
HAL Id: hal-04702524
https://hal.science/hal-04702524v1

Preprint submitted on 19 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exascale Quantum Mechanical Simulations: Navigating
the Shifting Sands of Hardware and Software

Ravindra Shinde, Claudia Filippi, Anthony Scemama, William Jalby

To cite this version:
Ravindra Shinde, Claudia Filippi, Anthony Scemama, William Jalby. Exascale Quantum Mechanical
Simulations: Navigating the Shifting Sands of Hardware and Software. 2024. �hal-04702524�

https://hal.science/hal-04702524v1
https://hal.archives-ouvertes.fr

Exascale Quantum Mechanical Simulations:

Navigating the Shifting Sands of Hardware and

Software

Ravindra Shinde1*, Claudia Filippi1, Anthony Scemama2,
William Jalby3*

1MESA+ Institute for Nanotechnology, University of Twente, P.O. Box
217, Enschede, 7500 AE, Overijssel, The Netherlands.

2Laboratoire de Chimie et Physique Quantiques (LCPQ), Université de
Toulouse (UPS) and CNRS, 118, route de Narbonne, Toulouse, 31062,

France.
3Université Paris-Saclay, UVSQ, 9 Boulevard d’Alembert, Guyancourt,

78280, France.

*Corresponding author(s). E-mail(s): r.l.shinde@utwente.nl;
william.jalby@uvsq.fr;

Contributing authors: c.filippi@utwente.nl; scemama@irsamc.ups-tlse.fr;

Abstract

The era of exascale computing presents both exciting opportunities and unique
challenges for quantum mechanical simulations. While the transition from
petaflops to exascale computing has been marked by a steady increase in com-
putational power, the shift towards heterogeneous architectures, particularly the
dominant role of graphical processing units (GPUs), demands a fundamental shift
in software development strategies. This review examines the changing landscape
of hardware and software for exascale computing, highlighting the limitations of
traditional algorithms and software implementations in light of the increasing
use of heterogeneous architectures in high-end systems. We discuss the challenges
of adapting quantum chemistry software to these new architectures, including
the fragmentation of the software stack, the need for more efficient algorithms
(including reduced precision versions) tailored for GPUs, and the importance of
developing standardized libraries and programming models.

Keywords: Quantum Mechanical Simulations, High-Performance Computing,
Heterogeneous Architectures, Software Stack, Exascale

1ar
X

iv
:2

40
9.

11
88

1v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 1
8

Se
p

20
24

1992 1996 2000 2004 2008 2012 2016 2020 2024
Year

100 GFlops/s

1 TFlops/s

10 TFlops/s

100 TFlops/s

1 PFlops/s

10 PFlops/s

100 PFlops/s

1 EFlops/s

10 EFlops/s

R
m

ax
 P

er
fo

rm
an

ce

Rmax of Top #1
Sum of Rmax of Top #500

(a)

2008 2010 2012 2014 2016 2018 2020 2022 2024
Year

5

10

15

20

25

30

35

Po
w

er
 (M

W
)

Power consumption by #1 supercomputer

(b)

Fig. 1: (a) Progress in high-performance computing power. LINPACK perfor-
mance (Rmax) trend for the fastest supercomputer and the cumulative performance
of Top 500 supercomputers over the years. (b) Power consumption by the top
supercomputer. Power consumption trend for the fastest supercomputer over the
years. Data from reference [34].

1 Rationale and scope

Until recently, the trajectory of top-performing computers has been fairly predictable,
guided by a handful of leading hardware vendors [1]. These vendors have consis-
tently provided scientists with clear paths (via stable languages, compilers, libraries,
and tools) to harness escalating computational power, culminating in the era of
petaflops [2–4]. The move to exascale computing comes with unique challenges, includ-
ing a rapidly changing array of hardware options [5–9] and the once-reliable software
stack that is now becoming increasingly fragmented and inconsistent [10–16]. After
traditional applications like cryptocurrency mining and gaming, artificial intelligence
(AI) has effectively harnessed the power of Graphical Processing Units (GPUs). This
success is due to a strong alignment between AI algorithms and the architectural
strengths of GPUs, coupled with the development of specialized libraries [17–20]. The
transition to exascale for quantum mechanical simulations uncovers an intricate web
of prospects and predicaments for physicists and chemists [4, 21, 22] and typically
requires large community efforts (e.g. US Exascale Computing Project [23], EU Cen-
ters of Excellence [24] and National Competence Centers [25]) well beyond individual
capabilities. This review explores the uneven path toward exascale simulations, high-
lighting both promising developments and persistent challenges [26–33] and offering a
nuanced understanding of this important shift in computational science.

2 The transition to exascale

Quantum mechanical (QM) simulations are essential for understanding and predict-
ing the behavior of complex materials and molecular systems across various scientific

2

disciplines. The accuracy of these simulations hinges on precisely describing elec-
tronic structures, a task that is computationally demanding and has been dramatically
enhanced by advancements in high-performance computing (HPC). The progress in
HPC is marked by milestones tracked by the Top500 list [34], which monitors peak
computational power through a benchmark known as LINPACK [35]. This algorithm
measures the performance of systems in solving a dense linear system, a task optimized
for high computational throughput with minimal data movement and communica-
tion. Remarkably, LINPACK achieves around 70% of the theoretical maximum speed,
derived from the total number of cores multiplied by their nominal speed. Figure
1(a) exhibits the steady progress of computational power, culminating in crossing the
exaflop barrier approximately two years ago.

However, LINPACK’s numbers, while impressive, are not fully representative of
real-world performance. A more challenging and realistic benchmark is the High-
Performance Conjugate-Gradient (HPCG) test, which evaluates the ability to solve
sparse linear systems and is therefore representative of a different type of numerical
applications, for instance, based on finite elements and finite difference schemes [36].
The performance here is starkly different, typically about 20 times lower than LIN-
PACK, utilizing less than 5% of the nominal speed [37]. This contrast underscores the
difference between idealized benchmarks and practical workloads.

While LINPACK and HPCG represent reasonable upper and lower bounds of
performance, respectively, neither reflects the complexity of actual applications. The
Gordon Bell Prize, awarded for outstanding achievements in high-performance com-
puting applications, provides a more relevant measure [38]. These applications, often
solving real scientific problems, have demonstrated performance nearing the exaflop
threshold [39, 40]. Achieving this requires monumental efforts: entire codebases are
rewritten by interdisciplinary teams of physicists, chemists, mathematicians, and com-
puter scientists. New algorithms are developed, and implementations are tailored to
exploit the specific features of the target architectures. In contrast, legacy codes, which
constitute the bulk of real-world applications, lag significantly behind. These codes
were not designed with exascale capabilities in mind and thus fall short of the exaflop
performance. The challenge ahead lies in bridging this gap, ensuring that applications
needing exascale capabilities can harness the full potential of exascale systems.

3 Hardware: The changing landscape of
computational power

The transition from petaflops to exascale computing marked a significant departure
from the consistent and predictable trajectory of high-performance computing. While
the climb to petaflops was characterized by steady increases in processor core count
and clock speeds, exascale computing brings a fundamental shift in hardware archi-
tectures and software development strategies. One of the most significant changes is
the increasing adoption of heterogeneous architectures. Unlike the homogeneous cen-
tral processing unit (CPU)-based systems that dominated petaflops, exascale systems
heavily rely on accelerators like GPUs, which offer massive parallelism for specific
tasks but come with unique challenges. This heterogeneous landscape presents a major

3

hurdle for software developers as traditional algorithms and software stacks designed
for CPUs need significant modifications to utilize the capabilities of GPUs efficiently.

Before exploring this hardware evolution, it is crucial to identify the primary appli-
cation areas driving these advancements, as they fundamentally determine the level
of investment and the trajectory of hardware development. Scientific HPC, includ-
ing QM applications, remains a niche market and does not significantly influence
major hardware innovations. Instead, scientific computing and exaflop architectures
often repurpose software and hardware technology developed for other, larger markets.
Two key segments, that are increasingly shaping the practices of the scientific com-
munity, are cloud and accelerator computing, driven primarily by their adoption in
conventional companies and the field of AI, respectively. The general-purpose laptop
segment also indirectly impacts high-end processor computing. For instance, Apple,
a major customer of the Taiwan Semiconductor Manufacturing Company (TSMC),
exerts significant pressure on high-end chip production for both cloud computing and
AI applications due to their high volume demand, as these components share the same
fabrication lines [41].

In analyzing hardware evolution, we focus on three major components: CPUs,
accelerators, and supercomputing systems.

On the CPU front, changes have been incremental over the past decade. Major
CPU manufacturers (AMD, Intel, ARM) have converged towards a similar generic
architecture: multicore processors based on out-of-order and superscalar technology. A
significant development has been the increase in the number of cores per processor, now
exceeding one hundred. While other technologies have emerged, none have achieved
widespread adoption. Wider vectors (up to 512 bits) have been embraced by x86
architectures (initially by Intel, followed by AMD), whereas ARM continues to use
shorter vectors (128/256 bits) without major performance penalties. Notably, memory
technology has evolved more significantly, with very large level 3 caches using three-
dimensional stacking and High Bandwidth Memory (HBM) offering an alternative
to the standard Double Data Rate Synchronous Dynamic Random Access Memory
(DDR-SDRAM). The performance gains from these new memory technologies depend
heavily on the application’s data access characteristics.

On the accelerator front, the primary advancement has been the massive increase
in core count, now reaching thousands – nearly two orders of magnitude more than
CPUs. The number of cores and peak performance depend on the floating-point (FP)
format; typically, double-precision (DP) cores are half as numerous as single-precision
(SP) cores. The shift toward narrower FP formats has been driven by AI, which tol-
erates reduced precision (16-bit, 8-bit, and even 4-bit formats are in use). Modern
GPUs achieve remarkable performance using smaller FP formats and Tensor Cores,
which are optimized for dense matrix multiplications. To illustrate these differences,
Table 1 compares the computational performance of a high-performance CPU and a
GPU released within the same time frame. Peak performance reflects execution speed
only when computation is the bottleneck, not memory transfers or inter-node com-
munications, which are too slow to keep up with the execution units. With standard
DP operations (FP64), GPU peak performance is about five times that of a high-end
CPU. When Tensor Cores are used, this increases to a factor of ten. For SP (FP32)

4

Table 1: Comparison of the peak performance with different precision modes, the
amount of memory, the memory bandwidth and the thermal design power (TDP) of
an Nvidia H100 GPU [42] and an AMD EPYC (Bergamo) CPU [43].

Nvidia H100 SXM ↔ AMD EPYC™ 9754
16896 cores, 1.6 GHz 128 cores, 2.25 GHz

Release date September 2022 June 2023
FP64 34 TFlop/s 6.9 TFlop/s
FP64 (tensor core) 67 TFlop/s
FP32 67 TFlop/s 13.8 TFlop/s
FP32 (tensor core) 989 TFlop/s
FP16 (tensor core) 1979 TFlop/s
FP8 (tensor core) 3958 TFlop/s
Memory 80 GB max 6000 GB
Memory Bandwidth 3350 GB/s (HBM3) 460.8 GB/s (DDR5)
Interconnection Nvlink 900 GB/s
Interconnection PCIe 128 GB/s
Quantum X800 Infiniband network 100 GB/s 100 GB/s
TDP 700 W 360 W

operations, both CPU and GPU performance doubles, but with Tensor Cores, the
GPU reaches 989 TFlop/s, over 70 times that of the CPU. Reducing precision to 8
bits (FP8) adds another factor of four. While smaller FP formats can sometimes be
used for standard FP32 and FP64 tasks, Tensor Cores mainly benefit computations
reliant on dense matrix multiplication. Achieving GPU peak performance is harder
than on CPUs, as it requires high levels of parallelism. Consequently, matrices on
the GPU must be much larger [44], or numerous, requiring batching algorithms. Fur-
thermore, GPUs have less memory than CPUs [45] and large workloads necessitate
memory transfers from the host to the accelerator, which must be managed in par-
allel with computations to prevent communication bottlenecks. We further elaborate
below on the implications of these CPU and GPU performance differences for quantum
simulations.

Finally, on the supercomputing systems front, the changes have been fairly radical,
using Top500 as a reference, most of the major changes can be easily monitored. First,
the amount of parallelism has drastically increased: the top runner in Top500 had
200 000 cores in June 2010, and now it has 9 million cores (a 45× increase). The overall
system organization has also radically changed: in 2010, GPUs were used in less than
40 systems among the 500, now over half of the systems are equipped with GPUs.
Today’s top systems exhibit a heterogeneous architecture, integrating both CPUs and
GPUs, though the bulk of computational capability predominantly stems from the
GPUs. Moreover, the total power consumption of these systems has increased by an
order of magnitude, rising from 3 MW to 30 MW, albeit with a notably irregular
progression, as depicted in Figure 1(b). This underscores the substantial enhancements
in system design, particularly in terms of energy efficiency.

5

4 Software: The challenge of increasing fragmentation

The transition from petascale to exascale computing has brought unprecedented com-
putational power but has also introduced significant challenges in adapting software
to efficiently utilize the new architectures. One of the most prominent challenges is
the increasing fragmentation of the software stack, particularly with GPU program-
ming. Nvidia had an early advantage for being a pioneer in this area. This created a
relatively unified ecosystem where developers could rely on a single set of tools and
libraries to harness the power of GPUs. However, as GPU computing gained wider
adoption, other vendors such as AMD and Intel entered the market, each with their
own programming models (HIP and SYCL, respectively). This proliferation of mod-
els has led to a fragmented landscape, making it increasingly difficult for developers
to write portable and efficient code that can run seamlessly across different GPU
platforms or heterogeneous systems.

OpenCL was introduced to address portability, providing an open standard for
CPUs, GPUs, and field programmable gate arrays (FPGAs) across vendors. However,
it has not gained wide adoption in HPC due to performance and usability issues. While
OpenCL offers portability, its abstraction often results in suboptimal performance
compared to specialized frameworks like CUDA. Its lower-level programming model
is also cumbersome, requiring significant manual effort for memory management and
kernel optimization. Fragmented implementations across vendors further undermine
OpenCL’s portability, as performance and features can vary, forcing developers to
fine-tune code for each platform.

The lack of an efficient standardized programming model for GPUs has resulted in
a number of issues for developers. Firstly, it creates vendor lock-in, where codes writ-
ten for one platform cannot easily be migrated to another without substantial code
refactoring. For example, adopting NVIDIA programming models involves significant
trade-offs between performance and portability across different hardware environ-
ments [46]. Another issue stemming from this fragmentation is the lack of compiler
support for all programming models on all platforms. For instance, (Fig. 2), while
CUDA is well supported on Nvidia GPUs through the CUDA Toolkit, its support on
AMD and Intel hardware is limited and relies on indirect means like translation layers
or third-party libraries and utilities [47, 48]. This forces developers to rely on vendor-
specific compilers, which often lack the universality and feature-richness of their CPU
counterparts.

The compatibility between various GPU programming models and vendors is
complex, largely due to the growing number of choices involving GPU platforms, pro-
gramming models, and languages. As recently analyzed by Herten [49], while OpenMP
is natively supported across the three major platforms—AMD, Intel, and Nvidia—and
works with both C++ and Fortran, other popular models like OpenACC have limited
support on Intel GPUs. This underscores the importance of thoroughly assessing a
programming model’s level of support on a chosen platform before beginning code
development. Additionally, standardized benchmarks and evaluation tools are needed
to effectively compare the performance and capabilities of different programming
models.

6

Open
ACC

Open
MP

Stan
dard

CUDA HIP
SYCL

Alpak
a

Kokk
os

NVIDIA

AMD

Intel

C++

Open
ACC

Open
MP

Stan
dard

CUDA HIP
SYCL

Alpak
a

Kokk
os

NVIDIA

AMD

Intel

Fortran

Fig. 2: Vendors and support compatibility charts. (a) C++ (b) Fortran. The
size of the circle represents the software and toolset supported by vendors in the
following order - full vendor support, indirect but comprehensive support by vendor,
comprehensive support but not by vendor, non-comprehensive vendor support, limited
but some support, and a missing circle represents no direct support available.

The lack of standardization in GPU programming has also led to a variety of
community-driven, higher-level models that aim to abstract away vendor-specific
details and provide a more portable programming experience. Examples of such mod-
els include Kokkos [50], RAJA [51], Alpaka [52], and, to a lesser extent, hipSYCL [53]
which is limited to AMD and Intel. These abstraction models often utilize vendor-
native infrastructure in the background, enabling developers to write code that can
be deployed on multiple platforms without significant code changes. However, the
support and standardization of these higher-level models can vary significantly, and
relying on community-driven efforts for critical software infrastructures can introduce
uncertainties and complexities in the long run. Comparing the performance of vari-
ous GPU programming models on the LUMI supercomputer [54] reveals the potential
of community-driven models like Kokkos in achieving portable performance but also
highlights the need for further development and community support to ensure their
long-term viability.

Another important aspect of the software stack is the role of low-level libraries for
key computational kernels, such as linear algebra, fast Fourier transforms, and com-
munication routines. These libraries play a critical role in achieving high performance
and efficiency on exascale systems. However, the use of different libraries across dif-
ferent platforms can also contribute to software fragmentation. For example, while
Nvidia provides the highly optimized cuBLAS library for linear algebra operations on
their GPUs, AMD offers the RocBLAS library. These libraries, despite providing sim-
ilar functionality, often have different APIs and performance characteristics, further
hindering code portability.

The exascale era has reiterated the need for a more unified and standardized
software stack for GPU programming. The fragmentation creates barriers to code
portability, hinders performance optimization, and increases the development effort
required for scientific applications. As we move forward, the community must address

7

10

10

10

10

10

1

2

3

4

5

Low accuracy Exact

N

Sy
st

em
 s

iz
e

DFT

QMC

wfn-QC

Fig. 3: Landscape of electronic-structure calculation methods. Different areas
of applicability of density functional theory (DFT), wavefunction-based quantum
chemical methods (wfn-QC), and quantum Monte Carlo (QMC).

these challenges. Initiatives like SYCL, OpenMP, and community-driven efforts like
Kokkos and RAJA look promising toward achieving a more unified programming
experience. However, vendors, developers, and researchers must collaborate closely
to establish common standards and standardize a more cohesive and interoperable
software ecosystem for GPU computing.

5 QM computation in the current HPC landscape

Quantum mechanical (QM) methods encompass a broad spectrum of applications,
each with varying computational demands and levels of accuracy. As depicted in Fig.
3, density functional theory (DFT) represents a computationally efficient approach,
offering a favorable balance between precision and performance, making it a popular
choice for many systems. On the other end of the spectrum, wave-function-based
methods are indispensable when higher accuracy is required to capture the intricate
properties of more complex systems. Quantum Monte Carlo (QMC) methods also offer
a path to high precision for larger systems by employing stochastic techniques to solve
the Schrödinger equation.

The nominal computational cost of these methods varies significantly. DFT is gen-
erally efficient, scaling with the number of electrons N as O(N3), primarily due to
the diagonalization of the Kohn-Sham eigenvalue problem. In contrast, wave-function-
based methods such as configuration interaction (CI), density matrix renormalization
group (DMRG), and coupled-cluster (CC) methods demand considerably more com-
putational resources, with scaling complexities that increase steeply depending on the
method’s sophistication. For example, the computational cost of the “gold standard”

8

in quantum chemistry, coupled-cluster singles and doubles with perturbative triples
(CCSD(T)), scales as O(N7). QMCmethods, particularly in their commonly used real-
space variants, occupy an intermediate position in terms of computational cost, with
a scaling of O(N3) per Monte Carlo step, largely governed by the repeated evaluation
of the Slater determinant.

Each QM method relies on distinct computational techniques (e.g., fast Fourier
transforms, matrix-vector operations, diagonalization of sparse or dense matrices),
which determine the scaling behavior, while the specific hardware implementation
governs the prefactor associated with this scaling. For instance, matrix multiplication
kernels are central to CC methods that utilize large tensors, enabling efficient use
of tensor cores and resulting in a relatively small prefactor despite the high scaling
complexity. On the other hand, although QMC methods are inherently massively
parallel, they often operate on relatively small matrices, leading to a large prefactor;
therefore, scaling these approaches on accelerators requires significant effort [55].

The computational physics and chemistry communities have implemented these
and other QM approaches in various software packages, facilitating discoveries across
multiple disciplines. Among the widely used electronic structure codes, ABINIT [56],
BerkeleyGW [57], BigDFT [58], CP2K [59], FHI-aims [60], NWChemX [61], Q-
Chem [62], Quantum ESPRESSO (QE) [63], and VASP [64] have been particularly
successful in harnessing HPC advancements for QM calculations, each with unique
strengths and target applications. These codes have made significant strides in
simulating larger systems, incorporating advanced algorithmic and methodologi-
cal developments, and enhancing parallel efficiency, particularly on pre-exascale
architectures [29, 65].

Recent efforts to adapt to the heterogeneous architectures of HPC systems
highlight the critical importance of balancing performance with portability. Some
codes, such as ABINIT and QE, have adopted hardware-agnostic offload program-
ming models (OpenMP or OpenACC), while others, like CP2K, have opted for
non-portable, kernel-based models (CUDA and HIP). BerkeleyGW provides both
CUDA and OpenACC alternatives, with the latter achieving performance within ten
percent of the former [57]. Additionally, different communities are actively devel-
oping specialized performance libraries to execute computationally intensive tasks
on accelerators. Examples include the Distributed Block Compressed Sparse Row
Matrix (DBCSR) library [66] for NVIDIA and AMD GPUs and the LibintX [67, 68]
library, which provides efficient implementations of Gaussian integral evaluation, cen-
tral to integral-direct implementations. The QMCkl library, developed within the
TREX CoE, offers high-performance computation kernels for QMC simulations using
OpenMP, OpenACC, and SYCL [69]. The wave-function community [27, 61, 70–73]
has been extensively developing tensor libraries that automatically parallelize and
accelerate operations on multidimensional arrays, taking advantage of modern HPC
architectures [74–76].

9

1980 1985 1990 1995 2000 2005 2010 2015 2020 2025
Year

106

109

1012

1015

1018

1021

1024

1027

Tr
ai

ni
ng

 C
om

pu
te

 (F
LO

Ps
)

AlexNet

Gemini 1.0 Ultra

DALL-E

AlphaFold

GNoME

Deep Learning EraCPU Computing Era

Multimodal
Image generation
Language
Vision
Speech
Biology
Materials science

(a)

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Year

$100

$1000

$10k

$100k

$1M

$10M

$100M

$1B

Es
tim

at
ed

 c
os

t (
20

23
 U

SD
, l

og
 s

ca
le

)

GNMT

AlphaGo Master
AlphaGo Zero

AlphaZero

DALL-E

GPT-3 175B (davinci)
PaLM (540B)

GPT-4
Gemini 1.0 Ultra

Inflection-2

GPU Cost
TPU Cost
Growth rate: 2.4x per year
95% CI of mean

(b)

Fig. 4: The exponential growth of AI and its cost. (a) The explosion of AI
models has caused a substantial demand for computing power for training. (b) The
estimated cost of hardware and energy required to train the top 10 AI models and the
predicted growth. Data from [77, 78].

6 AI and quantum simulations

While both AI and QM simulations extensively need the power of modern computing,
the nature of computations involved in each field and their respective challenges in
reaching exascale performance are fundamentally different. AI, particularly machine
learning (ML), has exhibited significant progress in recent years due to its ability to
extract patterns and learn complex relationships from data [79, 80]. The success (see
Fig. 4(a)) is mainly due to the availability of large datasets, advancements in algorithm
development, and the accessibility of HPC resources, especially those equipped with
GPUs and tensor processing units (TPUs).

The computations involved in AI training primarily revolve around optimizing the
weights and biases of a neural network to minimize a specific loss function, which
measures the difference between predicted and actual target values. Such tasks often

10

involve reduced-precision matrix multiplications, convolutions, and activation function
evaluations. Optimization techniques like stochastic gradient descent and its variants
are also widely employed, involving iterative updates to network parameters based on
gradients of the loss function calculated using backpropagation [81, 82]. These com-
putations are inherently parallel, as the gradients for different data points can be
computed independently and then averaged. Furthermore, model parallelism, where
different parts of a model are handled by different processors, allows for efficient train-
ing of complex models with billions of parameters [83]. Figure 4(a) illustrates the
exponential growth in computational requirements for training large AI models, that
double every 3.4 months compared to conventional Moore’s law [84]. The inherent
parallelism in AI training makes it particularly well-suited for GPUs, which excel at
executing the same operation on multiple data points simultaneously.

Consequently, the impressive acceleration of almost 300×, illustrated in Table 1,
for matrix multiplications using reduced precision on GPUs can be readily exploited
by AI, while QM simulations typically require double precision where only a tenfold
speedup can be achieved for matrix multiplications using vendor libraries. For kernels
written in OpenMP, OpenACC, or OpenCL, lacking the tensor core boost, an acceler-
ation factor of less than five is usually expected in QM simulations. In the current QM
landscape, many algorithms exhibit low arithmetic intensity, largely due to their his-
torical development and the limitations of earlier hardware. As a result, the potential
advantages of GPUs are not always clear for these traditional algorithms. To fully har-
ness the computational power of modern GPUs, particularly their ability to perform
dense matrix multiplications at reduced precision, new algorithms must be developed.
These new approaches would need to align more closely with GPU strengths, opti-
mizing for parallelism and reduced precision where possible, rather than relying on
the double-precision calculations and sparse matrix operations that have characterized
QM methods to date.

Interestingly, scientists have started to utilize the power of AI/ML to address
the accuracy-efficiency dilemma of quantum mechanical calculations. For example,
machine learning potentials, which are generally trained on ab initio data, can pre-
dict potential energy surfaces and forces with the accuracy of the underlying quantum
method, but at a much lower computational cost [85]. An efficient materials discov-
ery and design using high-throughput calculations is now possible [86] with public
datasets [87] and efficient optimization techniques [88]. Furthermore, neural net-
work wavefunctions in combination with quantum Monte Carlo methods have shown
promise in achieving highly accurate solutions of the electronic Schrödinger equation
for electronic systems [81, 82, 89–91].

7 Outlook and conclusions

The future of quantum mechanical simulations at the exascale level hinges on effec-
tively navigating the shifting landscape of high-performance computing hardware and
software. A critical aspect of this adaptation is the development of algorithms that go
beyond simply exploiting the brute force of massive parallelism provided by GPUs.
While GPUs offer significant acceleration, the impressive performance gain is limited

11

to algorithms using matrix-matrix multiplies with reduced precision. Designing alter-
native algorithms for QM simulations leveraging this particular strength of GPUs
is a must. Furthermore, given the complexity of adapting legacy codes to hybrid
architectures, the community must unite in embracing and standardizing modular
libraries for quantum chemical calculations, providing reusable, optimized, and ver-
satile implementations of complex algorithms [92]. Some specialized libraries have
already demonstrated significant success in enabling efficient implementations on
diverse hardware platforms, and their continued development and community-wide
adoption are crucial for simplifying code development and ensuring long-term code
sustainability. Finally, AI has already proven its broad potential, generating machine-
learning force fields with ab initio accuracy, faithfully describing quantum states, and
speeding up various tasks within quantum simulations [93]. As a result, the grow-
ing integration of AI with quantum simulations offers a promising path for future
breakthroughs.

However, a few notes of caution are necessary regarding the widespread adoption
of GPUs. CPUs remain essential for workloads that require flexibility, general-purpose
computation, or that are memory-bound. For example, CPUs equipped with HBM are
competitive with GPUs in some cases, particularly in memory-limited tasks. Although
in the near future, we can expect CPUs to integrate AI acceleration features, they will
likely remain complementary to GPUs. In addition, while their computational power
is undeniable, the energy consumption of GPUs is a growing concern. While a lap-
top requires less than 100W to function, the peak energy consumption of a modern
supercomputer like Frontier is around 22MW. The community must prioritize energy
efficiency as a core design principle for future exascale simulations. Time-to-solution
should be scaled by power usage when comparing simulations on different architec-
tures. Re-evaluating the blind pursuit of raw performance at the cost of enormous
energy consumption (cf. Figs. 1(b) and 4(b)) is of paramount importance. The focus
should shift towards a more balanced approach where algorithmic efficiency, software
optimization, and energy-aware hardware design work in synergy.

Importantly, while the exascale era offers exciting prospects for quantum mechan-
ical simulations, it also demands a cohesive effort from the scientific community to
overcome the associated challenges. Collaborative initiatives, such as those driven by
global research collaborations and industry partnerships, will be vital in shaping the
future of computational chemistry and materials science. By embracing energy-efficient
computing, stronger collaboration between academia and industry, and prioritizing
the development of standardized software tools (e.g. languages, compilers, debuggers,
libraries), we can ensure that exascale computing delivers on its promise as a corner-
stone of scientific innovation, enabling us to take on grand challenges and push the
boundaries of our understanding of the quantum world.

Acknowledgments. The authors acknowledge partial support from the European
Centre of Excellence in Exascale Computing TREX — Targeting Real Chemical Accu-
racy at the Exascale. This project has received funding in part from the European
Union’s Horizon 2020 — Research and Innovation Program — under grant agreement
no. 952165.

12

Declarations

• Author contribution: R.S. researched data for the article. All authors contributed
to the writing of the manuscript.

References

[1] Dongarra, J. J. & Walker, D. W. The quest for petascale computing. Comput.
Sci. Eng. 3, 32–39 (2001).

[2] Bader, D. A. Petascale Computing: Algorithms and Applications (Computational
Science) (Chapman and Hall/CRC, 2007). URL https://www.amazon.com/
Petascale-Computing-Algorithms-Applications-Computational/dp/1584889098.

[3] Geist, A. & Lucas, R. Major Computer Science Challenges At Exascale. Int. J.
High Perform. Comput. Appl. 23, 427–436 (2009).

[4] Vetter, J. S. Contemporary High Performance Computing (Chap-
man and Hall/CRC, 2017). URL https://www.oreilly.com/library/view/
contemporary-high-performance/9781466568358.

[5] Pedretti, K. et al. Chronicles of Astra: Challenges and Lessons from the
First Petascale Arm Supercomputer. (2020). URL https://www.osti.gov/biblio/
1822114. [Online; accessed 28. Aug. 2023].

[6] Kogge, P. M. & Dally, W. J. Frontier vs the Exascale Report: Why so long? and
Are We Really There Yet?, 26–35 (IEEE, 2022).

[7] Sinha, P. et al. in Not All GPUs Are Created Equal: Characterizing Variability
in Large-Scale, Accelerator-Rich Systems 01–15 (IEEE, 2022).

[8] Patrizio, A. ISC ’22: The AMD-Intel-Nvidia HPC race heats up. Net-
work World (2022). URL https://www.networkworld.com/article/3662114/
isc-22-the-amd-intel-nvidia-hpc-race-heats-up.html.

[9] Loh, G. H. et al. in A Research Retrospective on AMD’s Exascale Comput-
ing Journey 1–14 (Association for Computing Machinery, New York, NY, USA,
2023).

[10] Dongarra, J. et al. The International Exascale Software Project roadmap. Int.
J. High Perform. Comput. Appl. 25, 3–60 (2011).

[11] Fiore, S., Bakhouya, M. & Smari, W. W. On the road to exascale: Advances
in High Performance Computing and Simulations—An overview and editorial.
Future Gener. Comput. Syst. 82, 450–458 (2018).

[12] Richard, R. M. et al. Developing a Computational Chemistry Framework for the
Exascale Era. Comput. Sci. Eng. 21, 48–58 (2018).

13

https://www.amazon.com/Petascale-Computing-Algorithms-Applications-Computational/dp/1584889098
https://www.amazon.com/Petascale-Computing-Algorithms-Applications-Computational/dp/1584889098
https://www.oreilly.com/library/view/contemporary-high-performance/9781466568358
https://www.oreilly.com/library/view/contemporary-high-performance/9781466568358
https://www.osti.gov/biblio/1822114
https://www.osti.gov/biblio/1822114
https://www.networkworld.com/article/3662114/isc-22-the-amd-intel-nvidia-hpc-race-heats-up.html
https://www.networkworld.com/article/3662114/isc-22-the-amd-intel-nvidia-hpc-race-heats-up.html

[13] Gordon, M. S. et al. Novel Computer Architectures and Quantum Chemistry. J.
Phys. Chem. A 124, 4557–4582 (2020).

[14] Luo, L. et al. Pre-exascale accelerated application development: The ORNL
Summit experience. IBM J. Res. Dev. 64, 11:1–11:21 (2020).

[15] McInnes, L. C. et al. How community software ecosystems can unlock the
potential of exascale computing. Nat. Comput. Sci. 1, 92–94 (2021).

[16] Matsuoka, S., Domke, J., Wahib, M., Drozd, A. & Hoefler, T. Myths and legends
in high-performance computing. Int. J. High Perform. Comput. Appl. 37, 245–
259 (2023).

[17] Lu, Y., Qian, D., Fu, H. & Chen, W. Will supercomputers be super-data and
super-AI machines? Commun. ACM 61, 82–87 (2018).

[18] Huerta, E. A. et al. Convergence of artificial intelligence and high performance
computing on NSF-supported cyberinfrastructure. J. Big Data 7, 1–12 (2020).

[19] Gepner, P. in Machine Learning and High-Performance Computing Hybrid Sys-
tems, a New Way of Performance Acceleration in Engineering and Scientific
Applications 27–36 (IEEE, 2021).

[20] Liang, B.-S. in AI Computing in Large-Scale Era: Pre-trillion-scale Neural
Network Models and Exa-scale Supercomputing 1–3 (IEEE, 2023).

[21] Geist, A. & Reed, D. A. A survey of high-performance computing scaling
challenges. Int. J. High Perform. Comput. Appl. 31, 104–113 (2015).

[22] Evans, T. M. et al. A survey of software implementations used by application
codes in the Exascale Computing Project. Int. J. High Perform. Comput. Appl.
36, 5–12 (2021).

[23] Research - Exascale Computing Project (2020). URL https://www.
exascaleproject.org/research. [Online; accessed 05 June 2024].

[24] EU HPC Centres of Excellence (2023). URL https://www.hpccoe.eu/
eu-hpc-centres-of-excellence2. [Online; accessed 25 June 2024].

[25] EuroCC ACCESS (2023). URL https://www.eurocc-access.eu. [Online; accessed
25 June 2024].

[26] Kowalski, K. et al. From NWChem to NWChemEx: Evolving with the
Computational Chemistry Landscape. Chem. Rev. 121, 4962–4998 (2021).

[27] Pototschnig, J. V. et al. Implementation of Relativistic Coupled Cluster The-
ory for Massively Parallel GPU-Accelerated Computing Architectures. J. Chem.
Theory Comput. 17, 5509–5529 (2021).

14

https://www.exascaleproject.org/research
https://www.exascaleproject.org/research
https://www.hpccoe.eu/eu-hpc-centres-of-excellence2
https://www.hpccoe.eu/eu-hpc-centres-of-excellence2
https://www.eurocc-access.eu

[28] Yokelson, D., Tkachenko, N. V., Robey, R., Li, Y. W. & Dub, P. A. Performance
Analysis of CP2K Code for Ab Initio Molecular Dynamics on CPUs and GPUs.
J. Chem. Inf. Model. 62, 2378–2386 (2022).

[29] Gavini, V. et al. Roadmap on electronic structure codes in the exascale era.
Model. Simul. Mater. Sci. Eng. 31, 063301 (2023).

[30] Kim, I. et al. Kohn–Sham time-dependent density functional theory with
Tamm–Dancoff approximation on massively parallel GPUs. npj Comput. Mater.
9, 1–12 (2023).

[31] Galvez Vallejo, J. L. et al. Toward an extreme-scale electronic structure system.
J. Chem. Phys. 159 (2023).

[32] Corzo, H. H. et al. Coupled cluster theory on modern heterogeneous supercom-
puters. Front. Chem. 11, 1154526 (2023).

[33] Schade, R. et al. Breaking the exascale barrier for the electronic structure
problem in ab-initio molecular dynamics. Int. J. High Perform. Comput. Appl.
10943420231177631 (2023).

[34] TOP500.org. June 2024 | TOP500 (2024). URL https://www.top500.org/lists/
top500/2024/06. [Online; accessed 1. Aug. 2024].

[35] Dongarra, J. J., Luszczek, P. & Petitet, A. The LINPACK Benchmark: past,
present and future. Concurrency Computat.: Pract. Exper. 15, 803–820 (2003).

[36] Dongarra, J., Heroux, M. A. & Luszczek, P. High-performance conjugate-gradient
benchmark: A new metric for ranking high-performance computing systems. Int.
J. High Perform. Comput. Appl. 30, 3–10 (2015).

[37] TOP500.org. HPCG - June 2024 | TOP500 (2024). URL https://www.top500.
org/lists/hpcg/2024/06. [Online; accessed 1. Aug. 2024].

[38] ACM Gordon Bell Prize (2024). URL https://awards.acm.org/bell. [Online;
accessed 1. Aug. 2024].

[39] Liu, Y. A. et al. in Closing the ”quantum supremacy” gap: achieving real-time
simulation of a random quantum circuit using a new sunway supercomputer 1–12
(Association for Computing Machinery, New York, NY, USA, 2021).

[40] Das, S. et al. in Large-Scale Materials Modeling at Quantum Accuracy: Ab Initio
Simulations of Quasicrystals and Interacting Extended Defects in Metallic Alloys
1–12 (Association for Computing Machinery, New York, NY, USA, 2023).

[41] Bloomberg and Digitimes. TSMC top 10 customers revealed: Apple accounts
for quarter of revenue (2021). URL https://www.gizmochina.com/2021/12/
15/tsmc-top-10-customers-revealed-apple-accounts-for-quarter-of-revenue/.

15

https://www.top500.org/lists/top500/2024/06
https://www.top500.org/lists/top500/2024/06
https://www.top500.org/lists/hpcg/2024/06
https://www.top500.org/lists/hpcg/2024/06
https://awards.acm.org/bell
https://www.gizmochina.com/2021/12/15/tsmc-top-10-customers-revealed-apple-accounts-for-quarter-of-revenue/
https://www.gizmochina.com/2021/12/15/tsmc-top-10-customers-revealed-apple-accounts-for-quarter-of-revenue/

[Online; accessed 14. Aug. 2024].

[42] GPU NVIDIA H100 Tensor Core (2024). URL https://www.nvidia.com/fr-fr/
data-center/h100. [Online; accessed 2. Sep. 2024].

[43] AMD EPYC™ 9754 (2024). URL https://www.amd.com/en/products/
processors/server/epyc/4th-generation-9004-and-8004-series/amd-epyc-9754.
html. [Online; accessed 2. Sep. 2024].

[44] Sorokin, A., Malkovsky, S. & Tsoy, G. Comparing the performance of general
matrix multiplication routine on heterogeneous computing systems. J. Parallel
Distrib. Comput. 160, 39–48 (2022).

[45] 4th Gen AMD EPYC Review (AMD Genoa) (2022). URL https://
www.storagereview.com/review/4th-gen-amd-epyc-review-amd-genoa. [Online;
accessed 2. Sep. 2024].

[46] Hammond, J. Shifting through the gears of gpu programming: Understanding
performance and portability trade-offs (2022). URL https://www.nvidia.com/
en-us/on-demand/session/gtcspring22-s41620/. Accessed: 2024-06-11.

[47] Intel Inc. Syclomatic. URL https://github.com/oneapi-src/SYCLomatic.
Accessed: 2024-06-11.

[48] Intel oneAPI DPC++/C++ compiler (2024). URL https://www.intel.com/
content/www/us/en/developer/tools/oneapi/dpc-compiler.html#gs.aek6kb.
Accessed: 2024-06-11.

[49] Herten, A. Many cores, many models: GPU programming model vs. vendor com-
patibility overview, SC-W 2023 (ACM, 2023). URL http://dx.doi.org/10.1145/
3624062.3624178.

[50] Carter Edwards, H., Trott, C. R. & Sunderland, D. Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns. Jour-
nal of Parallel and Distributed Computing 74, 3202–3216 (2014). URL https://
www.sciencedirect.com/science/article/pii/S0743731514001257. Domain-Specific
Languages and High-Level Frameworks for High-Performance Computing.

[51] Beckingsale, D. A. et al. Raja: Portable performance for large-scale scien-
tific applications, 2019 IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC), 71–81 (2019).

[52] Matthes, A. et al. Tuning and Optimization for a Variety of Many-Core Archi-
tectures Without Changing a Single Line of Implementation Code Using the
Alpaka Library, 496–514 (Springer International Publishing, 2017). URL http:
//dx.doi.org/10.1007/978-3-319-67630-2 36.

16

https://www.nvidia.com/fr-fr/data-center/h100
https://www.nvidia.com/fr-fr/data-center/h100
https://www.amd.com/en/products/processors/server/epyc/4th-generation-9004-and-8004-series/amd-epyc-9754.html
https://www.amd.com/en/products/processors/server/epyc/4th-generation-9004-and-8004-series/amd-epyc-9754.html
https://www.amd.com/en/products/processors/server/epyc/4th-generation-9004-and-8004-series/amd-epyc-9754.html
https://www.storagereview.com/review/4th-gen-amd-epyc-review-amd-genoa
https://www.storagereview.com/review/4th-gen-amd-epyc-review-amd-genoa
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41620/
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41620/
https://github.com/oneapi-src/SYCLomatic
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html#gs.aek6kb
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html#gs.aek6kb
http://dx.doi.org/10.1145/3624062.3624178
http://dx.doi.org/10.1145/3624062.3624178
https://www.sciencedirect.com/science/article/pii/S0743731514001257
https://www.sciencedirect.com/science/article/pii/S0743731514001257
http://dx.doi.org/10.1007/978-3-319-67630-2_36
http://dx.doi.org/10.1007/978-3-319-67630-2_36

[53] Alpay, A., Soproni, B., Wünsche, H. & Heuveline, V. Exploring the possibility of a
hipsycl-based implementation of oneAPI, IWOCL ’22 (Association for Computing
Machinery, New York, NY, USA, 2022). URL https://doi.org/10.1145/3529538.
3530005.

[54] Markomanolis, G. S. et al. Evaluating GPU Programming Models for the LUMI
Supercomputer, 79–101 (Springer International Publishing, 2022). URL http:
//dx.doi.org/10.1007/978-3-031-10419-0 6.

[55] Kim, J. et al. Qmcpack: an open source ab initio quantum monte carlo package for
the electronic structure of atoms, molecules and solids. Journal of Physics: Con-
densed Matter 30, 195901 (2018). URL https://dx.doi.org/10.1088/1361-648X/
aab9c3.

[56] Gonze, X. et al. The abinit project: Impact, environment and recent develop-
ments. Comput. Phys. Commun. 248, 107042 (2020). URL https://doi.org/10.
1016/j.cpc.2019.107042.

[57] Ben, M. D. et al. Accelerating large-scale excited-state gw calculations on
leadership hpc systems, 1–11 (2020).

[58] Ratcliff, L. E. et al. Flexibilities of wavelets as a computational basis set for large-
scale electronic structure calculations. The Journal of Chemical Physics 152,
194110 (2020). URL https://doi.org/10.1063/5.0004792.

[59] Kühne, T. D. et al. CP2K: An electronic structure and molecular dynamics
software package - Quickstep: Efficient and accurate electronic structure calcu-
lations. The Journal of Chemical Physics 152, 194103 (2020). URL https:
//doi.org/10.1063/5.0007045.

[60] Blum, V., Rossi, M., Kokott, S. & Scheffler, M. The fhi-aims code: All-electron,
ab initio materials simulations towards the exascale (2022). 2208.12335.

[61] Kowalski, K. et al. From nwchem to nwchemex: Evolving with the computational
chemistry landscape. Chemical Reviews 121, 4962–4998 (2021). URL https:
//doi.org/10.1021/acs.chemrev.0c00998.

[62] Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-
Chem 4 program package. Molecular Physics 113, 184–215 (2014). URL http:
//dx.doi.org/10.1080/00268976.2014.952696.

[63] Carnimeo, I. et al. Quantum ESPRESSO: One Further Step toward the Exascale.
J. Chem. Theory Comput. 2023 (2023).

[64] Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector
augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). URL https:
//link.aps.org/doi/10.1103/PhysRevB.59.1758.

17

https://doi.org/10.1145/3529538.3530005
https://doi.org/10.1145/3529538.3530005
http://dx.doi.org/10.1007/978-3-031-10419-0_6
http://dx.doi.org/10.1007/978-3-031-10419-0_6
https://dx.doi.org/10.1088/1361-648X/aab9c3
https://dx.doi.org/10.1088/1361-648X/aab9c3
https://doi.org/10.1016/j.cpc.2019.107042
https://doi.org/10.1016/j.cpc.2019.107042
https://doi.org/10.1063/5.0004792
https://doi.org/10.1063/5.0007045
https://doi.org/10.1063/5.0007045
2208.12335
https://doi.org/10.1021/acs.chemrev.0c00998
https://doi.org/10.1021/acs.chemrev.0c00998
http://dx.doi.org/10.1080/00268976.2014.952696
http://dx.doi.org/10.1080/00268976.2014.952696
https://link.aps.org/doi/10.1103/PhysRevB.59.1758
https://link.aps.org/doi/10.1103/PhysRevB.59.1758

[65] Blum, V. et al. Roadmap on methods and software for electronic structure based
simulations in chemistry and materials. Electronic Structure (2024). URL http:
//iopscience.iop.org/article/10.1088/2516-1075/ad48ec.

[66] Borštnik, U., VandeVondele, J., Weber, V. & Hutter, J. Sparse matrix multipli-
cation: The distributed block-compressed sparse row library. Parallel Comput-
ing 40, 47–58 (2014). URL https://www.sciencedirect.com/science/article/pii/
S0167819114000428.

[67] Asadchev, A. & Valeev, E. F. High-performance evaluation of high angu-
lar momentum 4-center gaussian integrals on modern accelerated processors.
The Journal of Physical Chemistry A 127, 10889–10895 (2023). URL https:
//doi.org/10.1021/acs.jpca.3c04574.

[68] Asadchev, A. & Valeev, E. F. 3-center and 4-center 2-particle gaussian ao integrals
on modern accelerated processors (2024). 2405.01834.

[69] Scemama, A. QMCkl: A Unified Approach to Accelerating Quantum Monte Carlo
Codes (2024). URL https://doi.org/10.5281/zenodo.10622933.

[70] Cc4s User Documentation (2022). URL https://cc4s.github.io/user-manual.
[Online; accessed 5. Jun. 2024].

[71] Hasik, J., Poilblanc, D. & Becca, F. Investigation of the Néel phase of the frus-
trated Heisenberg antiferromagnet by differentiable symmetric tensor networks
(2020). URL https://scipost.org/submissions/scipost 202011 00009v2. [Online;
accessed 5. Jun. 2024].

[72] Fishman, M., White, S. & Stoudenmire, E. M. The ITensor Software Library for
Tensor Network Calculations. SciPost Phys. Codebases 004 (2022).

[73] Menczer, A. et al. Parallel implementation of the Density Matrix Renormalization
Group method achieving a quarter petaFLOPS performance on a single DGX-
H100 GPU node. arXiv (2024).

[74] Calvin, J. A., Lewis, C. A. & Valeev, E. F. Scalable task-based algorithm for mul-
tiplication of block-rank-sparse matrices (Association for Computing Machinery,
New York, NY, USA, 2015). URL https://doi.org/10.1145/2833179.2833186.

[75] Solomonik, E., Matthews, D., Hammond, J. R., Stanton, J. F. & Demmel, J. A
massively parallel tensor contraction framework for coupled-cluster computations.
Journal of Parallel and Distributed Computing 74, 3176–3190 (2014).

[76] Matthews, D. A. High-Performance Tensor Contraction without Transposi-
tion. SIAM J. Sci. Comput. (2018). URL https://epubs.siam.org/doi/10.1137/
16M108968X.

18

http://iopscience.iop.org/article/10.1088/2516-1075/ad48ec
http://iopscience.iop.org/article/10.1088/2516-1075/ad48ec
https://www.sciencedirect.com/science/article/pii/S0167819114000428
https://www.sciencedirect.com/science/article/pii/S0167819114000428
https://doi.org/10.1021/acs.jpca.3c04574
https://doi.org/10.1021/acs.jpca.3c04574
2405.01834
https://doi.org/10.5281/zenodo.10622933
https://cc4s.github.io/user-manual
https://scipost.org/submissions/scipost_202011_00009v2
https://doi.org/10.1145/2833179.2833186
https://epubs.siam.org/doi/10.1137/16M108968X
https://epubs.siam.org/doi/10.1137/16M108968X

[77] The exponential growth of AI computation (2024). URL https://thescience.dev/
the-exponential-growth-of-ai-computation/. Accessed: 2024-07-05.

[78] Cottier, B., Rahman, R., Fattorini, L., Maslej, N. & Owen, D. The rising costs
of training frontier AI models (2024). URL https://arxiv.org/abs/2405.21015.
2405.21015.

[79] Bhattacharya, T. et al. AI meets exascale computing: Advancing cancer research
with large-scale high performance computing. Frontiers in Oncology 9 (2019).
URL https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2019.
00984.

[80] Ang, J. A., Barker, K. J., Vrabie, D. L. & Kestor, G. Codesign for extreme het-
erogeneity: Integrating custom hardware with commodity computing technology
to support next-generation hpc converged workloads. IEEE Internet Computing
27, 7–14 (2023).

[81] Pfau, D., Spencer, J. S., Matthews, A. G. D. G. & Foulkes, W. M. C. Ab
initio solution of the many-electron schrödinger equation with deep neural net-
works. Phys. Rev. Res. 2, 033429 (2020). URL https://link.aps.org/doi/10.1103/
PhysRevResearch.2.033429.

[82] Hermann, J., Schätzle, Z. & Noé, F. Deep-neural-network solution of the elec-
tronic schrödinger equation. Nature Chemistry 12, 891–897 (2020). URL
http://dx.doi.org/10.1038/s41557-020-0544-y.

[83] Abts, D. & Kim, J. Enabling artificial intelligence supercomputers with domain-
specific networks. IEEE Micro 44, 41–49 (2024).

[84] AI and compute (2018). URL https://openai.com/index/ai-and-compute/.
Accessed: 2024-06-11.

[85] Chandrasekaran, A. et al. Solving the electronic structure problem with machine
learning. npj Computational Materials 5 (2019). URL http://dx.doi.org/10.1038/
s41524-019-0162-7.

[86] Batatia, I. et al. A foundation model for atomistic materials chemistry. arXiv
(2023).

[87] Jain, A. et al. The Materials Project: Accelerating Materials Design Through
Theory-Driven Data and Tools, 1–34 (Springer International Publishing, 2018).
URL http://dx.doi.org/10.1007/978-3-319-42913-7 60-1.

[88] Fare, C., Fenner, P., Benatan, M., Varsi, A. & Pyzer-Knapp, E. O. A multi-fidelity
machine learning approach to high throughput materials screening. npj Computa-
tional Materials 8 (2022). URL http://dx.doi.org/10.1038/s41524-022-00947-9.

19

https://thescience.dev/the-exponential-growth-of-ai-computation/
https://thescience.dev/the-exponential-growth-of-ai-computation/
https://arxiv.org/abs/2405.21015
2405.21015
https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2019.00984
https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2019.00984
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033429
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033429
http://dx.doi.org/10.1038/s41557-020-0544-y
https://openai.com/index/ai-and-compute/
http://dx.doi.org/10.1038/s41524-019-0162-7
http://dx.doi.org/10.1038/s41524-019-0162-7
http://dx.doi.org/10.1007/978-3-319-42913-7_60-1
http://dx.doi.org/10.1038/s41524-022-00947-9

[89] Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial
neural networks. Science 355, 602–606 (2017).

[90] Wilson, M. et al. Neural network ansatz for periodic wave functions and the
homogeneous electron gas. Phys. Rev. B 107, 235139 (2023). URL https://link.
aps.org/doi/10.1103/PhysRevB.107.235139.

[91] Han, J., Zhang, L. & E, W. Solving many-electron schrödinger equation using
deep neural networks. Journal of Computational Physics 399, 108929 (2019).
URL https://www.sciencedirect.com/science/article/pii/S0021999119306345.

[92] Lehtola, S. A call to arms: Making the case for more reusable libraries. J. Chem.
Phys. 159 (2023). URL https://doi.org/10.1063/5.0175165.

[93] Kulik, H. J. et al. Roadmap on Machine learning in electronic structure. Electron.
Struct. 4, 023004 (2022). URL https://dx.doi.org/10.1088/2516-1075/ac572f.

20

https://link.aps.org/doi/10.1103/PhysRevB.107.235139
https://link.aps.org/doi/10.1103/PhysRevB.107.235139
https://www.sciencedirect.com/science/article/pii/S0021999119306345
https://doi.org/10.1063/5.0175165
https://dx.doi.org/10.1088/2516-1075/ac572f

	Rationale and scope
	The transition to exascale
	Hardware: The changing landscape of computational power
	Software: The challenge of increasing fragmentation
	QM computation in the current HPC landscape
	AI and quantum simulations
	Outlook and conclusions
	Acknowledgments

