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Introduction
general idea

● Traditional historical linguistics approaches are anchored on the comparative method 

(Campbell, 2013).

● Discrete (non mutually exclusive) steps often involved in the comparative method 

(Weiss, 2015)
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Introduction
general idea

[ wordlist ]

Hypothesis                                                         CM 

p.c (Fabian Zuk)                                   

Language Family Time-depth Proto-form Cognates

French Romance ~1000 cane [ kane ] chien [ ʃiɛ̃ ]

Italian Romance ~1000 cane [ kane ] cane [ kane ]

Spanish Romance ~1000 cane [ kane ] can   [ kan ]
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Introduction
general idea

● Since the beginning of the 20th century, attempts have been made to automate some of 

the steps involved in the CM:

○ Cognate identification: words that are related, especially in form – see Jäger

2019

○ Establishment of sound correspondences –see List et al. 2022, Kim et al 2023

○ Proto-form reconstruction- See Meloni et al 2021 for instance

○ Time-depth estimation – See Gray & Atkinson 2003, 2006

○ Phylogenetic relationships – See Rama et al. 2018

● This paper concerns automatic methods for cognate detection. 
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Introduction
cognacy

● Cognates can be of different forms depending on phonetic and semantic properties.

● Phonetics:

○ Lexemes can manifest high phonetic transparency i.e. “strong cognacy”, or opaque phonetic properties i.e. 

“weak cognacy” (Meelen & Hill 2022: 52)

● Semantics:

○ Lexemes can manifest semantic equivalence i.e. “synonymous cognates” or a weak semantic correlation 

i.e. “non-synonymous” (Koch & Hercus 2013:34)

● In this paper, I consider: 

○ Strict cognacy = phonetically strong, semantically synonymous e.g. Ger. herz vs. Eng. heart

○ Partial cognacy = less than the full phonetic and semantic form is available eg. Ger. walfisch vs. Eng. 

whale

● Not considered are synchronic forms involved in ‘dialexification’ (cf. François & Kalyan 2023): 

Albanian. gardh ‘yard’ vs Romani. kher “family”

PIE root.                    *gʰerdʰ- ‘enclose’ 6



Introduction
automatic cognate detection

● A critical component of automatic cognate detection involves word similarity

calculation which is then followed by cognate alignment (Rama et al. 2018: 

4).

● Word similarity calculation:

● Semantic similarity: similarity based on traditional methods (comparative 

concepts) –Forkel et al (2018) , or on corpus properties - (Kondrak, 2001) 

● Phonetic similarity: similarity based on particular metric which can be feature-

based – Kondrak (2000) or  class-based (List, 2012)

● In this paper, automatic cognate detection involves comparative concepts and 

class-based distances.
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Introduction
Automatic cognate detection

● Attempts to improve results of automatic cognate detection have not only 

been concerned with similarity metric innovation, but also:

○ Model-experimentations:

○ Jager et al (2014) use a SVM to automate the process, while Konojia et al 

(2021a) use a feed-forward neural network 

○ Feature-enrichment:

■ Konojia et al (2021b) for instance introduce a feature-enriched dataset that 

is feed into various machine learning models
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Introduction
Automatic cognate detection 

● A critical factor that can influence the quality of automatic cognate detection 

involves the quality of data (List, 2017). 

● In other words, tasks which are generally referred to as “low-level” - see 

Mikheev 2022: 550, are critical to the results obtainable.

● Nevertheless, to our knowledge, there is no dedicated study seeking to 

understand to the relationship between data quality and improvement of 

automatic cognate detection.

9



Introduction
Objectives

● The objectives of this paper are two-fold:

○ Understand how data ‘quality’ influences results obtained by automatic 

cognate detection techniques

○ Examine the consequences of change in data ‘quality’ on tasks further 

upstream in the automated historical comparative method workflow
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The Dogon languages
Relevant typological features

From wikipedia
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The Dogon languages
Relevant typological features

● The vowel inventory usually consists of seven vowel qualities, short and long. 

Nasalized counterparts, long and short are also available. 

● The consonantal inventory usually includes nasalized sonorant [wn], [yn] and [rn] –

(Heath 2015:7).  

● There is often ATR harmony in the languages.

● Dogon languages are tonal languages, with the particularity of syntactic categories 

exhibiting a complex tonal controller/non-controller dichotomy (McPherson 2014:60)

● Controllers trigger tonal overlay; non-controllers do not.

TommoSo

gámmá=gɛ ‘the cat’ (N Def)  = Def is a non-controller

gàmmà gɛ́m ‘black cat’ (N Adj) = Adj is a controller
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The Dogon languages
Relevant typological features

● The favored syllabic structures are Cv, CvCv, CvNcv, and CvCvCv. 

● Morphologically, Dogon languages have agglutinative features. Thus, various “affixes” can attach to 
stems.
○ Eg. adjectives in YandaDom can have an inchoative and factitive with one or more derivational 

suffixes involved in the process (Heath 2017:238/239).

‘hot’ inchoative     factitive
ɔ̀jú ɔ́j-jɛ́ ɔ́j-jɛ́-mɛ́

● Verbs generally, have allomorphic forms (usually instantiated with an ATR harmony paradigm)with 
each form of the verb exponenting various TAM categories.
○ For instance while the bare stem in TebulUre typically expresses perfectivity, the A/X stem expresses 

imperfectivity (Heath 2023: 21/22). 

TebulUre
‘abandon’

dɔ̀gɔ́ bare stem

dɔ̀gɛ́-∅ 3sg simple perfective  E/I stem

dɔ́gà-m-dɔ̀-∅ 3sg imperfective         A/X stem
13



Methodology

● Data preprocessing

● Word segmentation

● Cognate detection

● Cognate evaluation

14



Methodology
Data preprocessing

● Data is from Dogon and Bangime Linguistics project (Moran et al. 2016), 

curated in CLDF (Forkel et al. 2018),  and available as `heathdogon` on GitHub. 

● Data cleaning and conversion includes the following steps:

● Formatting data so each form is defined with unique ID, and first row specifies 

language, form and concept, just as prescribed by List et al (2018)

● Running an orthography profile to harmonize graphemes for computation, by using 

the segments package (Forkel et al 2019)

● Identifying concept coverage rate in various languages and choosing languages that 

meet the required threshold (i.e. 288)
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Methodology
Data preprocessing

● Cleaned data had 20 languages with a mutual coverage number of 288.
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Methodology
Word segmentation

● Based on the grammars available for the Dogon languages, different parsing 

rules were applied to the data via scripts written in python.

● Four datasets.

● No parse dataset: the raw preprocessed data

● Phonetically parsed dataset: long vowels and tones parsed

● Morphologically parsed dataset: phonetic and identified suffixes parsed

● Morpho-phonotactically parsed dataset: morphological and phonotactic parsing

Eg: BankanTey “goatkid”No parsing Phonetic parsing Morphological parsing Morpho-phonotactic parsing

b ɛ r j i m b ɛ̀ r j î m b ɛ̀ r j î + m b ɛ̀ r + j î + m

goatkid.ANM goatkid.ANIM goatkid-ANIM “goat-kid-ANIM
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Methodology
Cognate detection

● The LexStat algorithm is used for cognate detection (List, 2012).

○ Converts sequences into sound classes

○ Calculates language specific scoring schemes

○ Calculates pairwise distances

○ Undertakes Sequence clustering

○ A distance matrix can be obtained; as well as alignments, for visualization

● LexStat is available in the Lingpy library (in python).

● Full and Partial cognate detections are carried out on all four datasets –

LexStat can be used for both (List et al. 2016)
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Methodology
Cognate detection

Full cognate detection

Two things to note:

a. full=1 row, 1 cogid

partial=1 row, multiple cogids

b. counting cognate rows = favoring full 

Partial cognate detection
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Methodology
Cognate detection

● Cognacy results are evaluated in two ways:

○ Computing cognacy scores: statistics on cognacy

○ Assessing cognacy goodness: clustering and comparison to qualitative ‘ground-

truth’

● Computing cognacy scores:

○ Number of unique cognate pairs (cogids and concepts)

○ Number of unique concepts involved in cognate pairs

○ Number of rows involved in cognate pairs

○ Proportion of data with cognacy

○ average number of cognate items per concept

● Cognacy scores favor full cognate detection as they are  cogid count based. 

20



Methodology
Cognate evaluation

● Assessing cognacy goodness is done via a three-step process:
○ Computing distance matrix

○ Clustering distance matrix

○ Comparing resulting clusters to a ‘field-linguist ground truth’

● Computing distance matrix:

○ aggregated computed distances via LexStat for all languages

● Clustering distance matrix
○ processing distance matrix into a condensed form

○ Hierarchical clustering of distance matrix using average-linkage clustering

● Comparing resulting clusters to ground truth
○ Clusters obtained are compared to a qualitatively generated organization of Dogon 

languages (Heath 2012)
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Methodology
Cognate evaluation

Generated cluster vs. field linguist ground truth:

vs.

● Computed scores:                                                                                  Moran & Prokić (2013:12)

○ Adjusted Rand score: Measures the similarity between clusterings, adjusting for random chance

○ Normalized mutual information score: Quantifies shared information between the true and predicted clusters

○ Fowlkes-Mallows score: Balances precision and recall of cluster assignment

○ Homogeneity score: Checks whether each cluster contains only samples from one class

○ Completeness: Ensures that all samples from a class are in the same cluster

○ V-Measure: Combines homogeneity and completeness into a single score
22



Results

● For purposes of recall:

○ Parsing types: no parsing, phonetic parsing, morphological parsing, 

morphophonological parsing

○ Cognacy type: full cognacy vs. partial cognacy

○ Cognacy performace: cognacy scores vs. cognacy goodness 

● First : results of parsing type vs. cognacy type

● Then : results of cognacy type vs. cognacy performace
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Results
No parsing

● Full cognacy performs best on unparsed data.
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Results
Phonetic parsing

● Full cognacy performs best on scores, but both cognacy types have equal goodness.
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Results
Morphological parsing

Full cognacy has better scores, but partial cognacy has better goodness.
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Results
Morpho-phonotactic

● Full cognacy performs better both in terms of scores and goodness.

27



Results
Interim summary 1

● Full cognacy produces better results when data is not parsed.

● Similar performance for both full and partial cognacy when data is parsed 

phonetically.

● Partial cognacy seems to perform better when data is morphologically parsed.

● Partial cognacy performs better once phonotactic information is introduced into 

morphological parsing.

● It is fascinating to note the correlation between linguistic level and cognacy type:

○ Phonetic = full cognacy

○ Morphological = partial cognacy

● Once phonotactic information is entered into morphological parsing, the trend 

reverses.
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Results
Full  cognacy, cognacy statistics

● Cognacy scores improve with increased parsing.
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Results
Full cognacy, cluster goodness

● Cognacy goodness decreases and stagnates with increased parsing.
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Results
Partial cognacy, cognacy statistics

● Cognacy scores improve with increased parsing.

31



Results
Partial cognacy, cognacy goodness

● Goodness improves with morphological parsing but degrades with morpho-phonotactic.
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Results
Interim summary 2

● For both full and partial cognacy, increased parsing increases cognacy

scores.

● Cognacy goodness is not uniform:

○ Full cognacy: goodness drops with parsing, and then stagnates

○ Partial cognacy: on the average goodness increases beyond phonetic parsing, but 

degrades during morpho-phonotactic parsing (total of goodness measures = 0.95, 

0.95, 0.98, 0.8 respectively)

● There seems to be a parsing threshold trigger for degraded performance of 

partial cognacy.

● “Degrader” trigger threshold seems to be at the phonotactic level
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Results
Discussion

● Given that cognacy statistics inherently favor full cognacy, cognacy

goodness seems a better measure of performance. 

● Results show that full cognacy performance can be characterized as unparsed 

vs parsed:
○ Performance degrades with parsing and stagnates no matter parsing level

● Partial cognacy on the other hand indicates an increased performance with 

increased parsing
○ This is however conditioned by a phonotactic threshold (noted degradation for 

morphonotactic parsing)

● Two facts are thus to be noted:
○ Full cognacy favors unparsed data

○ Partial cognacy favors parsed data, albeit with a phonotactic threshold
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Results
Discussion

● Results can be modelled via:

○ Negative binomial regression: cognate pairs, cognate concepts, rows with cognacy.

○ Binomial logistic regression:  cognacy proportion.

○ Linear regression: average cognate per concept.

○ Linear regression: cognacy goodness.
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Results
Discussion

Positive coefficients confirm positive correlation between parsing and cognacy scores. 
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Results
Discussion

● Coefficient interpretation:
○ Parsing unit: none =>phonetic =>morphological =>morpho-phonotactic

● For variables modelled with a linear regression model, coefficient represents change 

in mean of variables.

Y = β0+β1X1+β2X2+⋯+βkXk

● Percentage change is represented by:

Percentage change = βi × 100 

Mean of Xi

● A one-unit change in parsing level is thus associated with a 6 percent increase in 

average cognates per concept (mean=3.09, coefficient = 0.19).  
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Results
Discussion

● For variables modelled with a negative binomial regression or a binomial logistic 

regression, coefficients represent change in log of expected count for a one-unit 

change in parsing level.

log(λi ) = β0+β1X1+β2X2+⋯+βkXk

● Exponentiated coefficients (IRR) indicate that for a one-unit increase in parsing level, 

expected cognacy score increases by a factor IRR holding all other variables constant 

(Buis 2010).

Exp(βj) = eβ
j     

Variable Coefficient Exponentiated coefficient(IRR) Percentage Change(IRR-1)*100

Cognate pairs 0.168182 1.183152 18.3%

Cognate concepts 0.106065 1.111894 11.2%

Rows with cognacy 0.166776 1.181490 18.1%

Cognacy proportion 0.178540 1.195470 19.5%
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Results
Discussion

● The slightly negative coefficients confirm the overall rise-and-degrade relation between parsing 

and partial cognacy goodness. 

● A one unit change in parsing level associates with the coefficient value changes in the means of 

the goodness scores.
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Results
Discussion

● Modelled without morpho-phonological parsing, coefficients of partial cognacy goodness see 

improvement. 

● A one unit change in parsing level now associates with a mostly positive change in means of 

goodness scores.
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Conclusion

● This study has sought to understand the effects of morphological segmentation on the 

quality of computer –assisted comparative historical work.

● It has shown that, for unsegmented-unparsed data, full cognacy is the most adequate 

method; segmented data is best fitted for partial cognacy detection (or vice-versa).

● It has been demonstrated that while these effects are easy to observe in cognate 

scores, in cognacy goodness tests, the relationship is nuanced.

● For cognacy scores:

● The higher the linguistic level of parsing, the higher the  cognates detected

● But, higher cognate numbers does not necessarily translate into higher goodness

● For cognacy goodness: 

● Goodness stagnates with higher parsing for full cognacy

● Goodness accelerates with higher parsing for partial cognacy, but degrades with morpho-phonotactic 

information
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Conclusion

● The suggestion then is that, cognate detection is further optimized when data is 

fed with linguistically richer information, with controls set for thresholds.

● The results obtained from this study are pertinent for two reasons:

● Optimal methods detected in this study are being transfered to workflows defined for 

the BANG project.

● Results obtained will influence data preprocessing techniques to be adopted during

(new) data integration.

● Other projects employing computational techniques can be inspired by the results.

● Results nevertheless raise few questions:
○ Which specific feature triggers goodness degradation (CV, CVC. CVCC etc.)?

○ Are there any relationships between ground-truth variables and parsing variables?
For eg. will a ground-truth constructed on morphological paradigms have any consequence for 

morphologically parsed data as opposed to other parsings?
42



Thank you
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