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Abstract

This paper addresses the problem of approximating an unknown probability distribution
with density f - which can only be evaluated up to an unknown scaling factor - with the
help of a sequential algorithm that produces at each iteration n ≥ 1 an estimated density
qn. The proposed method optimizes the Kullback-Leibler divergence using a mirror descent
(MD) algorithm directly on the space of density functions, while a stochastic approximation
technique helps to manage between algorithm complexity and variability. One of the key
innovations of this work is the theoretical guarantee that is provided for an algorithm with a
fixed MD learning rate η ∈ (0, 1). The main result is that the sequence qn converges almost
surely to the target density f uniformly on compact sets. Through numerical experiments, we
show that fixing the learning rate η ∈ (0, 1) significantly improves the algorithm’s performance,
particularly in the context of multi-modal target distributions where a small value of η allows
to increase the chance of finding all modes. Additionally, we propose a particle subsampling
method to enhance computational efficiency and compare our method against other approaches
through numerical experiments.

1 Introduction

Consider the problem of approximating an unknown probability distribution with density f : Rd →
R⩾0 using a sequential algorithm that produces an estimated density qn. The index n ∈ N here
stands for the number of point-wise evaluations of f - no evaluation of the gradient ∇f is needed-
and the knowledge of the normalization constant of f should not be necessary, i.e., the algorithm
remains the same when, for an arbitrary constant c > 0, cf is used instead of f . This framework is
useful in many applications such as Bayesian inference [EKPS23, HCEP23] or variational inference
[BKM17], reinforcement learning [MPFR18, HNS19] or stochastic optimization [NWS14, GCE24]
to name a few among the statistical learning literature.

The adaptive importance sampling method [OB92, OZ00, BEM+17] or the sequential Monte
Carlo approach [DMDJ06], are based on generating random variables according to a certain sam-
pling distribution that evolves during the algorithm and using some re-weighting allows to obtain
unbiased estimators. Depending on the problem of interest, the sampling distribution might be
chosen by minimizing some discrepancy with respect to the target measure and many such different
approaches have been investigated in [EC22, BBD+19, LT16]. A leading approach, coming from
the variational inference literature [BKM17], consists in minimizing the Kullback-Leibler (KL)
divergence, defined as

KL(q∥f) :=
∫

log(q/f)q,

with respect to q chosen out of a parametric family of density functions. Throughout the paper,
∫
h

shall be used as a shortcut for
∫
h(x)dx. The optimization framework attached to the variational

inference approach is attractive because of the recent development in stochastic optimization and
related methods (e.g., stochastic gradient descent, variance reduction). This, in particular, allows
to handle large scale problems as promoted in [HBWP13].

In [DHDS16, KP22, CCK23b], the mirror descent (MD) algorithm [BT03] is employed to opti-
mize theKullback–Leibler divergence directly on the space of density functions and thereby avoiding
parametric misspecification issues as in standard stochastic variational inference [HBWP13]. When
applied to KL(q∥f), the MD algorithm gives the following iteration, for n ⩾ 0,

qn+1 ∝ q1−η
n fη (1)
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where η ∈ (0, 1] is called the learning rate. The above iteration cannot be implemented within our
framework simply because f is unknown (so is the normalizing constant in the above).

The approach taken in this paper is to rely on stochastic approximation [RM51] whose main
idea is to resort to a sequential algorithm in which a computationally cheap stochastic update
is conducted at each step. Suppose that Xn+1 is generated from qn and define the importance
weights wn+1 = f(Xn+1)/qn(Xn+1). Let Kb : Rd → R⩾0 be a probability density with a mean
zero and covariance b2Id, where Id is the identity matrix of size d× d, and b > 0 is a small positive
parameter known as the bandwidth. Define the random map

Mn+1 : x ∈ Rd 7→ wη
n+1Kb(x−Xn+1),

and note that E(Mn+1) = {q1−η
n fη} ∗Kb, where ∗ denotes the convolution product between func-

tions, i.e., f ∗ g(x) =
∫
f(y)g(x − y)dy when f, g are real-valued Lesbegue-integrable functions,

which from well-known results from approximation theory should be near the MD iteration ex-
pressed in (1), q1−η

n fη, when b is small. Having this in mind, the proposed algorithm follows from
the functional iteration

gn+1 = (1− γn+1)gn + γn+1Mn+1,

where γn+1 is a positive step size converging to 0 as n tends to infinity. The final step is given
by qn+1 = (1 − λn+1)gn+1/

∫
gn+1 + λn+1q0 where

∫
gn+1 can be easily determined through the

algorithm and q0 is a heavy-tailed distribution that ensures a comprehensive exploration of the
space Rd as suggested by [DP21]. The distribution qn writes as a mixture between q0 and a weighted
sum of n kernels anchored at the particles locations. Such a sum of kernels is encountered in the
wellknown context of kernel density estimation [Par62].

In the previous algorithm, the choice η = 1 might be attractive at first glance because of the
bias term which is easy to analyze [DP21]. However, when the dimension d is large or when the
function f is complex, the importance weights often collapse [BBL+08], i.e., only a few weights
carry-out the whole probability mass. This implies that the weights exhibit significant variance and
this characteristic severely hampers the algorithm’s efficiency, causing it to stagnate at excessively
high weights. As noted by [KP22],

Var (wη
n) ⩽ Var (wn)

for η ∈ (0, 1), suggesting that choosing small η might help to reduce the variability and avoid the
degeneracy of the importance weights. In addition, as observed in practice, and similarly to several
stochastic gradient descent optimization algorithm choosing a fixed stepsize allows the algorithm
to explore the space of interest and thereby avoid local minima.

Related algorithms. The proposed method has connections with several well-known ap-
proaches within the adaptive importance sampling, sequential Monte Carlo and variational infer-
ence literature. The idea of using a stochastic approximation of the MD iteration (1) using an
adaptive importance sampling approach was first investigated in [DHDS16] and further studied
in [KP22]. In both previous papers, the importance weights wn are “tempered” using the MD
power transform wη

n but their results are significantly different from the one established in this
paper in that [DHDS16] considers η converging to 0, and [KP22] deals with learning rate η going
to 1, while here we study the case where η remains fixed during the algorithm. Same weights
transformations, referred to as tempering, as well as other similar transformations e.g., clipping,
that implies a different behavior than standard weights, have been used in several sequential Monte
Carlo algorithms [Nea01, KM15, APB22] (without relying specifically on kernel smoothing); see
also [DMDJ06, Section 2.3.1]. For more detail on the connection between tempering and MD, we
refer to [CCK23b].

The proposed algorithm bears resemblance to the ones of [Wes93, GR96, Zha96, DP21] even
though the MD iteration was not considered in the previous work (i.e., η = 1). In all previous
references, a kernel smoothing estimator is employed to estimate f . This is also done by several
popular sequential Monte Carlo samplers as described in [Cho04, DMDJ06] where generating from
normalized gn, i.e., Xn+1 ∼ gn/

∫
gn, is often described using two steps: (i) the selection step

chooses at random, using multinomial sampling, one particular particle Xi among the existing
ones; (ii) the mutation step generates Xn+1 around Xi using (for example) kernel Kb(· −Xi).

Note that the proposed algorithm only requires evaluation of the target density up to a normal-
ization constant. This differs significantly from approaches that rely on gradient evaluations as for

2



instance the Markov chain Monte Carlo methods proposed in [WT11, SBCR16] or the variational
inference approaches detailed in [LW16, KSA+20, LLK+23].

Contribution and related results. The main result of the paper is to establish the almost
sure convergence (uniformly on compact sets) of the sequence (qn)n⩾0 to the target density f ,
under the assumption that the bandwidth tends to zero as n tends to infinity i.e., b = bn vanishes,
and that γn satisfies typical Robbins-Monro conditions [RM51], while η might be constant during
the algorithm. One important consequence of the previous is a central limit theorem, with rescaling
factor

√
n, for the estimation of

∫
hf , for compactly supported test functions h : Rd → R, using

empirical weighted average of h(Xn) with weights wn.
Existing theoretical results on the convergence of sequence (qn)n⩾0 when η = 1 might be found

in [Wes93, GR96, Zha96, DP21]. For instance, the almost sure uniform convergence to the target
density with a convergence rate and some central limit theorem for the integral estimation problem
are obtained in [DP21]. In [DHDS16] some results concerning the weak convergence of qn to f
and the convergence of the Kullback-Leibler objective are given when η goes to 0. In [KP22], the
almost-sure convergence is established when η converges to 1.

To the best of our knowledge, the results of the present paper are the first theoretical guarantees
about the convergence of qn to f when η is fixed during the algorithm. The new parasitic stationary
point at 0 when η < 1 complicates the proof as we need to establish that the algorithm is not
trapped in the vicinity of this spurious equilibrium. In contrast, forcing η to converge to 1 as in
[KP22] makes the algorithm behave asymptotically like the case η = 1 as s studied in [DP21],
which eases the proof.

As mentioned previously, similar types of algorithms, that involves a power transformation of
the weights wη

n, often refereed to as tempering, have been studied within the sequential Monte
Carlo literature [Cho04, DMDJ06, DM07]. To our knowledge, the results obtained are different as
the evolution of the sequence (qn)n⩾0 is stopped while allowing the number of particles to go to
infinity [Cho04]. This constraint is heavy because in practice one might allow the policy to change
in time without constraint.

Another line of work is the nonparametric recursive estimation problem in which data is used
sequentially to update the estimators [DW80, MPS09, BCD19]. Note that the recursive estimation
framework relies on Robbins-Monro type procedure, just as we do, but the context is different
because our framework requires the variational policy (qn)n⩾0 to be updated and then used to
draw points whereas in the recursive framework the data is distributed according to a fixed density.

Outline. In Section 2, we the mathematical framework and the main algorithm along with
several practical remarks. In Section 3, we state our main result and provide a sketch of proof. In
Section 4, we consider several practical variations of the proposed method while in Section 5, we
compare them to other approaches using numerical experiments. All the proofs are provided in
the Appendix.

2 The algorithm

We consider a probability density function f : Rd → [0,+∞), referred to as the target. Let
fu : Rd → [0,+∞) be a Lebesgue integrable function, representing an unnormalized version of f .
That is, there is a constant c > 0 such that fu = cf .

Let (Ω,F,P) be a probability space. Consider a sequence (Xn)n⩾1 of random variable on Rd.
Denote by (Fn)n⩾0 the natural filtration associated to the sequence (Xn)n⩾1. That is, Fn =
σ(X1, . . . , Xn) for n ⩾ 1, and F0 = {∅,Ω}. The sequence (Xn)n⩾1 is specified by its policy (qn)n⩾0

defined as follows.

Definition 1. The sequence of random variable (qn)n⩾0 is said to be a policy of (Xn)n⩾1, if it is
adapted to (Fn)n⩾0 and if, for every n ⩾ 0, qn is a conditional probability distribution function of
Xn+1 given Fn, that is, E(h(Xn+1)|Fn) =

∫
hqn for every bounded continuous function h on Rd.

Define the importance weights by

wn+1 :=
fu(Xn+1)

qn(Xn+1)
, n ⩾ 1 . (2)

These weights play an important role in the importance sampling framework as they allow to shift
the distribution from qn toward the target distribution f . As such, it allows to estimate without
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bias integrals with respect to the unnormalized target distribution as, whenever qn > 0 implies
fu > 0, it holds

E(wn+1h(Xn+1)|Fn) =

∫
hfu .

We are now in a position to introduce our algorithm characterizing sequentially the policy (qn)n⩾0

based on a sequence of unnormalized density (gn)n⩾0. LetK : Rd → [0,∞) be a probability density
function and define Kb(x) = b−dK(x/b) for any b > 0, the corresponding density with variance
b2Id. At each step n ≥ 0, the random variable Xn+1 is drawn from qn and the distribution gn is
updated into gn+1 as follows:

Xn+1 ∼ qn
gn+1(x) = (1− γn+1)gn(x) + γn+1 w

η
n+1Kbn+1

(x−Xn+1) , ∀x ∈ Rd, (3)

where (γn)n⩾1 and (bn)n⩾1 are positive sequences, respectively referred to as the step size and the
bandwidth sequences. We set g0 = 0. The next step is therefore to define qn+1 from gn+1, by:

qn+1(x) = (1− λn+1)
gn+1(x)∫
gn+1

+ λn+1q0(x) , ∀x ∈ Rd, (4)

where q0 is a fixed probability density function, and (λn)n⩾1 is a positive sequence. Thus, we
do not define qn+1 as the normalized version of gn+1, but as a mixture between the latter and
a fixed distribution q0. This mixture step will be revealed essential in our proofs, in order to
ensure sufficient exploration, and thus prevent qn to converge to a spurious stationary point. The
parameter λn+1 determines the tradeoff between the exploration and the adaptation to f .

The next proposition is given without proof as it is an easy consequence of the normalization
stage in (4).

Proposition 1. The policy (qn)n⩾0 obtained from (4) is invariant with respect the normalization
constant c > 0.

The previous property is attractive because it implies that even when fu is attached to a small
normalization constant c > 0, it has no effect on the algorithm (even in the first iterations). This
fact, in our proof, will be useful as it will allow us to work directly with the true target density f .

The role of η has already been depicted as balancing between bias and variance in [KP22] as
it was shown that Var(wη

n) ⩽ Var(wn) while E[wη
n] ≤ 1. One related point is it can also enable to

visit extensively the domain of interest. To illustrate this claim, we now consider the extreme case
where η = 0, and we remark that in this case, the policy (qn)n⩾0 obtained from (4) does not depend
on f . The choice η = 0 is not expected to be efficient as it does not use the evaluations of f . It is
nonetheless informative as it stresses that, as soon as η is small, there is no preference between the
weights. As a consequence, a new particle tends to be drawn equally from any previous particle.
This is particularly attractive as in some cases the algorithm can be trapped in a small part of the
domain while missing other parts.

To illustrate the previous property and thereby the importance of the parameter η, we provide
a toy example with a multi-modal target in dimension d = 2, where all modes are challenging to
find. The target density is a mixture of four Gaussian distributions with means at (0, 0), (10, 0),
(0, 10), and (10, 10), each having a variance of 0.1I2. The heavy-tailed density q0 is a Student’s t-
distribution with a location parameter of (5, 5) and a scale parameter of 10I2.The target distribution
possesses four modes. In Figure 1, we present two illustrative runs of our algorithm. In Figure 1a,
all four modes of the target distribution are recovered while in Figure 1b, one mode is missing.
A run of the algorithm with one mode missing can occur randomly for any value of η, but by
setting the parameter low enough, the algorithm is more likely to recover all the modes of the
target distribution. To evaluate how much this impact the outcome of the algorithm, we compute
the sliced Wasserstein distance, as defined in Section 5.1, between the target distribution and the
weighted empirical measure of the particles (Xn, wn)n⩾1. The average over 50 independent runs
of the log Wasserstein distance is provided in Figure 1c.

3 Main results

3.1 Almost sure convergence

We start by giving the assumptions needed on the target fu and the density q0.
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Figure 1: The target is the multi-modal distribution described in the text. Figure 1a represents
samples generated from qn (η = 1) where all modes are identified while Figure 1b has missed
one mode. Figure 1c shows a comparison (based on the sliced Wasserstein distance) of different
algorithms when varying η.

Assumption 1.

i) The functions fu, q0, are bounded, continuous, nonnegative, and integrable on Rd.

ii) There exists r > 0 and Cf > 0 such that
∫
∥x∥>t

fu(x)dx ⩽ Cf t
−r for all t ⩾ 0.

iii) There exists c > 0 such that cfu ⩽ q0.

Assumption 1-ii holds for instance if the function x 7→ ∥x∥r+d
fu(x) is bounded in Rd. As-

sumption 1-iii ensures that the support of the target distribution fu is included in the support
of q0, which will implies (assuming that λn is large enough) that fu can be explored thoroughly.
This condition is necessary for the definition of the weights (wn)n⩾1. We also need to have some
regularity and integrability conditions on the kernel function K.

Assumption 2.

i) K : Rd → R⩾0 is a bounded and Lipschitz density function and K(0) > 0.
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ii) There exist r > 0 and CK > 0 such that, for all x ∈ Rd, (1 + ∥x∥d+r)K(x) ⩽ CK .

The Gaussian kernel, K(u) ∝ exp(−∥u∥2/2), or the Epanechnikov Kernel, K(u) ∝ (1−∥u∥2)+
where u+ = u when u ⩾ 0 and 0 else, satisfy the above assumption. In the numerical experiments,
the Gaussian kernel will be used. Finally we state the assumption needed on the step-size sequence
(γn)n≥1, bandwidth sequence (γn)n≥1 and mixture parameter (λn)n≥1.

Assumption 3.

i) The sequence (γn)n⩾1, (bn)n⩾1, (λn)n⩾1 are decreasing to 0.

ii) The exists Cγ > 0 and nγ ⩾ 1 such that for all n ⩾ 1, n−1 ⩽ Cγγn, and, for all n ⩾ nγ ,
γn − γn+1 ⩽ γnγn+1. Moreover, ∑

n⩾1

γ2n <∞.

iii) When η ⩾ 1/2, it holds that
nγ2n log n

λnbdn
→ 0.

When η < 1/2, we have
nγ2n log n

λ
2(1−η)
n b

2d(1−η)
n

→ 0.

We remark, that Assumption 3-ii holds when γn = Cn−α, for C > 0 and α ∈ (1/2, 1), or C > 1
and α = 1. When γn = Cn−1 and η > 1/2, Assumption 3-iii on (bn) implies a classical condition
in the kernel smoothing estimation literature, that is,

lim
n→∞

nbdn =∞ and lim
n→∞

bn = 0 .

In non parametric estimation when the function is at least 2-times continuously differentiable and

the kernel has order 2 [Sto80], the optimal bandwidth is hn = n−
1

4+d . This choice is made possible
by the assumption of our main result.

Based on the previous set of assumptions, we are able to prove the almost sure convergence on
compacts. This is the main result of the paper.

Theorem 1. Consider the policy (qn)n⩾0 given by (4). Let Assumptions 1, 2 and 3 hold true and
let A ⊂ Rd be a compact set. Then, almost surely, we have:

lim
n→∞

sup
x∈A
|qn(x)− f(x)| = 0 .

3.2 Sketch of the proof

By Proposition (1), we can consider f = fu. We can rewrite (3) as follows

gn+1 = (1− γn+1)gn + γn+1q
1−η
n fη ∗Kbn+1

+ γn+1ξn+1 ,

where ξn+1 : Rd → R is a martingale increment in that, for all x ∈ Rd, E[ξn+1(x)|Fn] = 0. From
the latter equation, we see that the algorithm has two equilibria: f and 0. Note that the case
η = 1 does not present this issue, which is why our proof differs significantly from those in [DP21]
and [KP22]. The point f is stable, while the point 0 is unstable. This means that, without the
martingale term involving (ξn)n⩾1, (gn)n⩾0 would converge to f , but the presence of the martingale
term can potentially cause it to get trapped at 0.

Using that qn = gn/(
∫
gn) + λnq0, a convexity inequality implies that

gn+1 ⩾ (1− γn+1)gn + γn+1
(1− λn)1−η

2η(
∫
gn)1−η

T (gn) ∗Kbn+1

+γn+1ξn+1 + γn+1
λn
2η
T (q0) ,

where T (q) = q1−ηfη. By iterating the latter equation, we obtain a lower bound on gn. Using
a Freedman-type inequality, we show that, for sufficiently large n, the term involving the heavy
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tailed density q0 is greater than the absolute value of the martingale term involving (ξn)n⩾1 in the
expression of this lower bound. Hence, cases where the martingale term could lead the algorithm
into the trap cannot occur. The trap is therefore avoided. With this in hand, the analysis of
convergence becomes more straightforward.

Note that in [KP22, PD18], a Freedman-type concentration inequality is also used for the
analysis of the martingale term. When η ∈ [1/2, 1), we recover the same condition as in [KP22,
PD18] while when η ∈ (0, 1/2), the condition in Assumption 3-iii is stronger. This is due to the
variance of the noise that does not scale the same way.

3.3 Convergence in total variation and weak convergence.

An application of Scheffé’s lemma allows to extend the uniform convergence on compact sets to
L1-convergence.

Corollary 1. Under the assumptions of Theorem 1, we have, almost surely,

lim
n→∞

∫
|qn − f | = 0.

Now we can turn our attention to weak convergence type of results for the estimation of inte-
grals. This property has some practical interest in regards of the Bayesian application where one
is often interested in computing the mean with respect to posterior distribution. With the help
of Algorithm 1, integral of the form µ(h) =

∫
hf , for a given integrable function h, can be easily

estimated using the normalized quantity

µ̂n(h) =

∑n
i=1 wih(Xi)∑n

i=1 wi
.

The asymptotic normality is established in the next proposition.

Corollary 2. Let h : Rd 7→ R with compact support A such that
∫
fh2 < ∞ and suppose that

infx∈A f(x) > 0. Under the assumptions of Theorem 1,
√
n(µ̂n(h) − µ(h)) ⇝ N (0, σ2(h)) with

σ2(h) = µ(h2)− µ(h)2.

The proof of this result, which is given in the Appendix, follows from an application of the
Lindeberg central limit theorem [HH14] with a careful use of the convergence of (qn)n⩾1 in order to
check each of the conditions leading to the right asymptotic variance. We note that the expression of
the asymptotic variance is the same as the one of the oracle Monte Carlo estimate (1/n)

∑n
i=1 h(Xi)

where (Xi)i⩾1 is an independent sequence of random variables with common distribution f . This
equicontinuity property is reminiscent of Corollary 1 stated in [PD18] where a high-level condition
is given on qn to satisfy such a central limit theorem.

4 Practical considerations

In this section, we provide a complete description of the considered algorithms including subsam-
pling and minibatching variants.

4.1 Initial algorithm

To present a concise description of the studied algorithm, let us start with some algebra expand-
ing (3) and (4) which together provide the incremental expression of the algorithm, as a damped
stochastic version of mirror descent. Assuming g0 = 0 and taking λ0 = 1, the policy (qn)n⩾0

writes:

qn(x) = (1− λn)
(∑n

i=1Wi,nKbi(x−Xi)∑n
i=1Wi,n

)
+ λnq0(x) , (5)

where for 1 ⩽ i ⩽ n,

Wi,n := wη
i γi

n∏
j=i

(1− γj) . (6)

7



Algorithm 1: MIrror Descent for Adaptive Sampling (MIDAS)

Input: Budget N ⩾ 1, step sizes (γn)1⩽n⩽N , bandwidths (bn)1⩽n⩽N , mixture weights
(λn)1⩽n⩽N , learning rate η ∈ (0, 1], initial distribution q0, kernel K

Output: Weighted particles (Xn,Wn,N )1⩽n⩽N

1 for n← 0 to N − 1 do
2 generate Xn+1 from the mixture qn defined in (5);

3 Wn+1,n+1 ←
(

fu(Xn+1)
qn(Xn+1)

)η
γn+1;

4 if n ⩾ 1, for all 1 ⩽ i ⩽ n, Wi,n+1 ← (1− γn+1)Wi,n;

end

The practical implementation of (5) and (6) is detailed in Algorithm 1, referred to as mirror descent
for adaptive sampling (MIDAS), for a budget N ⩾ 1 corresponding to the number of evaluation of
f .

Thanks to (5), it is easy to see that MIDAS is invariant with respect to the choice of fu among all
possible scaled versions of the density f . As a result the algorithm does not require the knowledge
of the normalizing constant but also the behavior of the algorithm is not sensible to the value of
this constant. This makes easier the choice of the hyperparameter such as the learning rate η or
the step-size γn. An interesting special case is obtained when setting γn = 1/n. In this case, we
obtain the simplification: Wi,n = wη

i /n, for all 1 ⩽ i ⩽ n. If, moreover, η = 1, the algorithm is
closely related to the algorithm of [DP21] even though we consider here a slightly different choice
of the kernel’s bandwidth sequence.

Sampling from the mixture qn in (5) is achieved by drawing a random index in {1, . . . , n} with
a probability equal to the weights Wi,n for 1 ⩽ i ⩽ n. The cost of generating the index is O(log n).
Next, a random variable is generated according to the kernel density K, which yields the final
particle Xn+1 (up to shifting and rescaling). Of course, the kernel K is chosen to make the latter
step computationally effective.

As justified in the previous paragraph, we shall neglect the (logarithmic) cost of drawing a
particle from the current distribution qn. Hence the main computational cost of the algorithm
is carried out by the evaluation, at each iteration, of the importance weight Wn+1,n+1 and in
particular to the computation of fu(Xn+1) and qn(Xn+1). We denote by cu the cost of evaluating
fu. The evaluation of qn(Xn+1) requires n evaluations ofK. Denoting by cK the cost for evaluating
K at a given point, the n-th iteration of the algorithm requires an order of cu + ncK . This leads
to an overall computing cost of Ncu +N2cK+. Even if in some practical situations (e.g., complex
Bayesian model or when fu is the result of a heavy simulation program), cK is might be smaller
than cu, the complexity is dominated by the quadratic term N2cK when N is large. In this case,
it is interesting to consider a variant of our algorithm, in which the complexity is reduced. This is
the purpose of the next section.

4.2 Subsampling variant

In order to decrease the quadratic in N computing cost of MIDAS, we propose a subsampling
version of MIDAS, which is inspired from [GSS93]. The aim is to restrict the iteration cost of the
algorithm to approximately O(ℓn) operations, where (ℓn)n⩾0 is a sequence of integers chosen by
the user herself, and such that ℓn ≪ n. One may for instance consider ℓn ∼ nδ, with 0 < δ < 1.

At each iteration n, the main idea is to draw ℓn indices (u(i, n))1⩽i⩽ℓn according to the following
weighted empirical distribution

Pn :=

∑n
i=1Wi,nδi∑n
i=1Wi,n

,

where we recall the definition of Wi,n in (6). In other words, at the nth iteration of the algorithm,
ℓn particles with its bandwidth are drawn with replacement among the n particles generated so
far by the algorithm. Then, we define

q∗n(x) := (1− λn)
ℓn∑
i=1

Kbu(i,n)

(
x−Xu(i,n)

)
+ λnq0(·) , (7)
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The algorithm, which will be referred to as SubMIDAS for subsampling MIDAS, is described in
Algorithm 2.

Algorithm 2: SubMIDAS

Input: Budget N ⩾ 1, step sizes (γn)1⩽n⩽N , bandwidths (bn)1⩽n⩽N , mixture weights
(λn)1⩽n⩽N , learning rate η, bootstrap sample sizes (ℓn)1⩽n⩽N , initial distribution
q0, kernel K.

Output: Weighted particles (Xn,Wn,N )1⩽n⩽N

1 Generate X1 from q0 and set W1,1 ←
(

fu(X1)
q0(X1)

)η
γ1;

2 for n← 1 to N − 1 do

3 generate independent indices (u (i, n))1⩽i⩽ln from Pn =
∑n

i=1 Wi,nδi∑n
i=1 Wi,n

;

4 generate Xn+1 from the mixture q∗n defined in (7);

5 Wn+1,n+1 ←
(

fu(Xn+1)
q∗n(Xn+1)

)η
γn+1;

6 for all 1 ⩽ i ⩽ n, Wi,n+1 ← (1− γn+1)Wi,n;

end

The computing cost of the n-th iteration is then of order ℓn log(n) instead of ℓn log(n) in
Algorithm 1, which, when neglecting the operation to update the past weights (line 6 in Algorithm

2 compared to line 5), leads to an overall computing time cK
∑N

n=1 ℓn log(n)+Ncf . The assumption
that line 6 is negligible compared to line 5 is observed in practice when using the Gaussian kernel.
More importantly, in the case when γi = 1/i, line 6 is not necessary anymore and therefore leading
to the mentioned computing time.

4.3 Mini-batching variant

In the context of stochastic algorithms, the utilization of mini-batches, each consisting of m parti-
cles, is a common methodological refinement. At each iteration n+1, instead of generating a single
particle Xn+1 according to the density qn, the algorithm generatesm particles Xn+1,1, . . . , Xn+1,m,
each sampled from the same density qn.

The update formula for the unnormalized density, originally delineated by (3), is accordingly
modified to accommodate this batch processing strategy:

gn+1(x) = (1− γn+1)gn(x) + γn+1
1

m

m∑
k=1

wη
n+1,kKbn+1

(x−Xn+1,k) , ∀x ∈ Rd,

where the weights wn+1,k are computed as wn+1,k = f(Xn+1,k)/qn(Xn+1,k).
This mini-batch approach offers the advantage of preserving the total number of particles,

while reducing the computational time as it can generate multiple particles at each step through
parallelization. However, it is worth noting that the fewer number of updates potentially impacts
the adaptivity of the sampling mechanism. Thus, the choice of m represents a trade-off between
computational efficiency and adaptive capability.

It is noteworthy that the convergence properties of our algorithm remain intact even under mini-
batch adaptations. Indeed, the conditional expectation E[gn+1|Fn] remains invariant regardless of
whether mini-batching is employed. Consequently, we can extend the proof to the mini-batched
context. Moreover, as m is a predetermined constant in our mini-batching setup, the martingale
increment term E[gn+1|Fn]−gn+1 retains its asymptotic characteristics. This further substantiates
that the introduction of mini-batching does not perturb the convergence behavior of the algorithm.

5 Numerical experiments

This section is dedicated to the practical evaluation of the MIDAS algorithm (in particular the
subsampling version) based on several synthetic examples as well as a real data Bayesian estimation
problem. Two recent competitors, from Markov chain Monte Carlo and Sequential Monte Carlo
literature, shall be considered for the sake of comparison.
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5.1 Competitors

We use the subMIDAS algorithm as described in Algorithm 2, with ℓn =
√
n and mini-batches

of size m = 300 as described in Section 4.3. The bandwidths, mixture weights and step sizes are
given by

bn =
0.4√
d
(
mn

10000
+ 1)−1/(4+d) , λn =

1

log(mn+ 10)
, γn =

1

(n+ 10)
.

To allow reasonable initialization, we implement a burn-in phase as follows: at n = 1, we set an
initial batch size of m0 = 2000 and for the first ten steps (n ⩽ 10), we set λn = 0.5.

A key feature of our algorithm is that it generates random variables with a density known
up to a normalization constant, and it does not require the gradient of the density. We hence
compare with two other algorithms sharing the same specifications: Annealed Importance Sampling
(AIS) [Nea01] and Kernel Adaptive Metropolis-Hastings (KAMH) [SSG+14].

For AIS, we use a batch size of 300 with 20 Metropolis updates. Therefore, for a given number
K of intermediate distributions, we evaluate the unnormalized target density function K×300×20
times. We use intermediate distributions in the form described by [Nea01], with a geometrically
spaced schedule. We run AIS independently for various numbers of intermediate distributions K,
and in the final iteration, we plot the distance to the target distribution with respect to the number
of evaluations of the target, K × 300× 20.

For KAMH, in each run, the starting particle is generated from q0. We use a Gaussian kernel
with a covariance matrix σ2Id where σ = 5, and we set the scaling parameters to ν = 2.38/

√
d and

γ = 0.2. In this case, one step corresponds to one evaluation of the unnormalized target density
function.
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Figure 2: Cold start

5.2 Evaluation

For each competing method, we evaluate the distance to the target distribution with respect to
the budget, i.e., the number of evaluation of fu. After a given number of evaluations of fu, each
method (subMIDAS, AIS, KAMH) gives an empirical distribution described with the help weighted
particles. To evaluate the performance, we compute the sliced Wasserstein distance between the
empirical distribution and the target distribution. Recall that for two probability measures µ and
ν on Rd with finite second moments,

SW2(µ, ν) := Eθ∼U(Sd−1)[W2(θ#µ, θ#ν)
2] .

Here, W2 denotes the Wasserstein distance on probability measures on R with finite second mo-
ments, Sd−1 denotes the unit sphere {θ ∈ Rd : ∥θ∥ = 1}, U(Sd−1) denotes the uniform distribution
on Sd−1, and θ#µ denotes the pushforward of the measure µ through the map x ∈ Rd 7→ ⟨θ, x⟩.
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With the help of Monte Carlo simulation from U(Sd−1), this distance is easily approximated since
the Wasserstein distance W2 on measures on R admits a closed form. In the presented graphs, we
average the sliced Wasserstein distance over 50 runs.

5.3 Toy examples

Cold start

The ”cold start” scenario occurs when the target density is far from the initial density. In this
case, our target distribution is a Gaussian with a mean of 5/

√
d1d and a variance of (0.4)2/dId.

The initial distribution is a Gaussian with a mean of 0 and a covariance matix: 5/dId.
The results are given in Figure 2. In such a simple example of a target with a single mode,

η = 1 seems to be a reasonable choice. While taking η = 3/4 makes the algorithm slightly faster
at the start, it appears that taking a small value for η might slow the convergence of MIDAS. AIS
performs poorly, as the nature of the algorithm leads to high variance in the weights when the
starting distribution is far from the target.

Gaussian mixture

In this case, the target distribution is a mixture of two Gaussians with equal weights and mean
equal to 1/(2

√
d)1d and −1/(2

√
d)1d. The covariance matrix of the two Gaussianns is 0.42/dId.

The initial distribution is a Student’s distribution with mean 0 and scale parameter 5/dId.
In this multi-modal target example, we clearly see the importance of η. In this case, the

algorithm performs better for the lowest value of η. Furthermore, for all four values of η, MIDAS
outperforms our competitors.
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Figure 3: Gaussian Mixture

Anisotropic Gaussian mixture

In this case, the target distribution is a mixture of two Gaussians with mean equal to 1/(2
√
d)1d

and −1/(2
√
d)1d. The covariance matrix of the two Gaussianns is 0.42/dDiag(10, 1, . . . , 1). The

initial distribution is a Student’s distribution with a location parameter of 0 and a scale parameter
of 5/dId.

This case produces results that are similar to those of the Gaussian mixture case.

5.4 Bayesian logistic regression in real data set

We consider the Bayesian logistic regression setting of [GHB12], also considered in the recent
Bayesian inference literature [LW16, KP22, LLK+23]. More precisely, we consider a data set
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Figure 4: Anisotropic Gaussian Mixture

D = {ci, zi}i∈I of points zi ∈ Rd−1 and and binary class labels ci ∈ {−1, 1} for i ∈ I where d is
the dimension.

The model is parameterized by a parameter θ = (w, β) ∈ Rd−1 × R and the hyper parameters
a, b ∈ R. For each i ∈ I, we have

P (ci = 1|θ, zi) =
1

1 + e−wT zi
. (8)

The parameter β follows a Gamma distribution of shape parameter a = 1 and rate parameter
b = 0.01. The parameter w conditionally to β follows a Gaussian distribution of mean 0 and
variance (1/β)Id−1.

We are interested in estimating the posterior density p(θ|Dtrain) of the parameter θ according
to a training data set Dtrain which is given by:

p(θ|Dtrain) =
p(Dtrain|θ)p(θ)

P(Dtrain)

where the prior p(θ) is the density of the parameter θ given by the model, the likelihood p(Dtrain|θ)
is the probability of obtaining the the data set Dtrain with parameter θ and is given by (8) and
the marginal likelihood P(Dtrain) is the probability of obtaining the data set Dtrain which does not
need to be computed here. Thus, the unnormalized target distribution is given by p(Dtrain|θ)p(θ).

Given a new data point znew, we are interested in predicting the label cnew. Using the posterior
density and (8), we have: P(cnew = 1|znew,Dtrain) =

∫
P(cnew = 1|θ, znew)p(θ|Dtrain) dθ. And if

the computed probability exceeds 1/2, we infer that cnew = 1. Otherwise, we assign cnew = −1.
We consider the dataset ’waveform’ made of 5000 entries with dimension d = 22. For each

competing method, the predictions are made based on the training set Dtrain of size 400 and
the average accuracy is computed with the help of the test dataset made of the remaining 4600
points. This is displayed in Figure 5 where we observe that MIDAS with η = 1/4 outperforms all
competitors. Moreover, in this case, the classical algorithm with η = 1 performs even worse than
the competitors like AIS and KAMH.

6 Possible extensions

Several extensions of this work may be worth exploring further. We conjecture that the subsampling
algorithm subMIDAS satisfies similar convergence properties as the one described in Theorem 1
depending on the choice of the parameters λn, γn and bn with respect to ℓn. This is left for further
research. In addition, we believe that the assumptions on the previous sequences, in case η < 1/2,
might be alleviated at the price of a more thorough examination.
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Figure 5: Bayesian Logistic Regression

The adaptive choice of the learning rate η might help to improve the convergence rate and
the practical behavior of the algorithm. As noted in [CCK23a], our algorithm can be viewed
as an annealed importance sampling (AIS) algorithm. Such an algorithm chooses a distribution

path fk of the form fk ∝ q1−βk

0 fβk , where the annealing schedule satisfies βN = 1 for the final
iteration N . The annealing schedule corresponding to our algorithm is βn = 1− (1−η)n as studied
in [CCK23a], for instance. There are many choices of schedules that work well for different types
of problems. The existence of an optimal schedule that minimizes the variance of the estimates is
discussed in [SBCCD24]. Studying optimal choice of the parameter η in our context could have
some interesting connections with the previously mentioned papers. We leave this investigation
for future work.
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A Proofs

A.1 Notation

Let C(Rd) denote the set of continuous functions on Rd. We denote by B(x, ε) the d-dimensional
open ball of radius ε and center x. We define (x)+ = max(x, 0). We use the convention that
inf ∅ = +∞, and that 00 = 1. For positive sequences (an)n⩾1, (bn)n⩾1, the notation an = O(bn)
means that there exists C > 0 such that an ⩽ Cbn for all n ⩾ 1. For a sequence (an)n⩾0, we
denote liman := limn→∞ infk⩾n ak and liman := limn→∞ supk⩾n ak .

A.2 Proof of Theorem 1

We remark that the sequence (qn)n⩾0 constructed with fu is the same as the one using f . Indeed,
for a target f normalized, the algorithm gives two sequences (qn)n⩾0 and (gn)n⩾0. Now we define

(q̃n)n⩾0, (gn)n⩾0 the sequences associated to the algorithm with target f̃ = Cf . We see by induc-
tion that for all n ⩾ 0, g̃n = Cηgn and q̃n = qn. Then, in the rest of the proof we will consider
fu = f so that for each n ⩾ 1,

wn =
f(Xn)

qn−1(Xn)
.

We define the operator T on the set of non-negative continuous functions on Rd by:

Tg : x 7→ f(x)ηg(x)1−η ,

for all g. The iterates (gn) given by (3) can be rewritten as:

gn+1 = (1− γn+1)gn + γn+1Tqn ∗Kbn+1 + γn+1ξn+1 , (9)

where ξn+1 is a r.v. on C(Rd) given by:

ξn+1(x) := wη
n+1Kbn+1(x−Xn+1)− Tqn ∗Kbn+1(x) . (10)

We remark that, for every x ∈ Rd, E(ξn+1(x)|Fn) = 0. Iterating (9) with

ψn
i+1 :=

n∏
j=i+1

(1− γj) , (11)

we obtain for every n ⩾ 0

gn =

n∑
i=1

ψn
i+1γiTqi−1 ∗Kbi +Mn , (12)

where the martingale term is defined as

Mn :=

n∑
i=1

ψn
i+1γiξi . (13)

We define Zn :=
∫
gn. By integrating (9), we have:

Zn+1 = (1− γn+1)Zn + γn+1

∫
Tqn + γn+1

∫
ξn+1.

We are now ready to proceed with the main steps of the proof.
Step 1: Control of the martingale term. We obtain the following bound on the martingale

term Mn defined previously.

Proposition 2. Let Assumptions 1, 2 and 3 hold true. There exists ε > 0 such that for any p > 0
the process Mn of equation (13) satisfies:

lim
n→∞

sup∥x∥⩽np |Mn(x)|
λ1−η
n

= 0 , (14)

almost surely.
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Step 2: An upper bound on Zn. By applying Hölder’s inequality,
∫
Tqn ⩽ 1. Consequently,

if we define the sequence (Zn)n⩾0 with Z0 = Z0 as

Zn+1 := (1− γn+1)Zn + γn+1 + γn+1

∫
ξn+1 , (15)

we obtain Zn ⩽ Zn for every n a.s. .
We obtain the following result.

Proposition 3. Suppose f = fu, let Assumptions 1 and 3 hold true. (Zn)n⩾0 defined in (15)
satisfies limn→∞ Zn = 1, a.s..

Step 3: gn is away from 0. By applying a convexity inequality (1− η < 1) we obtain:

Tqn(x) ⩾

(
f(x)

2

)η
(
(1− λn)1−η

(
gn(x)

Zn

)1−η

+ λ1−η
n q0(x)

1−η

)
,

for every x. We define the operator T on the set on non-negative continuous function on Rd as

Tg : x 7→ ( f(x)2 )ηg(x)1−η ,

for every g. Then, using that Zn ⩾ Zn, we obtain

gn+1 ⩾ (1− γn+1)gn + γn+1
(1− λn)1−η

Z
1−η

n

Tgn ∗Kbn+1
+ γn+1λ

1−η
n Tq0 ∗Kbn+1

+ γn+1ξn+1 ,

for every n ∈ N. Iterating the latter equation, we obtain for every n ⩾ 0

gn ⩾ vn +Mn +

n∑
i=1

ψn
i+1γiλ

1−η
i Tq0 ∗Kbi ,

where

vn :=

n∑
i=1

ψn
i+1γi

(1− λi)1−η

Z
1−η

n

Tgi−1 ∗Kbi .

By the martingale control given by Proposition 2, we obtain:

Lemma 1. Let Assumptions 1, 2 and 3 hold true. For any α > 0 and p > 0, we have that almost
surely, there exists Nα,p ∈ (0,∞) such that for every n ⩾ Nα,p

min
f(x)⩾α,∥x∥⩽np

(gn − vn) (x) ⩾ 0 . (16)

The previous result allows to show that gn cannot reach 0 in places where f is positive.

Proposition 4. Let Assumptions 1, 2 and 3 hold true. Then for every ε > 0, and every x ∈ Rd

satisfying infy∈B(x,ε) f(y) > 0, we obtain

lim inf
y∈B(x,ε)

vn(y) > 0 ,

lim inf
y∈B(x,ε)

gn(y) > 0 ,

almost surely.

Step 4: A lower bound on gn

Proposition 5. Let Assumptions 1, 2 and 3 hold true. Then for every compact set A ⊂ Rd,
almost surely, we obtain

lim inf
x∈A

gn(x)− f(x) ⩾ 0 .
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According to Proposition 5, we obtain

lim inf
x∈A

(gn(x)− f(x)) ⩾ 0 , (17)

for every compact set A ⊂ Rd. Let us fix ε > 0, by Assumption 1, there exists a compact set Aε

such that: ∫
Aε

f(x) dx ⩾ 1− ε .

Moreover, ∫
Aε

(gn − f) ⩾ |Aε| inf
x∈Aε

(gn(x)− f(x)) .

By (17), we obtain

limZn ⩾ lim

∫
Aε

gn ⩾
∫
Aε

f ⩾ 1− ε ,

for every ε > 0, which gives the result.

Zn
a.s.−−→ 1 , (18)

under the assumption of Proposition 5.
Step 5: An upper bound on gn

Proposition 6. Suppose f = fu, let Assumptions 1, 2, 3 hold true. Then, for every compact
A ⊂ Rd,

lim sup
x∈A

(gn(x)− f(x)) ⩽ 0 .

And, using the Propositions 5 and 6, we obtain Theorem 1, leading to Corollary 2.

A.3 Proof of Proposition 2

In this subsection, we suppose f = fu, and we let Assumptions 1, 2, and 3 hold true. The
martingale increment (ξi)i⩾1 can also be rewritten as:

ξi(x) = wη
iKbi(x−Xi)− E[wη

iKbi(x−Xi)|Fi−1] , (19)

where Xi ∼ qi−1 and wi =
f

qi−1
(Xi). By Hölder’s inequality, we obtain a useful inequality

E
[
wη

n+1

∣∣Fn

]
⩽ 1 . (20)

The purpose of the next lemmas is to prove Proposition 2.

Lemma 2. There exists a constant C > 0, depending only on K and f , such that the following
statements hold for all n ⩾ i ⩾ 0, x, y ∈ Rd,

|ξi(x+ y)− ξi(x)| ⩽ Cλ−η
i−1b

−d−1
i ∥y∥ (21)

|ξi(x)| ⩽ Cλ−η
i−1b

−d
i (22)

E(ξi(x)2|Fj−1) ⩽ Cb
−d(1+(1−2η)+)
i λ

−(2η−1)+
i−1 . (23)

Proof. Notice first that the following bound is a consequence of Assumption 1-iii and (4):

wη
i ⩽ (cλi−1)

−η
. (24)

We establish the first point. Set ∆i(x, y) := Kbi(x + y − Xi) − Kbi(x − Xi) and remark that
|∆i(x, y)| ⩽ LK∥y∥b−d−1

i , where LK the Lipschitz constant of K (cf. Assumption 2-i). Recalling
the definition of ξi in (19), we obtain:

|ξi(x+ y)− ξi(x)| = |wη
i ∆i(x, y)− E(wη

i ∆i(x, y)|Fi−1)|
⩽ wη

i |∆i(x, y)|+ E(wη
i |∆i(x, y)| |Fi−1)

= (wη
i + E(wη

i |Fi−1))LK∥y∥b−d−1
i .
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We conclude by using (20) and (24). The second point follows from:

|ξi(x)| = |wη
iKbi(x−Xi)− E(wη

iKbi(x−Xi)|Fi−1)|
⩽ ∥K∥∞b−d

i (wη
i + E(wη

i |Fi−1)) ,

and (20) and (24) again. We establish the third point.

E
[
ξi+1(x)

2|Fi

]
⩽ E

[
w2η

i+1Kbi+1
(x−Xi+1)

2|Fi

]
=

∫
f(y)2ηqi(y)

−2ηKbi+1
(x− y)2qi(y)dy

⩽ ∥f∥2η∞
∫
Kbi+1

(x− y)2qi(y)1−2ηdy.

If η < 1
2 , we use the Hölder inequality:

E
[
ξn+1(x)

2|Fn

]
⩽ ∥f∥2η∞

(∫
Kbi+1(x− y)1/ηdy

)2η(∫
qi(y)dy

)1−2η

⩽ ∥f∥2η∞
(∫

b
−d/η
i+1 K

(
b−1
i+1(x− y)

)1/η
dy
)2η

= ∥f∥2η∞b
−2d(1−η)
i+1 ∥K∥21/η,

which is finite by Assumptions 1- i and 2- i. If η ⩾ 1
2 , we use that qi ⩾ λiq0 (cf. (4)) and

Assumption 1-i:

E
[
ξi+1(x)

2|Fi

]
⩽ ∥f∥2η∞λ

1−2η
i

∫
Kbn+1(x− y)2q0(y)1−2ηdy

⩽ ∥f∥2η∞∥q0∥1−2η
∞ ∥K∥22 λ

1−2η
i b−d

i+1

In any case, (23) is satisfied.

Lemma 3. There exist a constant C and a rank n0 depending only on quantities given in the
assumptions, such that, for all A > 0, n ⩾ 1 and q ⩾ 1:

P

(
sup

∥x∥⩽A

|Mn(x)| > Cqτn
√

log n

)
⩽ C

(
1 +A

rn
τn

)d

n−q n ⩾ n0

τn :=
(
nλ−(2η−1)+

n b−d(1+(1−2η)+)
n

)1/2
rn = nλ−η

n b−d−1
n .

Proof. Let n ∈ N∗. For any i ⩽ n, and any x ∈ Rd, we define

ζi,n(x) := γiψ
n
i+1ξi(x) .

Note that E(ζi,n(x)|Fi−1) = 0 for all i ⩽ n. We will apply Proposition 7. We consider ε > 0 to be
chosen later, and, following this proposition, denote

ζ̃i,n(x) := sup
∥y∥⩽ε

|ζi,n(x+ y)− ζi,n(x)| .

By Lemmas 2, 9 and Assumption 3, the following inequalities hold, for all x ∈ Rd:

max
i=1,...,n

|ζi,n(x)| ⩽ Cγnλ−η
n−1b

−d
n =: m

n∑
i=1

E(ζi,n(x)2|Fi−1) ⩽ Cγ
2
n

n∑
i=1

(
b
−d−d(1−2η)+
i λ

−(2η−1)+
i−1

)
= Cγ2nτ

2
n =: v

n∑
i=1

E(ζ̃i,n(x)|Fi−1) ⩽ Cεγn

n∑
i=1

λ−η
i−1b

−d−1
i ⩽ Cεγnnλ

−η
n b−d−1

n = Cγnεrn =: u.
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We apply Proposition 7 with

t := C0

√
v log n = C0γnτn

√
C log n

ε := t (Crnγn)
−1

,

for some C0 ⩾ 1. With this specific choice of ε, we remark that u = t. In order to compute the
factor of t2 in the exponent of (43), let us show first that tm ⩽ C0v for n large enough. This is
equivalent to m2 log n ⩽ v, and is true if

lim
n→∞

λ
(2η−1)+
n b

d(1−2η)+
n log n

nλ2ηn bdn
= 0 . (25)

Since γn ⩾
Cγ

n , it is also true if,

lim
n→∞

nγ2n log n

λnbdn
= 0 .

The latter is true under Assumption 3–iii. Thus, (25) is true for n ⩾ n0 with n0 that depends only
on quantities given in assumptions. It leads to (for n ⩾ n0):

max(v, 2mu) + 2
3mt = max(v, 2mt) + 2

3mt ⩽ 3C0v .

We obtain for n ⩾ n0, a bound on the exponent in (43):

t2

8
(
max(v, 2mu) + 2

3mt
) ⩾ C2

0v log n

24C0v
=
C0

24
log n.

By applying (43) and setting C0 = 24q for q ⩾ 1, we obtain, recalling Mn(x) =
∑n

i=1 ζi,n(x),

P

(
sup

∥x∥⩽A

|Mn(x)| > 48qγnτn
√
log n

)
⩽ C ′

(
1 +A

rn
τn

)d

n−q, n ⩾ n0.

The conclusion follows, taking C = max(48q, C ′).

Proof of Proposition 2. By choosing q large enough in Lemma 3, we obtain∑
n

P
(

sup
∥x∥⩽np

|Mn(x)| > tn

)
<∞

tn = Cγnqτn
√
log n.

For ω ∈ E such that P(E) = 1, by Borel-Cantelli’s lemma there exists N(ω) such that

|Mn(x)| ⩽ tn <∞ if n > max(N(ω), ∥x∥1/p).

By Assumption 3-iii, limn→∞
t2n

λ
2(1−η)
n

= 0, which finishes the proof.

A.3.1 Proof of Proposition 3

We define Vn := Zn − 1. Then, we obtain

Vn+1 = (1− γn+1)Vn +

∫
ξn+1

Iterating the latter, we obtain

Vn =

n∑
i=1

ψn
i+1γi

∫
ξi

We will apply Proposition 7 to the sum Vn =
∑n

i=1

∫
ζi,n, where we recall

∫
ζi,n = ψn

i+1γi
∫
ξi =

ψn
i+1γiw

η
i . We see that:

E

[(∫
ξn+1

)2
∣∣∣∣∣Fn

]
⩽ E

[
w2η

n+1

∣∣∣Fn

]
=

∫
f2ηq1−2η

n .
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If η < 1
2 , we use Hölder’s inequality:

E

[(∫
ξn+1

)2
∣∣∣∣∣Fn

]
⩽

(∫
f

)2η (∫
qn

)1−2η

= 1 .

If η ⩾ 1
2 , we use the majoration qn ⩾ λnq0 ⩾ λncf (cf. (4) and Assumption 1-iii):

E

[(∫
ξn+1

)2
∣∣∣∣∣Fn

]
⩽ c1−2ηλ1−2η

n .

Using Lemma 9, we obtain the bound

n∑
i=1

E

[(∫
ζi,n

)2
∣∣∣∣∣Fi−1

]
⩽

n∑
i=1

Cγ2nλ
−(2η−1)+
i−1 ⩽ Cnγ2nλ

−(2η−1)+
n .

Moreover, maxi=1...n |
∫
ζi,n| ⩽ Cγn. Let C0 > 1, we apply Proposition 7 with ε = 1, A := 1,

u := 0, v := Cnγ2nλ
−(2η−1)+
n , m := Cγn, and t := C0

√
v log n. We claim that tm ⩽ v for n big

enough. This is equivalent to C0m
2 log n ⩽ v. Remaking γn ⩾

Cγ

n , the inequality is true, since by
Assumption 3, nγ2n log n→ 0. Consequently, for n big enough

t2

8(v + 2
3mt

⩾
C2

0v log n

16C0v
⩾ C0

16 log n .

Consequently we obtain taking C0 = 32

P(|Vn| > 32
√
v log n) ⩽ Cn−2 .

For ω ∈ E, such that P(E) = 1, by Borell Cantelli’s lemma, there exists N(ω) such that |Vn| ⩽
32
√
v log n, for n ⩾ N(ω). Since by Assumption 3–iii, v log n→ 0, Proposition 3 is proven.

A.4 Proof of Lemma 1

The lemma is a direct consequence of the following lemma.

Lemma 4. Suppose f = fu, let Assumptions 1, 2 and 3 hold true. For all α > 0 and p > 0,
almost surely, there exists Nα,p ∈ (0,∞) such that,

min
f(x)⩾α,∥x∥⩽np

(
n∑

i=1

ψn
i+1γiλ

1−η
i−1 Tq0 ∗Kbi +Mn

)
(x) ⩾ 0 ,

for every n ⩾ Nα,p.

Proof. Let x ∈ Rd, such that, f(x) ⩾ α. For every i ⩾ 1, Tq0 ∗Kbi(x) ⩾ c
1−ηα2−η. Since (λn)n⩾0

is nonincreasing,

1

λ1−η
n

n∑
i=1

ψn
i+1γiλ

1−η
i−1 Tq0 ∗Kbi(x) ⩾ c

1−ηα2−η
n∑

i=1

ψn
i+1γi .

By Lemma 10 with ai = 1 and by Proposition 2, almost surely, we obtain

lim
n→∞

1

λ1−η
n

min
f(x)⩾α,∥x∥⩽np

(
n∑

i=1

ψn
i+1γiλ

1−η
i−1 Tq0 ∗Kbi +Mn

)
(x) ⩾ c1−ηα2−η ,

which finishes the proof.
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A.5 Proof of Prop 4

In this subsection, we let Assumptions 1, 2 and 3 hold true. Moreover, we assume f = fu.
(vn) can be viewed recursively as:

vn+1 = (1− γn+1)vn + γn+1
(1− λn)1−η

Z
1−η

n

Tgn ∗Kbn+1
, (26)

with v0 = 0.
We denote for a real valued function h defines in Rd:

h ε(x) := inf
y∈B(x,ε)

h(y) , (27)

for all ε, x. In the case of a sequence of real functions (hn), we define

g
n,ε

(x) := inf
y∈B(x,ε)

gn(y) . (28)

Let B ⊂ Ω such that, Proposition 3 and Lemma 4 hold for every ω ∈ B and P(B) = 1. We
fix ε > 0, x ∈ Rd, ω ∈ B in the whole proof and assume that f

ε
(x) > α. For any y ∈ B(x, ε), we

obtain

Tgn(y) ⩾ Tgn1B(x,ε′) ∗Kbn+1
(y)

⩾ 2−ηfη
ε
(x)g1−η

n,ε′
(x)(1B(x,ε′) ∗Kbn+1

)(y)

⩾ 2−ηfη
ε
(x)g1−η

n,ε
(x)(1B(0,ε′) ∗Kbn+1

)(y − x)

⩾ 2−η c̃εf
η

ε
(x)g1−η

n,ε
(x) ,

where c̃ε := infn⩾0 infB(0,ε)Kbn+1 ∗ 1B(0,ε) is a non-negative constant by Lemma 8. Going back
to (26), for every y ∈ B(x, ε), we obtain

vn+1(y) ⩾ (1− γn+1)vn(y) + γn+12
−ηcε,nf

η

ε
(x)g1−η

n,ε
(x) ,

where cε,n := c̃ε
(1−λn)

1−η

Z
1−η
n

. By (16), we obtain

vn+1(y) ⩾ (1− γn+1)vn(y) + γn+12
−ηcε,nf

η

ε
(x)v1−η

n,ε (x) ,

for every n ⩾ Nα,p(ω). Moreover, there exists δ > 0 and a constant Nδ(ω), such that

(1−λn)
1−η

Z
1−η
n

⩾ 1− δ

for every n ⩾ Nδ(ω) by Prop 3. Consequently, taking the infimum over the ball B(x, ε), we obtain

v n+1,ε(x) ⩾ (1− γn+1)v n,ε(x) + γn+1(1− δ)2−ηcεf
η

ε
(x)v1−η

n,ε (x) ,

for every n ⩾ Nα,x,δ(ω) := max(Nα,x(ω), Nδ(ω)). There exists a constant c > 0 small enough
satisfying

(1− δ)2−ηcεαc
1−η ⩾ c, and vNα,x,δ(ω),ε ⩾ c .

One shows by induction that v n,ε(x) > c for every n ⩾ Nα,x,δ(ω). Taking the limit inferior, we
obtain Prop 4.

A.6 Proof of Proposition 5

In this subsection, we let Assumptions 1, 2 and 3 hold true. Moreover, we assume f = fu. We also
use the notations in (27) and (28).

Lemma 5. For every ε > 0, x ∈ Rd, almost surely, we obtain

lim g
n,ε

(x) ⩾ f
ε
(x) (29)
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Proof. Let B ⊂ Ω such that, Proposition 3 and 4 holds for every ω ∈ B, and P(B) = 1. We fix
ε > 0, x ∈ Rd, ω ∈ B in the whole proof, and assume that f

2ε
(x) > 0, because otherwise (29) is

obvious.
Since Zn ⩽ Z̄n, we obtain for every y ∈ Rd,

qn(y) ⩾
1− λn
Z̄n

gn(y) + λnq0(y) ⩾
1− λn
Z̄n

gn(y) .

Hence, we obtain Tqn(x) ⩾ cnTgn(y), where we defined cn := ((1−λn)/Z̄n)
1−η. Note that cn → 1

a.s., by Proposition 3. From (9), for every y ∈ Rd, we obtain

gn+1(y) ⩾ (1− γn+1)gn(y) + γn+1cnTgn ∗Kbn+1(y) + γn+1ξn+1(y) . (30)

Let 2ε ⩾ ε′ ⩾ ε. Remark that, for y ∈ B(x, ε),

Tgn ∗Kbn+1
(y) ⩾ Tgn1B(x,ε′) ∗Kbn+1

(y)

⩾ fη
ε′
(x)g1−η

n,ε′
(x)(1B(x,ε′) ∗Kbn+1)(y)

⩾ fη
ε′
(x)g1−η

n,ε′
(x)(1B(0,ε′) ∗Kbn+1

)(y − x)

⩾ c̃ε′,nf
η

ε′
(x)g1−η

n,ε′
(x) ,

where c̃ε′,n := infB(0,ε′)Kbn+1
∗ 1B(0,ε). Going back to (30), for every y ∈ B(x, ε), we obtain

gn+1(y) ⩾ (1− γn+1)gn(y) + γn+1cε′,nf
η

ε′
(x)g1−η

n,ε′
(x) + γn+1ξn+1(y) ,

where cε′,n := cnc̃ε′,n. Iterating the latter equation, for every y ∈ B(x, ε), we obtain (since g0 = 0)

gn(y) ⩾
n∑

i=2

γiψ
n
i+1cε′,i−1f

η

ε′
(x)g1−η

i−1,ε′
(x) +Mn(y) .

Taking the infimum over the ball B(x, ε), we obtain

g
n,ε

(x) ⩾
n∑

i=2

γiψ
n
i+1cε′,i−1f

η

ε′
(x)g1−η

i−1,ε′
(x)− sup

y∈B(x,ε)

|Mn(y)|

Applying Lemma 10, we obtain

lim g
n,ε

(x) ⩾ lim cε′,n−1f
η

ε′
(x)g1−η

n−1,ε′
(x)− lim sup

y∈B(x,ε)

|Mn(y)| .

Since cn → 1, and c̃ε′,n → 0 by Lemma 7 and Proposition 3, we obtain lim cε′,n−1g
1−η
n−1,ε′

(x) =

(lim g
n−1,ε′

(x))1−η. Moreover, by Proposition 2, lim supy∈B(x,ε) |Mn(y)| = 0. Hence, we obtain

lim g
n,ε

(x) ⩾ (f
ε′
(x))η lim g

n,ε′
(x)1−η .

Letting ε decrease to some value t < t and then ε′ decrease to t, we get that lim g
n,t+

(x) =

lims↓t lim g
n,s

(x) satisfies

lim g
n,t+

(x) ⩾ fη
t
lim g

n,t+
(x)1−η .

By Proposition 4, lim g
n,t+

(x) ⩾ lim g
n,ε

(x) > 0 . Consequently, lim g
n,t+

(x) ⩾ f
t
. The lat-

ter implies that for any ε > s > t, close enough to t, lim g
n,t

(x) ⩾ lim g
n,s+

(x) ⩾ f
s
, hence

lim g
n,t

(x) ⩾ f
t
by continuity of t 7→ f

t
.

Proof of Proposition 5. Suppose that the proposition doesn’t hold. Then, there exists a bounded
sequence (xn) and δ > 0 such that:

(gn(xn)− f(xn)) ⩽ −δ .
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(xn) admits a converging subsequence. So, we can suppose without loss of generality that xn → x.
By continuity of f there exists ε > 0, n0 ⩾ 0 such that:

f(xn) ⩽ f ε
(x) +

δ

2
, n ⩾ n0 .

And for n1 big enough:
gn(xn) ⩾ g n,ε

(x) , n ⩾ n1 .

Then, for all n ⩾ max(n0, n1), we have:

−δ ⩾
(
g
n,ε

(x)− f
ε
(x)
)
− δ

2
.

Using Lemma 5, we obtain −δ ⩾ −δ/2, which is a contradiction.

A.6.1 Proof of Proposition 6

In this subsection, we let Assumptions 1, 2 and 3 hold true. Moreover, we assume f = fu.
We recall (12)

gn =

n∑
i=1

ψn
i+1γiTqi−1 ∗Kbi +Mn .

We define:

un :=

n∑
i=1

ψn
i+1γiTqi−1 ∗Kbi . (31)

Recursively, we have:
un+1 = (1− γn+1)un + γn+1Tqn ∗Kbn+1 , (32)

with u0 = 0.

Lemma 6. With probability one, for any ε > 0 and any x ∈ Rd

lim gn,ε(x) ⩽ fε(x). (33)

Proof. Let B ⊂ Ω such that P(B) = 1, and 18 and Proposition 2 hold for every ω ∈ B. In the
whole proof, we fix ω ∈ B From (31), we get for any x ∈ Rd

un+1(x) ⩽
n∑

i=1

ψn
i+1γi∥Kbi ∗ Tqi−1∥∞. (34)

Set

θn = max
∥x∥⩽np

qn(x)

and notice that

∥Kbn+1 ∗ Tqn∥∞ = sup
x∈Rd

∫
Kbn+1(x− y)f(y)ηqn(y)1−ηdy

⩽ ∥f∥η∞θ1−η
n + sup

x∈Rd

∫
∥y∥>np

Kbn(x− y)f(y)ηqn−1(y)
1−ηdy.

For any x ∈ Rd, using Assumption 1-ii:∫
∥y∥>np

Kbn(x− y)f(y)ηqn−1(y)
1−ηdy ⩽ b−d

n ∥K∥∞
∫
∥y∥>np

f(y)ηqn−1(y)
1−ηdy

⩽ b−d
n ∥K∥∞

(∫
∥y∥>np

f(y)dy

)η

(Hölder)

⩽ ∥K∥∞b−d
n Cη

fn
−pηr.
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Finally, (34) yields

un+1(x) ⩽ C
n∑

i=1

ψn
i+1γiθ

1−η
i + C

n∑
i=1

ψn
i+1γib

−d
i i−pηr ,

and for ∥x∥ ⩽ np, using 18, there exists a constant C0 > 0 such that:

θn(x) ⩽ C0 sup
∥y∥⩽np

gn(y) ⩽ C0 sup
∥y∥⩽np

un(y) + C0 sup
∥y∥⩽np

|gn(y)− un(y)| .

Then, with C ′ = CC0 and gn − un =Mn, we obtain:

θn+1 ⩽ C
′

n∑
i=1

ψn
i+1γiθ

1−η
i + C ′

n∑
i=1

ψn
i+1γib

−d
i i−pηr + C0 sup

∥x∥⩽(n+1)p
|Mn+1(x)| .

By Proposition 2, the last term tends to zero. Lemma 10 implies that the second term tends to
zero for p large enough. Denote by rn the sum of these terms, and the first sum by Sn, that
is: Sn :=

∑n
i=1 ψ

n
i+1γiθ

1−η
i . In order to prove that θn is bounded, it suffices to prove that Sn is

bounded. We obtain:

Sn+1 = (1− γn+1)Sn + γn+1C
′θ1−η

n

⩽ (1− γn+1)Sn + γn+1C
′(C ′Sn + rn)

1−η

⩽ (1− γn+1)Sn + γn+1C
′2−ηS1−η

n + γn+1C
′r1−η

n

Consider a constant C1 such that

C ′2−ηC1−η
1 + C ′r1−η

n ⩽ C1, n ⩾ 1

S1 ⩽ C1.

Such a C1 exists, and one shows by induction that Sn ⩽ C1 for all n. So, θn is bounded as well
for all p. Consider 0 < ε, taking the sup on B(x, ε) in (32), we get

un+1,ε(x) ⩽ (1− γn+1)un,ε(x) + γn+1 sup
y∈B(x,ε)

Kbn+1
∗ Tqn(y).

But, for any ε′ > ε

Kbn+1 ∗ Tqn(y) =
∫
Kbn(y − z)f(z) ηqn−1(z)

1−η1∥z−x∥⩽ε′dz

+

∫
Kbn(y − z)f(z)ηqn−1(z)

1−η1∥z−x∥>ε′dz

⩽ fε′(x)
η qn,ε′(x)

1−η(Kbn+1
∗ 1∥.∥⩽ε′)(y − x)

+ ∥f∥∞
(∫

Kbn(y − z)1/η1∥z−x∥>ε′dz
)η
.

Using Lemma 7, the convolution in term first term converges to one uniformly on y ∈ B(x, ε). As
far as the second term is concerned, one has, for y ∈ B(x, ε), using Assumption 2.(ii)∫

Kbn(y − z)1/η1∥z−x∥>ε′dz ⩽
∫
∥t∥⩾ε′−ε

Kbn(t)
1/η ddt

⩽
∫
∥t∥⩾ε′−ε

(
b−d
n (∥t∥ /bn)−(r+d)

)1/η
dt

⩽ C(ε, ε′)br/ηn

which tends to zero, since
∫
Rd

1
1+∥t∥d+δ dt is bounded for every δ > 0. Finally we obtain (we omit

the argument x)

un+1,ε ⩽ (1− γn+1)un,ε + γn+1κn+1

(
f

η

ε′q
1−η
n,ε′ + rn

)
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for some sequence rn → 0 depending on ε, ε′, and κn → 1. The boundness of θn guarantees that
the l.h.s. is finite. By Lemma 10 we have, omitting the argument x,

limun,ε ⩽ f
η

ε′
(
lim qn,ε′

)1−η
.

Since limun,ε = lim qn,ε = lim gn,ε (cf. 18 and Proposition 2), the bounded numbers uε = lim gn,ε
satisfy

uε ⩽ f
η

ε′u
1−η
ε′

for any ε′ > ε. The function ε 7→ uε is increasing. Letting ε decrease to some value t and then ε′

decrease to t, we get that ut+ := lims↓t us satisfies

ut+ ⩽ f
η

t u
1−η
t+

Hence ut+ ⩽ f t for all t, which implies that ut ⩽ f t.

Proof of Proposition 6. Suppose that the proposition doesn’t hold. Then, there exists a bounded
sequence (xn) and δ > 0 such that:

(gn(xn)− f(xn)) ⩾ δ .

(xn) admits a converging subsequence. Hence, we can suppose without loss of generality that
xn → x. By continuity of f there exists ε > 0, n0 ⩾ 0 such that:

f(xn) ⩾ f ε(x)−
δ

2
, n ⩾ n0 .

And for n1 big enough:
gn(xn) ⩽ g n,ε(x) , n ⩾ n1 .

Then, for all n ⩾ max(n0, n1), we have:

δ ⩽
(
g n,ε(x)− f ε(x)

)
+
δ

2
.

Now, using Lemma 6, we obtain δ ⩽ δ/2, which finishes the proof.

A.7 Proof of Theorem 1

When f = fu, for any compact set A ⊂ Rd, we obtain

lim
n→∞

sup
x∈A
|gn(x)− f(x)| ⩽ limmax

(
sup
x∈A

(gn(x)− f(x)) ,− inf
x∈A

(gn(x)− f(x))
)

⩽ max

(
lim sup

x∈A
(gn(x)− f(x)) , lim− inf

x∈A
(gn(x)− f(x))

)
⩽ max

(
lim sup

x∈A
(gn(x)− f(x)) ,− lim inf

x∈A
(gn(x)− f(x))

)
.

By Propositions 5 and 6, Theorem 1 is proven.
When f ̸= fu, according to the Step 0, in Sec. A.2 the result still holds.

A.8 Proof of Corollary 2

Let wi,n be defined by

wi,n =
1√
n

(
wih(Xi)−

∫
fh

)
,

and check that E[wi,n|Fi−1] = 0 a.s. Following from [HH14, Corollary 3.1], it suffices to show

lim
n→∞

n∑
i=1

E
[
w2

i,n

∣∣Fi−1

]
=

∫
fh2 −

(∫
fh

)2

, in probability (35)

lim
n→∞

n∑
i=1

E
[
w2

i,n1|wi,n|>ε

∣∣Fi−1

]
= 0 , in probability. (36)

27



Note that

E
[
w2

i+1,n

∣∣Fi

]
=

1

n

(∫
f2

qi
h2 −

(∫
fh

)2
)
.

Hence, using the Cesaro theorem, (35) is a consequence of

lim
i→∞

∫
f2

qi
h2 =

∫
fh2 , almost surely. (37)

Since infx∈A f(x) > 0, by Theorem 1, there exists i0 ⩾ 0, such that infi⩾i0,x∈A qi(x) > 0 , for
every ω ∈ B such that P(B) = 1. Moreover, for i ⩽ i0, qi ⩾ infi⩽i0 λi > 0. Hence, we obtain, for
all ω ∈ B, infi⩾1,x∈A qi(x) > 0 and therefore M := supi⩾1,x∈A(f(x)/qi(x)) < ∞. Hence, for all
ω ∈ B, the function f2/qih is bounded by Mfh2 which is integrable. In addition, by Theorem 1,
for all ω ∈ B and all x ∈ A, qi(x)→ f(x). The Lebesgue dominated convergence theorem implies
(37).

For the rest of the proof, we fix an arbitrary ω ∈ B. Remarking that
∫
|h|f is bounded, when

n is large enough (ε
√
n ⩾

∫
f |h|) we obtain that

{x ∈ Rd :

∣∣∣∣ 1√
n

(
fh

qi
(x)−

∫
fh

)∣∣∣∣ ⩾ ε} = {x ∈ Rd :
fh

qi
(x) ⩾

√
nε+

∫
fh}

Taking |
∫
fh| ⩽ ε

√
n/2 yields

{x ∈ Rd :

∣∣∣∣ 1√
n

(
fh

qi
(x)−

∫
fh

)∣∣∣∣ ⩾ ε} ⊂ {x ∈ A : fh(x) ⩾ ε
2

√
nqi(x)}

⊂ {x ∈ A : Mh(x) ⩾ ε
2

√
n} =: An .

Hence, using Young inequality, we obtain

E
[
w2

i+1,n1|wi+1,n|>ε

∣∣Fi

]
⩽

2

n

∫
f2(x)h2(x)

qi(x)
1An(x) dx+

2

n

(∫
fh

)2 ∫
1An(x) dx

⩽
2

n
M

∫
f(x)h2(x)1An

(x) dx+
2(
∫
fh)2

n

∫
A

1An
(x) dx .

Finally, we obtain

n−1∑
i=0

E
[
w2

i+1,n1|wi+1,n|>ε

∣∣Fi

]
⩽ 2(M ∨ (

∫
fh)2)

(∫
f(x)h2(x)1An

(x) dx+

∫
An

1

)
.

By the Lebesgue dominated convergence theorem, the r.h.s. of the above inequality converges to
0 as n→∞. Since ω is arbitrary fixed in B, (36) holds. Consequently, the proof is finished.

B Technical results

Lemma 7. Let K : Rd → [0,+∞) be a continuous function such that
∫
K = 1 and K(0) > 0.

Define Kb(x) = b−dK(x/b) for every b > 0. For every ε′ > ε > 0,

lim
b↓0

inf
B(0,ε)

Kb ∗ 1B(0,ε′) = 1 .

Proof. Choose 0 < r < ε′ − ε. For every ∥x∥ < ε and every ∥y∥ < r
b , ∥x − by∥ < ε′, by the

triangular inequality. Therefore,

inf
B(0,ε)

Kb ∗ 1B(0,ε′) = inf
∥x∥<ε

∫
1∥x−by∥<ε′K(y)dy ⩾

∫
∥y∥< r

b

K(y)dy .

Letting b converge to zero, the monotone convergence theorem implies that the righthand side of
the above inequality converges to one.

Lemma 8. Let K : Rd → [0,+∞) be a continuous function such that
∫
Rd K(x)dx = 1 and

K(0) > 0. Define Kb(x) = b−dK(x/b). There exists c > 0 such that for every ε > 0,

lim
b↓0

inf
B(0,ε)

Kb ∗ 1B(0,ε) ⩾ c .
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Proof. By continuity of K, there exists δ > 0 such that K(x) ⩾ K(0)/2 for every x ∈ B(0, δ).
Denoting by Lebd the Lebesgue measure on Rd,

κb(ε, ε) = inf
y∈B(0,ε)

∫
Rd

1B(0,ε)(y − bx)K(x)dx

⩾ inf
y∈B(0,ε)

K(0)

2
Lebd(B(y/b, ε/b) ∩B(0, δ))

=
K(0)

2
Lebd(B(εv⃗/b, ε/b) ∩B(0, δ))

where v⃗ denotes any unit norm vector of Rd. The sequence of sets (ε/b)B(v⃗, 1) is increasing and
converges to the half space E := {x : ⟨v⃗, x⟩ ⩾ 0} as b ↓ 0. Passing to the limit, the result follows
by setting c := (K(0)/2) Lebb(H ∩B(0, δ)).

Lemma 9. Let (ψn
k )n⩾,k⩾1 be defined by (11) and ψn−1

n = 1. Let (γn)n⩾1 be a sequence satisfying
Assumption 3– ii. Then, there exists a constant C > 0 satisfying

ψn
n+1γi ⩽ Cγn ,

for every 1 ⩽ i ⩽ n.

Proof. Let n0 be the rank given by Assumption 3–ii, such that γi−γi+1 ⩽ γiγi+1 for every i ⩾ n0.
Let n ⩾ n0. The result holds when i = n. Now, suppose that for a given n0 + 1 ⩽ i0 ⩽ n,

ψn
i0+1γi0 ⩽ γn .

We obtain

ψn
i0γi0−1 = (1− γi0)(γi0 + (γi0−1 − γi0))ψn

i0+1

⩽ γn(1− γi0) + ψn
i0+1(γi0−1 − γi0)(1− γi0)

⩽ γn(1− γi0)(1 + γi0−1)

⩽ γn(1− γi0γi0−1 + (γi0−1 − γi0))
⩽ γn .

Iterating the latter result, ψn
i+1γi ⩽ γn for every, n ⩾ i ⩾ n0. For a given i < n0,

ψn
i+1γi = ψn

n0+1γn0

ψn
i+1γi

ψn
n0+1γn0

⩽ γn
γ1
γn0

.

Hence, Lemma 9 is proven.

Lemma 10. Consider a real sequence (an)n⩾1, and let (γn)n⩾1 be a positive sequence converging
to zero, and such that

∑
n γn = +∞. Let (ψn

k )n⩾k,⩾1 be defined by (11) and ψn−1
n = 1. For any

s0 ∈ R, the sequence (sn)n⩾0 given by:

sn = (1− γn)sn−1 + γnan,

satisfies for every n ⩾ 1:

sn = ψn
1 s0 +

n∑
i=1

ψn
i+1γiai . (38)

In addition, lim an ⩽ lim sn ⩽ lim sn ⩽ lim sn .

Proof. An elementary induction shows that for any k > 0

sn = ψn
k+1sk +

n∑
i=k+1

ψn
i+1γiai n > k.

In particular
∑n

i=k ψ
n
i+1γi = 1− ψn

k , and we get

lim
n>k

sn ⩽ 0 + sup
i>k

ai.

This proves that lim sn ⩽ lim an. The inequality lim sn ⩾ lim an is proved similarly.
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We state here Theorem 19 of [DP21]:

Proposition 7. Let (Ω,F , (Fj)j⩾1,P) be a filtered space. Let (ξj)j⩾1 be a sequence of real valued
stochastic processes defined on Rd, adapted to (Fj)j⩾1, such that for any x ∈ Rd,

E[ξj(x)|Fj−1] = 0, for all j ⩾ 1.

Consider ε > 0 and let (ξ̃j)j⩾1 be another (Fj)j⩾1-adapted sequence of non-negative stochastic
processes defined on Rd such that for all j ⩾ 1 and x ∈ Rd

sup
∥y∥⩽ε

|ξj(x+ y)− ξj(x)| ⩽ ξ̃j(x). (39)

Let n ⩾ 1 and assume that for some A ⩾ 0, there exist m, v, u ∈ R+ such that for all ω ∈ Ω and
∥x∥ ⩽ A,

max
j=1,...,n

|ξj(x)| ⩽ m (40)

n∑
j=1

E
[
ξj(x)

2|Fj−1] ⩽ v (41)

n∑
j=1

E
[
ξ̃j(x)|Fj−1

]
⩽ u. (42)

Then, for all t ⩾ 0,

P
(

sup
∥x∥⩽A

∣∣ n∑
j=1

ξj(x)
∣∣ > t+ u

)
⩽ 4(1 + 2Aε−1)d exp

(
− t2

8(ṽ + 2
3mt)

)
, (43)

with ṽ = max(v, 2mu).
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