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I. 2D SCALING

A. Scaling laws

Our scaling arguments are still valid in 2D, as they are based on force and torque densities. Note that in
2D, the mass density ρ has dimensions [mass] [length]−2, the force density f0 has [Newton] [length]−2 =
[mass] [length]−1 [time]−2 and the viscosity η has [Newton] [length]−1 [time] = [mass] [time]−1. There-
fore, the thrust number Th = ρf0L

3/η2 is still dimensionless.

In the Stokes regime (Re < 1), the Stokes force is still balanced by the viscous drag, which how-
ever contains logarithmic terms coming from 2D integration. The force density thus scales as f0L

2 ∼
ηv/ log(Re) = η2Re/(ρL log(Re)) (using v = ηRe/(ρL)). Since the log function does not contribute to
the scaling, we still have Re ∼ Th.

In the laminar regime, we have f0L
2 ∼ (ηv/δ)L, which still leads to Re ∼ Th2/3. Finally, in the

turbulent regime, we have f0L
2 ∼ ρv2L which again lead to the same scaling Re ∼ Th1/2.

B. Numerical simulations

Figure ?? shows the Reynolds number Re as a function of the thrust number Th in 2D. The three
regimes obtained numerically match the hydrodynamic scaling laws described above. The transition from
the Stokes regime to the laminar regime slightly deviates from a power law, which may be related to the
logarithmic correction in f0L

2 ∼ ηV/ log(Re).
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FIG. 1. Re as a function of Th for 2D numerical simulations (crosses). We clearly obtain three regimes: Re ∼
Th1.03 for Re ≲ 0.5; Re ∼ Th0.64 for 40 ≲ Re ≲ 400 and Re ∼ Th0.53 for Re ≳ 400. The three lines correspond to
fitted curves and give the numerical scaling exponents. Note that the crossovers of the different regimes depend
on the geometry of the swimmer: the aspect ratio for these simulations is ar = 2.

II. NUMERICAL MODEL

A. Fluid-solid coupling

Let us consider a domain Ω ∈ d (d = 2, 3) filled with an incompressible fluid of density ρf and viscosity
ηf , containing a swimming rigid body B ⊂ Ω with density ρb and center-of-mass XB. The swimming
body acts on the surrounding fluid with a swimming force F t = F (t)δXt

and torque T t = T (t)δXt
(with

δX(x) ≡ δ(x −X) the dirac distribution centered at X), applied at Xt (representing the position of
the tail of the swimmer). Assuming a Newtonian constitutive law, the fluid phase therefore obeys the
incompressible Navier-Stokes equations, with no-slip boundary conditions on the interface with the rigid
body:

ρf
Dv

Dt
−∇· (2ηfE(v)) +∇p = ff + F t + T t in Ω \ B, (1)

∇·v = 0 in Ω \ B, (2)
v(x) = V B + ωB × (x−XB) on ∂B, (3)

where D/Dt is the material derivative

Dv/Dt ≡ ∂v/∂t+ (v ·∇)v,

E(v) is the strain-rate tensor

E(v) ≡ ∇v +∇vt

2
,

ff are external volumic forces (e.g. gravity ff = ρfg), XB is the center of mass of the body, and V B
and ωB are its translation and angular velocities, respectively.
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The equations of motion for the rigid body are then the Newton-Euler equations

MB
dV B

dt
= f b + F f − F B (4)

d(IBωB)

dt
≡ IB

dωB

dt
+ ωB × IBωB = mf − T B (5)

where MB and IB are respectively the mass and (spatial) inertia tensor of B:

MB =

∫
B
ρb (6)

IB =

∫
B
ρb

(
∥x−XB∥2 − (x−XB)⊗ (x−XB)

)
(7)

The right-hand sides correspond to the forces F f − F B and moments mf − T B exerted by the fluid on
the swimmer, with

F f = −
∫
∂B

σn ds

mf = −
∫
∂B

(x−XB)× σn ds

and the active force −F B = −F (t)δXB and torque −T B = −T (t)δXB applied at the center-of-mass of
the swimmer, and opposing the swimming force and torque, are the consequence of the third Newton’s
law, the whole “fluid+body” system being isolated.

Note that the constraint of rigidity of the body imposes that the velocity field inside B also obeys ??,
i.e. v(x) = V B + ωB × (x−XB) in B, or equivalently

E(v) = 0 in B. (8)

A fictitious domain variational formulation of the fluid-rigid body coupling can thus be written on the
whole domain Ω as (c.f. [? ? ])∫

Ω

ρ
Dv

Dt
· ṽ +

∫
Ω

2ηfE(v) : E(ṽ)−
∫
Ω

p∇·v =

∫
Ω

(f +F + T ) · ṽ ∀ṽ ∈ VB(Ω)∫
Ω

q∇·v = 0 ∀q ∈ L2(Ω)

(9)

where ρ and f are the extended density and volumic force fields

ρ = ρf χΩ\B + ρb χB (10)
f = ff χΩ\B + f b χB (11)

with χS the indicator function of the set S, F and T denote the active force and torque dipoles

F ≡ F t − F B = F (t) (δXt
− δXB) (12)

T ≡ T t − T B = T (t) (δXt − δXB) (13)

and VB(Ω) is the space of velocities on Ω which satisfy the rigid body constraints inside B

VB(Ω) = {v ∈ H1(Ω)d ; E(v) = 0 in B}.

To enforce the rigid-body constraint required in the test space VB(Ω), we use a penalty method inspired
from ? ], which can in practice be implemented simply by introducing a spatially-dependent viscosity
field :

η(x) = ηf χΩ\B + ηb χB (14)
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where ηb denote some large viscosity value, chosen in practice as ηb = [103 − 106]ηf in our simulations.
The corresponding variational formulation is then simply obtained by replacing the fluid viscosity ηf with
η in ??, leading to the unconstrained formulation∫

Ω

ρ
Dv

Dt
· ṽ +

∫
Ω

2ηE(v) : E(ṽ)−
∫
Ω

p∇·v =

∫
Ω

(f +F + T ) · ṽ ∀ṽ ∈ H1
0 (Ω)

d,∫
Ω

q∇·v = 0 ∀q ∈ L2(Ω).

(15)

In order to solve ?? with standard finite-element methods while preserving optimal convergence or-
ders [? ], we regularize the characteristic and delta functions by using the level-set framework of ? ],
which gives

χε
B(x) =



1 if ϕB(x) ≤ −ε

1

2

1− ϕB(x)

ε
−

sin
(

πϕB(x)
ε

)
π

 if − ε ≤ ϕB(x) ≤ ε

0 if ε ≤ ϕB(x)

(16)

δεX(x) =

αd(ε)

(
1 + cos

(
π∥x−X∥

ε

))
if ∥x−X∥ ≤ ε

0 if ε ≤ ∥x−X∥
(17)

where ϕB denotes the signed distance function to the boundary ∂B of the body, and αd(ε) is a normal-
ization constant which depends on the dimension d of space:

α2(ε) =
π

π2 − 4

1

ε2
and α3(ε) =

3

4

π

π2 − 6

1

ε3
.

Note that for non-spherical bodies, the signed distance function ϕB is in general not analytic, but can
be efficiently computed numerically with a fast-marching algorithm [? ]. We use in practice the parallel
unstructured algorithm described in ? ] and implemented in the Feel++ library [? ].

The corresponding regularized density, viscosity are then defined accordingly as

ρε = ρf + (ρb − ρf )χ
ε
B (18)

ηε = ηf + (ηb − ηf )χ
ε
B. (19)

The force dipole term is also straightforwardly regularized as

Fε ≡ F (t)
(
δεXt
− δεXB

)
, (20)

while the torque dipole is rewritten with regularized rotlets, taking inspiration from the singularity
expansion method for Stokes flows [? ]. Defining

T ε
X ≡

1

2
∇× (T δεX) , (21)

one can easily check that the imposed torque indeed corresponds to T , leading to the natural regularization
of the torque dipole as

T ε ≡ 1

2
∇×

(
T (δεXt

− δεXB
)
)
. (22)

Note that the corresponding integral in the variational formulation ?? can be integrated by parts to avoid
differentiating δε· , and rewritten as∫

Ω

T · ṽ =
1

2

∫
Ω

T (δεXt
− δεXB

)· (∇× ṽ).

We can then discretize the weak incompressible Navier-Stokes equations ?? with standard inf-sup stable
Taylor-Hood velocity-pressure Lagrange Pd

2 − P1 elements (see e.g. [? ]), defined on an unstructured
triangular (2D) or tetrahedral (3D) mesh of Ω. We use a fully implicit numerical discretization, with an
order-2 backward differentiation scheme for the partial time differential term, as described in ? ].
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B. Swimming forces and torques

As discussed in the main text, our model relies on a pusher-like periodic force dipole, mainly responsible
for propulsion and reminiscent of the fluid drainage generated by the undulatory motion of the body of
a fish, along with a torque dipole mimicking the stroke of the tail, at the origin of the vortex alley in
the wake of swimming fish. Both dipoles are collocated, with forces and torques applied at Xt – the
position of the tail – and XB – the center-of-mass of the swimmer, as stated in ????, and defined with
local values

F (t) =
π

2
F 0 | cos(ωt)| (23)

T (t) = T 0 cos(ωt). (24)

C. Rigid body motion

The position and orientation of the rigid body are classically represented by its center-of-mass XB
and a unit quaternion B ≡ (qB0, qB) ∈ 4, B · B = 1, which encodes the rotation between the current
and reference states (see e.g. [? ? ]). These quantities naturally evolve in time with respectively the
translation and angular velocities as

dXB

dt
= V B (25)

dB
dt

=
(
0,

ωB

2

)
◦ B (26)

where ◦ denotes the usual quaternion product. At the discrete level, these equations can be integrated
on the domain B given translational and rotational velocities V and ω approximating V B and ωB; we
use in practice a first-order Euler scheme for the translation part, and a first order Lie-Euler scheme for
the rotation part, which gives the update:

Xn+1
B = Xn

B + δtV n+1
B

n+1
B =

(
0,

ωn+1
B δt

2

)
◦ n

B.
(27)

The translation and angular velocities of the immersed rigid body can be straightforwardly computed
from the “virtual” fluid velocity inside the body domain: recalling that v(x) = V B + ωB × (x−XB) in
B, we have

V B =
1

MB

∫
B
ρbv (28)

ωB = I−1
B

∫
B
ρb(x−XB)× v. (29)

Note that to ensure decoupling between the translation and rotation motion in the discrete regularized
setting, these equations need to be consistently evaluated with the corresponding regularized quantities,
as detailed in ?? below.

D. Coupling algorithm

We couple the fluid and rigid-body dynamics with a semi-implicit scheme, summarized in ??. The
resulting system is implemented and solved using the highly parallel finite-element library Feel++ [? ].
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Algorithm 1: Fluid-solid coupling
parameters : ρf , ρb, ηf , ηb; δt, ε
input : tn; Bn ∼ (XBn , Bn); (vn, pn), (V n

B,ω
n
B)

output : tn+1; Bn+1 ∼ (XBn+1 , Bn+1); (vn+1, pn+1), (V n+1
B ,ωn+1

B )

ϕ← SignedDistance(Bn);
χε
B ← χε

B[ϕ] ; ??
ρε ← ρf + (ρb − ρf )χ

ε
B ; ??

ηε ← ηf + (ηb − ηf )χ
ε
B ; ??

Fε ← F (tn)
(
δεXt
− δεXB

)
; ????

T ε ← T (tn)
(
δεXt
− δεXB

)
; ????

(vn+1, pn+1)← SolveNavierStokes(vn, pn,Fε,T ε; ρε, ηε) ; ??
Mε

B ←
∫
Ω
ρεχε

B;
Xε

B ← 1
Mε

B

∫
Ω
ρε xχε

B;
Iε
B ←

∫
Ω
ρε

(
∥x−Xε

B∥2 − (x−Xε
B)⊗ (x−Xε

B)
)
χε
B;

V n+1
B ← 1

Mε
B

∫
Ω
ρε vn+1 χε

B ; ??
ωn+1

B ← Iε−1
B

∫
Ω
ρε(x−Xε

B)× vn+1 χε
B ; ??

(XBn+1 , Bn+1)← MoveRigidBody(V n+1
B ,ωn+1

B ) ; ??
tn+1 = tn + δt;

E. Simulations details and parameters

We use in practice a rigid body with an ellipsoidal shape to perform simulations of our swimmer
model. The shape of the swimmer is parametrized by the aspect ratio ar, which is the ratio between
the semi-major axis L/2 and the semi-minor axis b. In practice, we use ar ∈ J2, 8K. While the aspect
ratio does not impact the scaling laws presented in the results, it plays an important role in the crossover
transitions between the different regimes, and in the value of the prefactors in the scaling laws. It also
plays a key role for the stability of the trajectory at high Re, due to the coupling of the von Karman
vortex street with the wake of the swimmer.

The ellipsoidal shape is initially defined in Cartesian space by the implicit surface

4x2

L2
+

y2

b2
+

z2

b2
= 1.

Initially, the orientation pB is given by the unit vector x0 = (1, 0, 0), and we define the quaternion
x0

= (0,x0). The ellipsoid is then evolved in time following the coupling algorithm ??.
In all simulations, the distance between the tail Xt and the center of mass XB is fixed according to

the aspect ratio ar as follow

∥Xt −XB∥ =
L

2

(
1 + 2a−1

r

)
.

It is also possible to control the direction of the swimmer by turning the position of the tail with respect
to the orientation of the body: given some unit quaternion t encoding the orientation of the tail, the
position of the tail Xt can be computed as

(0,Xt) = (0,XB) + t

(
−L

2

(
1 + 2a−1

r

)
(0,pn

B)

)
−1
t .

where pn
B is the current orientation of the swimmer. If the swimmer is going straight the equation reduces

to Xt = XB − L
2

(
1 + 2a−1

r

)
pn
B.
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While the force and torque dipoles appear independent in the model, we ensure realistic values by
scaling them according to the characteristic size of the swimmer. In practice, we enforce

∥T 0∥ = βL∥F 0∥

where the constant βL reflects the size of tail and the efficiency to produce thrust. This value is expected
to depend strongly on the species, and we have arbitrarily chosen βL = 1 (i.e. ∥T 0∥ = ∥F0∥) in our
simulations, as we found that this value reproduces realistic reverse von Karman vortex wakes, and leads
to stable trajectories. If ∥F 0∥/∥T 0∥ is too small, the vortex do not evacuate fast enough and start to
form pairs going in random direction. The swimmer then moves erratically in space. This behavior is not
physical and is a consequence of the model, which is much more general than actual aquatic organisms,
for which the space parameter is largely reduced by the biological and kinematic constrains.

III. MANEUVERABILITY

−F (t)

F (t)

−T (t)

T (t)

b

b

b XB

X t

θ

FIG. 2. Controlling the trajectory of the swimmer: the orientation of the “phantom tail” can be adjusted with
respect to the orientation of the body with some angle θ, enabling turning motion.

If the force dipole makes an angle θ with the direction of the swimmer (major axis of the ellipsoid) (see
Fig. ??), the swimmer can turn and describe circular trajectories (see Fig. ??). The radius of curvature
of this trajectory depends on f0 and θ, as shown in Fig. ??. This provides maneuverability to the
model, and can help the individual avoiding obstacles, walls or other swimmers. It also demonstrates the
flexibility and versatility of the model, which can be used to model a swimmer in complex situations or
environments.

IV. NUMERICAL STUDIES

A. Impact of the torque

The hydrodynamic scaling laws presented in the main text show the evolution of the Reynolds number
Re as a function of the thrust number Th, which does not take into account the value of the torque
τ0. Figure ?? shows the results of simulations run with different torque values, varied within more than
a decade. We observe that the change in Re is only a small percentage of the change in speed due to
the oscillating trajectory. Both 2D and 3D simulations display the same behavior, which shows that the
torque plays no major role in controlling the velocity (or Re) of the swimmer.

B. Impact of the pulsation

Similarly, we evaluate the impact of the pulsation ω on the evolution of the Reynolds number as
a function of the thrust number by comparing the swimming velocities obtained for several values of
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2R

FIG. 3. Circular trajectory obtained in a 2D
numerical simulation, obtained for a steering
angle θ = 6◦, and ∥F 0∥ = 160. The radius
of curvature R characterizes the trajectory.
Dashed lines correspond to the position of the
rigid body at previous times. The thicker the
dotted lines, the closer it is to the current
time, drawn as a solid line.
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FIG. 4. Maneuverability: dependence of the radius
of curvature R on the steering angle θ and the force
∥F 0∥ obtained for 2D numerical simulations.
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FIG. 5. Evolution of the velocity of the swimmer as a function of time in 3D simulation for different torque values.
Simulations were performed with ω = π, ∥F0∥ = 6.3· 104 and L = 32. They correspond to Re = 1880, which
falls in the turbulent regime.

ω. The results shown in Figure ?? indicated that the pulsation does not play any role and only the
time-averaged value of F 0 is relevant for the Re(Th) scaling.

C. Study of the aspect ratio

As discussed in Sec. ??, the aspect ratio ar plays an important role in controlling the drag of the
swimmer, in particular in the turbulent regime, where it largely affects the turbulent transition. Figure ??
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FIG. 6. Evolution of the swimming velocity as a function of time for 3D simulation and various puslations ω.
Simulation were performed with ∥T0∥ = 3· 105, ∥F0∥ = 1.5· 105 and L = 32, and correspond to Re = 2080,
which falls in the turbulent regime. Note that ω = 0.0 corresponds to the time-averaged dipole F (t) = F 0.
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FIG. 7. Evolution of the transition between the
laminar and turbulent regime for different aspect
ratio values. The data correspond to 2D numeri-
cal simulations, obtained for aspect ratios ar = 2
(pink) or ar = 8 (blue). The solid and dashed
lines are the fits of the data in the laminar regime
and turbulent regimes respectively. The vertical
dotted lines indicate the intersections between the
plain lines and the dashed lines, which define the
crossover Reynolds number Re∗.
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FIG. 8. Evolution of the laminar-turbulent
crossover Reynolds number Re∗ as a function of
ar.

shows the effect of the aspect ratio on the hydrodynamic scaling laws. While the aspect ratio does not
change the exponent of the different regimes, it changes the Th value where the transition occurs. In
Fig. ??, the Th value at which the transition between the laminar and the turbulent regime occurs
increases with increasing aspect ratio ar.

When a rigid body is moving in a fluid in the turbulent regime, it is possible to see a turbulent von
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Karman vortex street behind the body. This effect will change a lot the evacuation of the vortex generated
by the torque T0 at the rear of the body. In that case, even if the tail is in the neutral position (θ = 0),
the rigid body will not go straight. The effect is delayed as the aspect ratio increases. We believe this
is a side effect of the model, as real swimmers moving in a turbulent regime have in general a very high
aspect ratio (with a non ellipsoidal body shape) to avoid the von Karman vortex street.

V. EXPERIMENTAL DATABASE

The goal of the database is to link the swimming speed (Re) to kinematic parameters (Sw) for different
aquatic organisms across a wide range of Re ∼ 10−9− 107. To this aim, we have collected data for which
values for the velocity v, the frequency ω/2π, the oscillation amplitude A, the size L and the viscosity η
are available. At low Re, trajectory are not always rectilign, or are subjected to noise and the velocity is
reported only when it corresponds to the instantaneous velocity.

A. Re > 1 database construction

The main part of the database for these two regimes (laminar and turbulent) was already built in [?
] and the data are extracted from their supplementary information. Below, we summarize the origin of
the data but do not give other information. The full database is available here in a .tsv format.

The fish database is composed of data on:

• Dace, trout and goldfish from [? ]

• Mackerel from [? ]

• Sturgeon from [? ]

• Rainbow trout from [? ]

• Giant blue fine tuna from [? ]

• Saithe and mackerel from [? ]

• Sharks from [? ]

• Stingray from [? ]

• African lungfish from [? ]

The mammals database is composed of data on:

• Cetaceans from [? ]

• Seals from [? ]

• Manatees from [? ]

• Fin whales from [? ? ]

• Blue whales from [? ]

The birds database is composed of data on:

• Penguins from [? ? ]

The amphibians database is composed of data on:
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• Tadpoles from [? ]

The reptiles database is composed of data on:

• American alligator from [? ]

The larvae database is composed of data on:

• Larval zebrafish from [? ? ? ]

• Ascidian larvae from [? ? ]

• Mayfly larvae from [? ]

B. Stokes regime database construction

In this section we report all the raw data used to built the database corresponding to the Stokes regime.

The sperm cells database is composed of data on:

• Lytechinus spermatozoa from [? ]

• Bull spermatozoa from [? ]

• Ciona spermatozoa from [? ? ]

• Lytechinus spermatozoa from [? ? ]

The algae database is composed of data on:

• Chlamydomonas reinhardtii from [? ]

The worms database is composed of data on:

• Caenorhabditis Elegans from [? ]

• Leeches from [? ]

The bacteria database is composed of data on:

• Escherichia coli from [? ]


