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Abstract—Advances in Unmanned Aerial Vehicles (UAVs) em-
power a plethora of applications but also raise significant
security and privacy challenges. Effective UAVs detection sys-
tems are crucial for mitigating these risks. This paper deals
with this problem and tackles the challenges associated with
real-world testing and the limitations of existing simulation
methodologies for validating and evaluating UAVs detection
protocols. A novel, realistic, and extensible framework is in-
troduced, which includes a MATLAB-based surveillance system,
a Python-based detection module utilizing Stacked Denoising
Autoencoder (SDAE) and Local Outlier Factor (LOF) algorithms,
and a hybrid database of both real and synthetic wireless
RF signals. The synthetic wireless dataset is generated by the
proposed surveillance system module. The alignment between
the synthetic and real data is validated with an average Mean
Squared Error (MSE) of less than 0.25. The detection module
proves highly effective, achieving 96% accuracy in correctly
classifying Wi-Fi signals and 88% accuracy in identifying UAV
signals as anomalies (outliers). This innovative approach facili-
tates ongoing research and development in UAV detection, with
the extensibility to incorporate new RF signal types and UAV
models.

Index Terms—Anomaly Detection, drone detection, UAVs,
Machine Learning, Cyber Critical Infrastructures.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), commonly known as
drones, have seen unprecedented growth in recent years
due to their wide-ranging applications, from recreational
activities to critical industrial operations. While the benefits
of UAVs are undeniable, their widespread civilian use has
raised significant concerns regarding security, privacy, and
safety. A common misuse of drones involves illegal monitor-
ing and surveillance aimed at acquiring private information
from sensitive zones. Effective drone detection systems
play a critical role in mitigating this risk and safeguarding
public safety, critical infrastructure, and personal privacy.
Numerous drone detection protocols have been proposed
over recent years, spanning diverse categories, including
imaging, radar, acoustic signals, Radio Frequency (RF), and
hybrid detection solutions. Each technology comes with its
merits and challenges. RF-based detection offers several
advantages, including the ability to identify drones in both
Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) condi-
tions, low cost, non-intrusiveness, and privacy preservation
in indoor spaces. Additionally, RF signals can be utilized
for further analysis, facilitating the geo-localization and

tracking of UAVs. Most recently proposed RF-based drone
detection protocols leverage advanced Machine Learning
(ML) and Deep Learning (DL) algorithms that are able to
capture the rich information present in complex RF signals
and thus enhance the detection accuracy.

There are two approaches for validating and evaluating
RF-based UAV detection protocols: i) collecting data and
conducting real experiments using drones, ii) performing
simulations. While the first approach is the most realistic,
it presents significant challenges. Outdoor drone testing is
complex and financially costly due to the risks of mis-
handling and crashes. Furthermore, flying drones in urban
environments typically requires flight authorizations from
authorities in most countries. For these reasons, works
considering real testing perform their experiments either in
indoor environments [1], or in rural settings [2]. Indoor and
rural testing are not realistic since critical infrastructures
are located outdoors and in predominantly urban areas
where numerous RF sources operate in the same frequency
bands as commercial drones (2.4 GHz and 5 GHz), such as
Wi-Fi, Bluetooth, and mobile cellular networks. Moreover,
studies in this category are often limited by the number
and types of UAVs used and the considered RF sources,
providing no insight into out-of-distribution UAV RF signals
from different drone models [3]. Conversely, many existing
works, such as [4], validate their proposed solutions through
simulations based exclusively on pre-established UAV RF
signal databases. These databases, however, lack the diver-
sity of signal patterns and scenarios as mentioned before.

In this context, the aim of this work is to address the
challenges of complex real-world testing and the limitations
of existing simulation methodologies and tools for drone
detection by laying the cornerstone of a hybrid and exten-
sible realistic simulation-based testing framework to foster
research in this area. The proposed framework comprises
three main components: a surveillance system module
developed in MATLAB, a detection module developed in
Python, and a hybrid database that mixes realistic and
synthetic datasets. The contributions of this work can be
summarized as follows:

• The framework can reproduce an urban environment
via the surveillance system module, which allows for
the creation of different types of wireless nodes, such



as Wi-Fi (802.11b/g/n/ac), Bluetooth, etc. A multitude
of scenarios can be created by adjusting many param-
eters, such as node positions, signal strength, mobility
models, and more. The efficiency of this module has
been tested, and 300 different real Wi-Fi signals have
been faithfully reproduced by the module with an
average Pearson Correlation of 0.75 and an average
MSE lower than 0.25. The detection module is based
on a Stacked Denoising Autoencoder (SDAE) and Lo-
cal Outlier Factor (LOF) algorithms. Results show the
ability of this module to distinguish UAV signals as
anomalies with an accuracy of 88%. To the best of our
knowledge, this is the first attempt to create a realistic
simulation framework for detecting UAVs.

• The framework uses a mixed database incorporating
both real and synthetic Wi-Fi signals and real RF UAV
signals. We have established a synthetic database with
several types of Wi-Fi signals, i.e., 802.11nT M (Wi-Fi 4
HT and non-HT), 802.11acT M (Wi-Fi 5), 802.11axT M

(Wi-Fi 6 and 6E), over different distances from the
reception RF systems simulating the critical infrastruc-
ture. To the best of our knowledge, only Wi-Fi 4 has
been considered in the context of drone detection in
existing RF signal drone databases. The concordance
between synthetic and realistic Wi-Fi signals has been
proven, as previously mentioned.

• The standout feature of this framework is its exten-
sibility. Primarily, the framework can be continuously
refined and expanded to emulate urban environments.
This can be done by incorporating new models of RF
signals into the surveillance module, such as Bluetooth,
Zigbee, Microwave Ovens, Wireless Video Transmitters,
RFID Systems, etc., all of which can be accurately emu-
lated in MATLAB. The number of wireless nodes, along
with their spatial parameters, packet size, throughput,
and noise, can also be adjusted. Moreover, the RF
signals database can be further enriched by including
additional existing or newly proposed drone databases.
This can be achieved by developing a module capable
of handling the heterogeneity of data formats con-
tained in various RF signal databases. This is critical
because the efficacy of ML and DL-based detection
protocols depends on the quality and diversity of the
data used.

The rest of the paper is organized as follows: Section II
reviews the related literature and demonstrates the original
contributions of this work. Section III presents the proposed
simulation framework. Section V discusses the obtained re-
sults IV. The conclusion of this paper and some interesting
insights on future works are given in Section V.

II. RELATED WORKS

ML and DL-based algorithms have been largely explored
for RF drone detection in the literature, such as KNN [5],
[6], DNN [7], [8], and CNN [9]. Signal processing techniques,
including DFT, STFT, and WPT are commonly utilized to

extract pertinent features from RF signals [1]. Some recent
studies advocate for the direct utilization of raw RF signals
as input to enhance detection accuracy [10]. Identification
and classification of drones have also been considered in
recent works, e.g., [11]–[13], but this is beyond the scope of
this paper and limits the detection. A comprehensive review
of drone detection methodologies is also out of the scope
of this paper, but this is available in the current literature,
e.g., [14].

As the performance of ML and DL-based UAV detection
protocols is intricately linked to the underlying RF signals
database employed, we conducted an exhaustive review of
existing databases containing RF signals from drones, which
are summarized in Table I. These disparities encompass
critical factors such as the environment of experimentation
(indoors or outdoors), the variety and number of drones
utilized, and the types of signals captured (uplink and/or
downlink). It has been observed that all existing databases,
except [15], focus on the 2.4 GHz frequency band. Further-
more, some databases such as [1], [16], [17] fail to account
for other RF sources in the environment, representing a
significant limitation in evaluating database realism.

In a broader context, existing drone detection solutions
predominantly rely on either constructing their own RF
drone databases (only 7 works in the literature undertake
this approach) or leveraging pre-established ones. However,
only four works have conducted outdoor experiments, all
within rural settings. Nevertheless, the realism of indoor
and rural testing scenarios is questionable, given that
critical infrastructures are primarily located outdoors in
urban environments characterized by high wireless traffic.
Moreover, each database’s scope is restricted concerning
the number and types of UAVs and other RF sources
considered, thereby limiting the breadth of testing and the
credibility of drone detection solutions validated through
these databases. This constraint impedes insights into a
solution’s ability to detect drone models not encompassed
in the database or its capacity to differentiate between
drones and other RF signals that are absent from the
dataset.

To bridge this gap, the principal objective of this work is
to develop a realistic and extensible simulation framework.
This framework is based on a real RF drone database
and augmented with synthetic RF signals modeling various
urban scenarios. This enables comprehensive testing of
drone detection solutions in distinguishing drone signals
amidst the multitude of other RF sources present in urban
environments. The proposed framework is detailed in the
next section.

III. PROPOSED FRAMEWORK

The proposed framework is composed of four main com-
ponents: i) the surveillance system module, ii) the synthetic
RF signals database, iii) the real RF signal databases, and
iv) the anomaly detection module. The overall architecture
of the framework is illustrated in Fig. 1. As demonstrated



TABLE I
SUMMARY OF EXISTING RF SIGNAL DATABASES.

Ref Year Environment Number and type of
drones

Signals type Frequency band Other RF sources

[16] 2018 Indoor/Outdoor 1 drone: Phantom4 Pro uplink and downlink 2.4 GHz /
[17] 2018 Outdoor 1 drone: DJI Phantom3 downlink 2.4 GHz /
[18] 2019 Outdoor 1 drone: Mavic Air downlink 2.4 GHz Wi-Fi
[19] 2019 Indoor 14 drone controllers: var-

ious models e.g., DJI
Inspire, Phantom 4Pro,
Phantom 3)

uplink 2.4 GHz Wi-Fi, Bluetooth, and mi-
crowave ovens

[1] 2019 Indoor 3 drones: Bebop, AR,
Phantom

downlink 2.4 GHz /

[15] 2022 Indoor 3 drones: Bebop, AR,
Phantom

downlink 2.4 GHz and 5
GHz

Wi-Fi

[2] 2022 Outdoor 6 drones: DJI (Phantom
4, Inspire, Matrice 600,
Mavic Pro 1), Beebeerun
(mini quadcopter), 3DR
(Iris FS-TH9x)

uplink and downlink 2.4 GHz Wi-Fi and Bluetooth

in this figure, the synthetic database is generated by the
surveillance system module. Both the synthetic and real
databases are used by the detection module. The four
components are described hereafter.

Fig. 1. The overall architecture of the proposed drone detection simulation
framework.

A. Surveillance system module

The WLAN toolbox in MATLAB was used to develop this
module, which offers the advantage of configuring the node
protocol stack layers from the physical to the application
layer and analyzing their interactions. Using this toolbox, we
created three WiFi nodes: station "1", which communicates
with its AP (station "2"), and station "3", which serves as
the monitoring node that recovers the signals exchanged
between the first station and the AP. Figure 2 shows a
simplified view of the class diagram used to implement
this monitoring scenario. In the “Application level” class,
the scenario is implemented by specifying the simulation
duration, the number of nodes, their positions, etc. This
class is then called the "hWirelessNetworkSimulator" class,
which simulates the wireless network for the fixed sim-
ulation time by invoking the "hWLANNode" class. The
latter creates objects corresponding to each instantiated
WLAN node, comprising three layers application, MAC,

and physical. The “hWLANNode” class primarily interacts
with the “hPHYTx” and “hPHYRx” classes, which are the
physical layer interfaces responsible for sending and re-
ceiving signals, respectively. The hPHYTx class supports
MAC layer request processing, transmission power manage-
ment (Tx power), and waveform creation (PPDU), among
other functions. The last operation is carried out using the
"WlanWaveformGenerator" class, which creates signals in
the form of IQ. This framework is extremely versatile and
enables, as we will demonstrate in the next section, the
generation of various scenarios by considering different
types of WiFi devices, different packet sizes, and varying
positions and distances of the nodes.

B. Synthetic RF signals database

Based on the surveillance system module presented in
the previous subsection, we conducted several simulations
to create a new synthetic RF signals database representing
various urban scenarios. Each simulation lasted 100 ms
and considered different types of WiFi sources. The im-
pact of the distance between station 2 and station 3 (the
monitoring node) was evaluated by considering distances
ranging from 5 to 40 meters. Simulation parameters used to
create the synthetic database are presented in Table II. As
described in the previous section, the signals are recovered
in the form of IQ data. Signals are sampled and consisting
of five million points each. They are then segmented into
slices of 1024 points each. This preprocessing is done to
ensure the interoperability of our synthetic database with
the real RF database considered in our framework, which
will be presented in the next subsection.

C. Real RF signal database

To enhance the ’realism’ aspect of the proposed frame-
work, a realistic RF signal database has been integrated.
We chose the cardRF database proposed in [2] based on
our study explained in Section II of this paper. This choice
was motivated by various factors, including the diversity



Fig. 2. A simplified diagram of the surveillance system module implemented in Matlab.

TABLE II
SOME OF THE PARAMETERS USED TO GENERATE THE RF SYNTHETIC

DATABASE.

Parameter Values
Number of nodes 3

Simulation duration 100 milliseconds

WiFi type
802.11axT M WiFi 6 and 6E,

802.11acT M WiFi 5,
802.11nT M WiFi 4 HT and Non-HT

Distance 5, 10, 20, 30, 40 m
Transmission channel 36

Data Rate 100000 Kbps
Packet Size 1500

and number of drones used and the consideration of other
RF signals. The signal sources included in this database are
summarized in Table III.

TABLE III
LIST OF DEVICES CONSIDERED TO CONSTRUCT THE CARDRF DATABASE [2]

Signal Source Type of Device Type of Model/Technology

DRONE DJI Phantom 4, Inspire, Matrice 6000, Mavic Pro 1

DRONE Beebeerun FPV RC drone

DRONE 3DR Ins FS-TH9x

Bluetooth Apple iPhone 6S, 7s, iPad 3

Bluetooth FitBit Charge3 smartwatch

Bluetooth Motorola E5 Cruise

WiFi Cisco Linksys E3200

WiFi TP-link TL-WR940N

D. Detection module

Existing simulators fail to accurately model the physical
layer of drones, unlike WiFi and Bluetooth that are well-
modeled in MATLAB. The detection module addresses this
critical gap by considering the drone signals as anomalies.

It involves training the anomaly detection algorithm
on WiFi and Bluetooth signals and then identifying
drone signals as "anomalous" or "aberrant," indicating
potential risks. This process unfolds in two primary steps:
first, using Stacked Denoising Autoencoders (SDAE) to
compress wireless data to facilitate the efficient handling
of numerous signals. Second, employing the Local Outlier
Factor (LOF) method to distinguish legitimate sources
(Bluetooth or WiFi) from illegitimate ones, specifically,
drone signals. SDAE and LOF have been chosen for their
proven effectiveness in data compression and detecting
local outliers. To implement this approach, we utilized the
code provided by [2]. A brief presentation of the SDAE and
the LOF algorithms is given below:

1) Stacked Denoising Autoencoder - SDAE: Effective com-
pression of wireless data before employing ML algorithms is
pivotal for optimizing signal processing and analysis. In this
work, we rely on an SDAE algorithm which is chosen for its
robustness in noisy and nonlinear environments. The SDAE
comprises three fundamental stages: encoding, coding, and
decoding. It focuses on extracting key features efficiently.
The sample size was reduced from 1024 to 32 points, as
detailed in [2].

2) Local Outlier Factor (LOF): This is a highly effective
method for identifying outliers in a dataset by measuring
their distance from neighboring points [2]. It operates
through four main phases:

• Estimation of k-th nearest neighbor distances
• Calculation of reachability distances based on the k-

distance
• Computation of Local Reachability Density (LRD) using

reachability distances
• Estimation of LOF based on LRD values

A critical aspect of LOF involves selecting appropriate
hyperparameters, particularly the number of nearest neigh-
bors and the choice of distance metric. We used the same
parameters as in [2].



IV. PERFORMANCE EVALUATION

In this section, the proposed framework is evaluated
from two key perspectives: i) the concordance between
the synthetic Wi-Fi signals (generated by our surveillance
system) and real ones to validate the realism of the synthetic
data, ii) the precision of the LOF algorithm.

A. Data concordance

We reproduced 300 different real Wi-Fi signals from the
cardRF database [2]. To evaluate and compare these signals,
we calculated several comparison criteria divided into two
main categories. The first category, signal characteristics,
includes parameters such as frequency, phase, and signal
type. The second category, statistical metrics, comprises
various measures including the mean, variance, Pearson
correlation, Mean Squared Error (MSE), and Root Mean
Squared Error (RMSE).

The average results of 300 pairs of signals (real, synthetic)
are presented in Table IV. As noticed from this table, the
comparison of the average results between the real and
synthetic signals reveals a strong similarity between the
synthetic and real signals. The frequency of the synthetic
signal (2402343750 Hz) closely matches the real signal
(2402408854.1667 Hz), with nearly identical amplitudes (1
vs. 1.0005) and exact phase values. Although the mean
values show a reduction in bias for the synthetic signal
(−0.038865 vs. 6.8704e−06) and the variance differs. The
Pearson Correlation of 0.74238 indicates a strong positive
linear relationship, and the MSE below 0.25 highlights the
synthetic signal’s overall accuracy in approximating the real
signal.

TABLE IV
COMPARISON OF REAL AND SYNTHETIC SIGNAL PROPERTIES

Property Real signal Synthetic signal
Frequency 2402408854.1667 2402343750
Amplitude 1 1.0005
Phase 0.36179 0.36179
Mean -0.038865 6.8704e-06
Variance 0.33841 0.46157
Pearson Correlation 0.74238
MSE 0.23088
RMSE 0.47808

Additionally, Table IV presents the time-domain repre-
sentation (amplitude vs. time plot) comparing synthetic
and real signals. For this comparison, a pair of signals was
randomly selected, and the resulting graph illustrates the
similarity between the two signals over time.

B. Detection performance

The accuracy and effectiveness of the LOF algorithm in
detecting anomalous signals are evaluated in this part, with
a focus on its capability to distinguish between legitimate
WiFi sources and UAV signals. For this, we combined the
real and simulated databases presented above to construct a
mixed database, which was subsequently split into 80% for
training and 20% for testing. The training test is composed

Fig. 3. Comparison between real and synthetic WiFi signals.

of 50% of real WiFi signals and 50% of synthetic ones. The
20% test set contains 50% WiFi signals and 50% drone
signals. The WiFi signals are composed of 50% real WiFi
signals and 50% WiFi signals generated by the MATLAB
simulator. All drone signals are real. After training the LOF
on mixed WiFi signals, we achieved very satisfactory results.
We calculated various evaluation metrics, namely accuracy,
precision, recall, and F1 score, using the formulas below:

Accur ac y = TP +TN

TP +TN +FP +FN
(1)

Pr eci si on = TP

TP +FP
(2)

Recal l = TP

TP +FN
(3)

F1scor e = 2
Pr eci si onRecal l

Pr eci si on +Recal l
(4)

Considering the WiFi class as the target, the detection
module was able to detect 96% of WiFi signals (both
real and simulated) as WiFi. Furthermore, when the non-
WiFi class (drone in our case) was set as the target, the
algorithm correctly classified approximately 88% of drone
signals. The confusion matrices presented in tables V, VI,
along with table VII, provide more detailed insights into
these results. In Table V, the confusion matrix with WiFi
devices as the target, the model correctly classified 3168
WiFi signals and misclassified 505 drone signals as WiFi
(false positives). The misclassifications can be attributed
to the similarity between certain WiFi and drone signal
characteristics, particularly in the synthetic WiFi data Table
VII further summarizes key performance metrics, including
accuracy, precision, recall, and F1 score, providing com-
prehensive insights into the module’s robust performance
across different signal classes.

V. CONCLUSIONS AND FUTURE WORKS

In response to the increasing prevalence of UAVs and
their significant security and privacy challenges, this paper
introduces an innovative simulation-based testing frame-
work. It combines real-world and simulated data and uses



TABLE V
CONFUSION MATRIX - WIFI DEVICES AS TARGET

Prediction/Reality WiFi Non-WiFi
WiFi 3168 249
Non-WiFi 505 2913

TABLE VI
CONFUSION MATRIX - NON WIFI DEVICES AS TARGET

Prediction/Reality WiFi Non-WiFi
WiFi 2913 505
Non-WiFi 249 3168

a LOF algorithm to detect UAV signals as anomalies. Results
demonstrate high performance, with the detection module
achieving 96% accuracy in recognizing Wi-Fi signals and
88% accuracy in identifying UAV signals as anomalies. This
framework not only addresses the limitations of current
real testing and simulation approaches but also supports
ongoing research and development in UAV detection sys-
tems. Future efforts will focus on expanding the framework’s
capabilities to incorporate diverse recent RF signals and
drone models and implementing more complex and real-
istic scenarios. Testing more effective detection algorithms
and integrating other existing real RF drone datasets are
also promising avenues. Additionally, integrating a geolo-
cation algorithm to pinpoint detected "anomalous" signals
represents another compelling direction for future research.
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