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Abstract: This paper considers the statistical inference for stationary time series
under weak assumptions. Firstly, a frequency domain approach is proposed
for fast estimation based on a one step procedure. This method correct an
initial Whittle guess estimator on a subsample by a single Fisher scoring step.
The resulting estimator shares the same asymptotic properties of the Whittle
estimator on the whole sample and reduce drastically the computation time.
Secondly, the asymptotic covariance matrix of the Whittle estimator is estimated
for full inference solving an open question raised by [40].
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1. Introduction

The Whittle log-likelihood is an approximation of Gaussian log-likelihood used
for parametric estimation. The Whittle estimator (WE) is obtained by optimiz-
ing the Whittle log-likelihood. Consistency and asymptotic normality of this
estimator were obtained in [21, 18, 19] under some regularity assumptions on
the spectral density. In the Gaussian setting, this estimator is asymptotically
efficient and shares the same asymptotic properties as the maximum likeli-
hood estimator (MLE) (see [35] for more details on the MLE). Quite recently,
the Whittle approach was adapted for non-Gaussian time series by [40]. He
showed under some assumptions on the spectral density and the fourth or-
der cumulant spectra of the dependent errors that the WE is asymptotically
Gaussian with classical v/n rate. Unfortunately, the WE and the MLE are not in
closed form and numerical optimization is necessary to obtain a feasible esti-
mation. For these estimators, the numerical implementation is time consuming
and could be unstable for the MLE. It is therefore interesting to construct an
estimator which shares the same asymptotic properties as the WE and reduces
the computation time.
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To achieve this goal, we will adapt the one-step procedure presented in [34]
for independent and identically distributed random variables. In this method,
a unique Fisher scoring step on the log-likelihood is performed, starting from
an initial /n-consistent estimator. The obtained estimator, called one-step, is
quickly computed while retaining the same limit properties of the WE. This
method has been successfully extended for diffusion processes [31, 25], ergodic
Markov chains [33], high frequency fractional Gaussian noise [15], stable noise
[14] and more recently for temporal domain weak FARIMA models [4]. Roughly
speaking, the asymptotic properties of the one-step estimator are obtained un-
der the Sweeting conditions [44].

In our approach, the WE on a subsample of size [n®] is considered as an
initial guess estimator. Since the initial guess estimator is only n%2-consistent,
a stochastic Lipschitz condition of the Hessian matrix is needed to obtain the
asymptotic properties of the one-step estimator. The limit properties will be
proved under the same standard conditions on the spectral density (as in
[18, 35]) and under some assumptions on the integrability of the moment and
the summability of the joint cumulant of the noise process.

In order to establish full inference tools, we also consider the estimation of the
covariance matrix which remained an open problem raised by [40]. To this end,
we adapt the estimators of [45] and [32], initially developed for short-memory
time series data, to include long-memory models.

The paper is structured as follow. Section 2 is devoted to the presentation
of the main results on the estimation procedure. In this section, we also pro-
pose a consistent estimator of the asymptotic covariance matrix of the Whittle
estimator. A Monte-Carlo study is conducted in Section 3 in order to illustrate
the performances of the one-step Whittle estimator via numerous examples.
Conclusion and perspectives are given in Section 4. The technical proofs and
auxiliary results are collected in Section 5.

2. Main results
2.1. One-step estimation

Let (X;)icz be a second order stationary process. By the Wold representation,
the process can be written as

Xe=p+) bioer, @1

j=0

where b9 € {* (IN), 0 € © C IR? is an unknown parameter to be estimated and
(¢t)iez is @ weak white noise of variance 02, admitting the following represen-
tation:

e =G(..., w1, wy),
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where (wy)iez is a sequence of i.i.d. random variables, and G is a measurable
function for which ¢; is well-defined. The parameter space © is assumed to
be compact in R?. It is worth mentioning that the noise (&;)iez is assumed to
be only uncorrelated, not necessarily independent nor a martingale difference.
The parameter u is considered a nuisance parameter which is not restrictive
here and can be easily estimated.

The spectral density of (X;),.z is therefore given for any A € [-7t, ] by

O_Z
fe (W)= 5,80 ), (2.2)
where 9 = (6, (72> and
o 2
g0 (N) =) exp(ijA)bjo (2.3)
=0

Given a realization (Xj, X», . .., X;;) of length 11, we consider the following Whit-
tle log-likelihood contrast function
In (1)

")

with A; =2nj/n, je{1,...,n -1} and I, () is the periodogram defined by

-1
£V @) = o Y log fs (1 (2.4)
j=1

n 2

Y exp (ikA) X;

k=1

)= 5 25)

We make the following standard assumptions on the spectral density of the
process and the joint cumulants of the noise:

(A1) We assume that:

e for any 9 € ©, fy(A) is three-times continuously differentiable on ©. In
addition, for any 0 < ¢ < 3, the partial derivative

O’;t’

29, ...as,-ffs @,

is continuous on © X [-7t, T]\{0}, continuously differentiable with respect
to A and its partial derivative

af+1

FYCEI .asj[fs @,

is continuous on © X [—m, 7]\ {0}.
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o There exists a continuous function a : ® —] — 1, 1], such that for any
compact set @ C O and 6 > 0, the following conditions hold for all
(9, A) € ® x [-7m, m]\{0}:

cLse O < f3 (N) < cpper A0

Moreover, for any £ € {0,1,2,3}and any j € {1,...,p + 1}[,

s —a(9)-1-6
'mfs (V)] < 30 A
and 5
‘mfs ()| < caper A2,

where ¢; 5@+ are some positive finite constants that depend only on 6 and
.
(A1) The spectral density fs verifies the same assumptions as in (A1) with
€ =4.

(A2) 99 # 9, implies that the set {/\ | for (A) # fs, (/\)} has positive Lebesgue
measure.

(A3) Suppose that E[¢}] < oo and that tho(]E[|et - ¢ 4])1/4 < oo, where ¢} =
G(..., w1, wj,ws, ..., w;) with (w})iez being an i.i.d. copy of (w;)sez.

(A%) Z(j,k,(’)ez3

cum (60, Ej, Eky 85)| < 090,

,,,,,

jkcum(so,eh,...,eﬁﬂ < oo,

Remark 2.1. Obviously, (A5) implies (A4). Assumption (A5) is technical and only
needed for proving the consistency of the estimator of the limiting covariance matrix.

Remark 2.2. Under (A4), the bispectrum of the process (&;),ez is given by

1 .

fa (4) = 3 Z cum (€o, €k, €kys Eky) EXP (—z <A, l_<>) , (2.6)
@1 i Sz

where A € [-T, n]3 . Note that under (A4), f4 is continuous and bounded.

Remark 2.3. Assumption (A1) is satisfied for a large class of long memory processes
including the well known FARIMA models (see for example [18]).

The following proposition is a slight modification of [40, Theorem 2.1] and
its proof is postponed to Subsection 5.2.

Proposition 2.1. Consider

9, = argmin £} (9). (2.7)
Je®
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Under (A1)-(A4), we have

Vit (9, - 9) —f? N(0.Z(® T WE® I, 2.8)
where ™ 9log fs (A) dlog fs (1)
og fs og fs
r= 4n (In 99k 99, A)1<k,j<d 22
and
W©) =5 ( f f i, =1z, 1 B IV TR D dAz) +I(9).
] 1<k, j<d
'2.10)

Remark 2.4. When the process is Gaussian, fy = 0 and the limiting covariance matrix
is reduced to {I (9)}~L. This is a well-known result presented in [21, 18].

In practice, the computation of the Whittle estimator S, requires a numerical
optimization of the objective function (2.4) which can be time consuming for
large samples. To improve significantly the computation costs, we introduce a
one-step estimator.

Starting from an initial guess estimator 9, of 9, the one-step corrected esti-
mator is defined by

Su=8,-1(5,) VLl (8). 2.11)
Theorem 2.1. Let :5,, such that
ne (g,, —S) = Op (1) for some % <o6<1
Under Assumptions (A1)-(A4), we have
Vi (S, - 9) ﬁ N(0.Z(®)TWE®)I()™). (2.12)

The proof of this theorem is given in Subsections 5.3.

Remark 2.5. One possible initial estimator which satisfies our assumptions is the
Whittle estimator evaluated on a subsample of size [n®], 1/2 < 6 < 1. If6 <1/2,
the one-step estimator remains consistent but needs multiple Fisher scoring steps to
reach similar asymptotic normality as the one given in Theorem 2.1. Furthermore, the
limiting variance matrix I (8) can be replaced by the second derivative of the Whittle
log-likelihood function.

2.2. Estimation of the asymptotic covariance matrix

The limit covariance matrix of the one-step estimator 9, involves the bispectral
density in an integral form, namely

(ffﬁ Ay - )\2,/\2)&long(Al)along(AZ)d/\ld/\z . @13

99, 1<k j<d
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This quantity depends on the unobservable noise and needs to be estimated
from the observations. This is necessary to achieve full inference analysis. When
the process is directly observable, [45, 32] proposed an estimation of this integral
term. We extend there results to the unobservable noise in order to estimate the
matrix in (2.13). Here we consider that the process satisfies

(1-L)" X, = u, (2.14)
where
w=Ag, (e =Y a;(O0)er . (215)
>0

The real number d; is the long memory parameter, L stands for back-shift
operator and (&;),cz is a weak white noise. The fractional difference operator

1- L)d(‘ admits the following expansion:

-0y =) a;d)L,
j>0
where )
I'(j — do)

I'(j+1)T (~do)
and I' () is the Gamma function. The filter Ag, (L) describes the short-memory
part of the process (X;);cz while the filter (1 — L)% is for, eventually, the long-
range dependence. The parameter 9 = (d,0) is assumed to belong to ©® =
[d1,d>] X E where [d1,d;], E are compact subsets of (-1/2,1/2) and Rr1 respec-
tively. Z is a compact subspace of RP~! such that the filter Ag (L) is invertible
for any O € E. The inverse of Ag (L) is denoted by Ag (L) (generic conditions to
ensure the inversibility of the filter Ag (L) can be found in [26]). Since we only
observe Xi, ..., X,, we define, for any 9 € ® and 1 < t < 1, the process

aj (do) =

& (9) = Ag (L) (1 - L) (X121} - (2.16)

Finally, let H be a continuous function with support in [-7, 7] such that

f::H(/\)d/\:l

n

wy (A) = Z exp (—ijA) €; (5,1) .

=1

Letl = {— [g] , [%]} \{0}, we denote

A(llff)z(zn)?) Hn(zn(jZ+j3))¢(l()(271j1)¢(£7)(2ﬂj2)x 1 w (2ﬂj1)wn(2ﬂj2)

and consider

n ER S\ n 8n "\ n n
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o, (%)w (_2n (it ja+ ]s)),
n

n

. o4
21 21 2n 21 1 21
ke _ Z k) 7\ . ] ) ] ] )
= = (d) ( )¢ ( ) ?s ( )(PSH( n ))4712”2 wn( n )
and
1 4n2 2y 2mjy\ 1 2rji\ - (2rf\[
kO _ * (k) )
A3,n - k,, n2 j]Z;‘IZH(O) q)&( )‘7) ( n )4n2n2 wn( " Wy "
In this expression,
dlog f5 (1)
®) Sy
A = ————— 2.17
o0 = —>5 217)

k, is a bandwidth and H, (A) = k,'H (k,; 1/\). An estimator of the term (k, ) in
(2.13) is given by
VO = AN — ATO — A0, (2.18)

Roughly speaking, the last two terms in (2.18) cancel out the contribution of
f2 in the first term, allowing us to recover (2.13).

Theorem 2.2. Assume that the bandwidth satisfies k, — 0, nk? — coand dy—dy >
—%. Then, under Assumptions (A1")-(A5), we have

VD k0 ¢,

n—oo
forany 1<k, £<p.
The proof is postponed to Subsection 5.4.
Remark 2.6. This last result allows to obtain confidence intervals for the parameters

of Model (2.14)-(2.15). The previous two subsections therefore provide a complete fast
Whittle-based inference for nonlinear long-memory processes.

The estimator proposed by [45] includes the sum over all Fourier frequencies,
including those that satisfy the relation Z;»:p Aj = 0[2n]. To improve the estima-
tor, [32] proposes a variant where the sum over these indices is excluded. We
prove the convergence of the Keenan estimator for our model in the following
theorem.

Theorem 2.3. For fixed (j1, j2, j3) € I?, denote by P (j1, ja, j3) the set of all subsets of
{71, 2, j3}. Consider the following subset of I>:

=31 o j3) € | Z 0[2n), Y E€P(ju,jo, j) } - (2.19)

]kEE
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Let

27‘(j2

=) B ) e (5 e (5

n n n

Jij2,j3€N3
o TN
w( 7:1]3)“’”(_ n(ji+jo 13))'

n

Under the assumptions of Theorem 2.2, we have

Bl _ kO T, 0,

n—o0

The proof is given in Subsection 5.5.

3. Simulations

In this section, we perform simulations for FARIMA models of the form:
ag, (L) (1 = LY X; = be, (L) &, (3.1)

where ag,(L) and bg,(L) are respectively the autoregressive and the moving-
average operators and represent the short memory part of the model. Note
that these models verify the standard assumptions of the parameter estimation
part and are particular case of the model adopted in the covariance estimation
subsection. The operators ag,(L) and bg,(L) are defined by

p q
ag,(L) =1 - Za,ﬂ' and b, (L) = 1 - Z bL.

i=1 =1

Let ©" be the parameter space

p q
© ={0= (01,05 ..., 0psy) € RP*00(2) = 1 - Z 0z and by(z) = 1 — Z 0,47
i=1 =1

have all their zeros outside the unit disk}.

We consider therefore the following parameter space ® = ©*x] — 1, 1[ and

we assume that the unknown parameter 8y = (al,az, v,y by, by, . .,bq,do)
belongs to ®. Under these conditions, the process (X;)cz is causal and invertible.
For all 9 € ® we define the stationary process ¢; (9) as solution of

& (9) = Z a;j(d) Xi-j — i 0; Z aj(d) Xp—i-j + Zq: Opsjer—; (9).

>0 =1 >0 =1

n

|
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Since we only have n observations Xj, ..., X, of the process (X;);ez, we approx-
imate €4(9), for 1 < t < n, by €/(3) defined recursively by

-1 14 t—i—1 q
&) = 2;‘ aj (d) X, - Z; 0; Z(; aj (d) Xicioj + Z; Ops i1 (9)
J= i= J= j=

with & (9) = X; = 0if t < 0. These initial values are asymptotically negligible, in
particular ¢; (9)—¢; (8) — 0inIL? ast — oo. For the Monte-Carlo simulations,
we consider FARIMA(1, d, 1) model of the form

(1 - LY (X; —aX;_1) = & — bery (3.2)

for different type of noise (&),cz - We denote by 9 = (a,b,4d) .

3.1. Numerical illustrations for the one-step estimator

For different values of the parameter ¥ = (g,b,d), we illustrate the empirical
distribution of the OS estimator of the memory parameter d. We perform 3, 000
Monte-Carlo simulations on a sample of size n = 2!2. The initial estimator is
the Whittle one carried out on a subsample of size n%/. In this subsection,
we consider the noise process & = 11,1 where (1;)ez is ii.d. sequence of
standard Gaussian distribution. Figure 1 illustrates the concordance between
the empirical and the theoretical distributions derived in Theorem 2.1, even
when we approach the boundary of the parameter space.

Remark 3.1. To reduce the computational complexity of the Discrete Fourier Trans-
form, we consider sample sizes that are powers of 2 (see for example [17]).
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Fig 1: Empirical distribution of the rescaled statistical error of the one-step
estimator of the memory parameter for FARIMA(1,d, 1) model.

We now compare the evolution of the computation time between the Whittle

15
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and the one-step estimators for different sample sizes. We perform 1, 000 Monte-
Carlo simulations for n = 2/ where j € {11,12, 13}. The sub-Whittle estimator is
carried out on a 2U'] subsample where 6 € {0.7,0.9}.

wn
N A
s
8 o
Q-
S | |- white
X 0S(09)
~+- 0S(0.7)
n
—
p
z
[}
£
- o
—
S} o
- /
s X
o o
X
e eeeees +
g |+ feemmmemenees
=
T T T T T . .
2000 3000 4000 5000 6000 7000 8000

sample size

Fig 2: Comparison of the computation times (in seconds) with respect to the
sample size of the Whittle and the one-step estimators of the parameters of
Model (3.2) with (a,b,d)" = (0.2,0.5,0.3)". For each size 1, 1,000 replications are
generated.

To finish this subsection, we give the evolution of the root mean square error
(RMSE) for different estimators (OS and Whittle) as a function of sample size.
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0
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X
—
o
x
o
=
o ° x
0 \o
S 4 \
] o
o
3 4
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2000 3000 4000 5000 6000 7000 8000
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Fig 3: Comparison of the RMSE with respect to the sample size of the Whittle
and the one-step estimators of the parameters of Model (3.2) with (a,b,d)" =
(0.2,0.5,0.3)". For each size n, 1,000 replications are generated.

We observe that the one-step estimator is more efficient than the LSE in terms
of computation time. Additionally, using a small fraction 6 further decreases
the calculation time, though it slightly increases the corresponding RMSE.

3.2. Numerical experiments for the estimation of the limit covariance matrix

In this subsection, we numerically illustrate the convergence of our estimators
given in Theorems 2.2 and 2.3 to the matrix T defined in (2.13). We consider two
examples of noise: the first is Gaussian, while the second is more complex and
results in a non-constant bispectrum. It should be noted that the performance of
the estimator, particularly its variance, depends on the nonlinear dependence
of the noise. For each set of parameters, we perform 1,000 Monte Carlo simu-
lations. The sample size n and the bandwidth k, are specified in the tables. We
choose the rectangular kernel H (1) = ﬁ]l[_n,n] (A) to compute the estimators.
For simplicity of reading, we adopt the following notations hereafter:

B: the bias;

SD: the standard deviation;

RSME: the root mean square error;

AR: the autoregressive parameter (i.e. a);
MA: the moving average parameter (i.e. b).
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Gaussian noise. We begin with a straightforward case where the FARIMA
model (3.2) is driven by Gaussian noise, leading to (2.13) being the zero matrix.

kn B AR B MA B dy SDAR | SDMA | SDdy | RMSE AR | RMSE MA | RMSE d,
n 0T [0.1804 | 0.2329 | 0.3332 | 0.0314 0.0341 | 0.0804 0.1831 0.2354 0.3427
n 015 1 0.1048 | 0.1596 | 0.2290 | 0.0360 0.0370 | 0.0871 0.1108 0.1639 0.2450
n 92 | 0.0604 | 0.1053 | 0.1532 | 0.0420 0.0412 | 0.0975 0.0736 0.1131 0.1816
TaBLE 1
Bias, SD and RMSE when 9 = (0.2,-0.2,0.2)T and n = 212 for Taniguchi’s estimator.
kn B AR B MA B dy SDAR | SDMA | SDdy | RMSE AR | RMSE MA | RMSE d,
n~ 0T 10.1659 | 0.2204 | 0.3233 | 0.0238 0.0254 | 0.0644 0.1676 0.2218 0.3297
7015 [70.0919 | 0.1449 | 0.2156 | 0.0275 | 0.0273 | 0.0693 0.0959 0.1475 0.2265
n 92 | 0.0512 | 0.0919 | 0.1410 | 0.0312 0.0309 | 0.0769 0.0603 0.0969 0.1606
TABLE 2
Bias, SD and RMSE when § = (0.2,-0.2,0.2)T and n = 23 for Taniguchi’s estimator.
kn B AR BMA Bdy SDAR | SDMA | SDdy | RMSE AR | RMSE MA | RMSE d,
n=01 -0.0009 | -0.0011 | -0.0009 | 0.0228 0.0199 | 0.0336 0.0228 0.0199 0.0336
n 015 [ -0.0015 | -0.0016 | -0.0016 | 0.0299 0.0264 | 0.0469 0.0299 0.0265 0.0470
n 92 | -0.0013 | -0.0012 | -0.0021 | 0.0371 0.0338 | 0.0614 0.0371 0.0338 0.0614
TaBLE 3
Bias, SD and RMSE when 9 = (0.2,-0.2,0.2)T and n = 22 for Keenan's estimator.
kn B AR BMA Bdy SDAR | SDMA | SDdy | RMSE AR | RMSE MA | RMSE d,
n~01 -0.0005 | -0.0005 | -0.0008 | 0.0173 0.0149 | 0.0260 0.0173 0.0149 0.0261
70T | -0.0008 | -0.0008 | 0.0019 | 0.0230 | 0.0201 | 0.0372 0.0230 0.0291 0.0372
n 92 | -0.0008 | -0.0007 | -0.0019 | 0.0284 0.0258 | 0.0491 0.0284 0.0259 0.0492
TABLE 4
Bias, SD and RMSE when 9y = (0.2,-0.2,0.2)T and n = 2'3 for Keenan’s estimator.
kn B AR B MA B dy SDAR | SDMA | SDdy | RMSE AR | RMSE MA | RMSE d,
n-01 0.4323 | 0.2325 | 0.3242 | 0.1242 0.0334 | 0.0793 0.4498 0.2349 0.3388
n 015 [ 02877 | 0.1591 | 0.2194 | 0.1254 0.0358 | 0.0854 0.3139 0.1631 0.2355
n 92 | 0.1692 | 0.1048 | 0.1432 | 0.1278 0.0406 | 0.0936 0.2120 0.1123 0.1710
TaBLE 5
Bias, SD and RMSE when 9 = (0.7,-0.2,-0.3)T and n = 212 for Tuniguchi’s estimator.
kn B AR B MA B dy SDAR | SDMA | SDdy | RMSE AR | RMSE MA | RMSE d,
n 0T 04059 | 0.2199 | 0.3159 | 0.0848 0.0242 | 0.0618 0.4147 0.2212 0.3219
n 0T 1702525 | 0.1445 | 0.2078 | 0.0848 | 0.0264 | 0.0659 0.2664 0.1469 0.2179
n 92 | 0.1365 | 0.0914 | 0.1329 | 0.0862 0.0303 | 0.0717 0.1614 0.0963 0.1510
TABLE 6

Bias, SD and RMSE when 9 = (0.7,-0.2,-0.3)T and n = 213 for Taniguchi’s estimator.
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kn B AR B MA Bdy SDAR | SDMA | SDdy | RMSE AR | RMSE MA | RMSE d,
n 01 -0.0007 | -0.0011 | -0.0011 | 0.0415 0.0200 | 0.0338 0.0415 0.0201 0.0338
n 015 [ -0.0014 | -0.0016 | -0.0018 | 0.0600 0.0265 | 0.0472 0.0600 0.0265 0.0472
n 92 | -0.0019 | -0.0013 | -0.0025 | 0.0817 0.0339 | 0.0618 0.0817 0.0339 0.0618

TaBLE 7
Bias, SD and RMSE when 9 = (0.7,-0.2,0.3)T and n = 212f0r Keenan'’s estimator.

ky B AR B MA B dy SDAR | SDMA | SDdy | RMSE AR | RMSE MA | RMSE dy
n 01 -0.0011 | -0.0005 | -0.0010 | 0.0313 0.0149 | 0.0259 0.0313 0.0149 0.0260
n~015 [ -0.0020 | -0.0008 | -0.0020 | 0.0463 0.0201 0.0371 0.463 0.0201 0.0372
n 92 | -0.0026 | -0.0008 | -0.0023 | 0.0628 0.0258 | 0.0491 0.0628 0.0258 0.0492

TaBLE 8

Bias, SD and RMSE when 9 = (0.7,-0.2,0.3)T and n = 213 for Keenan's estimator.

Nonlinear ARMA type noise. We consider an example of weak white noise
with non constant bispectrum. For any ¢t € Z, the processes is defined by

1
Zy = azp_q1 + Wy — EwH’ (3.3)
where |a| < 1,a # 0 and (w;);cy is a strong white noise. The process (z;),cz is an
ARMA(1, 1) process with constant spectral density
Y
WVar (wy) |1 - iexp (—1)\)| _ Var (w)

(A) = =
2 2n '1 - aexp (—i)L)|2 2na?

S0 (zt)iez is @ weak white noise. Let, for any t € Z,
Et = Zot. (34)
Straightforward computation gives the following lemma:

Lemma 3.1. We suppose that E (wg) < 0o. If (Wr),ez is not Gaussian then (&t),ez is

not a martingale difference. Moreover, for any (A1, Ay) € [-m, 71]2 ,

(A, =2, 42) =5 (K3 (A1, ) + K (o, 22) (E () - 3E (7))

where fy is the fourth-order cumulant spectral density of (€;)cz - In the last definition,

2 —2cos(Aq) 2 —2cos(Ay)
Ki (A1, Ap) =
10, A2) 1-2a%2cos(A1) +a*  1-2a2%cos(Ay) +a*
and
a2 -1\ 1
Ky (A1, Ap) = .
2 (1, 42) ( a ) (1 -=2a2cos (A1) +a*) (1 —2a2 cos (Ay) + a?)

The proof of this lemma is postponed to Subsection 5.1.
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Remark 3.2. The same computations as those presented in the proof of Lemma 3.1
show that the fourth-order cumulant spectral density of the process (z;)sez is constant.

In the tables below, we consider the FARIMA model (3.2) generated by the noise
(3.4), where w; follows a Student distribution with 10 degrees of Freedom. The
parameter « is fixed at @ = 0.7. According to Lemma 3.1, the integrand in (2.13)
is in closed form. We compare the estimation to the numerical integration of
the integrand in (2.13) in order to evaluate numerically the bias.

kn B AR B MA B dy SDAR | SDMA | SDdy | RMSE AR | RMSE MA | RMSE d,
n01 1.0516 | 1.3900 | 2.1167 | 0.1281 0.1280 | 0.2887 1.0594 1.3959 2.1362
n 015 [ 05596 | 0.8787 | 1.3551 | 0.1559 0.1459 | 0.3242 0.5809 0.8907 1.3934
n 92 | 0.3025 | 05339 | 0.8447 | 0.1875 0.1747 | 0.3814 0.3559 0.5618 0.9268

TaBLE 9

Bias, SD and RMSE when 9 = (0.2,-0.2,0.2)T and n = 214 for Taniguchi’s estimator.

ky B AR B MA Bdy SDAR | SDMA | SDdy | RMSE AR | RMSE MA | RMSE d
n01 0.9570 | 1.3069 | 2.0052 | 0.0961 0.0982 | 0.2318 0.9619 1.3106 2.0185
n 015 | 04832 | 0.7897 | 1.2379 | 0.1163 0.1104 | 0.2603 0.4969 0.7974 1.2694
n=02 0.2512 | 0.4609 | 0.7496 | 0.1376 0.1288 | 0.3004 0.2864 0.4785 0.8078

TasLE 10

Bias, SD and RMSE when 9 = (0.2,-0.2,0.2)T and n = 21° for Taniguchi’s estimator.

Ky BAR | BMA | Bdy | SDAR | SDMA | SDdy | RMSE AR | RMSE MA | RMSE 4,
n~ 0T | 0.0585 | 0.0451 | 0.1165 | 0.1095 | 0.0932 | 0.1613 0.1242 0.1036 0.1990
n 915 10.0312 | 0.0279 | 0.0645 | 0.1436 | 0.1257 | 0.2251 0.1469 0.1287 0.2342
7702 | 0.0189 | 0.0172 | 0.0369 | 0.1771 | 0.1613 | 0.2941 0.1782 0.1622 0.2964
TasBLE 11

Bias, SD and RMSE when 9 = (0.2,-0.2,0.2)T and n = 214 for Keenan's estimator.

ky B AR B MA Bdy SDAR | SDMA | SDdy | RMSE AR | RMSE MA | RMSE dy
n~01 0.0506 | 0.0413 | 0.1028 | 0.0812 0.0701 0.1190 0.0957 0.0814 0.1573
n~ 015 10.0240 | 0.0239 | 0.0512 | 0.1058 0.0933 0.1672 0.1085 0.0963 0.1749
102 0.0129 | 0.0137 | 0.0269 | 0.1300 0.1185 0.2219 0.1307 0.1193 0.2235
TaBLE 12

Bias, SD and RMSE when § = (0.2,-0.2,0.2)T and n = 215 for Keenan'’s estimator.

kn B AR B MA B dy SDAR | SDMA | SDdy | RMSE AR | RMSE MA | RMSE d,
n~01 2.6886 | 1.3951 | 2.1040 | 0.4124 0.1249 | 0.2954 2.7200 1.4007 2.1246
n 015 [ 15760 | 0.8827 | 1.3437 | 0.4304 0.1446 | 0.3254 1.6338 0.8944 1.3825
n 92 | 0.7928 | 05366 | 0.8368 | 0.4713 0.1744 | 0.3728 0.9223 0.5643 0.9161

TaBLE 13

Bias, SD and RMSE when 9 = (0.7,-0.2,-0.3)T and n = 214 for Taniguchi’s estimator.
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kn B AR B MA B dy SDAR | SDMA | SDdy | RMSE AR | RMSE MA | RMSE d,
n01 2.4965 | 1.3098 | 1.9966 | 0.2811 0.0971 | 0.2257 2.0093 1.3134 2.0091
n 015 113569 | 0.7917 | 1.2301 | 0.2937 | 0.1093 | 0.2493 1.3883 0.7999 1.2551
n 92 | 0.6278 | 0.4621 | 0.7441 | 0.3302 0.1283 | 0.2834 0.7094 0.4796 0.7962
TaBLE 14
Bias, SD and RMSE when 9 = (0.7,-0.2,-0.3)T and n = 213 for Taniguchi’s estimator.
kn B AR B MA B dy SDAR | SDMA | SDdy | RMSE AR | RMSE MA | RMSE dy
n~0T | 0.1465 | 0.0453 | 0.1162 | 0.1974 0.0935 | 0.1615 0.2458 0.1039 0.1989
n~015 [70.0787 | 0.0282 | 0.0643 | 0.2872 0.1260 | 0.2255 0.2978 0.1291 0.2345
n 92 | 0.0412 | 0.0175 | 0.0368 | 0.3831 0.1619 | 0.2948 0.3853 0.1628 0.2971
TasLE 15
Bias, SD and RMSE when 9 = (0.7,-0.2,-0.3)T and n = 214 for Keenan'’s estimator.
ky B AR B MA Bdy SDAR | SDMA | SDdy | RMSE AR | RMSE MA | RMSE d
n=01 0.1297 | 0.0413 | 0.1024 | 0.1430 0.0702 | 0.1190 0.1931 0.0814 0.1570
n 015 1 0.0618 | 0.0237 | 0.0506 | 0.2096 0.0934 | 0.1672 0.2186 0.0964 0.1747
n 92 | 0.0289 | 0.0137 | 0.0263 | 0.2832 0.1188 | 0.2217 0.2848 0.1196 0.2232
TaBLE 16

Bias, SD and RMSE when 9 = (0.7,-0.2,-0.3)T and n = 215 for Keenan'’s estimator.

We observe that the estimator presented in Theorem 2.2 present a strong bias
which leads to very poor estimates. The second estimator presented in Theorem
2.3 is more suitable but nevertheless requires a calibration of k,,.

4. Conclusion and perspectives

In this paper, we propose a one-step estimator with asymptotic properties sim-
ilar to the Whittle estimator, but computed more quickly, making it particularly
relevant for large sample sizes.

Additionally, we have constructed a consistent covariance estimator based
on an unobservable process in the Wold representation. It would be interesting
to study the influence of the kernel and the window (k;,) on this estimator. How-
ever, this topic is beyond the scope of the current work and will be investigated
in future studies.
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5. Technical results
Lemma 5.1. Under Assumptions A1-A4, we have
ViV LY (9) = N (0, W (9),

where W(9) is defined in (2.10).
Proof. Fork € {1,...,p}, the k-th component of VnVLY (9) is given by

oLw = ofs (A ! 9f8( i) n( i)
K ask \/—Z ask fo (2 e fs()

Denote by
" 2

1 .
= Zexp(zk/\)ek .

I,(A) =

One can use similar arguments as those in the proof of Theorem 2.1 in [40] to

obtain
1 n-l 3f3 (/\]') I, (/\j) 27'(gfs( ) n( ])
2VnH % g (AJ)Z P aafs ()

For simplicity, let

=op(1). (5.1)

1= afs (M) afS( ) ()

-1
V"(S)_Z\/r_ljzl 39 9(1’) 99 @fs()

In view of (5.1), the proof of the lemma will be completed once we show that

V, (9) —f;» N (0, W (3)). (5.2)
Consider 3 (/\)
po = LWy,
1,5 (A) = Ps (A) ]1{|A\>c1 + s (€) Lyjaj<q)
and

02,9, (A) = Py (A) = P19, (A)
for some ¢ > 0. We define
1,(1))

02

-
Vi1 () = 72¢19c 27I<P13c( )
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L (%)

02

and

Vn,Z (‘9) Z ¢2 3, c 2ﬂ¢2 d,c ( )

It is easy to see that E (V,, (S)) = E(V,2(9)) = 0 and Equation (A.11) in [40]
gives
lim sup lim sup Var (V,,» (9)) = 0.

c—0 n—oo

Leta, = 2 [7 d15 (A) exp (ikA) dA, for a fixed h € N, let
_ Ikl ,
P (A) = k%(l Z )ak exp (—ikA)

and Eh (A) = 1,9 (A) — ¢y, (A) be the remainder. We get from Lemma A.8 of [40]
that

= (&, 4 L B B
oz\/_; ]<Z[j=1 h(Aj) +;j;1f4(Aj,—Ak,Aj)¢h(Aj)¢h(Ak)

for some constant K > 0. It follows then that

n-1
hT_»sotlp Var[azzic/a ]Z: Y, ()\j) I, (/\j)] < sup |1Ph /\)|

Aef0:27]

and by Fejér’s Theorem,

limsup sup @h (/\)|2 =0.

h—oo  A€[0;27]

Let A, = (205)7" (a0,2a1 (1 - %), .., 2‘”‘ ) ,yve (k) = Z” K €j€jpk, and
Veh) =(7:0),7:Q1),...,. 7. (h—=1)) .We have

2: ) - 2myi (2 )I = 2] (1—1ﬂ)o&<m E (7 () + o (1)

j=1 2 [k<h

s\

= = A, [Fe 00 — E (7. )] + op (1).

We obtain from Lemma 1 in [47] that for fixed h,
Vit [Fe () — E (7 )] == N (0,T}),

where

I, = Z E (ejeo) E (e]-+u_vso) +E (ejﬂ,s()) E (eoej_u) + cum (so, Eus €, £j+v)]
jez O<u,o<h-1
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Finally, we use similar calculations as those used in the proof of Corollary 2 on
page 61 of [39] to show that

Vit (9) == N (0, W (9))

where

W, (9) :% ( f n f i =, 12) e () e (1) s

1<k j<d

+ % (fn O1,80c (1) P1,9,c (A) d/\)

1<k, j<d

The dominated convergence theorem when ¢ — 0 gives Equality (5.2) and the
proof is completed. o

Lemma 5.2. Let ¢y be a 2m-periodic and even function with respect to A, satisfying
Assumptions A1-A4. Consider

n-1 In A
],,(S)z%Zloggbs(/\j)+ ()

= ¢s (1))

and . N W
3
16)= 3= [ togou )+ L.

Then, one has

sup (] (9) = J (O = op (1). (5.3)
Je®

Proof. The mean value theorem gives

271
19)= 1 fo log s (1) dA

2 n-2 27
1 (" 2 —\ 1
== fo log s (A) dA + = 221 log ¢ (A;) + - f log ds (A),

2n(n—1)
where /\ € [271] ull H)] for any j € {1,n — 2}. Under Assumption Al and using
the mean value theorem, we have

-2 n-1
A Y tog0u (1) - 2 Y toge (1)
j=1 j=1

for some constant K that depends only on ® and 6 > 0. In the last inequality, the
frequencies A; and A, are taken in [-7, 7], which is possible since the function
is 2m-periodic. Hence, for some C > 0,
TU
f & f A0 dA
n Jou

n

K[ om = -1 — o
<;[Z§|Af| +|An-1|]

=

N

n— -1
1
o 2108 s (1 Z og s (1

j =1

I\
—_
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=0 (n_1+‘3) uniformly in 6 € ©.

Finally, under Assumption A1, we obtain uniformly in 9 € © that

271
— f log s (1) = O (n71*%), ﬁ f() log s (1) = O (n™1*%)
and
(n—1+6>.

The other terms are handled similarly to Lemma Al in [40], which completes
the proof of this lemma. ]

-1
1)~ - Y ogso (1)
j=1

Lemma 5.3. Under Assumptions A1-A4, we have
ALY (8) - I (9)=0p(n2). (5.4)

Proof. A similar reasoning to that developed in the proof of Lemma 5.1 (replac-
ing ¢s (A) by #;Sk log fs (A), which satisfy the same estimation by Assumption
A1) leads us to

Vi (ALY (9) =T, (9)) = op (1),

where -
I (1)

02

n—1 2 _
T, (9) =5 ZasaaSTlogfs( Aj) - 2mps (A;)

and
_ 81 A dl A

We use similar arguments as those in the proof of Lemma 5.1 to deduce

Vi (E (T, (8)) = 1 (9)) —= O and Var ( VT, (9)) = 0 (1)

which allows us to conclude the Lemma. It is also possible to use this reasoning
to obtain the asymptotic normality of vn (A.EZV S -1 (S)) as given in Lemma
5.1. However, this conclusion is unnecessary to establish this lemma and is
stronger than the tighness condition. a

Lemma 5.4. Under Assumptions A1-A4 and for any 91 € ©, there exists a constant
Ky, and an open ball By, containing 91 such that for any 9, € By,, we have

I (1) = I (92l < Ky, |91 = D2l (5.5)

Proof. The proof is similar to that of Lemma A.1 in [3], so it is omitted. O
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Lemma 5.5. Let (:9\5,1)),1 be a random sequence such that :9\,(11) -9 = op(1). Under
Assumptions A1-A4, we have

ALY (SP) - ALy (9) = 0p (S - 9). (5.6)

Proof. Wefix (k,j)€{1,2,..., p}2 .Conditionally to 35,1) € B(9, ), the mean value
theorem implies

W QD) _ 7 w ?
L () L) 99:99,99,

- W
9899, 9999, L

< sup
9°€B(9,0)

-9

Lemma 5.2 ensures that
3

09,0999, =0r ()

1<t<d

LY ()

sup
9+€B(3,0)

and the condition :9\,(11) — 9 = op (1) gives the expected result. o

Lemma 5.6. Let (&), be a strictly stationary process (not necessarily a white noise)
and denote by

n n

wd (A) = Z exp (—ijA) ejand D, (A) = Z exp (—iAj).

j=1 j=1

Consider (j1, ..., jx) as k non-negative integers and (Aq,...,Ax) € [-7, nlk. Then, if
(&t)1ez satisfies (A5), one has

k

MY

=1

cum (@) (A1)...w) (A)) = @)™ (A1, Agjgr, - Ak) D +0(1)

where the error term O (1) is uniform in (Ay,..., Ax) and (j1,..., j) . In this lemma,
we use the notations jgy = min (i, ..., jx) and fi the k-th order spectrum of (&t);cz -
The frequencies Ayj,] associated to the term w([’],<k)] (-) is omitted in the computation of

fr.

Proof. The proof is similar to the one of Lemma 1 in [8]. We have

liw]

1 Jk
cum(w?1 (A1). ..w?k (Ak)) = Z e Z exp (=1 (A1t + -+ + Axty)) cum (e, ... &) .

t1=1 te=1

In order to lighten the notations, we suppose (without loss of generality) that
je =min(ji, ..., ji) . By the stationarity of (&), , we have

j1-1 jre1=1
cum (@2 (1) (A)) = Y - Y exp(=i(aty + -+ Aatir))

t1=1-jk tr1=1—jk
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Fmax

X cum (& ... & o) Z exp (—ixktk) ,

t=tmin

where fnin = max(1,1—11,...,1 = 1), tmax = min(j1 — f1, ..., fk-1 — b1, k)
and Ay = Aq +--- + Ar. We observe that 1 < fin < tmax < jk- Now as in Equation
(4.10) of [8] and thanks to (A4), we have

-1 Jkz11
fie (A1, o0, Akor) — (271)_k+1 Z Z exp (=i (At + -+ + Agitp-1)) cum (€o€t1 . ..E[k_l)
ti=1-ji  ha=1-jk

uniformly in (Ay, ..., A1) € [-7, 7'(]]‘_1 . Let

-1 k=11

of

BY ) A, .o, Ap) = Z Z exp (=i (A1t + - -+ + Agitp-1)) cum (€0€t1 . ..etH)D]vk (/\_k)

(j1 ) .
h=l-jr  Ha=l-jk

and

-1 Jk=1~1 Emax

B?ji,‘..,jk) A1, ..., Ap) = Z Z exp (=i (At + -+ + Agrtp-1)) cum (606,1 ...etk_l) Z

Observe that fmin < [t1]+ - -+ + [t-1| and jx — tmax < [t1] + -+ - + [ti-1] . Hence, it can
be shown that

-1 Jee1 71

BY (A, A)=BP (A, AR
(]1~»~'Jk) (]1 »»»»» ]k)

h=l-jk  Ba=l-jk

Thanks to (A4), the right-hand side of the previous inequality is bounded. The
proof is completed. ]

5.1. Proof of Lemma 3.1

One can see from the recursive equation (3.3) that, for any t € Z,

2= Y h(j)we, (5.7)
jEZ
where
0if j<0
h(j)=4 11if j=0 (5.8)

a’?-1 -1 :¢ -
—a/7" if j>0.

Since (wy),cz is a strong white noise with fourth-order moment and the sequence
h(-) decays at geometric rate, we obtain via the Brillinger-Rosenblatt formula
that for any (1, tp, t3) € 22,

cum (o, €1, €1, €1,) = CUM (20, Zot, , Zot, Zot; )

t=1-j) t_1=1-jk =tmin

.. ka—l)

<2 Z Z (|t1|+~-.+|tk_1|)|cum(eogt1,

exp (—iiktk)‘
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. . . . 2
= Y h )G+ 20) 0+ 20) R + 2t3)(]E (cwt) - 3E («?) )
j€Z
and hence

1 .
fa (A1, A2, A3) =83 Z exp (=i (A1t1 + Aoty + Ast3))
T (b1t t3)EZ3

x Y ()R +260) B+ 262) 1 + 2t3)(15(wg) _3E (wé)z).

j€Z

Assume that j = 2¢; for some ¢; € IN. By changing the order of summation, one
can see that

Y exp(—ihb)h(j+20) = ) exp(-idit) (26 +2h)

teZ >0

=exp(iMb) + ). exp(=iih)h(Q2l +2h)

t1=—l1+1

. . a? -1
= exp (1/\151) (1 +exp (—l/\l) m) .

Similarly, we have

a? -1
exp (—idtr) h (241 + 2t) = exp (iA2t) (1 + exp (—ily) —)
tzze‘i 1—aZexp (—ily)

and

a? -1
exp (—idits) h (261 + 2t3) = exp (iAsly) (1 + exp (—iA3) —)
tsé 1 - a?exp (—ils)

We also obtain

a? -1
—aZexp (i(A + A2 + A3)

Y exp (il (A1 + A2 + A5 h(26) = Trexp (i (A + A2 + A3)) 5
6 eN

If j = 2¢; + 1 for some ¢, € IN, a similar reasoning as above leads us to

Y exp(=ih)h(j+20) = Y exp(-idit) (26 +1+2h)

teZ t>=0

21 1
. " X exp (iA167) X

1—aZexp (-iAy)’

0(2

-1 1
X exp (id2lp) X

Z exp (—idat) h(j + 2t) = " Wp(—i)\z)’

theZ



S. Ben Hariz et al /Fast inference for time series 24

a? -1 1
A3ly)) X ——————
a X exp (iAsly) X 1-a?exp (—id3)

Z exp (—l'/\3t3) h (] + 2t3) =

tz€Z
and
21 1

o
. 1 = .
) EEN exp (lfz (Al + A + A3)) h (252 + ) o X 1_ 22 exp (l (/\1 A, + /\3))

By combining the previous equations, we get

1 4 2)2
fi A2, 3) = 55 (K (b, A, 29) + K (h, Az, o) (E () = 3E ()’ ),

where
Ky (A1, Az, A3) = [ 1+ exp (i (41 + Az + A3)) o1
1 (A1, A2, A3) = P 1 2 3 1—a?exp (i(A1 + Az + A3))
0(2—1 0(2—1
X( el ZAl)l—o#exp(—im)( Fexpl lAZ)l—azexp(—i/\z))
, at -1

(1w ) e o)

and

Kz (A1, A2, A3) =(a2—1)4 ! L
T a 1—a2exp (i(A + Az + A3)) 1 — a?exp (—idy)
y 1 1
1—a2exp(—idy) 1 —aZexp (—id3)

It follows that

2 —2cos (A1) 2 —2cos(Ay)
1-2a%2cos(Aq) +a*  1-2a%2cos(A;) +at

Ki (A1, =Mz, Ap) =

and

1
1 —-2a2cos (A1) + a?) (1 — 2a2 cos (A,) + at)’

a?-1\*
Kz(Al,—/\erz)=( " )(

The proof is then completed.

5.2. Proof of Proposition 2.1

The consistency follows from Lemma 5.2 and the identifiability condition, with
a proof similar to that of Theorem 1 in [46]. A Taylor expansion of vLW (8,1)
(which is equal to 0) around ¥ gives
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VLY (9,) =vLl () + ALy (3P) (8. - 9),

where :9\5,1) =9+ (1-0) :9\,1 for some 0 <v < 1.
In view of Lemma 5.1, the sequence ALY (:93,”) \/H(Sn - S) converges in
distribution to N'(0, W(J)). We can now use Lemma 5.2 and Slutsky’s theorem

to show that .
(AL (307) ALY (3)7) Vi (5= 9))

converges in distribution to (£(9), Z) with Pz = N(0, W(9)). The continuous
mapping theorem completes the proof of the proposition.

5.3. Proof of Theorem 2.1
By the mean value theorem, observe that
8= 9=9,—9-I3,) (VLY )+ ALY (9, - 9)),

where 5511) =03+ (1-0) 5,, for some 0 < v < 1. Furthermore, it can easily be
shown that

Vit (8, = 9) = =2 VALY (9) = 18 (~I(0) + ALY EY)) Vi (3, - 9)
=A,-B,

where .
Ay ==1(9,) VnvLY(9)

and

B, =1(8,) (-I(3.)+AL) (3V)) va (S, - 9).
Let us first focus on the second term B,,. We can write
By =I(S,) (-I(8,)+ALY (3W))nt=nd (5, - 9)
and
—I(9)+ ALY (3P) = 7 (9) = I(8u) + ALY (8) - T (9) + ALY (SV) - ALY (9).
Lemma 5.4 ensures that
I(9)-1(9,)=0p(n"?)
and Lemma 5.3 gives

ALY (8) - I (9) =0p(n77).
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Moreover, we can use Lemma 5.5 to get
ALY (8Y) - ALY (8) = Op (n7°2).
Consequently, the condition
62 (Qq 1
n (Sn—S) = Op (1) for some 3 <6<
implies that
B, = Op (n%—é) + Op (n—%)
and hence

B, — 0.

n—oo

The first term can be rewritten in form
Av==I(8,) VAvLy (s)
=~ (7B - 1) VLY () - T VAV LY ().
We have from Lemma 5.1 and the continuity of 7 (-) that
A= N0, I® W@ 1))

and the theorem is proved.

5.4. Proof of Theorem 2.2

The key element in the proof is to show that the estimator with the residual
process (2.16) is asymptotically equivalent to the one directly applied to the
noise in the decomposition (2.14)-(2.15). We split the proof into the several
steps for clarity.

Step 1: Taylor expansion of the generic terms qbg) (1)
For (ocl, e, 0(,,) € NP and x = (xl, .. .,xp) € IR?, we denote in all the proof by 7,
a multi-index such that

4 P P
|n1|:Zaj, m! = H 1 and x™ Hx?’.
j=1 j=1 j=1
Consider the first term Agkf) . A Taylor expansion around 9y gives

2
A(k[) Z i 5 —\9 A(kf)nl (‘9 + Z ‘9 _\9) A(kf)ﬂl( ) (59)
ni!

n |
=0 L Iy 1=3
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where

Zﬂjl

3
kO)n 2m
A(L Jm (\90) _—(_)
Jj2.j3€R

X W, (@)wn (Mi)wn (_Zﬂ (itja+ j3))
n n

n

and 5:1 =19 + (1 - )9, for some 0 < v < 1.
Similarly, we have

2

FELED JECRRY DUCLTOTRS WL
ny|= 0
and
2
Agff) = lZI_:O Tliﬂ (§n - \90)”1 Agff)’nl (\90) + |Z|3 nil, (ﬁn -3 ) A(k ,0),m ( nl) ‘
1n1|1= =

Step 2: Expansion of the discrete Fourier transform of the residual process

Let 1, be an another multi-index. As in [26, 6], we can write

)= & (Sn)em = et ) (S —so”z[ié”z S )eni+ )& (S, €t1]

20 In2|=2 j=0 >t
(5.10)
where n
&7 (%0) = Som 5—&j (So)
and 522 =vdy+(1- v)@n for some 0 < v < 1. It is shown in [6] that
2
[Z £2(8,)ery| |= 020 w). (5.11)
j>t

We recall that w? (-) is the discrete Fourier transform with respect to the true
noise defined in (2.15). We obtain from (5.10) and (5.11) that

n-1
w, (D) =wh D)+ Y, (80 =%)"Y} exp (=i & (3,)wl)_; (1) + op (1) (5:12)

[n2|=2 j=0

where op (1) is uniform in A and n,. Let for any (i, 1, 13,14) € {0,1,...,n — 1)4,
9 € ©s and any multi-index |n1],

2H(j2+j3) Jim! ) 271]1 277]2 1
S e S e Cy R

n

|
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; ) o o om(ia i
AkOm (9)=(27ﬂ) y exp( ( AP RN P 77(]1+]2+]3)l.4))

1,n,(i1i2,13,1a) n n n n
Jij2.j3€R
o (i 4 i " omi o omi
“ H. (2 +j3)\ 9 ® (271 (0 (27)2 1 0? TJ1
n adm \" |\ g S\ on 8mdn "\ n

(), (22220 40

n n

We use the same construction for the other terms A(Zk’f). . (9)and A®O (9).
1,(i1,i2,13,14) 3/n,(in i2,i3,1a)

Then, by plugging (5.12) into A';’,i, we get

n-1
(k O () —= n 1 (T2 4 (kO
1 (‘9 ) Al,n,(O,Z),O,O) (‘90) + Z (Sn - ‘90) Z é1'12 (‘9" )Al,”/(ile,O/O) (‘90)
i1=0

[n2|=2
Ny +n: nl
Q 2778 n n 3 (k,6),m
+ Z (‘9" - ‘90) Z ¢ 2( )51; (‘9 )Al,n,(h,iz,O,O) (So)
[n2],In5|=2 i1,i2=0
.
= nptnz+ng n, (2 n —(n2) na (<14 (k,6),m
* Z (‘9” a ‘90) Z Sir (‘9" )éi; (‘9" )51'34 (‘911 )Al,n,(il,z'z,ig,o) (%0)
2], 131, Inal=2 i1,ig,i3=0
— nz+n3+n4+n5 = " (nz) (=0 oy (500
), (Sh-%0) g2 (9,7 ) e (8,7 ) e (3,
[n2l,In3|Ingl Ins|=2 i1,12,13,i4=0

xg”S( (”5))A<"'f><"l, ()

1,n,(i1i2,43,14)

+ eleven terms of the same nature

+REO™ (89).

The remainder term Rﬁlk’[)’"l (J0) is a combination of 65 terms, each containing
at least one op (1) as a factor induced by the decomposition (5.12).

. k,0) k

Step 3: Treatment of a generic term of the form A(1 . (:112 iy (D0), (2 . )(1’1”12 inip (80)
(k0

and AS n,(iy 112 i3,is) ( 0) :

Case1:11:z2:z3:i4:0.

The same proof as [45] combined with his Remark 2 and Lemma 5.6 gives for
any multi-index

kOn (k0)n (k6)n _
(Al,n,(O,EJ,O,O) (S0) = AZ,n,(O,E),O,O) (S0) = A3,n,(0,:),0,0) (‘90)) =0() (5.13)
and (in the worst case)

k,0)n1 1
Var (Am,n, 0,0,0,0) (‘90)) (@ ) (5.14)



S. Ben Hariz et al /Fast inference for time series 29

rrrrr

We obtain usmg d1rect computations that

(k0,1 2n 27 (]2 + ]3) oM ®) 271]1 27Tj2 1
(Al,n,(O,O,O,O) (80)) ( n ) Z Hn( n o9m s, (PSO n )| 8nn

Jj2.j3€R

o)) ) )

5o 5222
o o 520)
+cum( (271]1) ( n(]l+]2+]3)))Cum(w2(2n7jz)wg(27;_j3)))‘

Hence, one can use Lemma 5.6 to get

(k&)m 2n 2rn(ja+j3)\ 2" (. 27T]1 271]2 1
{0 00 -] T . (PE) 2 o (25 (o) 1
i j2,j3€lR
2 2 2
((Zn) f( n]1 n]z 7:1]3) L0q)

+@2n)° f

) 27t(j1 + Jo) ) (27T]3)D (—27T(j1 +j2))
n n

n

+(2n)f§ ) n ’1“3) (2’;]2)13,1(‘2”(2”3))

e

+ -
. f n]l) (2n(]2+]3)) (zmz)Dn(zn(]ﬁ]g))

|

|

n n

ofp 52 of(22)
ol 252

The first term of the last equality is

(kO 2 2n(ja+j3)\ 9" [ w (271 o (2mz2)) _1
Al,l,n,(O,O,O,O) (80) = (n) Z H”( n a9m 2 n s, n )] 8mdn

Juj2.gs€l

21 2mjy 2mj
x(ﬂ;(—n]l,—n]z,—:[ljs)n+0(1)).

n n

We recall that the support of H is [-7, t]. Then it is necessary that 271(]”;+]3) €
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[k, 7, k,7t] to ensure that H,, (h(h_+13)) # 0. Therefore, we have ZWS = _¥+27:z_j4

where j; € 1= [- [kun], [k,n]] . Note that Zn“ — 0 uniformly in j; € Tso, by
2 2njs g (20 20 21

(A4),f4( TR )—f4( S )+O(kn),wheretheerrortermo(kn)

is uniform in (A1, Ay, A3) . Thus, one has
k0 27
|A1,1,n,(z),o,o,0) (‘90)| ( n )

2n(j2+j3) &nl ) 271].1 © 2n]2
H"( n oM %0 n %0 n
J1,j2,j3€8
211 21y 27j
(f4(ﬂ_h,ﬂ_h,ﬂ)n+o(l))
n n n
27js 27j, 2mj,
(5ot (5o (5]

2m\3
<(7) )3
1, josja€2XT
271]1 2mj, —=21jp
f T

1
8m3n

X

1
8m3n

n

n+ 0O (k,n)+ 0O (1))

and so A%Om™ ) (90) = O(1). The same approach can be used to show that

1,1,1,(0,0,0,0
k¢ . k,0), . .
the term A§,2,LZE),O,O,O) (S0) (respectively A(1,331%,0/0/0) (80)) which contributes when

j1 = —Jo (respectively j; = —j3) is O (1). The most delicate term is the last one,
namely

kOm 2n 2n(ja+j3)\ " (. @ 2n]1 o(2m2)) 1
AL oon 0 = (5 ) 2. H"( e o L %\ )| 2m

Ji 2, j3€R

o o a o orelin 4 i
X(fz( Z]l)Dn( 77(]nz+]3))f2( Z]z)Dn( ﬂ(]zn+]3))

ofo 22

which contributes when j3 = —j,. This term is unbounded but is compensated
by the expectation of the term Aék'a’”] . This can be shown using the same
,11,(0,0,0,0)

reasoning as above, and we obtain (5.13). Now we have

m,n,(U,0,0,

(k,€),m _ (k,€),m (k,€),m
Var (A (0,0,0,0) (‘90)) = cum (Am,n, 0000 (%0) A4 (00,00 (‘90))

and by Remark 2 of [45] (when m = 1),

. 2 2 + 2
Var(AFOm | (80)) = (:) Z H, ( ﬂ(]; 13))&‘% (¢(k)( ) (Pg)( n]z))
6

J1,]24]3/]4,]5,]6€

271 (]5 + ]6) (k) 271]4 (g) 271]5 1
* Hy ( n 88”1 s, Po| 64712
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217,
chum( ( ]rl)'rleVl)...cum(wg( n]p);rpevp)

where the summation is over all irreductible partitions V = V3 U--- UV, of the
table

—ja =5 —Jo  (a+js+Je)
It remains to apply Lemma 5.6 in order to get (5.14).

(il I —(]'1+]'2+]'3)).

Case 2: at least one index is non-negative

Again the same proof as [45] combined with his Remark 2 and Lemma 5.6 gives,
for any (i1, 1, i3, i4) and m € {1,2, 3} (in the worst case),

1
(kO
E (A% (80) = (k) (5.15)
uniformly in (i1, 2, 13,14) € {0,1,...,n - 1}* and
1
kOn B

Var (Am,n,(ill,iz,i3,i4) (‘90)) =0 (nkﬁ) (5.16)

uniformly in (i1, i2,i3,ia) € {0,1,...,n — 1}* for any m € {1,2,3}. To be more

precise, let us consider the term A(lkif)zl b ivia) (80) and assume (without loss of

generality) thatiy = max (i1, iz, i3, i4) . Then, we obtain using direct computations
that

1,n,(i1,i2,13,4a)

271\3 (2mj. 2mjp. 2mjs. 2n(fi+ o+ f3).
(k,0),m _ _ —
IE(A (SO))—(n) E exp( z( . i1+ " ir + s m i

J1,j2,j3€3

21 (2 +j3)\ 9" (w27 o (2mi2)) 1
XH"( n adm (’bso n s, n ] 8mdn

)

n n 4
2 27 271
+ cum (wg_i (E)wo_. (ﬂ))cum (wo_. (ﬁ)wo_. (—

1 n n—ip n n—is n n—iy

2mj 2mj 2mj
1 n 3 n 2 n 4

i or (i b it i omi i
-1 n n—iy n n—ip n n—isz n

Hence, one can use Lemma 5.6 to get

1,n,(i1,i2,i3,1a)

) ot o (i
E(A%0m  (39)) = ( ) y exp( (71}1 L PR P n(itja+js),

Jj2.j3€R

n n n n

21 (ja J;]'z + ja)))

21 (j1 + jo + j3)))

n

)
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27 (]2 + ]3) &nl ) 2n]1 © 27‘(]2 1
* Hy ( n d9m Py n Py n | 8ndn
2 2 2
((271) fi ( o 2 ”]3)< i) +0()

n
2n(j + ]2))f2 (271"113 ) Dy (—271(]'1 + jZ))

n n

2] e , o
+(2n)* f2 (L]l)Dmm(n_im_iS) (277(]1”+ ]3))f2 (szz)Dn—g( 271(]; + ]3))

’ (2n) f ( njl) n=iy (_Zn(jij - ]3))f2 (27;].2 ) Dmin(n—iz,n—i3) (_zﬂ(jz + ]3))

n
2m(j1 + jz))) 27(jr + js)))
n

n

27 1
+ (27_()2 f2 (T]) Dmin(n—il,n—iz) (

+ O( min(n—iy n—iz) ( +0 (Dmin(n—ﬁ,n—ig) (

+O( min(n—iy,n— 13)(@)))

The first term of the last equality is

AkOm (80):(27”) y exp( ( o 2k, 2 2 +]2+]3)i4))

1,1,m,(i1,12,13,i) n n n n

J1,j2,j3€

2r(j2+j3)\ 0" (w0 (271 o (272 1
XH"( n adm s, n s, n ] 8n3n

(ﬂl(z”]1 p 2”]3)( —z4)+0<1>)

n
Th . Y 2nt(ja+j3)

e support of the kernel H is [-7, 7t]. Then, it is necessary that ——= €

(s , .

[k, 7, k, ] to ensure H, (M) # 0. Therefore, we can write =2 27”3 = —27%+27;—]4

where j; € 1= [—[kyn], [k,n]] . We note that 2““ — 0 uniformly in j, € Tso

by (A4), fi (27;—]1, @, 27:1’3) = fa (27;]1, 27:/2, znh) + O (k,), where the error term

O (k;,) is uniform in (A1, A», A3) . Thus, one has

27 3 2mn (]2 + ]3) 271j1 Zﬂjz
(k€)m <t (k) )
|A1,1,n,(i1,iz,ia,i4) (‘90)| <( n) . Z‘I H ( n asm %0 )%
Jj2.j3€83

y (f4(27'c]112n]2 2n]3)( —14)+O(1))‘

n n
2 2
2

21\
(%) X
% (’ﬁl (anll 271].2, —Zﬂjz)

1
8m3n

1
8m3n

jlsz,j4612><1
n n n

(n—is) + O(ky (n—1is)) + O (1))
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and so Agk’fil (vinisis) (809) = O(1) where the bound is uniform as (iy,i,13,14) €
(k,0),m1

{0,...,n—1}*. The same approach shows that the term A s ininia)
AkOm

1,3,1n,(i1,12,13,14

(S0) (respec-
tively ) (90)) which contributes when j; = —j, (respectively j; = —j3)

are O (1) where the bound is also uniform as (i1, iy, 23,i4) € {0,...,1n — 1}*. Asin
Case 1, the most delicate term is the last one, namely

(k,0),m1
Al An,(iy,ia,13,is) ( 0) ( exp
Jisj2, ]2613

2n(ja+ja)\ 9" (L w271\ o (2m2)) 1
( ) dym (¢ ( )(P n J)2nn
( (2“]1) ( 27T(]z + ]3)) (Zﬂjz)D (Zn(f2 + f3))

n— 14 2 n min(n*llz,ﬂfig,)

n
2
+0 (Dmin(n—iz,ﬂ—i3) ( T[(]2n+ ]3) )) )

which contributes when j3 = —j,. This term is unbounded and we have (5.15).
Observe now that

(27'(]1 27'[]2 27'Cj3 i 27 (]1 + j2 + ]3) . ))
—i 13 — 14

n n n

m,n,(ix,i2,13,is m,n,(i1,i2,13,i1) m,n,(iv,i2,13,is)

Var(AB0m - (90)) = cum (A<k">"1 (80, A% (90))

and using Remark 2 of [45] (when m = 1),

) ot o o i
Var (A7 (39) = (271) Z exp( (ﬂh L P P 7?(]1+]2+]3)l.4))
16

1,n,(i1,i2,i3,ia n n n n
J1/j2,]3/j4,]5,J6€
(2mjs . 2mjs.  2mje.  2m(ja+ 5+ je).
xexp(z( ]11+ ]lz+ ]13— Jir st I4
n n n n

271 (]2 + ]3) anl ) 27-(]1 (g) 271]2
X Hy ( n o9m (P Y\ n (PSO n
21 (]5 + ]6) am (k) 27‘[]4 ) 271]5 1
X Hy ( n a9m s, s, n || 64n6n?
21, 2mj,
X Zcum (wg_[rl] (%);rl € V1) ...cum (w,g[, : ( n] n),-rp € Vp),
v P

where the summation is over all irreductible partitions V = V3 U--- UV, of the
table

a2 3 —(hi+a+73)
—ja —j5 —jo (ja+j5+Jjs)
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where in this specific term, we use the notation [rp] =iy ifr, € {j1,—ja}, -,

[rp] =iyifr, € {=(j1 + j2 + j3), ja + j5 + jo} . Consequently, we apply Lemma 5.6
to deduce (5.16).

Step 4: The terms of the form Affi’?’(’f - (521)

1,(i1,12,13,1)

We assume in this step that [171] = 3. Using the same expansion as presented
in the second step for the discrete Fourier transform, we rewrite the remainder
terms as functions of w!) () . Specifically, we maintain the notations introduced
in Step 2 to denote the indices (i1, iz, i3, i4) involved in the multiple sums. It can
be shown using Cauchy-Schwarz inequality together with Lemma 5.6 and (A1)
that (for each component and in the worst case)

(k,0),m oM _ i
E ( Ao (31 ) =0 ( k, ) (5.17)

uniformly in (i1, i, 13,74) € {0,1,..., 1 — 1}4 for any m € {1,2,3}. Let us be more
precise. Observe that

(kO,m IW
E ( Al/n,(illiz,ia/iz;) (‘9"

where

27\3 1
< |l — H
) (n) Z 8m3n n

j1j2,j3€

E(|T<jl,jz,js>

1,n,(i,i2,13,ia)

),

n(Zn(jz +13))

Guiiy () =2 (o0 (2T g0 (2T02)) 0 (2T 0 (22 0 (%
Tl,il’l,é],?z,ig,u) (Sn ) _a ny ¢§:1 n ¢§Zl n wn—i1 n wn—iz n wn—i3 n

), (i)

n—1i4 n

We have, using Cauchy-Schwarz inequality, that

1 1
(j1.j2,J3) (1.2))2 (j1.j2,J3) 2
]E( Tl,ﬂ,(ibiz,is,u) ) <E (Tzr” ) ]E( T3,",(11,i2,i3,i4)) !
where )
i) _ (2" o0 211 " 21

2 9\ n TSI n

and
2
(j1,72,J3) .

3n,(i1,ia,iz,is) ~ | n—i n—i n—i n—iy

_ wo ' (Zﬂjl)wo ‘ (27‘[j2)w0 ' (27’(j3)w0 . (_27‘[(j1 +j2+j3))
2 n 3 n

n n

Thanks to (A1), one can obtain that for each component

27'(j1 - -0

n

. 21j
Tg;m <Ton(j1,j2) =K —
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for some positive constant K and any 6 > 0. We deduce that

<) T s

jujzi
and finally (5.17) from Lemma 5.6.

1E(A<kf">c"1. L3

1, (i1,i2,i3,44) \ 71

TZn(]l/]Z)lE( ]1 Jj2,73) )%

3,1,(i1,i2,13,14)

(277 (2 + J's))

Step 5: Treatment of the remainder terms
Case 1: when |n| < 2

We detail the treatment of certain terms; others are treated in a similar way. We
consider one of the remainder terms

3

) o oo (i 4ot
R(k,z),‘nlu.(so)z(%t) Z exp( (nh n]zl.2+ n]3i3_ n(]1+]z+]3)i4))

1,n,(i1,i2,i3,7) n n n n
Jij2.j3€R

2n(ja+3)\ 2" (.w 271]1 277]2 1, (2m)
8 Hn( n adm %5 qb o

anz 27'(j3
X (T)WS—is (—)

Proceeding as in Step 3, one has

]E(R(kf)n1 )(90))20( 1 )

1,n,(iq,i2,13, nkn

and
1
(kO _
Var (RY ) (80)) = O (nzk% ) :

Similarly, one can show that

ol
and
ar (R0 09) - o ).

Hence, we deduce that

k.0, _ 1 )
RED™ (90 = Op ().

Case 2: when |n1| =3
We consider the following remainder term

—m 3 2 21 27j 27 (7 j j
RrkOM (Sn)z(z_ﬂ) Z exp( (n]l n]2i2+ 71]31.3_ 71(]1+]2+]3)i4))

1,n,(i1i2,13,7) n n n n n

J1.j2.3€R
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27'(j1

2t (ja+j3)\ 9™ (. 277]1 o (2m2)) 1
XH”( n 99m b5 ol (’%T n || 8mon " i
2\ n =B\ n

Proceeding as in Step 4, we get
A Nn
) B O( ky

(,0)n —m
E (’er”/(ilrliniSr') <S” )
(k0O (M \/ﬁ
R1,n ny (S ) O]P( kn )

Step 6: Asymptotic equivalence of the estimator calculated on the residuals
and the one on the true noise

Finally, we obtain

Remark 5.1. In [45], the functions called ¢ used in Theorem 1 and 2 are assumed to
be continuous. This is not the case in our situation since the function ¢® may have a
singularity of magnitude A~° at 0 for any small 6 > 0. Thanks to (A1), this singularity
cannot affect the convergence of the Riemann’s sums.

We note that the first term A%? )(\90) A%DO (So) — A%DO )(90) is

1,1,(0,0,0,0 2,1,(0,0,0,0) 3,1,(0,0,0,0
exactly the same estimator presented in Theorem 2 of [45], so we want to
show that V& is asymptotically equivalent to Agkf)(’g 000 (90) = A(zkf 0000 (90) =
k,6),0 . .
A(3,n,)(0,0,0,0) (80) . It is shown in [26] that
é”z 9) = ( m1-(@ d‘))) uniformly in 9 € ©;. (5.18)

Case 1: when |n1| < 2
Combining (5.15), (5.16) and (5.18), we have

—(d1~do)
kO _ n
Z 511 ‘9” Al,n,(z 30,0,0) (‘90) - OIP( k, )

110

Since (5,1 - So) =Op (n‘%), di —dy > -1 and nk? — 0 we get

nz ’12 ¥ 1
\9 - 190 Z ‘S Aglfn[,)(zl,lolo,o) (\90) = op (kn \/ﬁ) . (519)

11 =0

The same treatment applies to the other terms, and the result of Step 5-Case 1
leads us to

2
1 —

Z n_l' S - 9 A'(qlz’?lnl (80) _Agjf;),’(%,o,o,o) (80) = op (1) (5.20)

|n1 =0

n

|
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forany m € {1,2,3}.
Case 2: when |11| =3

For the last term, one can observe from Step 4, together with the same reasoning
as for (5.19), that in the worst case, for any m € {1,2,3},

_ n M 1
(Sn - 90) l1“5:25,),(0,0,0,0) (‘9” ) = OP( \nk, )

Similar treatment for the other terms and the results of Step 5 in Case 2 give

(S —90)" A%0 (3))) =0 (5.21)

n—oo
forany m € {1,2,3}.
Finally, one can use (5.20)-(5.21) to obtain

(k1) (k0,0 (k0,0 (k0,0 P
Vi = Al,n,(O,O,O,O) (S0) + AZ,n,(O,O,O,O) (S0) + A3,n,(0,0,0,0) (S0) T 0.

Theorem 2 in [45] gives

(k0,0 _ AkDO _ AkDO0 P (k,0)
Al,n,(O,O,O,O) (S0) AZ,n,(O,O,O,O) (S0) As,n,(o,o,o,o) (So) e T

and the proof is completed.

5.5. Proof of Theorem 2.3

The proof is similar to that of Theorem 2.2. It is obtained by following the same
steps as those presented in the subsection 5.4, so it is omitted.
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