
HAL Id: hal-04702654
https://hal.science/hal-04702654v1

Submitted on 19 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Early-Exit Deep Neural Networks to Accelerate
Spectrum Classification in O-RAN

Roberto Goncalves Pacheco, Rodrigo de Souza Couto, Sahar Hoteit

To cite this version:
Roberto Goncalves Pacheco, Rodrigo de Souza Couto, Sahar Hoteit. Using Early-Exit Deep Neural
Networks to Accelerate Spectrum Classification in O-RAN. 20th International Conference on Wireless
and Mobile Computing, Networking and Communications, WiMob, Oct 2024, Paris, France. �hal-
04702654�

https://hal.science/hal-04702654v1
https://hal.archives-ouvertes.fr

Using Early-Exit Deep Neural Networks to
Accelerate Spectrum Classification in O-RAN

Roberto G. Pacheco∗, Rodrigo S. Couto †, and Sahar Hoteit‡§
∗ Universidade Federal Fluminense - Rio das Ostras, RJ, Brazil

† Universidade Federal do Rio de Janeiro - PEE/COPPE/GTA - Rio de Janeiro, RJ, Brazil
‡ Universite Paris-Saclay, CNRS, CentraleSupélec, L2S, Gif-sur-Yvette, France

§ Institut Universitaire de France (IUF), France
Emails: robertopacheco@id.uff.br, rodrigo@gta.ufrj.br, sahar.hoteit@centralesupelec.fr

Abstract—O-RAN architecture introduces a new level of flex-
ibility in managing Radio Access Networks (RANs), facilitating
the development of different applications. One of these applica-
tions is spectrum sharing, in which cellular traffic can share the
unlicensed band with WLAN technologies, such as Wi-Fi. A key
component of this application is a spectrum classification unit
that identifies the communication technology used in the medium
to support decision making in the RAN. This classification can be
performed using Deep Neural Networks (DNNs) that receive I/Q
samples and infer which communication technology is generating
the traffic. Despite the high accuracy of DNNs in this task, the
inference must be performed quickly to allow timely action to
avoid interference. One promising approach to enhancing the
performance of DNNs is to use early-exit DNNs (EE-DNNs),
which are designed to reduce computations by allowing the
inference process to terminate at intermediate layers when a
certain confidence level is achieved. In this paper, we explore the
application of EE-DNNs for spectrum classification by applying
early exits to the Convolutional Neural Network (CNN) used by
the ChARM (Channel-Aware Reacting Mechanism) framework.
Using the ChARM dataset, we show that an EE-DNN can
accelerate inference by 10% and even achieve higher accuracy
than a conventional CNN by approximately 2%.

I. INTRODUCTION

O-RAN (Open Radio Access Network) architecture aims
to enhance interoperability, flexibility, and innovation within
Radio Access Networks (RANs). By opening and disaggre-
gating proprietary and closed interfaces in mobile network
equipment, O-RAN provides a more open and collaborative
ecosystem than traditional RANs [1]. In O-RAN, the Base
Station (BS) comprises three key components: O-RU (O-RAN
Radio Unit), O-DU (O-RAN Distributed Unit), and O-CU (O-
RAN Central Unit), aligned with the Split Option 7.2x as
defined by the 3GPP New Radio (3GPP NR) specifications.
The O-RU handles radio frequency operations and lower
physical layer tasks, while the O-DU manages the upper
physical layer and link layer, and the O-CU is responsible
for the networking layer.

The key O-RAN components are managed by Non-Real-
Time (Non-RT) and Near-Real-Time (Near-RT) RAN Intel-
ligent Controllers (RICs), which are critical for effective
O-RAN management and orchestration, leveraging machine
learning to enhance network performance and adaptability.
The Non-RT RIC provides a global infrastructure view and
executes rApps, running on timescales exceeding one second.

Conversely, the Near-RT RAN Intelligent Controller (Near-
RT RIC) manages specific RAN components through xApps,
operating within timescales from ten milliseconds to one
second [1]. Near-RT RICs handle user sessions and medium
access, employing xApps for tasks such as load balancing,
scheduling, and RAN slicing [2]. For instance, xApps may
utilize MAC-level Key Performance Indicators (KPIs) for
PRB (Physical Resource Block) allocation or determine the
optimal BS for user equipment (UE) assignment. Non-RT
RICs, through rApps, configure xApps by setting policies,
models, and parameters, and can dictate the machine learning
models used by xApps and their deployment locations.

In the literature, different rApps and xApps have been
proposed. Baldesi et al. [3] propose a framework to allow
spectrum sharing in O-RAN infrastructures. The idea is to
allow coexistence of different wireless technologies (e.g., Wi-
Fi and LTE) by sensing the medium and configuring O-RUs
and O-DUs to avoid interference and implement spectrum
sharing policies. The main component of the proposed frame-
work is the ChARM (Channel-Aware Reacting Mechanism)
xApp. This xApp has a Spectrum Classification Unit (SDU)
that communicates with the O-DU to receive, via the O-
DU, I/Q samples collected from the O-RU. The SDU runs
a Deep Neural Network (DNN) to classify the spectrum and
infer which wireless technology is being employed at specific
frequencies in the O-RU. This information is used by another
module in this xApp, called Policy Decision Unit (PDU), to
reconfigure the parameters from the O-RU and the O-DU. For
example, if an LTE communication is using an unlicensed
band and the xApp detects the presence of Wi-Fi traffic, the
PDU can change the center frequency used by LTE.

The ChARM xApp needs to perform a fast computation to
react accordingly to changes in the state of the spectrum. As
such, the DNN used for spectrum classification must perform a
fast inference. There are different proposals to accelerate DNN
inference, such as simplifying the DNN model by compression
and using specialized hardware [4]. In this work, we explore
the technique of Early-exit Deep Neural Networks (EE-DNN)
to accelerate spectrum classification. EE-DNNs try to reduce
the time and energy consumption by stopping the inference
in the early layers [5]. This concept is widely explored in the
areas of image classification. However, there is no work in

the literature using EE-DNNs for spectrum classification.
The purpose of this work is to show the effectiveness of EE-

DNNs for spectrum classification. Hence, we insert early exits
into the Convolutional Neural Network (CNNs) used by the
ChARM proposal in [3] and compare it to the original CNN.
Our results, evaluated using the ChARM dataset [6], show that
an EE-DNN decreases the processing cost by approximately
10% when compared to the original DNN. In addition, EE-
DNN even shows an improvement in accuracy, due to its
reduction in the problem of overthinking [7].

This paper is structured as follows. Section II reviews
related work, while Section III describes early-exit DNNs.
Section IV overviews the ChARM dataset. Section V evaluates
the performance of EE-DNNs in the context of spectrum
classification, while Section VI concludes the paper and
outlines future research directions.

II. RELATED WORK

Many studies in O-RAN leverage machine learning so-
lutions, such as Deep Reinforcement Learning (DRL) [2],
[8], Graph Neural Networks (GNNs) [9], Residual Networks
(RNs) [3], and Recurrent Neural Networks (RNNs) [10].
Given the scale and stringent timing requirements of O-RAN
application, specially those in Near-RT RICs, ensuring fast
inference performance of neural networks in this context is
crucial [11]. To address this challenge, Early-exit Deep Neural
Networks (EE-DNNs) is a promising approach, since EE-
DNNs have shown significant performance improvements in
CNNs for image classification, by reducing inference time
and computational load while maintaining accuracy [12], [13].
Despite EE-DNNs being widely employed in image classifi-
cation [14]–[16], this approach has not yet been explored for
spectrum classification in the context of RANs. Therefore,
this study aims to bridge this gap by demonstrating the appli-
cability of EE-DNNs to spectrum classification tasks within
RAN environments, highlighting their potential to enhance
high performance of O-RAN applications.

Beyond its applicability in spectrum classification in O-
RAN, DNNs can also be employed on other wireless systems.
For example, CNN and LSTMs (Long Short-Term Memory)
models are applied to classify the type of signal modulation,
which is a task called Automatic Modulation Classification
(AMC) [17]–[19]. Recently, EE-DNNs were used in AMC,
showing [20], [21] that this type of neural network can
induce a significant reduction in inference time without com-
promising accuracy. The knowledge of modulation provided
by AMC can help distinguish between different wireless
technologies. However, the AMC task is distinct from the
spectrum classification considered in this work, as both LTE
and Wi-Fi, among other technologies, can utilize the same
modulation techniques, such as OFDM and QAM [22], [23].

III. EARLY-EXIT DNNS FOR SPECTRUM CLASSIFICATION

Early-exit DNNs (EE-DNNs) are designed with multiple
early-exit branches integrated into their intermediate layers,
enabling inference to be concluded at these intermediate

stages, as illustrated in Figure 1. The early classification in
the intermediate stages can reduce the required computation to
classify an input, accelerating the inference. The idea behind
EE-DNNs is that some inputs can be easy to classify and thus
do not require processing all the DNN layers. For example,
in the domain of image classification, distorted images may
need to process more layers than a pristine ones [15].

Once trained, EE-DNNs can receive an input to classify. In
this paper, the EE-DNN receive a stream of I/Q samples as
input. The input is processed, layer-by-layer, until it reaches
an early-exit branch. At this exit branch, a fully-connected
layer generates a logit vector zi, from which a probability
vector pi is derived using a softmax layer:

pi = softmax(zi) ∝ exp(zi), (1)

where the exponential function is applied element-wise. The
probability vector pi consolidates the probabilities that an
input belongs to predefined classes. The class with the highest
probability in pi corresponds to the predicted class, and its
confidence level is indicated by the maximum probability
maxpi. During inference, the input is processed until it
reaches an exit branch. If the confidence level provided by the
exit branch exceeds a predefined threshold, the exit branch
classifies the input, and the inference process terminates.
Consequently, the input sample bypasses subsequent layers,
reducing processing delay and computational load. Alterna-
tively, if the confidence value is below the threshold, the input
continues through subsequent layers until it encounters the
next exit branch, following the same procedure as described
previously. If no exit branch confidence exceeds the threshold,
the input is classified by the conventional DNN’s output layer.

TABLE I
CONVOLUTIONAL NEURAL NETWORK (CNN) EMPLOYED IN [3].

Layer Output dim
Input 2 x 20,000

Conv/ReLU 7 x 20,000
MaxPool 7 x 10,000

Conv/ReLU 7 x 10,000
MaxPool 7 x 2,000

Conv/ReLU 7 x 2,000
MaxPool 7 x 1,000

Conv/ReLU 7 x 1,000
MaxPool 7 x 200

Conv/ReLU 7 x 200
MaxPool 7 x 100

Conv/ReLU 7 x 100
MaxPool 7 x 20

Conv/ReLU 7 x 20
MaxPool 7 x 10
FC/Tanh 18
FC/Tanh 16

FC/Softmax 3

In this work, we add two exit branches in the DNN pre-
sented in Table I and employed in [3]. Figure 1 illustrates the
employed EE-DNN. The first one is placed after the second
MaxPool layer (i.e., the one with output dimension 7 x 2,000).
The second one is placed after the fourth MaxPool layer
(i.e., the one with output dimension 7 x 200). We chose this

C
o
n
v
/R

e
LU

p
o
o
l

co
n
v

p
o
o
l

co
n
v

p
o
o
l

co
n
v

p
o
o
l

co
n
v

p
o
o
l

co
n
v

p
o
o
l

co
n
v

p
o
o
l

co
n
v

p
o
o
l

fc
/T

a
n
h

fc fc

C
o
n
v
/R

e
LU

C
o
n
v
/R

e
LU

C
o
n
v
/R

e
LU

C
o
n
v
/R

e
LU

C
o
n
v
/R

e
LU

C
o
n
v
/R

e
LU

Fc
/T

a
n
h

Fc
/T

a
n
h

Fc
/s

o
ft

m
a
x

M
a
x
Po

o
l

M
a
x
Po

o
l

M
a
x
Po

o
l

M
a
x
Po

o
l

M
a
x
Po

o
l

M
a
x
Po

o
l

M
a
x
Po

o
l

MaxPool

Fc/Tanh

Fc/softmax

MaxPool

Fc/Tanh

Fc/softmaxB
ra

n
ch

 1

B
ra

n
ch

 2 Branch 3
In

p
u
t

Fig. 1. The EE-DNN proposed in this work.

exit branch placement to balance the number of convolutional
layers between each exit branch. Therefore, the number of
convolutional layers between the input and Branch 1 is equal
to the number of layers between Branch 1 and Branch 2.
Since the total number of convolutional layers is not divisible
by three, Branch 3 has an additional convolutional layer. This
decision aligns with the concept of EE-DNNs, which aim to
classify as many inputs as possible in the earlier exit branches,
leaving the more complex inputs for the final exit branch.
Another way of balancing the number of convolutional layers
between exit branches would be to add six exit branches to the
original DNN. However, this would result in a high overhead
when applying the concept of EE-DNNs.

In Figure 1, each exit branch includes an additional Max-
Pool layer to further reduce the dimensionality of the input
data, followed by two fully connected (FC) layers with tanh
activation functions, and concluding with a softmax layer for
classification. This structure not only enables faster inference
by providing early exits, but also ensures efficient processing
of the input data by reducing its dimensionality at each exit
branch. In this work, we call the exit of the main DNN
backbone as Branch 3. We train the early-exit DNN following
the methodology employed in [5], [12], using the dataset
described in Section IV. In this work, the EE-DNN receives a
stream of I/Q samples and classifies its signal as Wi-Fi, LTE,
or Clear (i.e., is related to the background noise, when there
is no LTE or Wi-Fi signals).

IV. CHARM DATASET

The ChARM dataset [6] consists of spectrum data, in which
each input is an I/Q sample derived from LTE and Wi-Fi
traffic, along with background noise. An I/Q sample captures
an instantaneous snapshot of the modulated signal, containing
both the In-phase (I) and Quadrature (Q) components. The I
component represents the amplitude of the baseband signal
that is in-phase with the I carrier (0-degree phase), while the
Q component represents the amplitude of the baseband signal
that is in-phase with the Q carrier (90-degree phase).

The data was collected at the Colosseum testbed, using
a central frequency of 5.2GHz and a bandwidth of 20MHz.
The dataset is available at the Northeastern University Digital
Repository Service (DRS) [6] and contains the following types
of traffic:

• LTE and Wi-Fi traces with idle traffic. In this case, there
is only control traffic from the BS (LTE) or the access
point (Wi-Fi);

• LTE and Wi-Fi traces with a 1Mbps flow between the
BS and the UE, generated using iperf3;

• LTE and Wi-Fi traces with ping flooding with 1KB
packets between the BS and the UE, representing bursty
traffic with high throughput;

• LTE and Wi-Fi traces with 300-byte packets of ping
between the BS (or the access point) and the UE,
representing bursty traffic with low throughput;

• Background noise, collected when there is no LTE or
Wi-Fi communication. This data corresponds to the Clear
category previously mentioned.

In this paper, we employ this dataset to train the EE-DNN to
classify traffic types based on received streams of I/Q samples.
Our EE-DNN model can classify the traffic in Clear, Wi-
Fi, and LTE. For training and test purposes, we split this
dataset into 50%/25%/25% for train/validation/test, according
to the methodology presented in [3] and available in an open
repository1.

V. RESULTS

This section evaluates the performance of the EE-DNN for
the spectrum classification task. To this end, we compare the
performance of the EE-DNN with the conventional DNN (i.e.,
with no exit branches) presented in Table I. This evaluation is
performed using the test set for different values of confidence
thresholds in the exit branches. In this experiment, the same
threshold is employed in both exit branches. We provide the
code developed for this paper in an open repository2.

A. Accuracy, Precision, and Recall

This section compares the performance of EE-DNN with
the conventional DNN in terms of the accuracy, precision,
and recall. For a given threshold, the accuracy is defined as
the fraction of test inputs correctly classified, regardless of
the exit branch that classifies the input. Precision measures
the proportion of correctly predicted positive examples out
of the total predicted positives, indicating the model’s ability

1https://github.com/lucabaldesi/charm trainer/tree/
c06ce57de5842951d2ff24b0b7fcdfc314044313

2https://github.com/GTA-UFRJ/ORAN DNN

to avoid false positives. Recall measures the proportion of
correctly predicted positive examples out of the total actual
positives, reflecting the model’s ability to identify all positive
examples. Let C represent the set of classes, with |C| indicating
the number of classes. In our case, we have |C| = 3 classes:
Clear, LTE, and Wi-Fi. We compute the above metrics in the
following way:

Accuracy =
1

|C|

|C|∑
i=1

TPi + TNi

TPi + FPi + TNi + FNi
, (2)

Precision =
1

|C|

|C|∑
i=1

TPi

TPi + FPi
, (3)

Recall =
1

|C|

|C|∑
i=1

TPi

TPi + FNi
, (4)

where TPi is the number of true positive of i-th class, while
TNi is the number of true negative of i-th class, FPi is the
number of false positive of i-th class and FNi is the number
of false negative of i-th class.

Figure 2 shows the comparison in terms of accuracy be-
tween the EE-DNN and the conventional DNN. Notably, the
DNN exhibits a constant accuracy curve, indicative of its
single output layer architecture where all inputs are classified
independent of the threshold. Thus, it underscores the inde-
pendence of DNN performance with respect to thresholds.

0.4 0.5 0.6 0.7 0.8 0.9
Threshold

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

EE-DNN
DNN

Fig. 2. Accuracy on EE-DNN and conventional DNN.

Figure 2 shows that, for lower threshold values, the EE-
DNN initially exhibits lower accuracy compared to the con-
ventional DNN. This outcome arises because the first exit
branch can classify the majority of inputs, including unreliable
inputs, as it operates with a less stringent threshold. Conse-
quently, the performance of the EE-DNN is constrained by
the classification capability of the first exit branch. However,
after a more stringent threshold, the performance is even
better than the original DNN. This is explained since stopping

the inference earlier can reduce the overthinking problem
that can happen when a sample is processed by multiple
layers [7], [24]. The overthinking problem in EE-DNNs
occurs when an input is misclassified by the final exit of
an early-exit DNN but could have been correctly classified
by an earlier exit, resulting in unnecessary computational
overhead and a performance degradation. Additionally, this
result demonstrates the improvement in the decision-making
capability of each exit branch as the confidence threshold
is appropriately adjusted. The same behavior occurs when
evaluating the average precision and recall of all classes, as
shown in Figure 3 and Figure 4. To analyze in more detail
EE-DNN’s behavior, we separately assess the performance of
each exit branch in the next subsection.

0.4 0.5 0.6 0.7 0.8 0.9
Threshold

0.90

0.92

0.94

0.96

0.98

1.00

Pr
ec

isi
on

EE-DNN
DNN

Fig. 3. Precision on EE-DNN and conventional DNN.

0.4 0.5 0.6 0.7 0.8 0.9
Threshold

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Re
ca

ll

EE-DNN
DNN

Fig. 4. Recall on EE-DNN and conventional DNN.

B. Per-branch Evaluation

This subsection conducts an analysis of each exit branch in
the EE-DNN to elucidate their individual contributions to the

overall EE-DNN’s performance. Therefore, we evaluate the
accuracy and early-exit probability for each exit branch. The
accuracy on each exit branch is computed as the ratio of cor-
rectly classified inputs to the total number of inputs processed
by that exit branch. Meanwhile, the early-exit probability for
the i-th exit branch is computed as the fraction of inputs that
reach this specific exit branch and can be classified by it. For
instance, the early-exit probability for the first exit branch
is calculated as the number of test set inputs that achieve
classification confidence greater than the threshold, divided by
the total number of test set inputs. Similarly, this probability
for the second exit branch is the fraction of inputs classified
by this branch that were not classified by the first exit branch.

Figure 5 shows the early-exit probability, denoted as
P[Inference] in y-axis, as a function of the thresholds. At a
first glance, this figure shows that as we increase the threshold,
it becomes more stringent for early classification, reducing
the percentage of inputs classified earlier. Additionally, this
figure demonstrates that the first exit branch is capable of
classifying a high percentage of inputs, thereby reducing the
computation required for classification. For instance, with
a threshold of 0.54, approximately 80% of the inputs are
classified by the first exit branch, thus avoiding processing by
the second and third exit branches. In Figure 5, we observe
that Branch 1 shows a decreasing trend, while Branches 2 and
3 are increasing as the threshold varies. This occurs because
a higher threshold imposes stricter conditions, leading to a
decrease in the proportion of inputs meeting the confidence
criterion. Consequently, more inputs are left to be processed
and classified by Branches 2 and 3.

Figure 6 highlights the benefits of an EE-DNN, showing
the accuracy of each exit branch as a function of the thresh-
olds. Note that, for a threshold of 0.54, EE-DNN classifies
approximately 80% of the inputs (see Figure 5) in Branch
1 with an accuracy of 98%. This means that we can speed
up the inference process by maintaining high accuracy. Also,
Figure 5 shows that, for all threshold values considered, a
very low percentage of inputs needs to be classified on the
main DNN backbone (i.e., Branch 3). This means that a low-
complexity DNN can be employed in most cases.

The results presented before show that the majority of
inputs are classified on the first exit branch which can reduce
the processing power required to perform an inference. To
quantify this reduction, we measure the average number of
Floating-point Operations (FLOPs) for the original DNN and
the EE-DNN. The idea of using FLOPs is to provide a
metric agnostic to the hardware architecture that runs the
classification. This metric is obtained using the pthflops3

tool. Figure 7 shows the average number of million FLOPs
needed to process the images of the test set, comparing the
original DNN and the EE-DNN. The results show that EE-
DNN reduces the processing cost in 10% or more, showing
its ability to accelerate spectrum classification. In addition,
the reduction in FLOPs can improve the energy efficiency of

3https://pypi.org/project/pthflops/

0.4 0.5 0.6 0.7 0.8 0.9
Threshold

0.00

0.20

0.40

0.60

0.80

1.00

P[
In

fe
re

nc
e] Branch 1

Branch 2
Branch 3

Fig. 5. Early-exit probability on each EE-DNN’s branch.

0.4 0.5 0.6 0.7 0.8 0.9
Threshold

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

 o
n

Br
an

ch

Branch 1
Branch 2
Branch 3

Fig. 6. Accuracy on each EE-DNN’s branch.

the classification task.

VI. CONCLUSIONS AND FUTURE WORK

Spectrum classification is a fundamental task for spectrum
sharing xApps, being used by the ChARM (Channel-Aware
Reacting Mechanism) framework. The ChARM xApp uses
a DNN to classify I/Q samples into LTE, Wi-Fi, and Clear
categories, supporting the implementation of spectrum sharing
policies. Given that an xApp operates within a Near-RT RIC
(Near-Real-Time RAN Intelligent Controller), it is crucial that
the DNN inference time remains low. Hence, in this work
we have investigated the use of Earl-Exit DNNs (EE-DNNs)
to reduce the amount of computation of a DNN employed
by the ChARM framework. Our results show that EE-DNNs
can reduce the number of floating-point operations by 10%,
based on the test set, while also improving the accuracy
of the original DNN approximately to 2%. These findings
underscore the practical benefits of employing EE-DNNs

0.4 0.5 0.6 0.7 0.8 0.9
Threshold

1.0

1.2

1.4

1.6

1.8

2.0

FL
OP

s
1e6

DNN
EE-CNN

Fig. 7. FLOPs on EE-DNN vs DNN.

for spectrum classification, providing enhanced performance
without additional computational cost.

As a future work, we plan to complement the results of
floating-point operations by measuring the inference time
on typical hardware used by Near-RT RICs to ensure it is
compliant with the time scale of the Near-RT RICs between
10 ms and 1 s. Another direction for future research is to
analyze the influence of the signal-to-noise ratio (SNR) of
I/Q samples on the effectiveness of EE-DNNs. For instance,
inputs with low SNR may require passing through all DNN
layers to complete the inference, whereas inputs with high
SNR could be classified at an earlier stage.

ACKNOWLEDGEMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior -
Brasil (CAPES) - Finance Code 001, FAPERJ grant
SEI-260003/004771/2021, FAPESP grants 23/00673-7 and
23/00811-0, and CNPq grant 408255/2023-4. This work was
partially funded by the MERR 2024 program of Paris-
Saclay University, it was also supported by the ANR HEIDIS
(https://heidis.roc.cnam.fr; ANR-21-CE25-0019) project.

REFERENCES

[1] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Under-
standing O-RAN: Architecture, Interfaces, Algorithms, Security, and
Research Challenges,” IEEE Communications Surveys & Tutorials,
vol. 25, no. 2, pp. 1376–1411, 2023.

[2] L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, “In-
telligence and Learning in O-RAN for Data-Driven NextG Cellular
Networks,” IEEE Communications Magazine, vol. 59, no. 10, pp. 21–
27, 2021.

[3] L. Baldesi, F. Restuccia, and T. Melodia, “ChARM: NextG Spectrum
Sharing through Data-Driven Real-Time O-RAN Dynamic Control,” in
IEEE Conference on Computer Communications (INFOCOM), 2022,
pp. 240–249.

[4] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-demand ac-
celerating deep neural network inference via edge computing,” IEEE
Transactions on Wireless Communications, vol. 19, no. 1, pp. 447–457,
2020.

[5] R. G. Pacheco, R. S. Couto, and O. Simeone, “On the impact of
deep neural network calibration on adaptive edge offloading for image
classification,” Journal of Network and Computer Applications, p.
103679, 2023.

[6] L. Baldesi, F. Restuccia, and T. Melodia, “ChARM (Channel-Aware
Reactive Mechanism) dataset,” Available: http://hdl.handle.net/2047/
D20423481, 2021.

[7] Y. Kaya, S. Hong, and T. Dumitras, “Shallow-deep networks: Un-
derstanding and mitigating network overthinking,” in International
Conference on Machine Learning. PMLR, 2019, pp. 3301–3310.

[8] F. Rezazadeh, L. Zanzi, F. Devoti, H. Chergui, X. Costa-Pérez, and
C. Verikoukis, “On the Specialization of FDRL Agents for Scalable
and Distributed 6G RAN Slicing Orchestration,” IEEE Transactions on
Vehicular Technology, vol. 72, no. 3, pp. 3473–3487, 2023.

[9] O. Orhan, V. N. Swamy, T. Tetzlaff, M. Nassar, H. Nikopour, and S. Tal-
war, “Connection Management xAPP for O-RAN RIC: A Graph Neural
Network and Reinforcement Learning Approach,” in IEEE International
Conference on Machine Learning and Applications (ICMLA), 2021, pp.
936–941.

[10] H. Hojeij, M. Sharara, S. Hoteit, and V. Vèque, “Dynamic placement
of O-CU and O-DU functionalities in open-ran architecture,” in IEEE
International Conference on Sensing, Communication, and Networking
(SECON), 2023.

[11] E. Municio, G. Garcia-Aviles, A. Garcia-Saavedra, and X. Costa-
Pérez, “O-ran: Analysis of latency-critical interfaces and overview of
time sensitive networking solutions,” IEEE Communications Standards
Magazine, vol. 7, no. 3, pp. 82–89, 2023.

[12] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in IEEE
international conference on pattern recognition (ICPR), 2016, pp. 2464–
2469.

[13] R. G. Pacheco and R. S. Couto, “Inference time optimization using
branchynet partitioning,” in IEEE Symposium on Computers and Com-
munications (ISCC), 2020, pp. 1–6.

[14] R. G. Pacheco, R. S. Couto, and O. Simeone, “Calibration-aided edge
inference offloading via adaptive model partitioning of deep neural net-
works,” in IEEE International Conference on Communications (ICC),
2021, pp. 1–6.

[15] R. G. Pacheco, F. D. Oliveira, and R. S. Couto, “Early-exit deep neural
networks for distorted images: Providing an efficient edge offloading,”
in IEEE Global Communications Conference (GLOBECOM), 2021, pp.
1–6.

[16] R. G. Pacheco, K. Bochie, M. S. Gilbert, R. S. Couto, and M. E. M.
Campista, “Towards edge computing using early-exit convolutional
neural networks,” Information, vol. 12, no. 10, p. 431, 2021.

[17] N. E. West and T. O’shea, “Deep architectures for modulation recogni-
tion,” in IEEE International Symposium on Dynamic Spectrum Access
networks (DySPAN), 2017, pp. 1–6.

[18] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin,
“Deep learning models for wireless signal classification with distributed
low-cost spectrum sensors,” IEEE Transactions on Cognitive Commu-
nications and Networking, vol. 4, no. 3, pp. 433–445, 2018.

[19] S. Peng, S. Sun, and Y.-D. Yao, “A survey of modulation classification
using deep learning: Signal representation and data preprocessing,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 33,
no. 12, pp. 7020–7038, 2021.

[20] E. Mohammed, O. Mashaal, and H. Abou-Zeid, “Using early exits for
fast inference in automatic modulation classification,” in IEEE Global
Communications Conference (GLOBECOM), 2023, pp. 291–296.

[21] D. Verbruggen, S. Pollin, and H. Sallouha, “Computational efficient
width-wise early exits in modulation classification,” arXiv preprint
arXiv:2405.03222, 2024.

[22] F. Schaich and T. Wild, “Waveform contenders for 5g—ofdm vs. fbmc
vs. ufmc,” in International Symposium on Communications, Control and
Signal Processing (ISCCSP), 2014, pp. 457–460.

[23] A. Elnashar and M. A. El-Saidny, “Looking at lte in practice: A
performance analysis of the lte system based on field test results,” IEEE
Vehicular Technology Magazine, vol. 8, no. 3, pp. 81–92, 2013.

[24] S. Laskaridis, A. Kouris, and N. D. Lane, “Adaptive inference through
early-exit networks: Design, challenges and directions,” in International
Workshop on Embedded and Mobile Deep Learning (EMDL), 2021, pp.
1–6.

