larger variation of the angles

can be observed around their average value.

The situation is a little more complex when quadruplets of

consecutive atoms are defined. They allow us to define the so-

called torsion angles. Torsion angles exhibit larger variations

over the protein conformations, and they are not as regular

as bond lengths and angles. However, there are some special

cases where we can constrain the values of these angles. One

example is given by the torsion angle ω crossing a peptide

bond (from the Cα Carbon of the amino acid i to the Cα

Carbon of the amino acid i + 1 in the sequence), which is

generally fixed and set to 178◦. Another example is given by

the protein secondary structures, which strongly restrict the

ranges of the torsion angles for every quadruplet of atoms

that we can define on the protein backbones. This is a very

important result for protein conformations, which was studied

for the first time in the well-known Ramachandran map [18].

In the following, we will employ the typical notations ϕ, ψ

and ω for the torsion angles that we can define on the protein

backbones.

In this work, we investigate the dependence of local geom-

etry in proteins (bond lengths and angles, as well as torsion

angles) on parameters other than the simple atom type, as it

was instead supposed in the seminal works of Engh and Huber

[6]. In particular, we will compare the three following setups:

1. local geometry is unique for every protein and cannot be

predicted by the analysis of the protein sequence;

2. local geometry can be predicted by using the information

about the secondary structures related to the protein

chain, together with the atom type;

3. local geometry can be predicted by the simple analysis

of the atom types (as in Engh and Huber’s works).

In order to study and compare these three setups, we will

artificially generate three different sets of DGP instances,

which we will solve by the BP algorithm briefly summarized

in Section III. Our computational experiments will be then

presented and commented in Section IV.

III. AN IMPLEMENTATION OF THE BP ALGORITHM

In this section, we will first of all introduce the DGP in

formal terms, and we will briefly describe a well-known algo-

rithm for the solution of DGP instances that can be discretized,

and finally mention to the specific implementation of the

algorithm that we will use in our computational experiments.

Let G = (V,E, d) be a simple weighted undirected graph,

where vertices represent the atoms of our proteins, and the

existence of an edge between two atoms indicate that their

relative distance is known [15]. The weight function d asso-

ciates the numerical value of the distance to every edge of

E. This numerical value d(u, v) can be either exact (i.e. very

precise), so that it can represented by a singleton, or rather

imprecise and hence represented by a real-valued interval

[d(u, v), d̄(u, v)]. Let E′ be the subset of the edge set E

containing only the exact distances.

Given a simple weighted undirected graph G = (V,E, d),
the Distance Geometry Problem (DGP) in dimension 3 asks

whether a graph embedding

x : v ∈ V −→ xv ∈ R
3

exists such that

∀{u, v} ∈ E, ||xu − xv|| ∈ d(u, v), (1)
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where || · || represents the Euclidean norm. We say that the

graph embedding x is a realization of the graph when it

satisfies all the constraints in Eq. (1).

In the past years, some of us have been focusing on a

special class of DGP instances where the search space can be

discretized and reduced to a tree [13]. Let G[·] be the subgraph

of G induced by a subset of vertices of V . In formal terms,

a given DGP instance can be discretized (so that it represents

an instance of the Discretizable DGP, or DDGP) when there

exists a vertex ordering on V such that the following two

assumptions are satisfied:

(a) G[{1, 2, 3}] is a clique whose edges are in E′;

(b) ∀v ∈ {4, . . . , |V |}, there exist u1, u2, u3 ∈ V such that

(b.1) u1 < v, u2 < v, u3 < v;

(b.2) {{u1, v}, {u2, v}} ⊂ E′, {u3, v} ∈ E;

(b.3) d(u1, u3) < d(u1, u2) + d(u2, u3).

When the two assumptions (a) and (b) are satisfied, we can

construct a search tree where the candidate positions for every

atom are collected on a common tree layer [15]. In our

experiments, we consider the vertex ordering defined in [22],

which makes an extensive use of repeated vertices in order to

achieve a direct branching on the torsion angles ϕ, ψ and ω

that we can define in the protein backbones. For strict enough

values for these torsion angles, it is in fact possible to avoid

branching and hence locally reduce, a priori, the tree width.

When the edge {u3, v} is not in E′ (see assumption (b.2)),

the distance d(u3, v) is represented by an interval. In this

situation, the set of possible positions for the atom v is

actually continuous, but in some particular conditions (which

are satisfied by the instances we use in this work) we can

consider to take sample distance values from the original

intervals, and to have a dedicated branch in the tree for every

extracted sample distance [13]. This methodology introduces

an additional factor (given by the number of samples taken

from every interval distance) in the combinatorics, but it has

the advance to make us deal with more complex instances

by using an approach that was initially designed to work in

simpler conditions (i.e. with distances that are not affected by

uncertainty).

The Branch-and-Prune (BP) algorithm performs a system-

atic exploration of this search tree. It uses the additional

distances, which are not necessary for the construction of

the tree, to verify the “feasibility” of the generated atomic

positions [14]. This is the so-called pruning phase of the

algorithm, which is actually very important in BP, because it

allows the algorithm to focus the search over the tree branches

that contain no infeasibilities.

For more information about the BP algorithm and its

previous uses in the context of structural biology, the reader is

mainly referred to [7], [16]. In our computational experiments,

we will use the implementation of the BP algorithm available

on the following GitHub repository:

https://github.com/tmalliavin/ibp-ng-fullchain

IV. COMPUTATIONAL EXPERIMENTS

In our computational experiments, we have selected a subset

of protein conformations from the Protein Data Bank (PDB)

[3]. The conformations have been selected in order to satisfy

the following properties:

• the conformations are obtained through techniques that

are based on X-ray crystallography, with resolution of at

least 1.6 Å and crystallographic R factor larger than 0.25;

• the protein sequences (only one chain) are not longer than

100 amino acids;

• the similarity between the amino acid sequences of any

pair of proteins is smaller than 20%;

• the molecules do not contain cis peptide bonds;

• at least two secondary structure elements (α-helix or β-

strand) are present in the protein.

Our subset finally contains 308 protein conformations, and

we consider the three main setups listed in Section II for the

generation of our artificial instances. When we use setup 1,

we suppose that the local geometry is unique for every protein,

and hence we extract the information from the original PDB

conformations. When we use setup 2, the distances and angles

that we use to define our instances are averaged over the

Hollingsworth’s regions [11], which provide a finer-grained

partitioning of initial Ramachandran regions. Finally, we use

the values proposed by Engh and Huber’s works [6] under

the hypothesis that they can only depend on the atom types

(our setup 3). Notice that these setups can be mixed so that

a different one can be considered for a different kind of local

information. Details for each set of performed experiments are

given in the caption of Fig. 1.

The protein conformation have been reconstructed using

“one-shot” BP runs. The branching phase is performed with a

discretization factor allowing to have a variation on the torsion

angles ϕ and ψ of magnitude about 5◦. The ω values are

instead used in the pruning phase. A scaling factor of 0.8 is

applied to van der Waals radii in order to introduce lower

bounds on unknown distances (atoms cannot be closer than a

certain threshold when they are not chemically bonded), and

the error tolerance ϵ is set to 0.1. The runs are stopped as soon

as the first solution is constructed.

Fig. 1 displays the distributions of the root-mean-square

deviation (RMSD, Å) between the atomic coordinates related

to the solutions found by the BP algorithm and the original

PDB conformations. As expected, the best results in terms

of RMSD are obtained when the local geometry is extracted

from the original PDB conformations (Fig. 1(a)). Interestingly,

when we consider the bond lengths from Engh and Huber’s

works, a similar distribution is obtained (data not shown),

implying therefore that the bond lengths have actually little

impact on the reconstruction process for the conformations.

The influence of the bond angles appears instead to be more

important.

When the torsion angles ω are imposed to 178◦ degrees,

we can notice a large increase of the RMSD values, reaching

values of 10 or even 12 Å (see Fig. 1(b)). This result shows
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Fig. 1. Distribution of the root-mean-square deviation (Å) between the
original PDB conformations and those reconstructed using the BP algorithm.
From up to down: (a) setup 3 for bond lengths, setup 1 for the remaining local
geometry; (b) as previous one but with ω angles fixed to 178

◦; (c) setup 2
for the entire local information; (d) as previous one but with ω angles set to
178

◦; (e) setup 3 for the entire local geometry. The dashed vertical line is
placed at 3 Å.

the importance of the local variability in the peptide bond

geometry.

We can remark moreover that some RMSD distributions

strongly depend on the secondary structures that are actually

contained in the conformations. Proteins with a large per-

centage of α-helices (blue lines) or mostly containing loops

(red lines) are shifted towards smaller RMSD values. By

contrast, the structures containing mostly β-strands (green

lines) exhibit RMSD values larger than 3 Å. The calculations

of conformations based on Ramachandran regions with ω

values extracted from the PDB conformations (see Fig. 1(c))

display slightly better RMSD values than the ones using the

fixed value of 178◦ (see Fig. 1(d)).

Finally, when it is supposed that local geometry only

depends on the atom types (see Fig. 1(e)), then the observed

RMSD values are even larger. These results thus underline

the negative impact of uniform local geometry on the recon-

structed conformations.

V. CONCLUSIONS

We have presented a study on the local geometrical informa-

tion of protein conformations. Even though we are aware that

the local and global geometry are likely to be highly entangled

in proteins, this work consisted in investigating how much the

local information can have an impact on the protein folds.

This study, together with others that we plan to perform in the

near future, can potentially help us in developing new methods

and algorithms for the construction of protein conformations

which mainly (or even solely) use information about the local

geometry of proteins.
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