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Abstract

Ferroptosis is a form of lipid peroxidation-induced cell death that can be regulated in many ways, 

from altering the activity of antioxidant enzymes to the level of transcription factors. The p53 

tumor suppressor is ‘the guardian of the genome’ that participates in the control of cell survival 

and division under various stresses. Beyond its effects on apoptosis, autophagy, and cell cycle, p53 

also regulates ferroptosis either through a transcriptional or posttranslational mechanism. On one 

hand, p53 can enhance ferroptosis by inhibiting the expression of SLC7A11 (solute carrier family 

7 member 11) or by enhancing that of SAT1 (spermidine/spermine N1-acetyltransferase 1) and 

GLS2 (glutaminase 2). On the other hand, p53 suppresses ferroptosis through the direct inhibition 

of DPP4 (dipeptidyl peptidase 4) activity or by the induction of CDKN1A/p21 (cyclin dependent 

kinase inhibitor 1A) expression. Here, we review recent discoveries and emerging trends in the 

study of the ferroptosis network and highlight the context-dependent impact of p53 on ferroptosis 

and oxidative stress.

*Address correspondence and reprint requests to: Daolin Tang (tangd2@upmc.edu). 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Free Radic Biol Med. Author manuscript; available in PMC 2020 March 01.

Published in final edited form as:
Free Radic Biol Med. 2019 March ; 133: 162–168. doi:10.1016/j.freeradbiomed.2018.05.074.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Discovered in the 1970s, the tumor suppressor protein p53 (TP53) plays a critical role in the 

cellular response to various stresses, including DNA damage, hypoxia, nutrition starvation, 

and oncogene activation [1]. Activation of p53 can lead to survival or death, depending on 

the levels of stress [2]. Low levels of stress or damage trigger p53 activation to induce cell 

cycle arrest, DNA repair, and survival. p53 can protect against oxidative stress-induced DNA 

damage and death via downregulation of the production of reactive oxygen species (ROS) in 

cells. In contrast, high levels of stress or injury result in the activation of p53 to induce 

apoptosis and death. Unfortunately, p53 is usually mutated or depleted in many cancers, 

which limits the antitumor function of p53. Many studies have been focusing on the 

identification of p53 target genes that mediate tumor suppressor function. In addition to 

acting as a transactional factor in the nucleus, transcription-independent functions of 

cytosolic p53 are documented in the processes controlling cell death and metabolism, 

including apoptosis and autophagy [3]. For example, cytosolic p53 can directly bind to pro-

apoptotic members of the BCL-2 family (BAX [BCL2 associated X, apoptosis regulator] 

and BBC3/PUMA [BCL2 binding component 3]) to increase mitochondrial membrane 

permeabilization and the release of pro-apoptotic factors from the mitochondria [4, 5]. 

Unlike nuclear p53, which acts as an autophagy-promoting transcription factor [6, 7], 

cytosolic p53 can block autophagy in response to nutrient starvation or mTOR inhibition [8]. 

These context-dependent roles of p53 in survival and death are regulated in a fine-tuned 

manner by its ubiquitination, phosphorylation, acetylation, and other modifications [9, 10]. 

Over the last three years, studies in both cell cultures and animal models have established 

that p53 represents a novel regulator of ferroptosis [11-14] (Fig. 1), a form of regulated cell 

death characterized by the accumulation of lethal iron or lipid hydroperoxides (e.g., PUFA-

OOH) [15]. In this review, we will summarize the molecular mechanism of ferroptosis and 

focus on the current understanding of connections between p53 and ferroptosis and its 

potential as a target in cancer therapy.

Ferroptosis basics

Since its discovery in 2012 [15], the study of ferroptosis has been a fast-growing field in cell 

death research [16]. The process and function of ferroptosis, as well as its impact in disease 

susceptibility, has been recently well-reviewed [17, 18]. We first briefly introduce the major 

inducers and regulators of ferroptosis.

Inducers

Erastin

Oncogenic RAS mutations, including K-RAS, H-RAS, and N-RAS, have been shown to 

drive the development of various cancers across different cells of origin and etiologies. 

These oncogenes therefore are highly attractive targets for anticancer drug discovery, 

colliding with the fact that thus far no direct RAS inhibitors have been introduced into 

clinical practice [19]. Erastin, the first inducer of ferroptosis, was identified through a high-

throughput small molecule screening searching for agents that selectively killed RAS 

mutated cancer cells, including H-Ras-mutant engineered human foreskin fibroblasts 
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(BJeLR), N-Ras-mutant HT-1080 cells (a fibrosarcoma cell line), and K-Ras-mutant Calu-1 

cells (a lung cancer cell line) [20, 21]. The prosurvival RAS-RAF-MEK-ERK pathway in 

cancer cells is required for erastin-induced ferroptosis [20]. However, the previous 

conclusion that erastin fails to induce cell death in RAS wild type cells has been challenged 

by recent studies. This evidence includes: 1) Erastin can trigger leukemia cell death in a 

RAS-independent manner [22]; 2) Normal cells without RAS mutation such as kidney 

tubule cells and fibroblasts are sensitive to erastin [12, 23-26]; 3) Forced expression of 

mutant RAS limits the anticancer activity of erastin in RMS13 cells (a rhabdomyosarcoma 

cell line) [27]. In addition, an early report described that the direct target of erastin is the 

mitochondrial VDAC (voltage-dependent anion channel)-2 and -3, which cause 

mitochondrial injury with increased mitochondrial membrane permeabilization [20]. Indeed, 

knockdown of VDAC2 or VADC3 by RNAi limits erastin-induced ferroptosis [20]. 

However, increasing evidence indicates that the major target of erastin is the antiporter 

system Xc−, which localizes in the cell membrane [15]. Although the half-life of erastin is 

relatively short in vivo, it exhibits anticancer activity in multiple mouse models, indicating 

that yet-to-be-discovered metabolites produced from erastin may mediate antineoplastic 

effects [28, 29].

RSL3

RSL3 was also identified through a high-throughput small molecule screening campaign 

designed to identify agents that selectively killed H-Ras-mutant engineered BJeLR cells in a 

non-apoptotic manner [30]. Similar to erastin, the original study indicated that iron 

accumulation, ROS production, and RAS-RAF-MEK-ERK activation are required for 

RSL3-induced ferroptosis [30]. Unlike erastin, signaling through mitochondrial VDAC2 or 

VADC3 and membrane system Xc− do not seem to be required for RSL3-induced ferroptosis 

[30]. In contrast, GPX4 (glutathione peroxidase 4) is inhibited by RSL3 [31]. The early 

study suggests that RSL3 binds GPX4 to inhibit its enzymatic activity and hence to interfere 

with its capacity to prevent lipid peroxidation [31]. However, recent studies indicate that 

RSL3 as well as erastin can induce GPX4 protein degradation [32-34]. HSPA5 (heat shock 

protein family A [Hsp70] member 5), a molecular chaperone that contributes to endoplasmic 

reticulum (ER) homeostasis, can inhibit GPX4 degradation through a protein-protein 

interaction [34]. Moreover, the transcription factor ATF4 (activating transcription factor 4), 

which is involved in the ER stress response, is required for HSPA5 and SLC7A11 (solute 

carrier family 7 member 11) upregulation to inhibit ferroptosis [34, 35]. In contrast, ATF4-

mediated expression of DDIT3/CHOP (DNA damage inducible transcript 3) contributes to 

the sensitization of cells to TNFSF10/TRAIL (TNF superfamily member 10)-induced 

apoptosis that is mediated by ferroptotic agents such as erastin and artesunate [36]. These 

findings build evidence supporting a complex interplay between ER stress, ferroptosis, and 

apoptosis.

Regulators

System Xc−

The cystine-glutamate antiporter system Xc
− is composed of a substrate-specific subunit 

SLC7A11 and a regulatory subunit SLC3A2 (solute carrier family 3 member 2). System Xc
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−-mediated cystine uptake is required for the production of cysteine and subsequent 

synthesis of glutathione (GSH) [37]. In addition to erastin and glutamate, other drugs, 

including sulfasalazine and sorafenib, can block system Xc
− activity and subsequently lead 

to GSH depletion and ferroptosis [38]. These system Xc
− inhibitors are termed type I 

ferroptosis inducers. In contrast, β-mercaptoethanol-induced cystine uptake inhibits erastin-

induced ferroptosis in HT-1080 cells [15]. Indeed, erastin can elicit negative feedback loop 

that limits ferroptosis. This feedback regulation is based on the capacity of erastin to induce 

SLC7A11 expression in an iron- and ROS-independent manner [15]. Mechanistically, ATF4 

and p53 have been reported to promote or inhibit SLC7A11 gene transcription in ferroptosis, 

respectively [12, 35]. Of note, knockdown of SLC7A11 increases erastin-induced death, 

which indicates that another non-system Xc
− pathway may contribute to its cytotoxicity. The 

molecular targets of erastin in the regulation of oxidative injury during ferroptosis remain to 

be further explored.

GPX4

Glutathione peroxidases (GPXs) including GPX1-8 play key roles in the regulation of 

oxidative stress. Among them, GPX4 seems to be special in protecting cells against 

membrane lipid peroxidation in ferroptosis [31]. GSH-dependent GPX4 activity catalyzes 

the reduction of lipid hydroperoxides to alcohols or free hydrogen peroxide to water [39]. 

Several GPX4 inhibitors such as RSL3 and FIN56 are categorized as type II ferroptosis 

inducers [31]. GPX4 degradation seems to be a universal event in the induction of 

ferroptosis [33, 34, 40]. GPX4 inhibitors induce ferroptosis even in conditions in which the 

GSH pool is intact, contrasting with the effects of type I ferroptosis inducers (system Xc− 

inhibitors) that cause GSH depletion [31]. Genetic depletion of GPX4 can trigger ferroptosis 

in an iron-, MEK-, and ROS-dependent manner in vitro or in vivo [23, 24, 31]. However, 

induction of ferroptosis is not the only reason for the increased tissue injury in mice in 

which GPX4 expression is abolished in a conditional or inducible fashion. In some cases, 

increased apoptosis and necroptosis also contribute to GPX4 deficiency-induced tissue 

injury in vivo [41-44]. Further investigation is needed to understand the function of GPX4 in 

various types of regulated cell death. Other GPXs such as GPX7 and GPX8 may participate 

in the control of ferroptosis [31]. Finally, functional relationship between GPXs and other 

antioxidant systems remains to be further explored.

NFE2L2

NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2) is a master transcription factor that 

controls the cellular response to oxidative or electrophilic stresses [45]. Embarking on the 

search for novel transcription factor in ferroptosis, we discovered that activation of NFE2L2 

by type I ferroptosis inducers such as erastin and sorafenib can inhibit ferroptosis in liver 

cancer cells [46]. This process is generally divided into two phases: 1) Stabilization of 

NFE2L2 by SQSTM1/p62 (sequestosome 1) and 2) NFE2L2-mediated expression of anti-

oxidant proteins and detoxifying enzymes. In normal, non-stressed conditions, NFE2L2 is 

constantly degraded by the ubiquitination-proteasome system. In response to erastin and 

sorafenib, SQSTM1 (a stress-inducible and multifunctional protein in autophagy) binds 

KEAP1 ([kelch-like ECH-associated protein 1], an adaptor protein of Cullin-3 ubiquitin 

ligase) and then arrests ubiquitination of NFE2L2 and increases its protein stability [46]. 
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NFE2L2 then translocates to the nucleus and promotes the transcription of cytoprotective 

genes. We identified metallothionein-1G (a cysteine residue-rich protein) as a direct 

NFE2L2 target gene contributing to ferroptosis resistance [47]. NFE2L2 also promotes 

SLC7A11 and GPX4 expression in some cases [48, 49]. These findings suggest that 

NFE2L2 may be a central anti-ferroptosis transcription factor.

ACSL4

ACSL (Acyl-coenzyme A synthetase long-chain) family members, including ACSL1, 

ACSL3, ACSL4, ACSL5, and ACSL6, are expressed at the ER and mitochondrial outer 

membrane, where they can synthesize acyl-coenzyme A from fatty acids. Impaired ACSL 

pathways had previously been implicated in the regulation of apoptosis, depending on cell 

type [50-52]. We found that ACSL4 plays a key role in promoting erastin-induced 

ferroptosis through 5-HETE-mediated lipotoxicity by accumulation of lipid intermediates. 

ACSL4 (but not ACSL1, ACSL3, ACSL5, and ACSL6) expression correlates with cellular 

sensitivity to erastin-induced ferroptosis [53]. Suppression of ACSL4 expression by RNA 

interference increases ferroptosis resistance in HepG2 (human hepatoblastoma) and HL-60 

(acute myeloid leukemia) cells, whereas overexpression of ACSL4 by gene transfection 

restores ferroptosis sensitization in LNCaP (a human prostate carcinoma cell line) and K562 

cells (a chronic myeloid leukemia cell line) [53]. Two independent groups confirmed that 

ACSL4 is a critical driver of ferroptosis, and knockout of ASCL4 using CRISPR/Cas9 

technology reverses ferroptosis induced by GPX4 deficiency [54, 55]. Collectively, these 

studies indicate that ACSL4 is not only a biomarker of, but also a contributor to, ferroptosis.

NCOA4

Autophagy is an intracellular degradation pathway that is regulated by the autophagy-related 

(ATG) proteins and their posttranslational modification [56]. It has been thought that 

ferroptosis differs from autophagy [15], but recent experimental evidence has revealed that 

ferroptosis may constitute a form of autophagic cell death that can be specifically regulated 

by ferritinophagy [57, 58]. The role of nonselective and selective autophagy in cellular 

homeostasis is complex, with opposite effects on survival and death, depending on the type 

of stressors and context of cargos [59-61]. Ferritinophagy is the process of autophagic 

degradation of ferritin that requires classic ATG proteins such as ATG5 and ATG7 and the 

specific cargo receptor NCOA4 (nuclear receptor coactivator 4) to control cellular iron 

homeostasis [62]. We found that erastin stimulates the formation of autophagosomes, the 

double-membrane vesicles that are responsible for delivering cytoplasmic material to 

lysosomes [58]. More strikingly, the interaction between NCOA4 and ferritin occurs within 

the autophagosomes and may depend on specific autophagy [58]. Finally, selective 

autophagy of ferritin driven by NCOA4 increases toxic iron-induced ROS production to 

induce ferroptosis [58]. It remains unknown whether other forms of selective autophagy 

such as mitophagy (removal of mitochondria via autophagy) and lipophagy (degradation of 

lipids via autophagy) may similarly favor ferroptosis.

HSPs

HSPs (heat shock proteins) are highly conserved in eukaryotes and function as molecular 

chaperones to participate in the regulation of protein assembly, folding, export, and turn-over 
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[63]. HSPs can be rapidly induced under various stressful conditions such as heat shock, 

oxidative stress and oncogenic stress. Based on their molecular size, HSPs are divided into 

six distinct subfamilies: HSP100, HSP90, HSP70, HSP60, small HSP, and HSP10. Among 

them, HSPB1 (a member of the small HSPs) and HSPA5 (a member of HSP70 and the 

primary ER chaperone) are negative regulators of ferroptosis [28, 34]. Protein kinase C-

mediated HSPB1 phosphorylation diminishes toxic iron-induced ROS production in 

ferroptosis [28], whereas HSPA5 confers protection against ferroptosis by increasing GPX4 

protein stability [34]. HSF1 (heat shock transcription factor 1) plays a central role in the 

transcriptional activation of HSPs that also protect cells against ferroptosis [28]. Moreover, 

evidence is emerging that HSF1 and NFE2L2 engage in crosstalk by sharing overlapping 

transcriptional targets for cytoprotection in response to various stressors [64].

Pro-death function of p53 in ferroptosis

Inhibition of SLC7A11 expression

The first report of p53 induction in response to ferroptosis was published in 2015 [12]. In 

this study, the authors found that p53 promotes ferroptosis in fibroblasts and certain cancer 

cells (human breast cancer MCF7 and human osteosarcoma U2OS) due to the 

transrepression of SLC7A11 expression (Fig. 1). In particular, p533KR, an acetylation-

defective mutant in which 3 lysine residues (in positions 117, 161 and 162) have been 

replaced by arginine residues, is highly effective in repressing SLC711A, yet does not affect 

the expression of other known p53 target genes involved in the regulation of cell cycle (e.g., 

CDKN1A/p21) or apoptosis (e.g., BAX) [12]. In contrast, p534KR98 (an acetylation-

defective mutant in which an addition lysine in position 98 has been replaced) is unable to 

reduce SLC711A expression [65]. Moreover, induction of ferroptosis, but not cell-cycle 

arrest, apoptosis, or senescence, was found to be required for the tumor suppression function 

of p533KR in vitro and in vivo [12]. In human cancers, wild-type p53 is degraded by high 

levels of the oncogenic E3 ubiquitin protein ligase MDM2. Thus, the inhibition of MDM2-

dependent proteasomal degradation of p53 presents an appealing therapeutic strategy for the 

treatment of cancer [66]. As expected, the level of p53 is increased in MDM2−/− cells. 

Ferroptosis also contributes to the embryonic lethality observed in MDM2−/− mouse 

embryos, which can be reversed by administration of ferroptosis inhibitors such as 

ferrostatin-1 [12]. However, the other study showed that ferrostatin-1 alone cannot prevent 

cell death induced by MDM2 deficiency [67], indicating different mechanisms in the 

regulation of the MDM2-p53 network in the determination of cell death. Of note, the anti-

ferroptosis activation of ferrostatin-1 and liproxstatin-1 (another widely-used ferroptosis 

inhibitor) are mediated through their reactivity as radical-trapping antioxidants rather than 

their potency as inhibitors of lipoxygenases [68]. The site of levels of p53 acetylation is 

determined by six different histone acetyltransferases: CREBBP/CBP (CREB binding 

protein), EP300/p300 (E1A binding protein P300), KAT2B/PCAF (lysine acetyltransferase 

2B), KAT5/Tip60 (lysine acetyltransferase 5), KAT8/MOF (lysine acetyltransferase 8), and 

KAT6A/MOZ (lysine acetyltransferase 6A) [69]. The ability of these acetyltransferases to 

regulate ferroptosis remains unclear.
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Promotion of SAT1 expression

The low-molecular-weight polyamines, including putrescine, spermidine and spermine, are 

implicated in the regulation of cellular growth, proliferation, and differentiation. At the 

molecular level, SAT1 (spermidine/Spermine N1-acetyltransferase 1) is an important 

regulator in polyamine metabolism through acetylating spermidine and spermine using 

acetyl-coenzyme A [70]. Impaired polyamine metabolism and abnormal SAT1 expression is 

associated with various pathological conditions, including cancer [70]. The activity of SAT1 

is increased in response to various stresses, including oxidative stress, heat shock, and 

inflammatory stimuli. Previous studies have observed that overexpression of SAT1 results in 

rapid depletion of cellular spermidine and spermine, which cause significant growth 

inhibition and mitochondrial apoptosis [71]. Recent research studies have found that SAT1 is 

a transcriptional target of p53 in MCF7, U2OS, A375 (a human melanoma cell line), and 

H1299 cells (a human lung cancer cell line) (Fig. 1) [13]. However, only ferrostatin-1, but 

not other cell death inhibitors (Z-VAD-FMK, necrostatin-1, and 3-methyladenine), can 

inhibit ROS-induced cell death in SAT1 Tet-on cells [13]. SAT1 depletion also inhibits p53- 

and p533KR-induced ferroptosis [13]. Mechanistically, SAT1 has no effects on the 

expression and activity of SLC7A11 and GPX4 [13]. In contrast, SAT1 induction correlates 

with the expression levels of ALOX15 (arachidonate 15-lipoxygenase), but not ALOX5 and 

ALOX12 [13]. Pharmacologic inhibition of ALOX15 by PD146176 attenuates SAT1-

mediated ferroptosis, indicating that ALOX15 is a downstream effector of p53-induced 

SAT1 expression in ferroptosis [13]. However, how cancer cells activate this p53-SAT1-

ALOX15 metabolic pathway and the molecular cues behind the ferroptosis have largely 

remained obscure.

Promotion of GLS2 expression

Glutamine metabolism is another target for alteration in ferroptosis. Glutamine is required 

for the induction of ferroptosis during serum-induced injury after amino acid starvation [72]. 

The first step of glutamine catabolism is its conversion to glutamate, which is catalyzed by 

cytosolic glutamine amidotransferases or by mitochondrial glutaminases [73]. Glutamate 

can be further converted into α-ketoglutarate, which is an important substrate for the citric 

acid cycle to produce ATP in the mitochondria [73]. As a core member of the mitochondrial 

glutaminases, GSL2 (glutaminase 2) has been recently identified as a transcriptional target 

of p53 and its expression is responsible for p53-mediated oxygen consumption, 

mitochondrial respiration, and ATP generation in cancer cells [74]. Moreover, GLS2 

expression increases cellular antioxidant function through increased GSH production in 

HepG2, HCT116 (a human colorectal cancer cell line), and LN-2024 (a human glioblastoma 

cell line) cells [74]. Based on these findings [74], GLS2 should be a negative regulator of 

ferroptosis. However, a recent study observed that knockdown of GLS2 inhibits (but not 

promotes) serum-dependent ferroptosis in fibroblasts (Fig. 1) through control of 

glutaminolysis [72]. Whether the specific requirement of GLS2 in erastin- or RSL3-induced 

ferroptosis and whether GLS2 is responsible for p53-induced ferroptosis requires further 

investigation.
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Pro-survival function of p53 in ferroptosis

Inhibition of DPP4 activity

Colorectal cancer (CRC) develops through a series of genetic modifications, including K-

RAS mutation, p53 mutation, or p53 depletion, that transform the normal colonic epithelium 

to an adenoma and then ultimately adenocarcinoma. The status of K-RAS mutation did not 

affect ferroptosis sensitivity in CRC cells [14]. In contrast, we uncovered a pro-survival 

function of p53 in the inhibition of ferroptosis through the regulation of DPP4 (dipeptidyl 

peptidase-4) localization and activity, but not DPP4 expression (Fig. 1) [14]. Knockout, 

knockdown, or pharmacologic inhibition of p53 increases the anticancer activity of type I 

ferroptosis inducer (erastin and SAS), but not type II ferroptosis inducer (RSL3 and FIN56) 

[14]. Remarkably, DPP4 inhibitors (vildagliptin, alogliptin, and linagliptin), but not other 

protease inhibitors (doxycycline, ritonavir, atazanavir, VX-222, semagacestat, Z-FA-FMK, 

odanacatib, ZVAD-FMK, and DAPT), completely block erastin-induced cell death in p53-

deficient CRC cells [14]. DPP4 has peptidase activity and its inhibitors are a relatively new 

class of oral diabetes drugs. Mechanistically, p53 depletion prevents nuclear accumulation of 

DPP4 and then triggers membrane-associated DPP4-mediated lipid peroxidation through 

binding to NOX1 (NADPH oxidase 1), which finally results in ferroptosis in CRC cells [14]. 

These results provide evidence of a unique metabolic role for p53, linking DPP4 activity and 

ROS homeostasis, which may contribute to an emerging anticancer strategy for improved 

antitumor efficacy in precision medicine.

Promotion of CDKN1A/p21 expression

The tumor suppressor CDKN1A/p21 (cyclin dependent kinase inhibitor 1A, also known as 

p21WAF1/Cip1) is a key mediator of p53-dependent cell cycle arrest after DNA damage [75]. 

CDKN1A also has pro-survival functions in response to oxidative stress by inhibiting 

apoptosis. A recent study reports that p53-mediated CDKN1A expression delays the onset of 

ferroptosis in response to subsequent cystine deprivation in cancer cells (Fig. 1) [11]. 

Increased p53 expression by using the MDM2 inhibitor nutlin-3 blocks system xc
− inhibitor-

induced ferroptosis in HT-1080 cells [11]. In contrast, CRISPR/Cas9 technology-mediated 

p53 depletion cells are sensitive to ferroptosis [11], supporting a pro-survival function of p53 

in ferroptosis. This reduced sensitivity to ferroptosis in wild type p53 cells requires p53-

dependent expression of CDKN1A and subsequently, the production of intracellular GSH 

[11]. CDKN1A mediates its activities in cell cycle arrest, primarily by binding to and 

inhibiting the kinase activity of the cyclin-dependent kinases (CDKs) [75]. Interestingly, 

CDKN1A-mediated cell cycle arrest is not enough to inhibit ferroptosis since CDK4/6 

inhibitors cannot block ferroptosis [11]. Understanding the mechanism of action of 

CDKN1A in ferroptosis may shed new light on the role of CDKN1A in the development and 

treatment of cancer.

Conclusions and perspectives

It is clear that systemic or local iron overload can cause various pathological conditions and 

disease such as hemochromatosis [76-78]. Excess iron can be a risk for carcinogenesis and 

neurodegenerative diseases [79, 80]. However, the mechanism responsible for cell death in 

response to iron overload is not fully understood. Ferroptosis seems to be a unique form of 
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the cell death pathway linked to iron overload, in accordance with its name. The original 

study indicated that ferroptosis is different from other types of regulated cell death including 

apoptosis, necroptosis, and autophagy [15]. However, this notion has been challenged by 

recent studies. For example, erastin can induce CASP9/Caspase 9-dependent mitochondrial 

apoptosis in cancer cells [29]. Necroptosis-deficient cells seem more sensitive to ferroptosis 

[81]. In addition, the activation of autophagy appears to be a universal event among the 

induction of ferroptosis [57, 58]. The molecular mechanism in ferroptosis is more complex 

than previously thought [17, 18]. Indeed, these so-called core regulators of ferroptosis such 

as SLC7A11, GPX4, ACSL4, NFE2L2, and p53 have been engaged in the control of other 

types of regulated cell death. Unfortunately, the unique effector in the network of ferroptosis 

remains unknown and needs to be identified. The bidirectional control of ferroptosis by p53 

through transcription-dependent and -independent mechanisms is context-dependent 

[11-14]. Furthermore, p53 is a multifunctional protein with multiple potential modifications 

and biochemical properties from the regulation by single-nucleotide polymorphism, long 

non-coding RNAs, and SOCS1 (suppressor of cytokine signaling 1) in ferroptosis [82-86]. 

Although the molecular switch between apoptosis and ferroptosis in p53-mediated cell death 

are poorly understood, certain Bcl-2 family members such as BID (BH3 interacting domain 

death agonist) and BBC3/PUMA may play a role in the regulation of the crosstalk between 

these two types of cell death through induction of mitochondrial metabolism or ER stress 

[36, 87]. A better understanding of the mechanisms by which p53 controls ferroptosis in 

cancer and non-cancer cells could allow us to develop new treatments for human diseases.
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Highlights

• Ferroptosis is a form of regulated cell death

• p53 plays a dual role in ferroptosis

• p53 enhances ferroptosis through targeting SLC7A11, SAT1 or GLS2

• p53 suppresses ferroptosis through targeting DPP4 or CDKN1A

• Activation of autophagy promotes ferroptosis
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Figure 1. 
The dual role of p53 in the control of ferroptosis. Ferroptosis is characterized by lipid 

peroxidation. p53 plays a context-dependent role in the regulation of lipid peroxidation in 

ferroptosis. On one hand, p53 can enhance ferroptosis through the inhibition of SLC7A11 

expression or promotion of SAT1 and GLS2 expression. On the other hand, p53 could 

suppress ferroptosis through the inhibition of DPP4 activity or induction of CDKN1A/p21 

expression.
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