
AIMC 2024 (09/09 - 11/09 )

The corpus’ body.
Embodied Interaction from
Machine-Learning in
Human-Machine
Improvisation.
Pierre Saint-Germier1 Clément Canonne1 Marco Fiorini2

1CNRS (STMS, IRCAM), 2Sorbonne-Université (STMS-IRCAM)

Published on: Aug 29, 2024

URL: https://aimc2024.pubpub.org/pub/jylagyzp

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)

https://aimc2024.pubpub.org/pub/jylagyzp
https://creativecommons.org/licenses/by/4.0/


AIMC 2024 (09/09 - 11/09 ) The corpus’ body. Embodied Interaction from Machine-Learning in
Human-Machine Improvisation.

2

Introduction
Artificial musical improvisation is concerned with building agents capable of improvising music and 

interacting meaningfully with human performers. A major challenge is to endow such agents with sufficient 

musicianship for such interactions to be musically meaningful, which involves constructing appropriate 

generative models. However, research in Embodied Music Cognition [1] has shown that embodiment is 

essential to expressive and interactive properties of human collective music performance. This suggests that 

unless artificial agents are embodied in a significant sense, their behavior in collectively improvised 

performances will face serious limitations.

Various strategies are available to address the issue of embodiment. The most straightforward approach is to 

provide such agents with a robotic body. This comes however with difficulties and limitations, such as 

endowing robots with sufficiently fluid mechanical behavior to cover the expressive and emotional aspects of 

embodiment in music. Machine-Learning may provide an alternative indirect strategy if it can be shown that: 

(i) the data generated by embodied processes bear the mark of embodiment, (ii) the generative models 

constructed by machine learning from those data capture relevant aspects of embodiment, and (iii) the behavior 

of the agent exploiting such a model inherits some benefits of embodiment.

Our study proposes an empirical assessment of this indirect strategy, taking the machine-learning-based 

artificial improvisation software Somax2 [2] as a case study.

The improviser’s two bodies
To isolate the relevant aspect of embodiment that may be reflected in corpus data and captured by machine 

learning, we propose to distinguish conceptually two dimensions of embodiment.

On the one hand, the musician’s body is a multimodal resource that provides visual and auditory cues 

facilitating musical coordination. We shall refer to this feature as embodimentMR. It allows for visible and 

predictable gestures to be the focus of joint attention and thus enhance coordination in collective musical 

performance. Additionally, it has been shown that the postures of performers provide a back-channel through 

which performers signal how they keep track of the behavior of partners, in much the same way that we use 

back-channeling in ordinary conversation [3]. On the other hand, the contingencies of the musician’s body 

(e.g., the fact that a pianist has two hands of five fingers each) limit and shape the sort of musical signals that 

may be produced. This is notably the source of instrumental idiomaticity and gestural expressivity in music [4]. 

Here embodiment plays the role of a generative constraint on musical performance, and we shall refer to that 

feature as embodimentGC. The mechanical performance of music for player piano or Disklavier shows what a 

performance with no generative constraint from a human body sounds like and helps, by contrast, appreciate 

the constraining and shaping role of the human body in piano performance. In virtue of this limiting and 

https://youtu.be/AfmVJmQKdj4?t=4782
https://vimeo.com/238457017
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shaping effect, embodimentGC allows listeners and co-improvisers to exploit low-level perceptual expectations, 

which are the basis for the perception and appreciation of musical expressivity [5][6], as well as coordination 

within collective improvisation [7]. 

A distinguishing feature of embodimentGC is that it may be directly reflected in the musical signal, unlike 

embodimentMR. The shaping effect of the body as a generative constraint leaves recognizable marks in the 

music itself, at various levels of musical structure, e.g. interval sizes, dynamic and melodic continuity for piano 

music, both in the synchronic and the diachronic organization of the musical material. As a result, it is 

conceivable that a machine-learning algorithm constructing a generative model from embodiedGC musical data 

may transmit some benefits of embodimentGC (e.g., for coordination and expressivity) to its output.

The machine-learning-based artificial improvisation software Somax2, which we shall now describe, provided 

a useful tool to give an empirical assessment of this hypothesis.

Somax2

Somax2, designed by the Music Representation team at IRCAM outputs stylistically coherent improvisations 

in audio or MIDI format, based on a generative model constructed by machine learning from a given corpus in 

audio or MIDI format, while interacting with a human improviser  [2][8][9]. 

Diverging from traditional generative methods, Somax2 constructs a model   directly on top of a corpus of 

original musical data and generates a musical output by navigating through that corpus in a non-linear way. 

More precisely (see Figure 1), Somax2 segments the given corpus into elementary units called slices and 

subjects each slice to detailed analysis based on various musical features, including harmony, melody, 

dynamics, etc. In real-time interactions with an external musician, Somax2 engages in a similar segmentation 

and multilayer analysis of the input stream and of its own output. In other words, Somax2 “listens” to its 

musician partner and to itself. These two channels of multilayered incoming information, called influences, are 

Figure 1
An overview of the steps through which Somax2 generates its audio or MIDI output at each 
given point in time, reacting to the incoming audio or MIDI influences from a live musician. 

Source: Somax2 User’s Guide (2023).

https://forum.ircam.fr/projects/detail/somax-2/
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compared in real time with the multilayered representation of the corpus, activating peaks on each layer every 

time a match is found between the incoming information and the corpus (See Figure 2). Each one of these 

peaks, resembling probability distributions, indicates potential output candidates within the original musical 

material that are coherent with the incoming information according to the layers of melody and harmony: peaks 

along the external melody and harmony layers record matches between the human performer’s input and the 

corpus, while peaks along the internal melody and harmony layers record matches between Somax2’s own 

output and the corpus. A sophisticated computation then scales and merges those four peaks to select a unique 

slice of the corpus to be played next. Importantly, this computation takes into account the previous peaks 

(represented in grey in Figure 2) so that Somax2 is not only sensitive to the current incoming information but 

keeps something like a short-term memory of the ongoing interaction.

Somax2’s specific approach to the problem of human-machine co-improvisation makes it particularly suited to 

the investigation of our hypothesis about embodimentGC. First, even though the computation of the next slice 

is only based on the four layers of internal/external melody and internal/external harmony, the idea of 

associating each state of the generative model to a concrete slice of the original corpus ensures that the output 

will preserve the more-fine grained aspects of the musical material that exceed melodic and harmonic analysis. 

As a result, the fine-grained marks of embodimentGC in the synchronic organization of the music material, e.g., 

dynamic and intervallic relations between simultaneous notes,  may be expected to be preserved. Second, the 

short-term memory endowed to Somax2 by the processes of peak shift and decay transmits the horizontal 

coherence of the corpus material to Somax2’s output. For this reason, the marks of embodimentGC in the 

diachronic organization of the music material, e.g., dynamic and melodic shapes, may also be expected to be 

preserved. 

Figure 2
Peak shift, decay, and combination, as new influence is received. Source: Somax2 

User’s Guide (2023).
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To provide empirical evidence that embodimentGC may indeed be inherited from a corpus into the behavior of 

the Somax2 agent, the next step was to find a way to manipulate selectively and systematically embodimentGC 

at the level of the corpus.

Manipulating embodimentGC within a MIDI corpus

Even though embodimentGC leaves recognizable marks on musical performances, finding a way to selectively 

manipulate the strength of that embodimentGC is a difficult challenge. EmbodimentGC acts as a significant 

shaping force on the musical material. As a result, it will most likely be correlated with other significant 

musical features, e.g., dynamic and melodic organization on both synchronic and diachronic dimensions, 

making it extremely difficult to manipulate  embodimentGC and leave all other significant musical features 

unchanged.

Our response to this challenge has been to opt for minimally invasive manipulations of embodimentGC from a 

corpus of strongly embodied piano improvisations recorded in MIDI format. We considered two elementary 

operations. The first one, dubbed “Random Octaves”, consisted of randomizing the octave of each note event. 

The rationale for this manipulation is that the size of the human hand imposes a limit on the distance between 

simultaneous as well as adjacent notes. Operating a random octave jump on each note of a MIDI recording 

removes that limitation. The melodic shapes that reflect the path taken by a human hand are broken, but all the 

chromatic and dynamic relations are preserved. The second manipulation, dubbed “Random Dynamics”, 

consisted of randomizing the velocity of each note event in the corpus. The rationale for this manipulation is 

that the shape of the human hand imposes a limit on the difference in dynamics between simultaneous as well 

as adjacent notes. Randomizing the dynamics of each note of a MIDI recording removes that limitation. The 

dynamic shapes that reflect the touch of a human hand are broken, but all the pitch relations are preserved.

Since the two manipulations are orthogonal, we also considered their combination, dubbed “Random 

Dynamics and Octaves”, which gave us four experimental conditions, including the original corpus as a 

baseline. Figure 3, Figure 4, Figure 5, and Figure 6 show visualizations of those four conditions applied to the 

same fragment (Audio 1) of the corpus.

0:000:00

Audio 1
Excerpt from Miniature 
4 of the A.M. corpus, 
without modification.

0:000:00

Audio 2
Same excerpt, with 

random octaves.
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The goal of our first experiment was to check whether musically educated third-party listeners were able to 

detect by ear alone a change in embodiment for each manipulation.

Experiment 1

Material

We conducted audio and MIDI recordings of a corpus of piano improvisations by an internationally acclaimed 

performer Alexandros Markeas (A.M.) on a Yamaha C7 grand piano. The corpus was intended to reflect the 

Figure 3
Piano roll notation for the above excerpt.

Figure 4
Piano roll notation for the above excerpt.

0:000:00

Audio 3
Same excerpt, with 
random dynamics.

0:000:00

Audio 4
Same excerpt, with 

random octaves and 
random dynamics.

Figure 5
Piano roll notation for the above excerpt. The 
dynamics are indicated by the color of each 
note event: the warmer the color, the higher 

the dynamics.

Figure 6
Piano roll notation for the above excerpt.
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diversity of the musical material used by A.M. when they perform in the context of collective improvisation. 

We asked A.M. to record miniature pieces (approximately between 2 and 3 minutes), individually reflecting a 

particular aspect of A.M.’s improvisational material, but collectively approaching the extent and variety of 

their improvisation material. We asked A.M. to record as many miniatures as they needed to give a fair view of 

the range of their improvisational material. We excluded the miniatures where A.M. employed extended piano 

techniques that are not captured by the MIDI protocol (e.g., playing inside the case of the piano), which left us 

with a Corpus of seven miniatures (min=2’03; max=3’13).

We then isolated randomly chosen 15-second excerpts from each miniature of the Corpus and applied the three 

aforementioned manipulations to all of them. Each 32 excerpts were then converted from MIDI to Mp3 files, 

using the Steinberg clone virtual Synthesizer.

Participants

29 participants (age = 25.45; women: 17; men: 12) were recruited for this first study through the INSEAD-

Sorbonne Université Behavioural Lab. Participants were screened based on their musical practice (a 5-year 

minimum; Mean musical practice = 10.86 years, SD = 6.70). Participants signed a written consent form and 

were compensated at a standard rate.

Procedure

Participants listened to each excerpt in random order. All excerpts were presented as generated by Artificial 

Intelligence. After each excerpt, participants had to rate, on a continuous scale, the extent to which they 

believed the music could have been improvised by a human pianist (from “Not at all” – 0 – to “Very much” – 

10).

Results

A one-way ANOVA revealed a significant effect of Manipulation (F=12.601, p<0.001). As shown in Figure 7, 

post hoc paired t-tests (adjusted for multiple comparisons using the Holm correction) showed that participants’ 

ratings were significantly higher for “Original” (M=6.775, SD=2.524) than for “Random Dynamics” 

(M=6.385, SD=2.660) (t=2.070, df=231, p=0.040), “Random Octaves” (M=5.976, SD=2.862) (t=3.433, df= 

231, p=0.001) and for “Random Velocities and Octaves (M=5.795, SD=2.691) (t=4.605, df=231, p<0.001). 

This suggests that the randomization of dynamics alone or octaves alone was sufficient to indeed reduce the 

marks of embodimentGC in corpus data.
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One might object that these results only show that our subjects were (to various degrees) more likely to ascribe 

a lower human embodimentGC to the excerpts they heard when those excerpts underwent any one of our three 

manipulations. A low degree of human embodimentGC is in principle compatible with a high degree of non-

human embodimentGC if a non-human body non-trivially constrains the music-making process. Perhaps some 

subjects who gave a low score of human embodimentGC would have been able to imagine a different kind of 

body for which the given excerpt would have been nontrivially embodiedGC. However, the absence of 

widespread shared representations of such non-anthropomorphic piano-playing bodies in robotics and even in 

Science Fiction arguably makes it rather unlikely. Since Generative AIs are typically conceived as algorithmic 

rather than robotic agents, it is relatively safe to interpret a low score as a low score of embodimentGC tout 

court in the context of this task.

EmbodiedGC interaction by Machine Learning from embodiedGC 
data?
We have shown that erasing the traces of embodimentGC is detectable by musically educated third-party 

listeners. But as we saw, embodimentGC is supposed to facilitate the coordination and expressivity of collective 

Figure 7
Mean ratings of the perception of human embodiment (0-
10), depending on the manipulation of the MIDI recording 
(Random Dynamics, Random Octaves, Original, Random 

Octaves and Dynamics).
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musical performance. If embodimentGC is indeed transmitted from the corpus to the generative behavior of 

Somax2, changes in embodimentGC at the level of the corpus may be expected to affect the experience of 

human improvisers interacting with Somax2. Such changes may also be expected to affect the perceived 

quality of the resulting collective performance from the standpoint of (musically educated) third-party listeners. 

This is what Experiments 3 and 4, respectively, were designed to assess.

Experiment 2

Material

We selected three miniatures from the Corpus collected for Experiment 1: Miniatures 1, 2, and 5, referred to as 

M1, M2, and M5 hereafter, reproduced below as Audio 5, Audio 6, and Audio 7. The principle of selection was 

to ensure maximal acoustic and stylistic diversity between the musical material exemplified by each miniature. 

We applied the Random Octave and Random Dynamics operations to each track, which gave us an Extended 

Corpus of 9 tracks for Somax2.

The Somax2 player controls that modulate the computation of the next slide were kept constant for the whole 

experiment (i.e., between participants and across conditions). They were set to the values shown in Figure 8 

that were expected to give rise, overall, to the most fluid interaction with the human performers interacting 

with Somax2, given the diversity of the corpus material. (See [10] for a detailed description of Somax2’s 

parameters.)

Audio 5
Audio 

recording of 
Miniature 1.

Audio 6
Audio 

recording of 
Miniature 2.

Audio 7
Audio 

recording of 
Miniature 5.
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Participants

Ten professional musicians, recruited from the diverse Parisian Free Improvisation scene [11] participated in 

the experiment (mean age = 40.6; SD = 10.53; 7 male, 1 female, 1 non-binary, 1 did not provide the 

Figure 8
Somax2 player configuration for Experiment 2. 
Somax2 was used in Reactive playing mode, 

which means that it produces an output only in 
response to the input of its human partner. 

When the human partner stops giving inputs, 
Somax2 in Reactive mode stops producing 
outputs. The Balance settings fix relative 

weights for the layers of internal melody and 
harmony and external melody and harmony in 
the computation of the next slice to be played. 

Since the human partner played a melodic 
instrument, we gave more weight to the outer 
melodic layer. The Continuity value is set at 

1.5, to maximize the chances that the 
navigation model will select consecutive 

slices, thus preserving as far as possible the 
consistency of the musical material in the 

corpus. The Memory length, measuring the 
size of Somax2’s short-term memory was kept 

to its default value, i.e. 2. All the other 
parameters were set to their default value.
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information). The overall instrumentation was saxophone (N = 6), trumpet (N = 2), clarinet (N = 1) and 

euphonium (N = 1). All participants gave their informed written consent and were compensated at the standard 

rate for the employment of professional musicians in France.

Procedure

Musicians were asked to perform 18 one-minute improvisations in duet with Somax2. For each performance, 

Somax2 was fed with one of the nine tracks of the aforementioned Extended Corpus. The MIDI information 

generated by Somax2 was then sent either toward a physical piano (Yahama Upright U1 Disklavier), for half of 

the performances, or toward a virtual piano (Modartt Pianoteq 8, Upright U4 model) for the other half. After 

each performance, musicians were asked to provide ratings on 7-point Likert scales about 5 aspects of their 

experience when playing with Somax2: (a) the extent to which they felt constrained by Somax2; (b) the extent 

to which they felt surprised by Somax2; (c) the extent to which they felt supported by Somax2; (d) the extent 

to which they felt stimulated by Somax2; and (e) the extent to which they felt immersed in the performance 

while playing with Somax2. Importantly, musicians were placed in a separate studio booth, with no visual 

access to the booth containing the laptop with the Somax2 software, the Disklavier piano used by Somax2 for 

half of the performances, the sound engineer in charge of the recording session, and the scientist overseeing the 

Somax2 software. Musicians thus always heard Somax2 through their headphones and did not know whether 

the Disklavier or the virtual piano was used by Somax2.

Our study thus followed a  factorial design, with Corpus Manipulation (i.e., whether Somax2 used the 

“Original” corpus, the “Random Octaves” corpus, or the “Random Velocities” corpus to prompt its musical 

behavior) and Output (i.e., whether a physical Disklavier or a virtual piano is used as Somax’s output) as 

within-participants factors, and 5 dependent variables: Constrained, Immersed, Stimulated, Supported, and 

Surprised.

Figure 9
Anonymized participant in the experimental 

setup.

2 × 3
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Results

First, to assess whether our two experimental factors had any impact at all on our 5 dependent variables, we ran 

a MANOVA using the Stats package in R. A marginally significant MANOVA effect was obtained for Corpus 

Manipulation (Pillai’s Trace=0.099, F=1.761, p=0.067). No significant effect of Ouput (Pillai’s Trace=0.014, 

F=0.485, p=0.787) nor significant interaction between Corpus Manipulation and Ouput (Pillai’s Trace=0.028, 

F=0.476, p=0.905) were found.

Second, given the results of our MANOVA, we analyzed the effect of Corpus on the participants’ ratings for 

each one of our 5 dependent variables using a series of linear mixed regressions. For each one of our dependent 

variables, the following models were used, with “Original Corpus” as a base level: 

The models were fitted with the function lmer from the R package lme4 and compared using a likelihood ratio 

test.

For the “Constrained” dependent variable, the likelihood ratio test for model comparison was significant (

=7.158, p=0.028). Our model showed a significant negative effect of the “Random Octaves Corpus” on 

participant’s ratings (beta=-0.614, z=0.238, p = 0.011). As shown in Figure 10, participants thus felt less 

constrained when Somax2 used the “Random Octaves Corpus” than when it used the “Original Corpus”.

Audio 8
Excerpt from a 
duet between 
Improviser 3 
and Somax2 
based on M5 
with random 

octaves.

Audio 9
Excerpt from a 
duet between 
Improviser 7 
and Somax2 
based on M1 
with Random 

Dynamics.

Audio 10
Excerpt from a 
duet between 
Improviser 10 
and Somax2 
based on M2.

m0 (null model): dependent variable ~ 1 + (1 | participant) 

m1: dependent variable ~ Corpus + (1 | participant) 

χ2
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For the “Stimulated” dependent variable, the likelihood ratio test for model comparison was marginally 

significant ( =4.742, p=0.093). Our model showed a significant positive effect of the “Random Octaves 

Corpus” on participant’s ratings (beta=0.463, z=0.222, p = 0.038). As shown in Figure 11, participants thus felt 

more stimulated when Somax2 used the “Random Octaves Corpus” than when it used the “Original Corpus”.

Figure 10
Mean ratings of the experience of feeling constrained (1-7) 
by the behavior of Somax2, depending on the modification 

applied to the Corpus (Original, Random Dynamics, or 
Random Octaves) and the nature of the Output (Piano, or 

Virtual Piano).

χ2
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For the “Immersed”, “Supported”, and “Surprised” dependent variables, the likelihood ratio tests for model 

comparison were not significant (resp. =3.188, p=0.203; =0.426, p=0.808; =0.411, p=0.814).

The overall paucity of significant results may be explained as follows. To ensure the comparability of all the 

duets, we had to keep Somax2’s settings constant. However, those parameters are usually controlled in real-

time by a human operator to make Somax2’s behavior more flexible and diverse in the course of performance. 

Setting the parameters once for all had the inevitable effect of making Somax2’s behavior more repetitive and 

stereotypical, hence limiting the chance of providing a positive experience to the human co-improviser on all 

dimensions.

We did find significant effects of the Random Octaves manipulation on two dimensions of the human 

performers’ experience. Given that it was more strongly recognized as a mark of disembodimentGC in 

Experiment 1, it is plausible to interpret these effects as due to a lack of embodimentGC on the part of Somax2. 

Assuming that feeling less constrained and more stimulated are markers of an overall positive experience, our 

data however suggest that interacting with a disembodied corpus had a small positive effect on the musicians’ 

experiences in the Random Octaves case, contrary to our expectations. This might be explained by the specifics 

of the population of musicians who took part in Experiment 2. Given their keen interest in the freer, most non-

Figure 11
Mean ratings of the experience of feeling stimulated (1-7) by 

the behavior of Somax2, depending on the modification 
applied to the Corpus (Original, Random Dynamics, or 

Random Octaves) and the nature of the Output (Piano, or 
Virtual Piano).

χ2 χ2 χ2
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idiomatic forms of collective improvisation, it is possible that their emphasis was more on the unexpectedness 

of the ongoing interaction rather than on tight coordination with Somax2. As a result, they might have 

preferred when Somax2 produced "weirder", less conventional outputs, which was more likely to happen when 

relying on the Random Octaves corpus. Alternatively, our pattern of results might be explained by the specifics 

of the original musical corpus used in our experiment: A.M. produced very dense improvisations, with a lot of 

thick chords. The Random Octaves might thus have had a twofold effect: on the one hand, it made the corpus 

feel more disembodied (as shown in Experiment 1); but on the other hand, it also created more space (with the 

events being more evenly distributed amongst the entire keyboard), which might have made it easier for the 

musicians to find their place in the overall sonic texture, and to develop their own ideas. In sum, the pattern of 

results observed in Experiment 2 could be explained by cultural reasons (the values favored by free 

improvisers) or interactional reasons (Somax2 leaving more space to its human partner). In any case, the 

embodimentGC of the corpus seemed to make a difference, if not in the expected direction.

The experience of the human improviser is however only one perspective on the possible effects of our 

manipulations. Another relevant perspective is that of external hearers. Experiment 3 sought to investigate the 

potential effects of Corpus Manipulation on the appreciation of third-party listeners of the music produced by 

Somax2 in interaction with a human performer.

Experiment 3

Material

To obtain a comparable and ecological set of samples, only duo recordings from Experiment 2 in which 

Somax2 controlled the physical piano were used for Experiment 3. For each of the 10 improvisers recorded in 

Experiment 2, we randomly selected 3 tracks, representing each of our experimental conditions (Original, 

Random Octaves, Random Dynamics), so that each track was based on a different miniature (M1, M2, or M5). 

Finally, a 30-second excerpt was randomly extracted from each track, resulting in 30 musical stimuli.

Participants

28 participants (age = 25.32; women: 18; men: 10) were recruited for this study through the INSEAD-

Sorbonne Université Behavioural Lab. Participants were screened based on their musical practice (a 5-year 

minimum; Mean musical practice = 11.43 years, SD = 5.61). Participants signed a written consent form and 

were compensated at a standard rate.

Procedure

Participants listened to the 30 excerpts in random order. All excerpts were presented as duets where Artificial 

Intelligence generated the piano part. After each excerpt, participants had to rate, on a continuous scale, the 

extent to which they found the duo improvisation to be successful (from “Not at all” – 0 – to “Very much” – 

10).
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Results

To assess the impact of our experimental manipulation on participants’ ratings, the data were analyzed through 

a 1-way ANOVA, using the EZ package in R. Our statistical analysis revealed a significant effect of Corpus 

Manipulation (F=26.708, p<0.001). As shown in Figure 12, post hoc paired t-tests (using the Holm correction 

for multiple comparisons) revealed that participants’ ratings were significantly higher for “Original” (M=5.971, 

SD=2.405) than for “Random Octaves” (M=5.016, SD=2.532) (t=4.930, df=279, p<0.001) and for “Random 

Dynamics” (M=4.607, SD=2.576) (t=7.314, df=279, p<0.001). Participants’ ratings were also significantly 

higher for “Random Octaves” than for “Random Dynamics” (t=2.325, df=279, p=0.021). In other words, 

participants were more likely to find the musical improvisation successful when Somax2 used the original 

embodiedGC Corpus.

This interestingly contrasts with the perspective of the interacting improvisers investigated in Experiment 2, 

which revealed only a small positive effect of Corpus Manipulation in the direction of disembodimentGC. 

Several explanations could be given to account for this divergence. First, although the listeners were screened 

for general musical practice, they were not necessarily familiar with the genre of freely improvised music, 

unlike the improvisers who took part in Experiment 2. The comparative weirdness of the improvisations 

generated from the modified tracks may have been appreciated less positively by the former for that reason. 

Figure 12
Mean ratings of judgments of success for the duo 

improvisation (1-10), depending on the manipulation applied 
to the Corpus (Random Dynamics, Random Octaves, or 

Original).
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Second, and more importantly, the metrics used in experiments 2 and 3 to ascribe a general valence to the 

experience were rather different and difficult to commensurate. Feeling less constrained and more stimulated 

are arguably signs of a positive music-making experience within an ensemble, but it says relatively little about 

the quality of the resulting music. Good improvised music may be obtained by performers who feel very 

constrained and little stimulated by their partners for example, because it forces them to find outstanding 

solutions to these problems[12]. We come back to this issue in the discussion below. What needs to be stressed 

here is that changes introduced in embodimentGC at the level of the corpus used by Somax2 did impact 

external listeners’ evaluations. 

Discussion
The main question addressed by this study was whether embodiment, which seems prima facie neglected by 

software (vs robotic) approaches to artificial musical improvisation, may be indirectly captured by machine 

learning. This question was broken down into three  hypotheses, that we assessed in turn: (i)  the data 

generated by embodied processes bear the mark of embodiment, (ii) the generative model constructed by 

machine learning from such data captures relevant aspects of embodiment, such that (iii) the behavior of the 

agent exploiting such a model inherits some benefits of embodiment.

First, the isolation of the specific dimension of embodiment as a generative constraint (vs multimodal 

resource) provided a theoretical argument for (i), while Experiment 1 adduced empirical evidence for the 

auditory transparency of such marks. Second, the analysis of Somax2’s design provided a theoretical argument 

in favor of (ii). Third, Experiments 2 and 3 showed that the experience of the musicians interacting with 

Somax2, and the success ratings of external listeners, respectively, were sensitive to the selective erasure of 

some marks of embodimentGC, even if the sizes and directions of these effects were divergent: smaller and 

directed towards an enhancement of the experience in Experiment 2, larger and directed towards a deterioration 

of the perceived quality in Experiment 3.

The import of divergence regarding the confirmation of (iii) is not easy to evaluate. On the one hand, we 

observed an effect of the manipulation of the stronger mark of embodimentGC in the corpus on the way 

Somax2’s output affects the experience of co-improvisers and third-party listeners, which suggests that marks 

of embodimentGC in the corpus make a difference to the output, and gives weight to the idea that some aspect 

of embodiment is transmitted by the machine-learning process. On the other hand, the nature of the observed 

effects raises a difficulty. A straightforward conclusion one may be tempted to draw from the embodied music 

cognition literature [1] is that the transmission of the effects of  embodiment by machine learning should 

overall benefit the quality of both the experience of musicians and listeners. However, this inference may be 

too general to be applied indiscriminately to particular phenomena. The generative constraint of the body has 

both a negative aspect when one thinks of it as a constraint, and a positive aspect when one thinks of it as a 

shaping factor. So it may be expected that in some circumstances, the negative aspects outweigh the positive 
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ones. The suboptimal use of Somax2 in Experiment 2, with constant parameters across corpora and within 

performances, may very well have been such a circumstance. From this point of view, the fact that the 

manipulation of embodimentGC made a difference overall can be seen as evidence in favor of (iii).

This being said, our study faces several limitations that force us to take the overall positive results in favor of 

the main hypothesis with several grains of salt. First, one may object that our manipulations of embodimentGC 

were not selective enough. For instance, one might claim that the Random Octaves and Random Dynamics 

manipulation also diminish the overall aesthetic quality of the music. Then all the effects attributed to a weaker 

embodimentGC of the corpus may be attributed to a corpus of weaker musical quality. The results of 

Experiment 3 from this point of view would be much less informative about (iii). This interpretation, however, 

would be hard to reconcile with the results of Experiment 2. More importantly, if one takes seriously the 

Embodied Music Cognition paradigm, such a correlation between marks of embodimentGC and aesthetic 

properties is to be expected anyway, however surgical the manipulation. So this confounding factor is 

unavoidable in principle. The only option left to the experimentalist is to limit the risk by making the aesthetic 

impairment as small as possible. A less destructive alternative to our Random Octaves and Random Dynamics 

manipulation would have been to compare the corpus recorded by A. M. with a corpus of purely algorithmic 

music by an equally acclaimed composer. But then any observed effect would  be equally attributable to the 

much greater stylistic differences between the improvised and algorithmic corpus.

Another limitation comes from the idiosyncratic musical genre, i.e., collective free improvisation, in which the 

study was conducted, and which limits the straightforward generalizability of our results. This limitation is 

however the counterpart of the advantages that this genre offers for this study. Contrary to first appearances, 

coordination in collective free improvisation is not random but obeys principles that are now well-studied[13]

[14]. This is also a genre for which Somax2 is routinely used in professional musical performances. In 

addition, collective free improvisation in music may be seen as a paradigmatic example of a class of creative 

unscripted collective action that generalizes outside music to other performing arts such as dance and collective 

behavior found in sports and daily life[15].

Another concern may be that our results may not generalize beyond the idiosyncrasies of Somax2. We argued 

that the architecture of Somax2, and particularly, it reliance on a form of concatenative synthesis is essential to 

for the specific marks of embodiment we manipulated to make a difference to the output. Since our aim was to 

give a proof of concept for the idea that a form of embodiment may be obtained indirectly by machine-

learning, such a limitation may not be a problem in itself. However, we chose those specific marks for 

methodological reasons. There are many other marks of embodimentGC in musical signals, which makes it 

plausible that other architectures may be able to process them. This of course, remains an empirical hypothesis 

to be tested on a case-by-case basis.

https://youtu.be/CtdlxHn3i0o?t=2597
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Zooming out of the details of our study, one might consider the difference between the embodiment arguably 

obtained for algorithmic musical agents by the indirect route we have explored, and the physical embodiment 

afforded by robotics[16].  Robotic bodies offer both a multimodal resource for coordination and a generative 

constraint on the musical signal, unlike algorithmic agents, such as Somax2, which inherit, at best, the 

generative constraint reflected in the corpus used to train them. Furthermore, this generative constraint is only 

indirectly simulated by Somax, as it processes  the marks of embodimentGC in the corpus used to train it, 

whereas it is causally and directly imposed by the physical properties of robotic bodies. 

The main advantage of simulated embodiment is that it comes at a lower cost, and allows for quick 

reconfigurations. It takes a few seconds to upload a new corpus in Somax2, and thus endow it with a new 

embodimentGC. By contrast, it takes a lot of time and resources to design and construct a new robotic body. 

Furthermore, it requires considerable ingenuity to design robots with high expressive capacities, when it comes 

to the manipulation of musical instruments and musical sounds generally. On the contrary, the inheritance of 

embodimentGC from highly expressive human bodies favors the transmission of rich expressive patterns to the 

outputs of Somax2. It might be objected here that roboticians can design non-anthropomorphic bodies, and 

thus extend the repertoire of embodiment beyond the limitations of the human body. Our study, by only relying 

on humanly embodied corpora, may suggest that this limitation is not overcome when embodiment is indirectly 

simulated by machine learning. It may be replied, however, that it is possible to manipulate humanly made 

corpora in the direction of augmenting  embodiment, just like we manipulated it to diminish its marks. For 

example, by mixing corpora recorded from instruments with distinct instrumental idiomaticities one may 

synthesize generative constraints richer than those afforded by the human body. 

Overall, it appears naive to conclude that algorithmic agents are by nature suffering from drastic limitations 

due to their lack of embodiment. If embodiment can be indirectly simulated in the way we suggested, then 

machine learning provides an alternative to robotics, when it comes to addressing the issue of embodiment in 

musical artificial intelligence.
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