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Abstract Projection and equivalence concepts have
been widely studied in the literature. In the present
paper two nonlinear systems with the same number
of inputs, but not the same number of state variables,
are considered.Undermild assumptions, necessary and
sufficient conditions are given for the existence of a
submersion such that the higher dimensional system
projects locally onto the other one. The solution to
this problem has relevant applications, for instance in
robotics. It includes as a special case the equivalence
of nonlinear systems with no particular structure.
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1 Introduction

Transformations between two given systems to high-
light properties such as linear equivalence [8], [28],
observer canonical forms [6], [10], immersion [16],
[21], bisimulation [13] and quotients [33], are largely
investigated in the literature. The first systematic
approach to classify linear dynamical systems was
provided by Brunovsky in 1970 [9]. In [8] Brockett
addressed the linear equivalence problem for nonlinear
systems under change of coordinates. Jakubczyk and
Respondek [15] extended these results to equivalence
to a linear system through change of coordinates and
regular feedback. A complete overview can be found
in [18].

Herein, this problem is generalized. Given two non-
linear systems with the same number of inputs, con-
ditions are given under which there exists a change of
coordinates such that the largest dimensional system
projects onto the smaller dimensional one. Robotics
provides an obviousmotivation to this theoretical prob-
lem.Awalking robotwhich is a complex underactuated
electro-mechanical systemwhose essential features are
embodied by some smaller dimensional subsystem, as
shown in [12] where a control for the 4-link walking
robot with three actuators could be derived from the 2
DoF single inputAcrobot. Thedynamics of theAcrobot
can be considered as a subsystem of the dynamics of a
more complex 2-legged walking robot [24]. The same
idea was exploited for state estimation in [2]. As shown
below, the key tool to solve the problem is the geometri-
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cal concept of invariant manifold, already used in [11]
where stability properties of a given system are ana-
lyzed through the properties of a lower dimensional
submanifold by using the center manifold theory, or in
[14] where the regulation problem for nonlinear sys-
tems was addressed and in [5] where adaptive control
problems are considered, to cite a few.

The paper is organized as follows: in Sect. 2 some
basic results for multi-input systems are recalled and
the decomposition problem statement is given; Sect. 3
is devoted to some preliminary results while the solv-
ability of the decomposition problem is fully charac-
terized in Sect. 4. Finally, in Sect. 5 some examples are
ruled out to show the results. Conclusions are given in
Sect. 6.

The problem under interest is helpfully introduced
by the following example.

Example 1 Consider the two nonlinear dynamics

�1 :

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = u1 cos x3
ẋ2 = u1 sin x3
ẋ3 = u2,
ẋ4 = x2u2,

�2 :
⎧
⎨

⎩

ż1 = u2
ż2 = u1 − z3u2
ż3 = z2u2,

(1)

where �2 is the unicycle kinematics in appropriate
coordinates. Consider the mapping

ϕ1(x1, x2, x3) =
⎛

⎝
x3

x2 sin(x3) + x1 cos(x3)
x1 sin(x3) − x2 cos(x3)

⎞

⎠ . (2)

It is easily seen that in the coordinates

χ =
(

ϕ1(x1, x2, x3)
x4

)

, derived from (2), �1 reads

⎧
⎪⎪⎨

⎪⎪⎩

χ̇1 = u2
χ̇2 = u1 − χ3u2
χ̇3 = χ2u2
χ̇4 = (χ2 sin χ1 − χ3 cosχ1) u2

(3)

that is, ϕ1 projects the flow of �1 onto �2. In fact,
�1 can be decomposed into �2 and a further scalar
dynamics defined by the evolution of χ4, thanks to the

diffeomorphism χ =
(

ϕ1(x1, x2, x3)
x4

)

and the canon-

ical projection which maps χ onto (χ1, χ2, χ3). �

The conditions that ensure the existence of themapping
(19) solving the problem are the topic of this paper.

2 Recalls and problem statement

In the present section, we first provide the essential
notions upon which our results are derived. Then the
problem under investigation is stated.
Consider the control affine nonlinear system

� : ẋ = f (x) +
m∑

j=1

g j (x)u j , (4)

where x ∈ Rn . The input u ∈ Rm , and the vector fields
f , g j , j = 1, ...,m, are assumed to be smooth.
Given a set of functions � : Rn → Rn̄ , with n̄ ≤ n,

S = {x ∈ Rn | �(x) = 0} is a submanifold of Rn

of dimension q = n − rank
[

∂�(x)
∂x

]

|�(x)=0
. If � = ∅,

then S = Rn .
Let us now recall that given a set of q vec-

tor fields τi (x), i = 1, · · · , q, a distribution � =
span{τ1(x), · · · , τq(x)},wedenote byadτi τ j = [τi , τ j ]
= ∂τ j

∂x τi− ∂τi
∂x τ j the standardLie bracket of vector fields

and accordingly by adlτi τ j = [τi , adl−1
τi

τ j ]. Moreover
� denotes the involutive closure of � that is the small-
est distribution containing � and such that for any two
vector fields τi ,τ j in �̄, also [τi , τ j ] ∈ �̄. Finally we
denote by �⊥ the codistribution which is the left anni-
hilator of �.

Let us also recall that the notion of foliation of aman-
ifold is common in differential geometry and dynamic
systems’ theory, see e.g [26, page 102]. More specifi-
cally letM be a smooth n-dimensional manifold, TM
its tangent bundle and V ⊂ TM an involutive distri-
bution. The set of all maximal integral submanifolds Si
of V is a foliation ofM and the Si are called leaves of
the foliation. Two trajectories starting from some leaf
Si at some time ti will go through the same leaf S j at
some time t j > ti .

The leaf S such that the trajectory starting on it
remains on it, is called invariant. In the sequel, at
some points, we will treat the case of non-constant
dimensional distributions, where the Frobenius Theo-
rem [1,29] is not valid any longer. The interested reader
is referred to the pioneering works [17,30,31] for an
attempt for the generalization of Frobenius Theorem
to non constant dimensional distributions.

With the notation above, the strong accessibility
property of a system is characterized as follows.
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Definition 1 The strong accessibility distribution L of
system � in (4) is defined as

L = span{adkf g j (x), j = 1, ..,m,∀k ≥ 0}. (5)

System � is said to be locally strongly accessible in a
neighborhood Vx0 of x0 if dimL = n for any x ∈ Vx0 .

If the given system is strongly accessible, i.e. locally
strongly accessible at almost all x ∈ Rn , then the previ-
ous distribution has dimension n for 0 ≤ k ≤ n− 1 for
almost all x ∈ Rn , with the exclusion of some singular
points. We will thus consider in the following

Ln = span{g j (x), · · · adn−1
f g j (x), j = 1, ..,m}. (6)

and exclude initially the points where its dimension is
less than n.

In the following, given two systems�1 and�2, those
mappings are sought which allow to identify a special
relation between them, as stated in the following prob-
lem statement.

2.1 The decomposition problem

Consider the two nonlinear systems driven by the same
input u ∈ Rm , with state xi ∈ Rni , i = 1, 2, n1 ≥ n2:

�i : ẋi = fi (xi ) +
m∑

j=1

gi j (xi )u j , i = 1, 2, (7)

where the vector fields fi , gi j , i = 1, 2, j = 1, ...,m,
are smooth, and let the following assumption hold true:

Assumption 1 dimLi
ni = ni , ∀xi ∈ V i

xi0 a neighbor-
hood of xi0, for i = 1, 2.

Problem Statement: Find, if possible, a local diffeo-
morphism ϕ = (ϕT

1 , ϕT
2 )T : Rn1 → Rn1 , defined for

any x1 ∈ V 1
x10 ⊂ Rn1 , with dim(ϕ1) = n2 such that,

setting z = ϕ(x) with z1 = ϕ1(x1) and z2 = ϕ2(x1),
locally in the new coordinates system �1 reads

ż = f̃ (z) +
m∑

j=1

g̃ j (z)u

with f̃ (z) =
(

f2(z1)
f3(z1, z2)

)

and for j = 1, · · · ,m

g̃ j (z) =
(

g2 j (z1)
g3 j (z1, z2)

)

, for some f3 and g3 j ’s, so that

Fig. 1 Structure of system �1

the transformed dynamics is decomposed in the trian-
gular form

ż1 = f2(z1) +
m∑

j=1

g2 j (z1)u j (8)

ż2 = f3(z1, z2) +
m∑

j=1

g3 j (z1, z2)u j . (9)

Let p(z) be the canonical projection which maps
(z1, z2) onto z1. The overall transformation p ◦ ϕ(x1)
maps locally �1 onto �2. If the decomposition prob-
lem is solvable, then after a possible change of coor-
dinates, �1 is decomposed as the cascade system in
Fig. 1, including the upstream subsystem �2.

The problem consists in characterizing the existence
of ϕ1. In this case, ϕ2 will then be any basis completion
which guarantees that ϕ is a local diffeomorphism. The
change of coordinates to be applied to�1 to display the
dynamics of �2 is derived later in this paper from the
computation of non-controllable states in the so-called
composite system, at least on some specific submani-
fold. The explicit procedure is however postponed for
future work as outlined in the conclusions. Assump-
tion 1 avoids to include non-controllable states which
are specific to �1 or �2.

3 Preliminary results

Under Assumption 1 some peculiarities of the decom-
position property are pointed out. Note that if �2 is
a subsystem of �1, then recalling the notation ϕ =
(ϕT

1 , ϕT
2 )T , necessarily,

• n1 ≥ n2;
• the accessibility of �2 yields that ϕ1 is a submer-

sion, i.e. rank
(

∂ϕ1
∂x1

)
= n2.

The following result is in order.
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Proposition 1 Let Assumption 1 hold true. The decom-
position property is reflexive and transitive.

Proof Reflexivity and transitivity of the decomposition
property are obvious. 
�

Using the F-relation property ([7], p.119), in our
case F = ϕ1, the solvability of the decomposition prob-
lem can be stated as follows:

Proposition 2 Let Assumption 1 hold true. Given sys-
tems (7), the decomposition problem is locally solv-
able if and only if there exists a mapping x2 = ϕ1(x1)
defined for any x1 ∈ V 1

x10 such that the vector fields
f1 and g1 j , are ϕ1-related respectively to f2 and g2 j
j = 1, · · · ,m, that is
∂ϕ1
∂x1

f1(x1) = f2(ϕ1(x1))
∂ϕ1
∂x1

g1 j (x1) = g2 j (ϕ1(x1)), j = 1, ...,m.
(10)

The previous result, which is a special case of Propo-
sition 2 in [4], relates the Lie algebra associated with
the two systems as stated below.

Corollary 1 Let Assumption 1 hold true. Given (7), if
the decomposition problem is locally solvable through
the mapping x2 = ϕ1(x1), defined for any x1 ∈ V 1

x10 ,

with rank ∂ϕ1
∂x1

= n2 on V 1
x10 , then for any j = 1, ...,m,

k ≥ 1, adkf1g1 j (x1) is ϕ1-related to adkf2g2 j (x2).

3.1 The composite system

Whether or not system �2 is the projection of sys-
tem �1 through an appropriate mapping of the form
x2 = ϕ1(x1) is now checked from the analysis of the
composite system � obtained from �1 and �2 and

given by (7). Setting x =
(
x1
x2

)

, N = n1 + n2, one

gets:

� : ẋ = F(x) +∑m
j=1 G j (x)u j =

(
f1(x1)
f2(x2)

)

+∑m
j=1

(
g1 j (x1)
g2 j (x2)

)

u j . (11)

The accessibility distributionLN of the composite sys-
tem � has the following structure

LN

=span

{(
g1 j (x1)
g2 j (x2)

)

,· · ·,
(
adN−1

f1
g1 j (x1)

adN−1
f2

g2 j (x2)

)

, j =1,· · ·,m
}

.

(12)

Let τ =
(

τ 1(x1)
τ 2(x2)

)

denote a general vector field gener-

ating LN as displayed in (12). The vector field τ 1(x1)
and the corresponding vector field τ 2(x2) are obtained
through the same sequence of brackets of vector fields,
that is if

τ 1(x1) = [adl1f1g1i1[ad
l2
f1
g1i2

· · · [adlqf1g1iq , ad
lq+1
f1

g1iq+1] · · · ]], (13)

for lμ ≥ 0, iμ ∈ [1,m], where μ = 1, · · · q + 1, then

τ 2(x2) = [adl1f2g2i1[ad
l2
f2
g2i2

· · · [adlqf2g2iq , ad
lq+1
f2

g2iq+1] · · · ]] (14)

with the same sequence of indices. The following
proposition follows from Corollary 1.

Proposition 3 Suppose Assumption 1 holds true. Let

L1
n1 = span

{
τ 11 (x1), τ

1
2 (x1), · · · , τ 1n1(x1)

}
. (15)

If�2 is the local projection of�1 through x2 = ϕ1(x1),
then any τ 1(x1) of the form (13) which can be written

as τ 1(x1) =
n1∑

i=1
αi1(x1)τ 1i (x1) and the corresponding

τ 2(x2) given by (14) are ϕ1-related.

Furthermore,

Proposition 4 Let Assumption 1 hold true. Assume
that for the composite system q = dimLN is constant
for any x ∈ Vx0 . Then ni ≤ q ≤ N = n1 + n2 for
i = 1, 2.

Proof Theproof is straightforward if one considers that
each vector field in the distribution has the form X =
(XT

1 (x1), XT
2 (x2))T . 
�

Proposition 4 leads to the following result.

Corollary 2 Let Assumption 1 hold true. If dimLN =
q for any x ∈ Vx0 , then there exist locally N − q
independent autonomous elements and N − q ≤
min{n1, n2}.

Next result states that even if dimLN = q > n1
for almost any x , the dimension could drop on some
specific invariant manifold. This is very specific to the
class of nonlinear systems as it is argued below.

Proposition 5 Let Assumption 1 hold true. If dim LN

≥ n1 and there exists ϕ1(x1)with rank
∂ϕ1
∂x1

= n2 for any
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x1 ∈ V 1
x10 such that d(x2 − ϕ1) ∈ LN |⊥x2=ϕ1(x1)

then
LN has dimension n1 on�(x1, x2) = x2 −ϕ1(x1) = 0
and

S =
{
(x1, x2) ∈ RN | �(x1, x2) =x2 − ϕ1(x1) = 0

}

(16)

is an invariantmanifold for the given composite system.

Proof: By assumption �(x1, x2) = x2 − ϕ1(x1),
is a set of n2 independent functions. Furthermore
d� ∈ LN |⊥x2=ϕ1(x1)

, thus LN has dimension n1 on
�(x1, x2) = x2 − ϕ1(x1) = 0 and since

�̇(x1, x2)|x2=ϕ1(x1) = 0

S defined by (16) is an invariant submanifold for the
given composite system �.

The previous result is a key tool to solve the prob-
lem under interest, since the decomposition problem
shows an important difference between the linear and
the nonlinear case. In fact, under the strong accessibil-
ity assumption of two linear systems �1 and �2, �2 is
a subsystem of �1 if and only if dim LN = n1 and L⊥

N
is the key to derive the required mapping x2 = T x1 as
d(x2 − T x1) ∈ L⊥

N . This is no more the case when the
�i ’s are nonlinear as it is shown in Sect. 4.

4 Decomposition via change of coordinates

As mentioned above, the decomposition problem is
solved in a straightforward way in the linear case, just
from the left annihilator of LN for the composite sys-
tem which has to have dimension n1.

Let us thus start with the case when dimLN = n1
for nonlinear systems, as a special case.

4.1 Special case dimLN = n1

The following introductory example shows that dimLN

= n1 is not sufficient by itself, but some additional con-
dition is required.

Example 2 Consider the two scalar systems �1 :
ẋ1 = x1u and �2 : ẋ2 = x2 + x2u that are strongly
accessible and satisfy dimLi

ni = ni for i = 1, 2
respectively for x1 �= 0 and x2 �= 0. They are not
equivalent under coordinates change since one is drift-
less and one is not. However for the composite system

LN = span

{(
x1
x2

)}

has dimension 1 for any x �= 0.

Its left-annihilator is spanned by the differential of any
function of x2

x1
, as d( x2x1

) or d(Ln| x2x1 |). From the proce-
dure in the linear case, x2

x1
= 0 should yield a solution.

This would imply x2 = 0, so there is no way to get
x2 = ϕ1(x1) as requested. �
As a matter of fact, dimLN = n1 is not sufficient
anymore and some additional conditions are needed
as shown in the next result.

Proposition 6 Let Assumption 1 hold true. Consider
the composite system � given by (11) and assume
dimLN = n1 for any x ∈ Vx0 . The three following
statements are equivalent.

1. �1 projects onto �2, ∀x ∈ Vx0 , through an appro-
priate mapping x2 = ϕ1(x1),

2. for the composite system � there exists an invari-
ant submanifold S of constant dimension n1 at x0,
defined as:

S =
{
x ∈ RN | x2 − ϕ1(x1) = 0

}

with rank
[

∂ϕ1(x1)
∂x1

]∣
∣
∣
S

= n2
3. the n2-dimensional foliation associated to LN has

an invariant leaf �(x1, x2) = 0 with constant

rank
[

∂�
∂xi

]∣
∣
∣
�(x1,x2)=0

= n2 for i = 1, 2.

Proof (1.) implies (2.): �1 and �2 are given by (7).

From (1.) there exists ϕ1(x1) with rank
(

∂ϕ1
∂x1

)
= n2

such that

d

dt
[ϕ1(x1)] = f2(ϕ1(x1)) +

m∑

j=1

g2 j (ϕ1(x1))u (17)

Let S = {
x ∈ RN | x2 = ϕ1(x1)

}
. Necessarily, from

(17), d
dt [x2 − ϕ1(x1)]|x∈S ≡ 0 that is S is an invariant

manifold.
(2.) implies (3.):From(2.) S={x ∈ RN | x2 − ϕ1(x1)

= 0} is an invariant submanifold for system �. Let
� = x2 − ϕ1(x1) = 0. Invariance of S yields by defi-
nition �̇ = 0; thus �(x1, x2) defines a set of n2 inde-
pendent autonomous elements for �, which implies
that d� ∈ L⊥

N , and LN is an involutive distribution of
dimension n1, which generates a foliation of dimen-
sion n2 and �(x1, x2) = 0 is an invariant leaf with

rank
(

∂�(x1,x2))
∂xi

)∣
∣
∣
�(x1,x2)=0

= n2 for i = 1, 2.

(3.) implies (1.): By assumption dimLN = n1
locally, is involutive, �(x1, x2) = 0 is an invari-
ant leaf so that �̇ = 0 and d� ∈ L⊥

N with
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rank
[

∂�
∂xi

]

|�(x1,x2)=0
= n2 for i = 1, 2. Consequently

one can locally compute the solution x2 = ϕ1(x1) sat-
isfying �(x1, ϕ1(x1)) = 0. Set now z = x2 − ϕ1(x1)
By construction z ≡ 0 on the invariant leaf, and thus

ẋ2|x2=ϕ1(x1) − ∂ϕ1

∂x1
ẋ1 = 0,

that is

f2(ϕ1(x1)) = ∂ϕ1(x1)

∂x1
f1(x1)

g2 j (ϕ1(x1)) = ∂ϕ1(x1)

∂x1
g1 j (x1), j = 1, · · · ,m,

which shows that �1 projects onto �2, which ends the
proof. 
�

4.2 The general case

Before giving the main result which fully characterizes
the existence of a solution to the decomposition prob-
lem, let’s work out the following illustrative example.

Example 3 Consider systems �1 and �2

�1 :
{
ẋ1 = x21 + x1u
ẋ2 = x21

�2 : { ż1 = z21 + z1u.

which are strongly accessible and satisfy dim Li
ni = ni

for i = 1, 2 respectively for x1 �= 0 and z1 �= 0.
Clearly �2 is a subsystem of �1. Nevertheless, for the
composite system

LN = span

⎧
⎨

⎩

⎛

⎝
x1
0
z1

⎞

⎠ ,

⎛

⎝
−x21
−2x21
−z21

⎞

⎠ ,

⎛

⎝
0

−2x31
0

⎞

⎠

⎫
⎬

⎭
.

has and dim LN = 3 > n1 for 2x41 z1(x1 − z1) �= 0. �
Example 2 and 3 stress the fact that dim LN = n1 is
neither necessary nor sufficient. In fact, in generalwhen
a solution exists, for the composite system dim LN =
n1 + 
 for some 0 ≤ 
 ≤ n2.

In this section necessary and sufficient conditions
are derived for the solvability of the decomposition
problem. Theorem 1 below represents the main result.

Theorem 1 Let Assumption 1 hold true. �2 is the pro-
jection of �1 through the mapping x2 = ϕ1(x1) with

rank
(

∂ϕ1
∂x1

)
= n2, locally for any x1 ∈ V 1

x10 , if and only

if, setting x = (xT1 , xT2 )T and �(x) = x2 − ϕ1(x1),

S =
{

x ∈ RN | �(x) = 0, rank

(
∂ϕ1

∂x1

)

=n2

}

(18)

is an invariant manifold of dimension n1 for the com-
posite system � and the distribution LN associated to
the composite system � has dimension n1 on S.

Accordingly, there exists ϕ2(x1) such that z =(
z1
z2

)

=
(

ϕ1(x1)
ϕ2(x1)

)

defines a change of coordinates

in which the system admits the triangular form (8), (9).

Proof Necessity. If �1 projects onto �2 through the
mapping x2 = ϕ1(x1), then equations (10) hold true.
Set �(x) = x2 − ϕ1(x1) = 0 so that

d

dt
�(x)

∣
∣
∣
∣
�(x)=0

= ẋ2|�(x)=0 − ∂ϕ1(x1)

∂x1
ẋ1

= f2(ϕ1) +
m∑

j=1

g2 j (ϕ1)u j

−∂ϕ1(x1)

∂x1

⎛

⎝ f1 +
m∑

j=1

g1 j u j

⎞

⎠ = 0

which shows that S = {x ∈ RN | �(x) = 0}
is an invariant manifold. Since rank ∂�

∂xi
= n2, for

i = 1, 2, and x1 ∈ V 1
x10 by assumption, dim S(·) = n1.

To show that dimLN (S) = n1 recall that according
to Corollary 1, adkf2g2 j and adkf1g1 j are ϕ1-related

so that it is easily verified that d� = (− ∂ϕ1
∂x1

, 1) =
d�|�=0 ∈ LN |⊥�=0. Consequently dimLN (S) = n1.

Since rank ∂ϕ1(x1)
∂x1

= n2 there exists a function ϕ2(x1)

such that ϕ = (ϕT
1 , ϕT

2 ) defines a local change of coor-
dinates. Set z1 = ϕ1 and z2 = ϕ2. One gets from

ż1 =
⎡

⎣
∂ϕ1

∂x1
( f1(x1) +

m∑

j=1

g1 j (x1)u j )

⎤

⎦

∣
∣
∣
∣
∣
∣
ϕ−1(z)

=
⎡

⎣ f2(ϕ1(x1)) +
m∑

j=1

g2 j (ϕ1(x1))u j

⎤

⎦

∣
∣
∣
∣
∣
∣
ϕ−1(z)

= f2(z1) +
m∑

j=1

g2 j (z1)u j

ż2 =
⎡

⎣
∂ϕ2

∂x1
( f1(x1) +

m∑

j=1

g1 j (x1)u j )

⎤

⎦

∣
∣
∣
∣
∣
∣
ϕ−1

= f3(z1, z2) +
m∑

j=1

g3 j (z1, z2)u j

which show that the system is in the form (8), (9).
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Sufficiency. Assume that there exists an invari-
ant manifold S given by (18) and that the distribu-
tion LN has dimension n1 on S. Since S is invariant,
d
dt �(x)|�=0 = 0, which means that

f2(ϕ1(x1)) +∑m
j=1 g2 j (ϕ1(x1))u j − ∂ϕ1(x1)

∂x1
( f1(x1)

+∑m
j=1 g1 j (x1)u j )) = 0.

For u = 0, we get that the first relation in (10) is sat-
isfied and consequently for j = 1, · · · ,m the second
relation in (10) is also satisfied. Since rank ∂ϕ1(x1)

∂x1
=

n2, there exists ϕ2(x1) such that in the coordinates
z1 = ϕ1 and z2 = ϕ2 the system reads (8), (9). Finally
�1 projects onto�2 through themapping x2 = ϕ1(x1).


�
Remark 1 It should be noted that while the decompo-
sition is computed starting from LN , its validity could
hold also in the points whereLN has not dimension n1.
This is the case in Example (3) where the decomposi-
tion holds true also for x1 = z1 = 0

Remark 2 As already notedwhile in the linear case, the
decomposition problem has a solution if and only ifLN

has dimension n1, this condition is neither necessary
nor sufficient in the nonlinear case, where instead the
solution is linked to finding an invariant submanifold S
such that dimLN (S) = n1. This is a major difference
that shows how the conditions in the nonlinear case are
more involved. Example 3 and Example 4 in the next
section aim to highlight this peculiarity.

Remark 3 The computation of the desired change of
coordinates comes from Proposition 6 and Theorem 7.
In general dim(LN ) ≥ n1. If the dimension is greater
than n1, then one has to compute constraints of the form

(x1, x2) = 0 which ensure the necessary condition
dim(LN |
=0) = n1 and which partially define S. One
possible procedure consists in considering the matrix
M(x1, x2) whose columns generate LN (x1, x2). The
practical computation of such constraints 
(x1, x2) = 0
comes from zeroing the minors of M(x1, x2), as done
in Example 3.

However, the obtained constraints 
(x1, x2) = 0
may not yield a solution as in the case of example 2. In
this case no solution exists at all.

Otherwise, it is also necessary that d
(x) ⊥ LN |
=0

and the required change of coordinates is then obtained
by integrating the left-annihilator of LN |
=0, as in
Example 4.

In the next section some examples are ruled out to
show how to apply the hints in Remark 3 to compute
the solution whenever it exists.

We end this Section by showing that the equivalence
of a nonlinear system to a linear one is a specific case
of the more general result given here.

Proposition 7 Consider the continuous time systems
�1 and �2 defined by (7) with f2(x2) = A2x2 and
g2i = B2i for i = 1, · · · ,m. Let n1 = n2 and let
Assumption 1 hold true. Then �1 is equivalent to the
linear system�2 if and only if for the composite system
� given by (11) the accessibility distribution LN has
dimension n1.

Proof Necessity. Assume that they are equivalent.
Then there exists z = φ(x1) such that
(

∂φ(x1)

∂x1
adsf1(x1)g1 j (x1)

)∣
∣
∣
∣
x1=φ−1(z)

= Ar
2B2 j , f or r ≥ 0, j ∈ [1,m].

Since φ is a diffeomorphism, one also has

[
∂φ(x1)

∂x1
−I

] [(g1 j (x1)
B2 j

)

,

(
ad f1(x1)g1 j (x1)

A2B2 j

)

,

· · · ,

(
adN−1

f1(x1)
g1 j (x1)

AN−1
2 B2 j

)

, j = 1, · · · ,m

]

= 0.

so that necessarily LN must have dimension n1.
Sufficiency. Assume that LN has dimension n1.

Due to the linearity of �2, by construction, the last n1
rows have constant elements. Due to the controllabil-
ity assumption on �2, let k1, · · · , km be the associated
controllability indices. Then LN can be chosen as

LN = span

{(
g1 j (x1)
B2 j

)

, · · ·
(
ad

k j−1
f1(x1)

g1 j (x1)

A
k j−1
2 B2 j

)

, j

= 1, · · · ,m} ,

Consequently L1
n1 = span{g1 j (x1), · · · , ad

k j−1
f1(x1)

g1 j
(x1), j = 1, · · · ,m} and any vector adsf1(x1)g1i (x1) ∈
spanRLn1 .

Thus any two vector fields τi and τ j in LN satisfy
the condition [τi (x1, x2), τ j (x1, x2)] = 0 that is LN

is not only involutive but also nilpotent. As a conse-
quence [adlf1g1i (x1), adsf1g1 j (x1)] = 0 for all l, s ≥ 0
and i, j ∈ [1,m], which proves that �1 is necessarily
equivalent to a linear system [15,27].
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System �1 can then be written as a linear system in
some suitable coordinates z = ϕ(x1). The dimension
of LN remains unchanged in the coordinates (z, x2)
and equals n1. Thanks to Remark 2, the linear system
�2 is equivalent to the linear system �1 and the result
follows. 
�

5 Examples

In this section, the main results are now tested on the
examples.
Example 1 cont’d.

The distribution L1
n1 of �1 is

L1
n1 =span

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

cos x3
sin x3
0
0

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

0
0
1
x2

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

sin x3
−cos x3

0
sin x3

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

cos x3
sin x3
0

2 cos x3

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

For the composite system, the distribution LN is
computed as

LN =span

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cos x3
sin x3
0
0
0
1
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
1
x2
1

−z3
z2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

sin x3
−cos x3

0
sin x3
0
0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cos x3
sin x3
0

2 cos x3
0
1
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

which has dimension 4. Its left annihilator has dimen-
sion 3 and standard computations lead to the generators

dφ =
⎛

⎝
d(x3 − z1)

d(x2 − z2 sin x3 + z3 cos x3)
d(x1 − z3 sin x3 − z2 cos x3)

⎞

⎠ .

Since Assumption 1 is verified, according to Proposi-
tion 6 and its notations one gets

z = ϕ1(x) =
⎛

⎝
x3

x2 sin(x3) + x1 cos(x3)
x1 sin(x3) − x2 cos(x3)

⎞

⎠ .

which corresponds to the mapping (19) as expected.
The invariant leaf is defined by � = 0 with �(x, z) =⎛

⎝
z1 − x3

z2 − x2 sin(x3) − x1 cos(x3)
z3 − x1 sin(x3) + x2 cos(x3)

⎞

⎠.

Compute d�(x, z)/dt . From (1), ż1 − ẋ3 is zero.
The second component d(z2−x2 sin x3+x1 cos x3)/

dt equals

−z3u2 − x2u2 cos x3 + x1u2 sin x3 =
−u2(z3 − x1 sin x3 + x2 cos x3).

The third component d(z3 − x1 sin x3 + x2 cos x3)/dt
is computed as

u2(z2 − x1 cos x3 − x2 sin x3).

Any trajectory starting on the leaf � = 0 remains on
the leaf � = 0 which is thus an invariant leaf. 
�
Example 2 cont’d. As already noted the left anni-
hilator of the distribution LN associated to the com-
posite system is spanned by dλ = d( x2x1

). The asso-

ciated autonomous dynamics λ̇ = λ, has an equi-
librium at the origin, which corresponds to x2 = 0
where Assumption 1 does not hold anymore, so Propo-
sition 6 and Theorem 1 do not apply. Furthermore

rank
[

∂λ
∂x2

]

|λ(x1,x2)=0
= 0, and the implicit function the-

orem does not apply to derive x2 = ϕ1(x1). 
�
Example 3 cont’d As already noted dimLni = ni for
i = 1, 2 and dimLN = 3 > n1 for 2x41 z1(x1−z1) �= 0.
It is easy to verify that for x1 = z1 dimLN = 2 = n1
and dφ = d(z1 − x1) ∈ L⊥

N |φ=0.
As a matter of fact �1 projects onto �2 through the

mapping obtained by z1 = x1, that is φ = 0. The
invariant submanifold previewed in Theorem 1 is thus
S defined in (18) with � = φ = z1 − x1 = 0. �
Example 4 Let us now consider the two systems

�1:
⎧
⎨

⎩

ẋ11 = x12
ẋ12 = x212−2x12x213+x413+x12x13−x313+2x13u
ẋ13 = u.

�2:
{
ẋ21 = x221 + x21x22
ẋ22 = u

and let us check if �2 projects onto �1. dimL1
n1 = n1

for x12 − x213 �= 0 and x13 �= 1/2 and dimL2
n2 = n2

for x21 �= 0.
For the composite system denoting by θ(x) = x12−

x213, one has

LN = span

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎝

0
2x13
1
0
1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−2x13
−θ(x)

0
−x21
0

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

θ(x)
θ2(x)
0
x221
0

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

x13θ(x)
x13θ2(x)

0
x221x22

0

⎞

⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Note that dimLN = 4 almost everywhere. The
problem under consideration can be solved for example
by following the procedure sketched in Remark 3.

Compute the minor consisting of the first 4 rows of
LN . This minor is zero for x21 = θ(x) and x22 = x13.

In fact setting 
(x) =
(
x21 − θ(x)
x22 − x13

)

, one gets that
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dim (Ln|
(x)=0) = n1 or equivalently, looking at vector
fields, that

⎛

⎜
⎜
⎜
⎜
⎝

x13θ(x)
x13θ2(x)

0
x221x22

0

⎞

⎟
⎟
⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
x21=x12−x213

x22=x13

∈ span

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎝

0
2x13
1
0
1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

−2x13
−θ(x)

0
−x21
0

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

θ(x)
θ2(x)
0
x221
0

⎞

⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
x21=x12−x213

x22=x13

.

Actually 
(x) = 0 defines the submanifold S which
is sought. In fact, the computation and integration of
the left-annihilator of LN |
(x)=0 shows that d
(x) ∈
LN |⊥
(x)=0 and allows to define the change of coordi-
nates which solves the problem.

Summarizing, the solution x2 = ϕ1(x1) which is
sought is given by

x21 = x12 − x213
x22 = x13

and defines the projection of �1 onto �2. 
�

6 Conclusions

Motivated by the study of robotic systems, the condi-
tions under which two given nonlinear dynamics are
related by a projection operation are fully character-
ized. The results are derived under the only assumption
that the systems are smooth and accessible over their
domain of definition. The main result is stated in Theo-
rem 1 and gives necessary and sufficient conditions for
a system to project onto another one. This result also
gives a way to how the coordinates transformation ϕ

can be identified and the definition of a procedure for
computing it is the topic of future works in this area.

The avenues for further research are numerous: nor-
mal forms for classes of nonlinear systems, explicit
equivalence for some classes of physical systems, the
definition of a procedure to compute the mapping, the
definition of the conditions when also feedback laws

are considered as well as considering parameter uncer-
tainties in the modeling of the dynamics.
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