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Comparing Plug-and-Play and Unrolled networks
Minh Hai Nguyen and Pierre Weiss

Abstract—Plug-and-play and unrolled methods are among
the most popular and efficient approaches for solving inverse
problems in imaging. In this paper, we review their similarities
and differences. We adopt a Bayesian framework to explain
their statistical properties. This allows us to relate plug-and-
play methods to Maximum A Posteriori (MAP) estimators and
unrolled networks to Minimum Mean Square Error (MMSE)
estimators. We clarify some of their properties including their
stability and numerical efficiency. Overall, this paper provides a
concise review of their respective advantages and limitations.

Index Terms—MAP, MMSE, plug-and-play, unrolled methods,
inverse problems, Bayesian imaging.

I. INTRODUCTION

Since the 2010s, a revolution has occurred in solving inverse
problems in imaging. Regularization terms have evolved from
being conceived through reflection and analysis to using
deep neural network trained from data. The characterization
of solution properties has arguably lost in subtlety, but the
reconstruction performance improved significantly. In major
reconstruction challenges, the current state-of-the-art methods
incorporate the physics of the problem [1], [2], [3]. In particu-
lar, the Plug-and-Play (PnP) methods [4], [5] and the unrolled
networks [6], [7] are informed by forward models through
data fidelity terms. These two algorithms are widely used,
but there seems to be some confusion about their similarities
and differences. Here, we aim to contribute to improving
the discernment between these methods from a statistical
perspective by showing their relationship to the Maximum A
Posteriori (MAP) estimator and to the Minimum Mean Square
Error (MMSE) estimator. After a brief description, we provide
a concise review of their respective strengths and limitations.
Most of the results presented here are already known, and
we refer the interested readers to the excellent review articles
[8], [9], [10] for additional insights. This paper is intended as
a self-contained and concise review, enabling researchers and
practitioners to quickly understand the key features of PnP and
unrolled algorithms for image reconstruction, and to select the
most suitable approach for their specific application.

II. PRELIMINARIES AND DEFINITIONS

Most inverse problems consist in estimating an unknown
signal x ∈ X , given an observation y ∈ Y under the forward
model y = P(Ax), where P is perturbation. The operator
A : X → Y models the acquisition device. We assume
that it is known in this paper. The perturbation P can be
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deterministic (e.g. quantization) or stochastic (e.g. additive
white Gaussian noise). The most frequent application case is
the finite dimensional setting, with X = RN and Y = RM .

A. MAP and MMSE definitions

In ill-posed inverse problems, the measurement y does
not carry all the information on x: some information is lost
through the sensing operator A, as clearly exemplified by the
inpainting problem in Fig. 1. Incorporating information on
x can be achieved using a Bayesian formalism: we assume
that the vector x is a realization of a random vector x with
prior probability distribution px. We can introduce the random
vector y that relates to x by the forward model y = P (Ax).
Under this assumption, the posterior distribution px|y is
obtained by the Bayes’s formula px|y(x|y) =

py|x(y|x)px(x)

py(y)
.

In the particular case of additive white Gaussian noise, P(z) =
z + ϵ with ϵ ∼ N

(
0, σ2Id

)
independent of x, we obtain:

px|y(x|y) ∝ exp

(
− 1

2σ2
∥Ax− y∥2

)
· px(x)

Two estimators based on the posterior distribution play a
central role in understanding PnP and unrolled methods: the
Maximum A Posteriori (MAP) and the Minimum Mean Square
Error (MMSE). They are both defined based on different opti-
mality criteria: the MAP is the best point estimator, meanwhile
the MMSE is the best estimator in average.

Definition 1 (MAP estimator). The MAP estimator is the
mapping that yields the most likely signal given the obser-
vation: x̂MAP : y ∈ Y 7→ argmax

x∈X
px|y(x|y). For additive white

Gaussian noise, taking the negative log-posterior yields:

x̂MAP(y)
def
= argmin

x∈X
f(x) + g(x) (1)

with f(x) = 1
2 ∥Ax− y∥2 and g(x) = −σ2 log px(x).

Definition 2 (MMSE estimator). The MMSE estimator is
the mapping that yields the best signal in average given the
observation y. It is defined as:

x̂MMSE
def
= argmin

ϕ:Y→X measurable
E(x,y)

[
∥ϕ(y)− x∥22

]
(2)

Proposition 1 (MMSE and posterior mean). For almost all
y ∈ Y , the MMSE is equal to the posterior mean [13]:

x̂MMSE(y) = E [x|y = y] =

∫
X
x · px|y(x|y)dx (3)

B. PnP and Unrolled networks

Understanding PnP and unrolled methods requires some
basic notions of first-order optimization recalled below.
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Fig. 1: Example of inpainting on FFHQ
dataset. PnP algorithms yield local max-
imizers of the posterior, which are
nice looking if well initialized, but po-
tentially misleading. Unrolled networks
are MMSE estimators approximations,
which are blurry where uncertain and
do not necessarily have a high poste-
rior probability. PnP algorithms can be
trapped in shallow local maxima. To
overcome this, a stochastic version of
the PnP algorithm using diffusion models
as priors [11], [12] is used to initialize
posterior samples and avoid these traps.
Subsequently, 500 gradient steps are per-
formed to minimize the negative log-
posterior (1).

1) First order splitting methods: A simple way to find
the MAP solution is to use an explicit gradient descent :
xk+1 = xk − τk (∇f(xk) +∇g(xk)). This solution often
imposes severe restrictions on the step-size τk, resulting in
slow algorithms. To counter this, it is often beneficial to con-
sider implicit methods which can be defined through proximal
operators. Given a function h : X → R∪{+∞}, it is defined
for x0 ∈ X by:

proxh(x0)
def
= argmin

x∈X
h(x) +

1

2
∥x− x0∥22.

Proximal operators play a pivotal role in optimization, because
they enable implicit gradient descent methods. This is shown
by the following equivalence, valid for any lower semi-
continuous function h and step-size τ > 0:

xk+1 = xk − τ∇h(xk+1) ⇔ xk+1 = proxτh(xk).

It is also valid for non-differentiable functions by using the
sub-differential. For composite optimization problems involv-
ing the sum of two terms as in (1), mixing explicit and implicit
gradient steps yields a variety of optimization algorithms [14].
We illustrate this point in Tab. I, where we detail the Gradient
Descent (GD), the Proximal Gradient Descent (PGD) and
the Douglas-Rachford algorithm. The following proposition
summarizes the main conditions for convergence.

Proposition 2 (Informal convergence results, [15], [16]). The
methods in Tab. I converge to critical points of f + g if f and
g are sufficiently “regular” and τk is sufficiently small.

2) Denoisers as implicit priors: Assume that we wish to
minimize f + g in (1), where g = −σ2 log px. Applying
the previous optimization schemes requires computing ∇g or
proxτg. The main idea of PnP methods is to relate these
mappings to trained image denoisers. To this end, consider
a denoising problem y = x + ϵ with ϵ ∼ N

(
0, η2Id

)
. The

following propositions are key for understanding PnP methods.

Proposition 3 (MAP denoiser and the proximal operator). The
MAP denoiser DMAP

η is equal to the proximal operator of the

negative-log-prior:

DMAP
η (y)

def
= argmin

x∈X

1

2η2
∥x− y∥22 − log px(x)

= prox−η2 log px
(y).

The relationship between the prior and the MMSE denoiser
is more subtle. Let DMMSE

η denote the MMSE denoiser and
pη = px ∗Gη denote a Gaussian smoothed version of the log-
prior, where Gη is a centered Gaussian function of variance
η2. Observe that pη converges weakly to px as η → 0 since
Gη tends to a Dirac mass. The following formula is often
referred to as Tweedie’s formula [17], [18].

Proposition 4 (MMSE denoiser and the prior’s gradient). Let
gη

def
= −σ2 log (pη). We have ∇gη = σ2

η2

(
Id−DMMSE

η

)
.

Denoiser as implicit prior: The MMSE denoiser enables
explicit gradient descent steps on a smoothed version
of − log px, meanwhile the MAP denoiser performs an
implicit gradient descent step on − log px.

3) PnP definition: PnP methods [4], [5], [19], [20], [21],
[22] can be defined as first order methods. They perform
implicit or explicit gradient steps (see Tab. I) on the prior
term using an off-the-shelf denoisers D : X → X . That is,
proxτg is replaced by D, or ∇g is replaced by a term of the
form σ2

η2 (Id−D), following Prop. 4.

Remark II.1. PnP methods that perform explicit gradient
steps on the prior were first referred to as Regularization-
by-Denoising (RED) methods [5], [19], [20].

Example 1. Following Tab. I, an implicit PnP PGD method is
xk+1 = DMAP

τk
(xk − τk∇f(xk)). An explicit PnP PGD method

writes xk+1 = proxτkf (xk − τk∇gη(xk)), see Prop. 4 for
evaluating ∇gη .

4) Unrolled network definition: The unrolling method [23],
[9] has exactly the same structure as PnP methods. The
difference lies in the way the denoisers are trained. Consider
any of the iterative schemes in Tab. I. The term ∇g : X → X
or proxτg : X → X arising at the k-th iteration can be
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TABLE I: Examples of first order algorithms.

Explicit in the prior Implicit in the prior
Explicit in f (GD) xk+1 = xk − τk(∇f(xk) +∇g(xk)) (PGD) xk+1 = proxτkg (xk − τk∇f(xk))
Implicit in f (PGD) xk+1 = proxτkf (xk − τk∇g(xk)) (Douglas-Rachford) xk+1 = xk + proxg(2proxf (xk)− xk)− proxf (xk)

replaced by a denoiser Dθk : X → X , where θk denotes
trainable weights. Running the scheme for K ∈ N∗ iterations
results in a reconstruction mapping of the form:

Tθ(y) = TK ◦ TK−1 ◦ · · · ◦ T1(x0(y)), (4)

where Tk : X → X denotes the k−th iterate operator. It
depends on the operator A through the data-term f and on
the denoiser Dθk . The initial guess x0(y) can be chosen as a
regularized inverse for instance. Note that the denoisers Dθk

can vary from one iteration to the next. Thus, unrolled methods
define a complex neural network architecture Tθ specifically
designed for a given operator A.

III. PNP AND THE MAP

Assume an ideal situation where both DMAP
τ and DMMSE

η

can be computed exactly. By construction, PnP methods are
designed to maximize the posterior distribution px|y , or rather
to minimize − log px|y . Gathering Prop. 2, 3 and 4, we obtain
the following guarantees [24], [20], [21].

Proposition 5 (Limit points of PnP methods). Under regular-
ity and step-size assumptions not precised here:
• Implicit PnP methods with a MAP denoiser converge to

critical points of the posterior.
• Explicit PnP methods with a MMSE denoiser converge to

critical points of the posterior, with a smooth prior px⋆Gη .
• Implicit PnP methods with an MMSE denoiser still con-

verge to critical points of a posterior with a different prior.
• The convergence is global whenever f and g are convex.

A. Designing approximate denoisers

In practice, except for few analytic priors, neither of the
theoretical denoisers DMAP

τ nor DMMSE
η are explicitly available.

Before the advent of deep-learning, computing a MAP es-
timator (optimization) was considered easier than an MMSE
estimator (integration), at least for convex priors. The situation
is arguably reversed when dealing with nonconvex priors
learned through data.

a) MAP denoiser: If the prior is log-concave, it is
possible to evaluate DMAP

τ using iterative methods. This is the
case for handcrafted priors such as total variation, or some
learned priors [25]. In general however, computing the global
minimizer of a nonconvex prior is not possible, making DMAP

τ

inaccessible.
b) MMSE denoiser: Given a dataset of images

(xi)1≤i≤I , we can synthesize noisy images yi = xi + ϵi,
where the ϵi’s are independent realizations of the random
vector ϵ ∼ N

(
0, η2Id

)
. Consider a parameterized family of

estimators (Dθ)θ∈Θ, where θ is a parameter and Dθ : X → X
is a denoiser. In Fig. 1, Dθ was chosen as a convolutional
neural network. Finding the best estimator in the family can
be achieved by minimizing an empirical risk with a stochastic

gradient algorithm [26]. This yields an optimal estimator Dθ⋆ ,
approximating the MMSE [27].

Claim 1 (MMSE approximation). Under some conditions, the
trained neural network approximates the MMSE denoiser:

Dθ⋆ ≈ DMMSE
η .

This can be shown by observing that:

Dθ⋆ ≈ argmin
θ,ϕ=Dθ

1

I

I∑
i=1

∥ϕ(yi)− xi∥22

≈ argmin
ϕ measurable

1

I

I∑
i=1

∥ϕ(yi)− xi∥22

≈ argmin
ϕ measurable

E(x,y)

[
∥ϕ(y)− x∥22

] def
= DMMSE

η .

Here, we successively used the facts that i) we can solve the
empirical risk minimization problem with sufficient precision,
ii) the parameterized family of functions (Dθ)θ∈Θ is suffi-
ciently expressive to approximate the MMSE mapping, iii) the
empirical risk converges to the average risk for a large dataset
and iv) the mapping Tθ is able to generalize to unseen data.
All those points may seem highly questionable, but empirical
evidence and recent advances [28] indicate that they may hold
true to some extent. Therefore, with learning techniques, data-
driven MMSE denoisers can be effectively approximated.

c) MMSE denoiser for implicit methods: The MMSE de-
noiser actually corresponds to the MAP denoiser of a prior that
is dependent on, but distinct from px and possibly nonconvex
[29], [30]. Implicit PnP methods are widely used and item 3
of Prop. 5 is therefore important to justify convergence. To the
best of our knowledge, further theoretical progress are required
for a better understanding of the induced prior.

Finally, for an arbitrary denoiser, the convergence of PnP
methods is not granted and instability can be observed when
iterating the gradient steps.

Computability of MAP& MMSE denoisers:
• MAP denoisers, which should be used for implicit PnP

methods are accessible only for simple priors (e.g., log-
concave), which exhibit lower performance.

• MMSE denoisers, which should be used in explicit PnP
methods can be approximated by training.

• MMSE denoisers can be used in implicit methods. Their
statistical interpretation requires further clarification.

B. The problem of local maxima

PnP methods only converge to local maxima, which are
often unsatisfactory. For instance, in Fig. 1, a basic PnP
implementation yields the shallow local maximum. To avoid
this, a multiscale method consists in using a sequence ηk of
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regularization parameters for the prior. With a large value, the
posterior distribution is smooth and unimodal, ensuring global
convergence. We can then progressively get finer and finer
prior approximation, avoiding traps [31]. It is also possible
to use stochastic Langevin diffusion models by adding noise
to the iterates [32], [33], [34]. They enable the generation of
samples from the posterior distribution px|y . We show a few
samples obtained in this way in Fig. 1.

IV. UNROLLED METHODS AND THE MMSE

Training the unrolled network in (4) consists in optimizing
the parameters θ = (θ1, . . . , θK) of the denoisers of each block
Tk. This is done by minimizing the empirical risk:

θ⋆ ≈ argmin
θ

1

I

I∑
i=1

∥Tθ(yi)− xi∥2

Following Claim 1, we therefore have Tθ⋆ ≈ x̂MMSE under
the 4 conditions described after the claim. Empirical evidence
suggests that the unrolled architecture is an excellent candidate
for points ii) and iv).

Of importance, notice that the denoisers Dθk should not
be considered as white Gaussian noise denoisers as in PnP
algorithm. They are optimized to remove operator specific
artifacts, since A appears in each block Tk.

Key differences between PnP and unrolled networks: PnP
and unrolled methods possess exactly the same archi-
tecture, but are trained differently. PnP therefore yield
MAP-like estimates, while well-trained unrolled networks
approximate MMSE estimators.

V. ADVANTAGES AND LIMITATIONS OF EACH METHOD

Tab. II summarizes the main differences between PnP and
unrolled methods. We justify each cell in what follows.

TABLE II: Comparison between plug-and-play and unrolled method

PnP methods Unrolled networks
Stat. interpretation MAP (local.) MMSE
Architecture Identical, but smaller K for unrolled
Training objective Learn to denoise Learn to reconstruct
Training cost Rather lightweight Rather expensive
Adaptivity Any inverse problem Problem-dependent
Inference time Long if many iterations Fast once trained
Convergence Local minimizers Ongoing research
Computation High dim. optimization High dim. integral
Stability Low for nonsmooth priors More stable
Appearance Best looking Best in average
Performance Unrolled > vanilla-PnP by up to 5 dB [35]
Properties Nice looking but uncertain Blurry where unfaithful

Trapped in local minimizers Can be unlikely
Improved with continuation

Stability: The stability of both estimators to noise in
the measurements is fundamental. The MAP stability heavily
relies on the prior px. The mapping x̂MAP can become discon-
tinuous if the posterior distribution px|y has multiple global
minimizers. This can happen even with log-concave priors,
indicating that the MAP is generally unstable. In contrast, the
MMSE estimator, defined as an integral of the joint probability
px,y , is continuous whenever the joint distribution p(x,y) is

sufficiently smooth. It is therefore typically more stable than
the MAP, as shown in [36]. A rigorous proof of this requires
further investigation, which is out the scope of this paper.

Posterior property: The MAP estimator is designed to
have a high posterior probability. In contrast, the MMSE,
as the average optimal solution, can have an arbitrarily low
posterior probability. In imaging, this often manifests as blurry
regions in areas of uncertainty, as illustrated in Fig. 1.

Computational complexity: Contrarily to well-designed
PnP methods, which can be run for an arbitrary number of
iterations, unrolled methods are limited to a fixed number,
typically between 1 and 16. The reason is that the training
requires using back-propagation through K iterations, which
are computationally and memory-intensive. This feature is
also beneficial: since only a few iterations are needed, they
typically run faster than PnP methods once trained.

Performance: Unrolled networks are designed optimally
for a given operator. This results in performance gain varying
from 0 to 5dBs in terms of Peak Signal to Noise Ratio [35].

Adaptivity: PnP methods are universal: a single denoiser
can be used for any inverse problem and operator A. In con-
trast, unrolled methods are less adaptive; weights optimized
for a specific operator A often perform poorly with a different
operator A′. This adaptivity issue can be addressed by training
the unrolled network on a family of operators [35], [37].

VI. CONCLUSION

We established links between PnP methods and the MAP es-
timator, as well as between unrolled networks and the MMSE
estimator. This connection allowed us to list their distinct
advantages and limitations for inverse problems solving.

PnP methods stand out for their ability to address arbitrary
inverse problems without requiring network retraining. How-
ever, this flexibility comes at a cost, particularly for highly ill-
posed problems, where issues such as getting trapped in poor
local extrema, instability, and suboptimal performance can
arise. Recent advances in stochastic PnP methods and diffusion
processes [11], [12] demonstrate that these techniques can
efficiently explore different modes of the posterior through
sampling, as illustrated in Fig. 1. Uncertainty quantification
remains a significant challenge in inverse problems, making
this capability especially valuable.

Unrolled methods, in contrast, are tailored to a specific
operator or a family of operators [35]. Although they can
be time-consuming to train, they generally deliver optimal
performance on average. For inherently uncertain inverse prob-
lems, this often results in blurry regions. This characteristic
can be advantageous in scientific applications; instead of
producing incorrect sharp details, the method generates a blur
that a trained eye can interpret, offering a form of uncertainty
quantification. Additionally, these methods tend to be faster
and exhibit greater stability to noise, a crucial advantage in
fields like medical imaging.
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