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LIMITS OF NON-LOCAL APPROXIMATIONS TO THE EIKONAL EQUATION

ON MANIFOLDS

JALAL FADILI, NICOLAS FORCADEL, AND RITA ZANTOUT

Abstract. In this paper, we consider a non-local approximation of the time-dependent Eikonal

equation defined on a Riemannian manifold. We show that the local and the non-local problems are

well-posed in the sense of viscosity solutions and we prove regularity properties of these solutions in

time and space. If the kernel is properly scaled, we then derive error bounds between the solution

to the non-local problem and the one to the local problem, both in continuous-time and Forward

Euler discretization. Finally, we apply these results to a sequence of random weighted graphs

with n vertices. In particular, we establish that the solution to the problem on graphs converges

almost surely uniformly to the viscosity solution of the local problem as the kernel scale parameter

decreases at an appropriate rate when the number of vertices grows and the time step vanishes.
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1. Introduction

Nonlinear partial differential equations (PDEs) on graphs have found applications in a variety
of areas such as, e.g., analysis, physics, economy, probability theory, biology and data science. In
particular, a family of Hamilton-Jacobi equations on graphs called the Eikonal equation has been
considered on weighted graphs for data processing in [12, 35], for semi-supervised learning on graphs
[7, 32], and for data depth [7, 29]. They have been also used on topological networks in [8, 19].
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In [34], Hamilton-Jacobi equations on graphs were also studied to derive discrete versions of some
functional inequalities (log-Sobolev inequality and Talagrand’s transport inequality).

In this paper, we are particularly interested in the case of geometric graphs whose vertices are
points living on a compact Riemannian submanifold, which is relevant for many applications such
as data depth [28], semi-supervised learning [4] and image and mesh processing [27, 30].

In order to transpose PDEs on graph, discrete calculus have been used in recent years using
partial difference equations (PdEs) on graphs. PdEs are methods used to reformulate continuous
problems by replacing differential operators by difference operators on graphs [14, 15, 18].

The main goal of this paper is to rigorously study continuum limits, i.e. as the number of data
points tends to infinity, of the Eikonal equation defined on a weighted geometric graph embedded
in a compact Riemannian submanifold. The motivation behind considering Eikonal equations in
such a context is the ability to extend it to any discrete data that can be represented by weighted
geometric graphs. In fact, many applications in numerical data analysis and processing or machine
learning include data that can be defined on manifolds, or irregularly shaped domains, or network-
like structures, or defined as high dimensional point clouds such as collections of features vectors.
In a discrete setting, these data can be represented as weighted geometric graphs, where the vertices
are drawn from the underlying domain (a manifold) and are connected by edges if sufficiently close
in a certain ground metric. The edges are given weights (e.g., based on the distance between data
points).

1.1. Problem statement. In this paper, we will work with a Riemannian manifold pM, gq of
dimension m˚, where M is a compact manifold and g is a Riemannian metric (see Section 2 for
precise definitions and properties). Let G “ pV,wq be a finite weighted (geometric) graph on M,
where V Ă M is the set of vertices, and w : V ˆ V Ñ R

` is the weight function. A natural
Eikonal-type equation on graphs takes the form

(1)

#
maxvPV

a
wpu, vqpfpvq ´ fpuqq´ “ rP puq, u P V zV0,

fpuq “ 0, u P V0,

where p¨q´
def“ ´minp¨, 0q, V0 Ă V and rP is a given potential. This equation is an adaptation

on weighted graphs of the Eikonal equation using the framework of PdEs and provides a tool for
multiple front propagation problems on weighted graphs. This discrete form allows to handle any
data that can be represented on graphs, e.g., in machine learning, data analysis and processing on
graphs, on unstructured meshes or point clouds [7, 8, 12, 27, 32, 35].

Our goal in the paper is to study the behavior of the solution to problem (1) as the number of
vertices goes to infinity. In fact, we will consider an even more general class of equations. More
precisely, inspired by (1), we consider the non-local Eikonal equation in a time-dependent form

(Pε)

$
&
%

B
Btf

εpx, tq `
ˇ̌
∇

´
ηεf

εpx, tq
ˇ̌
8 “ rP pxq, px, tq P p ĂMzrΓqˆs0, T r,

f εpx, tq “ f ε0 pxq, px, tq P prΓˆs0, T rq Y ĂM ˆ t0u,

where ĂM is a subset of points ofM, rΓ Ă ĂM is the set of boundary points, rP is the potential function,
and f ε0 is the boundary function. ∇´

ηε is a non-local operator coined the weighted directional internal
gradient operator, introduced in [12] and studied theoretically in [16] in the Euclidean case. This
operator is defined through

ˇ̌
∇

´
ηεf

εpx, tq
ˇ̌
8 “ max

yP ĂM
Jεpx, yqpf εpy, tq ´ f εpx, tqq,
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where, given a length scale ε ą 0, the ε-scaled kernel function Jε : M ˆ M ÝÑ R` is defined by

Jεpx, yq “ 1

Cη
ηεprdpx, yqq with ηεptq “ 1

ε
η

ˆ
t

ε

˙
,

and η : r0,`8q Ñ r0,`8q is a radial kernel function, and

(2) Cη “ sup
tPR`

tηptq ą 0.

Since, from a practical point of view, computing intrinsic Riemannian distance is quite impossible

in many cases due to the unknown geometry and curvature, we will work with rd which is an
approximation of the intrinsic distance function (see Assumption (H.8) below). Observe that we
can also write

(3)
ˇ̌
∇

´
ηεf

εpx, tq
ˇ̌
8 “ max

yPĂM
C´1
η ηεprdpx, yqqpf εpx, tq ´ f εpy, tqq.

The problem (Pε) represents an Eikonal equation on weighted graphs with n vertices when we

properly instantiate the sets ĂM and rΓ, see Section 5. Therefore, several natural questions arise
from a numerical analysis perspective: (i) given n-dependent scaling εn, is there a continuum limit
(and in which sense) of the solution to (Pε) on graphs (and its time-discretized version as well) as
n Ñ `8 (and time step goes 0)? (ii) at which rate this convergence happens? (iii) what are the
main quantities that come into play in the error bounds? Our main contributions of this work is
to settle these questions.

Towards this, we study the time-dependent local Eikonal equation on the Riemannian manifold
M

(P)

$
&
%

B
Btfpx, tq ` }gradfpx, tq}x “ P pxq, px, tq P MzΓˆs0, T r,
fpx, tq “ f0pxq, px, tq P pΓˆs0, T rq Y M ˆ t0u ,

where Γ Ă M is the set of boundary points, P is the potential function, and f0 is the boundary
function. gradfpx, tq P TxM is the Riemannian gradient in space of f at a point x, where TxM
is the tangent space of M at x and } ¨ }x is the norm induced by the Riemannian metric g at x
(see Section 2 for definitions).

In the rest of the paper, we will work under the standing assumptions:

(H.1) M is a differentiable manifold of class C3 which is compact, and geodesically strongly
convex with C1 boundary BM.

(H.2) ĂM is a finite subset of M.

(H.3) Γ Ă M and rΓ Ă ĂM are closed sets with MzΓ open and ĂMzrΓ Ă MzΓ.
(H.4) P P LippMzΓq and rP P Lipp ĂMzrΓq are non-negative potential functions.

(H.5) f0 P LippMq and f ε0 P Lipp ĂMq.
(H.6) There exists a0, d0 ą 0 such that rdp¨,Γq is C1 on the neighbourhood N

a0
Γ zΓ where N a0

Γ

def“!
x P M, rdpx,Γq ă a0

)
, and }grad rdpx,Γq}x ě d0 for all x P N

a0
Γ zΓ.

(H.7) There exists δ ą 0 such that for all x P M, Cutpxq X N δ
x “ H, where N δ

x “ ty P
M, dMpx, yq ď δu and Cutpxq is the cut locus of x defined in Section 2.

(H.8) There exists a constant CM and ξ ą 0 such that maxpx,yqPMˆM |rdpx, yq ´ dMpx, yq| ď
CMε1`ξ.

Assumption (H.3) implies that BM Ď Γ. In assumption (H.2), the fact that ĂM is finite is quite
natural since the main goal of this paper is to study Eikonal equation on graphs. However, this
assumption is only required to prove the existence of a solution of the non-local problem (Pε)
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(see Proposition 3.13) and is not used to show any other result. In the rest of the paper, this

assumption can be replaced by the fact that ĂM is a compact subset of M. Assumption (H.6) is

concerned with the regularity of the distance rdp.,Γq. It is used to construct super-solutions that
are compatible with the boundary conditions. Furthermore, assumption (H.7) guarantees local
differentiability of the squared Riemannian distance. It means that for all y P N δ

x , for δ sufficiently

small, y R Cutpxq, and thus d2
M

px, ¨q is differentiable at y. Assumption (H.8) explains how rd
approximates the Riemannian distance dM. For example, rdpx, yq could be computed using the

Euclidean distance in the ξ̄-offset Ωξ̄
M

“ tx P R
m : dpx,Mq ď ξ̄u, where ξ̄ “ ε2`2ξ . In this case,

CM depends on the dimension m˚. We refer to the work of Mémoli and Sapiro in [27, Theorem
5] in which they studied the approximation of the Riemannian distance and constructed extrinsic
approximation satisfying (H.8).

In the context of our study, it is important to illustrate concrete examples of manifolds that
satisfy the hypothesis listed above, showing how our framework can be applied to various types of
manifolds. Consider first the Euclidean sphere S

n, where n ě 2. This manifold is compact and
geodesically strictly convex. Being a smooth manifold of class C8, it is also certainly of class C3.
Furthermore, our assumptions are met by the compact hyperbolic space H

n. For instance, these
manifolds can be constructed in various dimensions, including 3 dimensions exemplified by the
Weeks and Thurston manifolds. Moreover, we can consider the three-dimensional torus T3 which
is a compact manifold and of class C8. The set Γ can be chosen as an arbitrary closed set of each

manifold. ĂM can be a finite set of points, as it is always possible to select a finite subset of a

compact manifold. Similarly, rΓ can be chosen as a finite subset of ĂM , and the properties of the

sets Γ and rΓ are satisfied.
The length scale parameter ε allows us to consider the data density. In fact, scaling η by ε aims

to give significant weight to pairs of points that are far apart up to distance ε. In order to capture
proper interactions at scale ε, η has to decay to zero at an appropriate rate. Our assumptions on
η are as follows:

(H.9) η is a non-negative function.
(H.10) D rη ą 0 such that supppηq Ă r0, rηs.
(H.11) D a Ps0, rηr such that η is decreasing on r0, as and satisfies ηpaq ą 0. We denote by

cη “ ηpaq.
(H.12) η is Lη-lipschitz continuous on its support.

These assumptions on the kernel are standard, see for example [6, 16].

1.2. Contributions. First, we show that the local Eikonal equation (P) and the non-local one
(Pε) are well-posed. In other terms, we prove that the solution to (P) and to (Pε) exist and are
unique in the sense of viscosity solutions using Perron’s method and the comparison principle (see
Proposition 3.5 and Proposition 3.13). Then we show regularity properties of these solutions in
time and space (see Theorem 3.8 and Theorem 3.14). We then derive error bounds between the
solution to the local problem (P) and the one to the non-local problem (Pε) using the regularity
properties (see Theorem 4.2). We then use the forward Euler scheme to discretize (Pε) in time and
we provide a consistency result that provides an error bound between the solution of the discretized
problem (PFD

ε ) and (P) (see Theorem 4.3). Finally, we apply these results to a sequence of random
geometric graphs with n vertices (see Theorem 5.3). In particular, we establish that the solution
to the time-discretized problem (PFD

ε ) converges almost surely uniformly to the viscosity solution
to the local problem (P) as the kernel scale parameter decreases at an appropriate rate as n Ñ `8
and the time step ∆t Ñ 0, hence answering all our questions asked above.
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1.3. Related work. This work is in the continuity of our previous one [16] where we studied limits
and consistency of non-local and graph approximations of the time-dependent Eikonal equation
defined on Euclidean spaces. We here extend this work to the case of smooth Riemannian manifolds,
which are in fact much more in line with realistic applications. This extension is far from trivial as
it raises several difficulties and necessitates several new and careful estimates.

Though several works have considered Hamilton-Jacobi type equations on graphs whose vertices
are defined on a manifold [7, 11, 12, 14, 27, 35], only a few of them have studied their continuum
limits [7, 27]. Motivated by supervised learning and data depth applications, the authors of [7]
studied the p-Eikonal equation on a random geometric graph where the vertices of the graph are
i.i.d random variables on an open, bounded and connected subset of Rm with a C1,1 boundary and
the kernel is smooth, non-increasing and satisfies several conditions. They prove that the continuum
limit of the non-local p-Eikonal equation is a state-constrained Eikonal equation that recovers a
geodesic density weighted distance. A theoretical and computational framework was proposed for
computing intrinsic distance functions and geodesics on hypersurfaces [26] and submanifolds [27]
given by point clouds. For this, the authors proposed to replace the intrinsic Eikonal equation
on the submanifold by the corresponding extrinsic Euclidean one on an offset band and proved
that this approximation is consistent. Our work goes much beyond and tackles a more general
Eikonal equation defined on arbitrary geometric weighted graphs whose vertices live on a compact
Riemannian submanifold. We also offer a computational framework by Forward Euler discretization
in time of (Pε). Our framework also allows to cover a much wider spectrum of applications which
include the previous ones as particular cases.

1.4. Outline. The paper is structured as follows. Section 2 provides prerequisites on Riemannian
manifolds that are necessary to our exposition. Section 3 is dedicated to establishing well-posedness
in the viscosity sense of problems (P) and (Pε). Section 4 contains the key results of this paper.
Section 4.1 provides an error bound between the solutions to (P) and (Pε) in continuous time.
Section 4.2 extends this to (P) and (PFD

ε ), where (PFD
ε ) is a forward/explicit Euler discretization

in time of (Pε). Our results are finally specialized to the case of geometric weighted graphs on
submanifolds in Section 5.

2. Notations and prerequisites on Riemannian manifolds

2.1. Preliminaries on Riemannian manifolds. The definitions and results we are about to
recall are well-known in Riemannian and differential geometry and we refer for example to [22, 23,
24, 31] for a detailed account.

Definition 2.1 (C3-smooth manifold). An m˚-dimensional manifold M is of class C3 at a point
x P M if there exists a chart pU,ϕq around x such that U is an open set in M containing x and

ϕ : U Ñ R
m˚

is a C3-diffeomorphism. We say that M is of class C3 if it is of class C3 at each
point x P M.

Definition 2.2 (Riemannian metric and norm). A Riemannian metric g on M is a family of inner
products on tangent spaces of M. In other words, for each x P M, the mapping gx : TxMˆTxM ÝÑ
R, where TxM is the tangent space of M at the point x, is a bilinear symmetric positive definite
form denoted by gxpu, vq “ xu, vyx for any vectors u, v P TxM. This Riemannian inner product

induces a norm }.}x on TxM defined by }v}x “
a

xv, vyx, for v P TxM.

A (smooth) manifold whose tangent spaces are endowed with a smoothly varying inner product
is called a Riemannian manifold. The smoothly varying inner product is called the Riemannian
metric. Strictly speaking, a Riemannian manifold is thus a couple pM, gq, where M is a manifold
and g is a Riemannian metric on M. Nevertheless, when the Riemannian metric is unimportant,
we simply talk about the Riemannian manifold M.
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In order to define viscosity solutions, we will need to give the definition of a differentiable function
on a manifold as well as its differential and gradient.

Definition 2.3 (Differentiable functions on M). Suppose that M satisfies assumption (H.1). A
real-valued function f : M Ñ R is called differentiable (resp. C1) at a point x P M if there exists

a chart pU,ϕq around x such that f ˝ ϕ´1 : ϕpUq Ă R
m˚ Ñ R is differentiable (resp. C1) at ϕpxq,

where U is an open set in M containing x and ϕ : U Ñ R
m˚

is a homeomorphism. The function
f is differentiable (resp. C1) in M if it is differentiable (resp. C1) at every point in M.

We would like to note here that the definition of differentiability does not depend on the choice
of the chart at x. Indeed, given any other chart pV, φq around x where V is an open set in M

containing x and φ : V Ñ R
m˚

is a homeomorphism, we have

f ˝ φ´1 “ pf ˝ ϕ´1q ˝ pϕ ˝ φ´1q : φpU X V q ÝÑ R

is differentiable at φpxq since f ˝ ϕ´1 is differentiable at ϕpxq and the transition map ϕ ˝ φ´1 is
differentiable at φpxq.
Definition 2.4 (Differential and gradient of a differentiable function). Suppose that M satisfies
assumption (H.1). Let f be a scalar-valued differentiable function at x P M. The differential of f
at x is the linear map

Dfpxq : TxM Ñ R

v ÞÑ Dfpxqrvs “ d

ds
fpγpsqq

ˇ̌
ˇ̌
s“0

,

where γ : s ´ 1, 1r ÞÑ M is a differentiable curve in M with γp0q “ x and γ1p0q “ v. The gradient
of f at x, denoted by gradfpxq, is the unique element of TxM that satisfies

xgradfpxq, vyx “ Dfpxqrvs, @v P TxM.

When f depends on several parameters and the variable with respect to which the gradient is
computed is not clear from the context, we specify it as a subscript of grad.

Remark 2.5. Observe that Dfpxq is in the cotangent space T ˚
xM which is the dual space of the

tangent space TxM. Moreover, for a given tangent vector v, the directional derivative Dfpxqrvs is
independent of the choice of the curve γ. In fact, if γ1 and γ2 are two curves such that γ1p0q “
γ2p0q “ x, and in any coordinate chart φ, d

dt
φ ˝ γ1|t“0 “ d

dt
φ ˝ γ2|t“0, then by the chain rule, f has

the same directional derivative at x along γ1 and γ2.

The gradient of a function f has the following remarkable steepest-ascent property

}gradfpxq}x “ max tDfpxqrvs : v P TxM, }v}x ď 1u .
This can also be equivalently written as

}gradfpxq}x “ max tDfpxqrvs : v P TxM, }v}x “ 1u “ sup tDfpxqrvs : v P TxM, }v}x ă 1u .

2.2. Properties of the Riemannian distance. The metric of the Riemannian manifold pM, gq
allows to define the length of a curve as follows.

Definition 2.6 (Length of a curve). The length of a piecewise smooth curve segment γ : ra, bs Ñ M

on a Riemannian manifold pM, gq is defined by

Lpγq “
ż b

a

} 9γpsq}γpsq ds,

where 9γpsq is the velocity vector of the curve γ at s.
6



Remark 2.7. This length is independent of the parametrization. In other words, if γ̃ is any
reparametrization of γ, i.e. γ̃ “ γ˝ϕ, where ϕ : rc, ds Ñ ra, bs is a diffeomorphism, then Lpγ̃q “ Lpγq
(see [24, Proposition 13.25]).

We are now ready to introduce the notion of Riemannian distance between any pair of points in
M.

Definition 2.8 (Riemannian distance). The Riemannian distance between two points x and y in
M, denoted by dMpx, yq, is defined by

dMpx, yq “ inftLpγq : γ is a piecewise smooth curve segment on M joining x and yu.
We define the closed Riemannian ball of center x and radius r ą 0 as

BMpx, rq “ ty P M : dMpx, yq ď ru.
Since any pair of points inM can be joined by a piecewise smooth curve segment ([24, Proposition

11.33]), the above is well-defined. The Riemannian distance function turns M into a metric space
whose topology is the same as the given manifold topology; see [24, Theorem 13.29].

Geodesics generalize the notion of straight lines on curved spaces. A geodesic γ on a manifold
M endowed with an affine connection is a curve with zero acceleration (i.e., constant speed).

Definition 2.9 (Exponential map). The exponential map is the mapping

Expx : TxM Ñ M

v ÞÑ γp1q,
where γ is the unique geodesic such that γp0q “ x and 9γp0q “ v. Existence and uniqueness of the
geodesic is ensured whenever v P Bp0x, εq Ă TxM with ε small enough so that for every t P r0, 1s,
Expxptvq “ γptq.

The regularity of the distance function on a manifold is a classical and well-understood subject.
For instance, the behavior of the distance function is closely related to the structure of the notion
of the cut locus of a point.

Definition 2.10 (Cut locus of a point). A point y of M is in the cut locus of x, denoted by Cutpxq,
if and only if there is a minimal geodesic joining x to y whose every extension beyond y is no longer
minimal.

An equivalent characterization of the cut locus can be found in [37, Theorem 1].

Example 2.11. On the Euclidean sphere, the cut locus of a point x is its antipodal point. On the
surface of an infinitely long cylinder, the cut locus of a point consists of the line opposite to it.

The following proposition, proved in [1] and used in [2], provides us with some sufficient conditions
for the distance function to be locally of class C8.

Proposition 2.12 (Local smoothness of the distance function [1, Proposition 3.9]). Let M be a
compact Riemannian manifold. Then there exists a constant r ą 0 such that for every x P M, the
exponential map Expx is defined on Bp0x, rq Ă TxM and provides a C8 diffeomorphism

Expx : Bp0x, rq Ñ BMpx, rq def“ ExpxpBp0x, rqq.
Moreover, the distance function is given by

dMpx, yq “ }Exp´1
x pyq}x for all y P BMpx, rq

and for every x P M, the distance map y P M ÞÑ dMpx, yq is of class C8 on BMpx, rqztxu.
7



The importance of the cut locus is that the distance function onM from a point x is differentiable
except on the cut locus of x and x itself. Moreover, we have the following useful result about its
gradient given in [20].

Lemma 2.13 (Gradient of the distance function). Let x P M. For any y P MzpCutpxq Y txuq,
if γ is the unique minimal geodesic from x to y, then the gradient of dMpx, .q (with respect to the
second argument) at y is given by

gradydMpx, yq “ 9γpdMpx, yqq.
The squared distance function from a point y P M on a Riemannian manifold is smooth away

from the cut locus of y, for a fixed point x P M (see [37]). As a consequence of the Gauss lemma (see
[13, Lemma 3.5]), a closed form of the gradient of the squared distance function can be obtained.

Lemma 2.14 (Gradient of the squared distance [9, Lemma 4.43]). Let x P M. For any y P
MzCuttxu, the gradient of dMpx, .q2 (with respect to the second argument) at y is given by1

gradyd
2
Mpx, yq “ ´2Exp´1

y pxq P TyM.

Remark 2.15. Assumption (H.7) guarantees that d2
M

px, ¨q is continuously differentiable on N δ
x

with a gradient given by Lemma 2.14.

2.3. Other notations. We denote by |.| the Euclidean norm in R
m, where the dimension m is to

be understood from the context, LippAq the space of Lipschitz continuous mappings on A and Lh
the Lipschitz constant of h P LippAq. Let X and Y be two non-empty subsets of M. We define
their Hausdorff distance as

dMH pX,Y q “ max

˜
sup
xPX

dMpx, Y q, sup
yPY

dMpy,Xq
¸
.

If both X and Y are bounded, then dMH pX,Y q is finite. Moreover, dMH pX,Y q “ 0 if and only if X
and Y have the same closure.
The supremum norm on a domain A Ă M is denoted by

›› ¨
››
L8pAq. We denote the space-time

cylinders by MT
def“ M ˆ r0, T s and BMT

def“ pΓˆs0, T rq Y M ˆ t0u .

3. Well-posedness and regularity results

In this section, we study the well-posedness in the viscosity sense as well as regularity properties
of the solutions to the local Eikonal equation (P) (see Section 3.1) and to the non-local Eikonal
equation (Pε) (see Section 3.2). Existence can be obtained by the Perron’s method recalled in Theo-
rem 3.7 while uniqueness and continuity are based on a comparison principle, proved in Proposition
3.3 for the local problem and in Proposition 3.10 for the non-local one. Our work is based on the
theory of viscosity solutions which was introduced by Crandall and Lions [10] for solving first-order
Hamilton-Jacobi equations. We refer to [17] for a general introduction to viscosity solutions on
Riemannian manifolds.

3.1. Problem (P). In order to define viscosity solution for problem (P), we first recall the defi-
nition of upper and lower semi-continuous envelope for a locally bounded function f : MT Ñ R,
respectively given by

f˚px, tq def“ lim sup
py,sqÑpx,tq

fpy, sq and f˚px, tq def“ lim inf
py,sqÑpx,tq

fpy, sq.

1Of course, by symmetry, the role of x and y can be interchanged. This is the reason we did not indicate the

variable as a subscript of grad.
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Definition 3.1 (Viscosity solution for (P)). An upper semi-continuous (usc) function f : M ÝÑ
R is a viscosity sub-solution of (P) in pMzΓqˆs0, T r if for every point px0, t0q P pMzΓqˆs0, T r
and every C1 function ϕ : N h

px0,t0q ÝÑ R where N h
px0,t0q “ tpy, sq P pMzΓqˆs0, T r, |t0 ´ s| ď

h and dMpx0, yq ď hu such that f ´ ϕ has a maximum point at px0, t0q, we have

B
Btϕpx0, t0q ` }gradϕpx0, t0q}x0 ď P px0q.

The function f is a viscosity sub-solution of (P) in MT if it satisfies moreover fpx, tq ď f0pxq for
all px, tq P BMT .

A lower semi-continuous (lsc) function f : M ÝÑ R is a viscosity super-solution of (P) in
pMzΓqˆs0, T r if for every point px0, t0q P pMzΓqˆs0, T r and every C1 function ϕ : N h

px0,t0q ÝÑ R

such that f ´ ϕ has a minimum point at px0, t0q, we have

B
Btϕpx0, t0q ` }gradϕpx0, t0q}x0 ě P px0q.

The function f is a viscosity super-solution of (P) in MT if it satisfies moreover fpx, tq ě f0pxq
for all px, tq P BMT .

Finally, a locally bounded function f : MT Ñ R is a viscosity solution of (P) in MT (resp.
in pMzΓqˆs0, T r) if f˚ is a viscosity sub-solution in MT (resp. in pMzΓqˆs0, T r) and f˚ is a
viscosity super-solution of (P) in MT (resp. in pMzΓqˆs0, T r).
Remark 3.2. In the definition 3.1, the test function ϕ can be extended to a regular function ψ

defined on MT such that

ψpx, tq “
#
ϕpx, tq if px, tq P N h

px,tq,

φpx, tq otherwise,

where ϕ is C1 on N h
px,tq. Moreover,

}gradψpx0, t0q}x0 “ }gradϕpx0, t0q}x0 .
We begin with a comparison principle for problem (P).

Proposition 3.3 (Comparison principle for (P)). Suppose that assumptions (H.1)-(H.5) and
(H.7) hold. Let f , an usc function, be a sub-solution of (P) and g, a lsc function, be a super-
solution of (P) in MT . Then

f ď g on MT .

The comparison principle can be proved using a variational principle as in [2, Theorem 10] which
is valid for quite general Hamilton-Jacobi equations. Nevertheless, their proof is non-constructive
and imposes other assumptions on the manifold and the Hamiltonian. For instance, the manifold
is supposed to be complete with positive convexity and injectivity radii and the Hamiltonian has
to be an intrinsically uniformly continuous function. However, they also state in [2, Remark 12]
that their proof holds in other situations. Our equation is somewhat less general which allows to
give an alternative and more transparent constructive proof.

Proof. We argue by contradiction and we suppose that there exists px, tq P MT such that

fpx, tq ´ gpx, tq ą 0.

We consider the function Ψτ : px, tq P MT ÝÑ fpx, tq ´ gpx, tq ´ τ
T´t for τ sufficiently small and

we set

Mτ
def“ sup

px,tqPMT

Ψτ px, tq.

9



This function is upper semi-continuous on MT which is compact by (H.1), then the supremum is
actually a maximum and is attained at a point denoted by pxτ , tτ q P MT . Moreover, Ψτ pxτ , tτ q ą 0
for τ ą 0 sufficiently small, from the positivity assumption. In order to be able to use the definition
of viscosity solutions, we duplicate the variable by considering, for γ ą 0, the test-function

Ψτ,γ : px, t, y, sq P M
2
T ÝÑ fpx, tq ´ gpy, sq ´ d2

M
px, yq
2γ

´ |t´ s|2
2γ

´ τ

T ´ t
,

and we set

Mτ,γ
def“ sup

px,t,y,sqPM2

T

Ψτ,γpx, t, y, sq.

Again by upper semi-continuity and compactness, the supremum Mτ,γ is actually a maximum
attained at some point pxγ , tγ , yγ , sγq P M2

T . We also have for τ small enough

Mτ,γ “ Ψτ,γpxγ , tγ , yγ , sγq ě Ψτ,γpxτ , tτ , xτ , tτ q “ Ψτ pxτ , tτ q “ Mτ ą 0,

which implies that

|tγ ´ sγ |2
2γ

` d2
M

pxγ , yγq
2γ

ď fpxγ , tγq ´ gpyγ , sγq ď }f}L8pMT q ` }g}L8pMT q.

We then get

(4) |tγ ´ sγ | , dMpxγ , yγq ď c
?
γ,

where c is a constant depending only on }f}L8pMT q and }g}L8pMT q. Using classical arguments (see,
e.g. [3, Lemma 5.2]), we deduce that there exists px̄, t̄q P M ˆ r0, T r such that

(5)

$
’&
’%

xγ , yγ ÝÑ x̄, as γ Ñ 0,

tγ , sγ ÝÑ t̄, as γ Ñ 0,

Ψτ px̄, t̄q “ Mτ .

If t̄ “ 0, then

0 ă Mτ “ fpx̄, 0q ´ gpx̄, 0q ´ τ

T
ď f0px̄q ´ f0px̄q ´ τ

T
ă 0,

leading to a contradiction. Then t̄ ą 0, which implies, by (5) that tγ , sγ ą 0, for γ small enough.
Moreover, if x̄ P Γ, then

0 ă Mτ ď fpx̄, t̄q ´ gpx̄, t̄q “ f0px̄q ´ f0px̄q “ 0,

which is again absurd. Thus xγ , yγ P MzΓ for γ small enough.
The mapping px, tq P MT ÞÑ fpx, tq ´ ϕ1px, tq, where

ϕ1px, tq “ gpyγ , sγq ` d2
M

px, yγq
2γ

` |t ´ sγ |2
2γ

` τ

T ´ t
,

is smooth on a small neighborhood N
γ
pxγ ,tγq (since d2

M
p¨, yγq is of class C1, for γ small enough, in

view of (4) and (H.7), see Remark 2.15). Since f is a viscosity sub-solution of (P) and f ´ ϕ1

reaches a maximum at pxγ , tγq, we deduce that

tγ ´ sγ

γ
` τ

T 2
ď ´

››››gradx
ˆ
d2
M

pxγ , yγq
2γ

˙››››
xγ

` P pxγq.

Using Lemma 2.14 and Proposition 2.12, we deduce that

(6)
tγ ´ sγ

γ
` τ

T 2
ď ´dMpxγ , yγq

γ
` P pxγq.

10



Similarly, the mapping py, sq P MT ÞÑ gpy, sq ´ ϕ2py, sq, where

ϕ2py, sq “ fpxγ , tγq ´ d2
M

pxγ , yq
2γ

´ |tγ ´ s|2
2γ

´ τ

T ´ tγ
,

is smooth on N
γ

pyγ ,sγq. Since g ´ ϕ2 attains a local minimum at pyγ , sγq and since g is a viscosity

super-solution of (P), we obtain that

(7)
tγ ´ sγ

γ
ě ´dMpxγ , yγq

γ
` P pyγq.

Now subtracting (6) and (7), and then using (4), we obtain

τ

T 2
ď P pxγq ´ P pyγq ď LP dMpxγ , yγq ď LP c

?
γ.

Passing to the limit as γ Ñ 0 leads to a contradiction. �

We now turn to the existence of the solution. In order to do that, we will assume a compatibility
property between the equation and the boundary conditions in order to construct solutions to (P):

(H.13) There exists ψb P LippMq, with ψbpxq “ f0pxq for all x P Γ, such that ψb is a sub-solution
of (P) in MT .

Assumption (H.13) is satisfied, for instance, when f0 “ 0 and P ě 0 in (P). This setting cor-
responds to a time-dependent Eikonal equation whose solution can be interpreted as the minimal
amount of time or distance required to travel from a point x P M to the front Γ, where the travel
speed is the inverse of P . For instance, it enables a fast calculation of geodesic distances using the
fast marching method [21, 33].

Remark 3.4. Assumption (H.13) entails in particular that

}grad ψbpxq}x ď }P }L8pMzΓq,

and thus the Lipschitz constant Lψb
satisfies

Lψb
ď }P }L8pMzΓq.

We then have the following result.

Proposition 3.5 (Existence and uniqueness for (P)). Suppose that assumptions (H.1)-(H.6) and
(H.13) hold. Then, problem (P) admits a unique viscosity solution f . Moreover, there exists a
function f̄ P LippMT q, with a Lipschitz constant depending on a0, d0, Lf0 and }P }L8pMzΓq, such
that

(8) ψb ď f ď f̄ on MT .

In order to give the proof of this proposition, we need to define the notion of barrier solutions
and then recall the Perron’s method.

Definition 3.6 (Barrier sub- and super-solution). An usc function f : MT Ñ R is a barrier
sub-solution of (P) if it is a viscosity sub-solution in pMzΓqˆs0, T r and if it satisfies moreover

lim
yÑx,sÑt

fpy, sq “ f0pxq @px, tq P Γ ˆ r0, T s.

A lsc function f̄ : MT Ñ R is a barrier super-solution of (P) if it is a viscosity super-solution in
pMzΓqˆs0, T r and if it satisfies moreover

lim
yÑx,sÑt

f̄py, sq “ f0pxq @px, tq P Γ ˆ r0, T s.
11



Theorem 3.7 (Perron’s method). Assume that there exists a barrier sub-solution f and a barrier

super-solution f̄ of (P). Then there exists a (possibly discontinuous) viscosity solution f of (P)
satisfying moreover

f ď f ď f̄ in MT .

The proof of the Perron’s method for Hamilton-Jacobi equations defined on manifolds can be
found in [17, Theorem 8.2].

Proof of Proposition 3.5. By assumption (H.13), ψb is a barrier sub-solution of (P). We then have
to construct a barrier super-solution f̄ . Existence will then be a direct consequence of the Perron’s
method as recalled in Theorem 3.7 while uniqueness and continuity will be direct consequences of
the comparison principle shown in Proposition 3.3.

Let

f̄1px, tq “ f0pxq `K1t, and sf2px, tq “ f0pxq `K2
rdpx,Γq, px, tq P MT ,

where K1 “ }P }L8pMzΓq, and K2 ą 0 is a large enough constant to be determined later. We set

(9) sfpx, tq “ minp sf1px, tq, sf2px, tqq “ minpf0pxq `K1t, f0pxq `K2
rdpx,Γqq.

We claim that sf is a barrier super-solution for K2 well-chosen.
First, observe that

L sf ď max
`
L sf1 , L sf2

˘
ď Lf0 ` max

`
}P }L8pMzΓq,K2

˘
,

since f0 P LippMq by (H.5) and L rdp¨,Γq “ 1 as Γ ‰ H. In particular, sf is continuous.

Moreover, we have for x P Γ,
sf2px, tq “ f0pxq ď sf1px, tq.

Hence

(10) sfpx, tq “ f0pxq, @px, tq P Γ ˆ r0, T s,
which shows, via continuity that the limit property required in Definition 3.6 holds. It remains to
prove that sf is a super-solution on pMzΓqˆs0, T r for K2 large enough.

Observe first that by taking K2 ě K1T {a0, we have for all x P MzN a0
Γ (recall that a0 and N

a0
Γ

are defined in assumption (H.6)),

sf2px, tq ě f0pxq `K2a0 ě f0pxq `K1T ě sf1px, tq,
and thus (9) becomes

(11) sfpx, tq “
#
minp sf1px, tq, sf2px, tqq if px, tq P N

a0
Γ ˆ r0, T s,

sf1px, tq if px, tq P MzN a0
Γ ˆ r0, T s.

Following Definition 3.1, consider ϕ P pMzΓˆs0, T rq such that sf ´ ϕ reaches a local minimum at
some point px0, t0q P pMzΓqˆs0, T r and such that ϕ P C1 on a small neighborhood of px0, t0q. This
is equivalent to

(12) sfpy, sq ´ ϕpy, sq ě sfpx0, t0q ´ ϕpx0, t0q,
for all py, sq P pMzΓqˆs0, T r sufficiently close to px0, t0q. We now distinguish two cases.

Case 1 x0 P MzN a0
Γ . In this case, since pMzN a0

Γ q Ă pMzΓq, it follows from (11) and (12) that

sf1py, sq ´ ϕpy, sq ě sfpy, sq ´ ϕpy, sq ě sf1px0, t0q ´ ϕpx0, t0q,
for all py, sq P pMzΓqˆs0, T r sufficiently close to px0, t0q. As s0, T r is open, we take y “ x0
and s “ t0 ` h Ps0, T r for h ą 0 sufficiently small, which gives us

(13) ϕpx0, t0 ` hq ´ ϕpx0, t0q ď sf1px0, t0 ` hq ´ sf1px0, t0q “ K1h.
12



Dividing by h and passing to the limit as h Ñ 0`, we get

(14)
B
Btϕpx0, t0q ď K1.

Embarking from (13) where we replace h by ´h yields

(15)
B
Btϕpx0, t0q ě K1,

and thus

(16)
B
Btϕpx0, t0q “ K1.

We then deduce that

(17)
B
Btϕpx0, t0q ` }gradϕpx0, t0q} ´ P px0q ě K1 ´ P px0q ě K1 ´ }P }L8pMzΓq “ 0,

which shows the desired inequality in this case.

Case 2 x0 P N
a0
Γ zΓ. Let I0

def“
 
i P t1, 2u : sfpx0, t0q “ sfipx0, t0q

(
. Thus, for any i0 P I0, we have

from (12) that

(18) sfi0py, sq ´ ϕpy, sq ě sfpy, sq ´ ϕpy, sq ě sfpx0, t0q ´ ϕpx0, t0q “ sfi0px0, t0q ´ ϕpx0, t0q
for all y P N

a0
Γ zΓ close enough to x0. If 1 P I0 we argue as in Case 1 to get a contradiction.

It remains to consider the case where I0 “ t2u. Embarking from (18) with i0 “ 2, arguing
as we have done for sf1 in Case 1 to show (16), and using that sf2 is actually t-independent,
we get in this case that

(19)
B
Btϕpx0, t0q “ 0.

On the other hand, let v P Tx0M where }v}x0 ă 1 and let γ be a differentiable curve in
M such that γp0q “ x0 and 9γp0q “ v. Since N

a0
Γ zΓ is open by (H.3) and (H.6), we can

choose h small enough so that γphq P N
a0
Γ zΓ and } 9γpsq}γpsq ď 1 for all s P r0, hs. This is

obtained by the continuity of t ÞÑ } 9γptq} and having that } 9γp0q}x0 ă 1. Thus, inequality
(18) with i0 “ 2, s “ t0 and y “ γphq becomes

pϕp¨, t0q ´K2
rdp¨,Γqqpγphqq ´ pϕp¨, t0q ´K2

rdp¨,Γqqpx0q
h

ď f0pγphqq ´ f0px0q
h

ď Lf0dMpγp0q, γphqq
h

ď 1

h
Lf0

ż h

0

} 9γpsq}γpsqds

ď Lf0 .

Passing to the limit as h Ñ 0` and taking the maximum over v, we get

}gradϕpx0, t0q ´K2grad rdpx0,Γq}x0 ď Lf0 .

Combining this inequality with (19) and (H.6), we get

B
Btϕpx0, t0q ` }gradϕpx0, t0q}x0 ´ P px0q(20)

ě K2}grad rdpx0,Γq}x0 ´ }gradϕpx0, t0q ´K2grad rdpx0,Γq}x0 ´ P px0q
ě K2d0 ´ Lf0 ´ }P }L8pMzΓq ě 0,

for K2 ě pLf0 ` }P }L8pMzΓqq{d0.
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In summary, taking K2 ě max
`
pLf0 ` }P }L8pMzΓqq{d0,K1T {a0

˘
, inequalities (17) and (20) hold

in each respective case, and thus the desired super-solution inequality is satisfied in all cases. We
then conclude that sf is a barrier super-solution. The existence of f and the bound (8) are then
direct consequences of Perron’s method.

�

We will now provide regularity results for the solution of (P). For the space regularity, we will
need to use the regularity of the Riemannian distance.

Theorem 3.8 (Regularity of the solution of (P)). Suppose that assumptions (H.1)-(H.7) and
(H.13) hold. Then the viscosity solution to the problem (P) satisfies the following regularity prop-
erties

(21) fpx, ¨q P Lippr0, T rq with Lfpx,¨q ď Lf0 ` }P }L8pMzΓq,@x P M.

For all x, y such that dMpx, yq ď δ (with δ defined in assumption (H.7)), we have

(22) |fpx, tq ´ fpy, tq| ď KdMpx, yq with K “ Lf0 ` 2}P }L8pMzΓq,@t P r0, T s,

Proof. If x P Γ, (21) obviously holds. We then consider the case px, tq P pMzΓqˆs0, T r, and we first
show that for any t P r0, T r,
(23) |fpx, tq ´ fpx, 0q| ď Lt,

where L “ }P }L8pMzΓq ` Lf0 . We define for px, tq P MT ,

f1px, tq “ f0pxq ´ Lt and f2px, tq “ f0pxq ` Lt.

We claim that f1 (resp. f2) is a sub-solution (resp. super-solution) of (P). We have f1 ď f0
on BMT . Now define ϕ P pMzΓqˆs0, T r such that f1 ´ ϕ reaches a local maximum at some
px0, t0q P pMzΓqˆs0, T r and such that ϕ P C1 on a small neighborhood of px0, t0q. This is equivalent
to

(24) ϕpx0, t0q ´ ϕpx, tq ď f1px0, t0q ´ f1px, tq
for all px, tq P pMzΓqˆs0, T r sufficiently close to px0, t0q. Since s0, T r is open, we take x “ x0 and
t “ t0 ´ h Ps0, T r for h ą 0 sufficiently small, and we get

(25) ϕpx0, t0q ´ ϕpx0, t0 ´ hq ď f1px0, t0q ´ f1px0, t0 ´ hq “ ´Lh
Dividing by h and passing to the limit, we get

(26)
B
Btϕpx0, t0q ď ´L.

On the other hand, let v P Tx0M with }v}x0 ă 1 and let γ :s´1, 1rÑ M be a differentiable curve
in M such that γp0q “ x0 and 9γp0q “ v. Since MzΓ is open, we can choose h small enough so that
γp´hq P MzΓ and } 9γpsq}γpsq ď 1 for all s P r´h, 0s. This is obtained thanks to the continuity of
t ÞÑ } 9γptq} and having that } 9γp0q}x0 ă 1. By (24), taking t “ t0 and x “ γp´hq, we have

ϕpγp0q, t0q ´ ϕpγp´hq, t0q
h

ď f0px0q ´ f0pγp´hqq
h

ď Lf0
dMpγp0q, γp´hqq

h

ď 1

h
Lf0

ż 0

´h
} 9γpsq}γpsqds

ď Lf0 .
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Passing to the limit as h Ñ 0 and taking the maximum over v, we get

}gradϕpx0, t0q}x0 ď Lf0 .

We then deduce that

(27)

B
Btϕpx0, t0q ` }gradϕpx0, t0q}x0 ´ P px0q ď ´L` Lf0 ´ P px0q

ď ´L` Lf0 ` }P }L8pMzΓq.

“ 0.

Therefore, this shows our claim on f1. Arguing in the same way, we can prove that f2 is a
super-solution of (P). Applying the comparison principle Proposition 3.3 twice yields that for any
px, tq P M ˆ r0, T r,

f0pxq ´ Lt ď fpx, tq ď f0pxq ` Lt,

which shows (23). For h ą 0 sufficiently small, we then consider the function lpx, tq “ fpx, t ` hq
for all px, tq P MT . Then it is easy to verify that l satisfies (P). This implies that fpx, tq and
fpx, t ` hq are solutions of the same equation (P), with initial conditions respectively f0pxq and
fpx, hq. Applying again the comparison result (see Proposition 3.3) and using (23), we obtain for
any px, tq P M ˆ r0, T r, that

(28)
|fpx, t` hq ´ fpx, tq| ď |fpx, hq ´ fpx, 0q|

ď Lh.

Passing to the limit as h Ñ 0 shows the time regularity claim.

We now turn to the space regularity bound (22) and adapt the argument of [3, Theorem 8.2].
Let δ1 ă δ and x, y P M such that dMpx, yq ď δ1. We introduce the test-function

Ψ : px, t, yq P MT ˆ M ÞÑ fpx, tq ´ fpy, tq ´KdMpx, yq,
and we aim to show that this function is non-positive for every K ą }P }L8pMzΓq + L. We argue
by contradiction and assume that

sup
px,t,yqPMT ˆM

Ψpx, t, yq ą 0.

Since Ψ is continuous over MT ˆ M which is compact, the supremum is actually a maximum
attained at some point px̄, t̄, ȳq P MT ˆ M with x̄ ‰ ȳ (otherwise Ψpx̄, t̄, ȳq “ 0). In order to use
viscosity solutions arguments, we introduce the function, for α ą 0,

Ψα : px, t, y, sq P M
2
T ÞÑ fpx, tq ´ fpy, sq ´KdMpx, yq ´ |t´ s|2

2α
.

Since f is continuous and MT is compact, the supremum of Ψα is actually a maximum attained
at some point pxα, tα, yα, sαq P M2

T . In particular, we have

(29) Ψαpxα, tα, yα, sαq ě Ψαpx̄, t̄, ȳ, t̄q “ Ψpx̄, t̄, ȳq ą 0.

Observe also that for α sufficiently small, we cannot have xα “ yα as otherwise Ψαpxα, tα, yα, sαq
would be negative, hence contradicting (29).

If xα P Γ, then fpxα, tαq “ f0pxαq “ ψbpxαq. Moreover by Proposition 3.5, ψbpyαq ď fpyα, sαq.
It then follows that

Ψαpxα, tα, yα, sαq ďψbpxαq ´ fpyα, sαq ´KdMpxα, yαq
ďψbpxαq ´ ψbpyαq ´KdMpxα, yαq
ďpLψb

´KqdMpxα, yαq
ďp}P }L8pMzΓq ´KqdMpxα, yαq
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where we used Remark 3.4. Since K ě }P }L8pMzΓq we get a contradiction with the positivity of
Ψαpxα, tα, yα, sαq.

Consider in the rest the case xα P MzΓ. Classical arguments (see, e.g., [3, Lemma 5.2]) show
that xα Ñ x and yα Ñ y. Since dMpx, yq ď δ1, we can assume that dMpxα, yαq ď δ, for α small
enough. Therefore, (H.7) implies that xα R Cutpyαq. Moreover, xα ‰ yα, and it follows that the

function px, tq ÞÑ fpyα, sαq ` KdMpx, yαq ` |t´sα|2
2α

is smooth at pxα, tαq. Since f is a sub-solution
we have

(30)
tα ´ sα

α
`K ď P pxαq,

where we used Lemma 2.13 to assert that }gradydMpxα, yαq}yα “ 1.
On the other hand, since pxα, tα, yα, sαq is a maximum point of ψα, we have for any t P r0, T s

fpxα, tq ´ |t´ sα|2
2α

ď fpxα, tαq ´ |tα ´ sα|2
2α

.

Choosing t such that tα ´ sα and tα ´ t are of the same sign, and using (21), we get

L|t´ tα| ěfpxα, tαq ´ fpxα, tq

ě|tα ´ sα|2
2α

´ |t´ sα|2
2α

,

now using the polarization identity (}X}2 ` }Y }2 ´ 2X.Y “ }X ´ Y }2), we obtain

L|t´ tα| ě ´|t´ tα|2
2α

` |t´ tα| |tα ´ sα|
α

.

Dividing by |t´ tα| and taking t Ñ tα, we get

|tα ´ sα|
α

ď L.

Injecting this estimate in (30), we arrive to

K ď }P }L8pMzΓq ` L.

Since K ą }P }L8pMzΓq ` L, we get again a contradiction of the positivity of Ψαpxα, tα, yα, sαq on
MzΓ. The above proof shows then that

fpx, tq ´ fpy, tq ´KdMpx, yq ď 0

for all px, y, tq P M2 ˆ r0, T s and every K ą 2}P }L8pMzΓq ` Lf0 , i.e., fp¨, tq is globally Lipschitz

continuous uniformly in t, hence providing the bound (22) for dMpx, yq ď δ1. Taking δ1 Ñ δ and
K Ñ 2}P }L8pMzΓq ` Lf0 , we get the desired result.

�

3.2. Problem (Pε). We begin by the definition of viscosity solution to problem (Pε)

Definition 3.9 (Viscosity solution for (Pε)). An usc function f ε : ĂMT ÝÑ R is a viscosity

sub-solution to (Pε) in p ĂMzrΓqˆs0, T r if for every C1 function ϕ :s0, T rÝÑ R and every point

px0, t0q P p ĂMzrΓqˆs0, T r such that f εpx0, .q ´ ϕ has a local maximum point at t0 Ps0, T r, we have

B
Btϕpt0q `

ˇ̌
∇´
ηε
f εpx0, t0q

ˇ̌
8 ď rP px0q.

The function f ε is a viscosity sub-solution to (Pε) in ĂMT if it satisfies moreover f εpx, tq ď f ε0 pxq
for all px, tq P B ĂMT .
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A lsc function f ε : ĂMT ÝÑ R is a viscosity super-solution to (Pε) in p ĂMzrΓqˆs0, T r if for every

C1 function ϕ :s0, T rÝÑ R and every point px0, t0q P p ĂMzrΓqˆs0, T r such that f εpx0, .q ´ ϕ has a
local minimum point at t0, we have

B
Btϕpt0q `

ˇ̌
∇´
ηε
f εpx0, t0q

ˇ̌
8 ě rP px0q.

The function f ε is a viscosity super-solution to (Pε) in ĂMT if it satisfies moreover f εpx, tq ě f ε0 pxq
for all px, tq P B ĂMT .

Finally, a locally bounded function f ε : ĂMT Ñ R is a viscosity solution to (Pε) in ĂMT (resp. in

p ĂMzrΓqˆs0, T r) if pf εq˚ is a viscosity sub-solution and pf εq˚ is a viscosity super-solution to (Pε) in
ĂMT (resp. in p ĂMzrΓqˆs0, T r).
Proposition 3.10 (Comparison principle for (Pε)). Suppose that assumptions (H.1)-(H.3) and
(H.9) hold. Assume that f ε is a bounded viscosity sub-solution to (Pε) and g

ε is a viscosity super-
solution to (Pε). Then

f ε ď gε in ĂMT .

Proof. Since problem (Pε) doesn’t see the space differential of the solution, the proof is the same
as the one of [16, Theorem 2.10] and we skip it.

�

In the same vein as for problem (P), the following assumption is intended to impose compatibil-

ity properties between (Pε) and the boundary conditions on B ĂMT :

(H.14) There exists rψb P LippMq, with rψbpxq “ f ε0 pxq for all x P rΓ, such that rψb is a sub-solution

of (Pε) in ĂMT .

Remark 3.11. Likewise, assumption (H.14) entails that the Lipschitz constant L rψb
satisfies

L rψb
ď } rP }

L8p ĂMzrΓq.

Remark 3.12. Referring to Remark 3.4, we can find a discussion concerning this assumption,

which is similar to the one made in the local case. Specifically, when f ε0 “ 0 and rP ě 0, (H.14)
holds. This example, when applied to weighted graphs (see Section 5), corresponds to the computa-
tion of distances on data that can be represented as a weighted graph such that point clouds, discrete
images and meshes. For further details, please refer to [11, 36] and references therein.

We are now ready to provide an existence result. As for the local case, the proof is based on
Perron’s method and the construction of barriers.

Proposition 3.13 (Existence result for (Pε)). Suppose that assumptions (H.1)–(H.5), (H.9)–
(H.11) and (H.14) hold. Then, problem (Pε) admits a unique viscosity solution f ε (which is in

fact continuous). Moreover, there exists a function sf ε P Lipp ĂMq such that

(31) rψb ď f ε ď sf ε in ĂMT .

Proof. The proof is the same as the one of [16, Proposition 2.12] and we skip it.
�

Theorem 3.14 (Time and space regularity properties for (Pε)). Suppose that assumptions (H.1)-
(H.5), (H.8)-(H.12) and (H.14) hold. Let f ε be the bounded continuous viscosity solution to
(Pε). Then

(32) f εpx, .q P Lippr0, T rq with Lfεpx,.q ď L, @x P M,
17



where
L “ Lfε

0
` } rP }

L8p ĂMzrΓq.

Moreover, for all px, yq P ĂM2 and t P r0, T r such that rdpx, yq ď aε, where a is defined in (H.11),
we have

(33) |f εpx, tq ´ f εpy, tq| ď max
´

pa` CMq} rP }
L8p ĂMzrΓq, c

´1
η CηpL` } rP }

L8p ĂMzrΓqq
¯
ε.

Assume also that for px, yq P ĂM2, there exists kpεq P N and a path px1 “ x, x2, ¨ ¨ ¨ , xkpεq “ yq with
rdpxi, xi`1q ď aε, i “ 1, . . . , kpεq ´ 1. Then for all t P r0, T r, we have

(34) |f εpx, tq ´ f εpy, tq| ď max
´

pa ` CMq} rP }
L8p ĂMzrΓq, c

´1
η CηpL ` } rP }

L8p ĂMzrΓqq
¯
kpεqε.

Proof. The proof of (32) is the same as the proof of the first part of [16, Theorem 2.15]. We begin

by the proof of the space regularity estimate (33). Let px, tq P ĂMT . If x P B ĂMT , then

f εpx, tq ´ f εpy, tq ď rψbpxq ´ rψbpyq
ď L rψb

dMpx, yq

ď } rP }
L8p ĂMzrΓqprdpx, yq `CMε1`ξq

ď pa` CMqε} rP }
L8p ĂMzrΓq,

and (33) holds. Assume now that px, tq P p ĂMzrΓqˆs0, T r is such that f ε is differentiable in time at
px, tq. For such points, we have from (Pε) and (32) that

(35)
ˇ̌
∇

´
ηεf

εpx, tq
ˇ̌
8 ď L` } rP }

L8p ĂMzrΓq.

Let y P ĂM be such that rdpx, yq ď aε. We then have, recalling (H.11) and (H.12), that

cηpεCηq´1pf εpx, tq ´ f εpy, tqq ďpεCηq´1η

˜
rdpx, yq
ε

¸
pf εpx, tq ´ f εpy, tqq

ď
ˇ̌
∇´
ηε
f εpx, tq

ˇ̌
8

ďL` } rP }
L8p ĂMzrΓq.

Exchanging the roles of x and y, we get that for all px, yq P ĂM2 and t P r0, T r such that f εpx, .q is
differentiable in time

|f εpx, tq ´ f εpy, tq| ď max
´

pa` CMq} rP }
L8p ĂMzrΓq, c

´1
η CηpL` } rP }

L8p ĂMzrΓqq
¯
ε.

If f εpx, .q is not differentiable at t, then since f εpx, .q is differentiable almost everywhere, we can
deduce that there exists a sequence ptnqnPN such that tn converges to t and f εpx, .q is differentiable

at tn for all n. By continuity of f εpx, .q in time, we get the result for all px, yq P ĂM2 and t P r0, T r.

The global estimate is now a direct consequence of (33). Indeed, we have

|f εpx, tq ´ f εpy, tq| ď
kpεq´1ÿ

i“1

|f εpxi`1, tq ´ f εpxi, tq|

ďmax
´

pa ` CMq} rP }
L8p ĂMzrΓq, c

´1
η CηpL` } rP }

L8p ĂMzrΓqq
¯ kpεq´1ÿ

i“1

ε

ďmax
´

pa ` CMq} rP }
L8p ĂMzrΓq, c

´1
η CηpL` } rP }

L8p ĂMzrΓqq
¯
kpεqε.
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�

Lemma 3.15. Suppose that assumptions (H.1)-(H.14) hold. Let f ε be the bounded continuous
viscosity solution to (Pε). Assume also that

(36) max
xPM

dMpx, ĂMq ď aε{8.

Then, there exists ε0 ą 0 such that for all ε P p0, ε0s and for all px, yq P ĂM2 and t P r0, T r, the
following holds

(37) |f εpx, tq ´ f εpy, tq| ď KpdMpx, yq ` εq,

where K “ 4a´1 max
´

pa ` CMq} rP }
L8p ĂMzrΓq, c

´1
η CηpL ` } rP }

L8p ĂMzrΓqq
¯
.

Proof. Let px, yq P ĂM2 and denoted by γxy the geodesic in M joining x and y. We then set

kpεq “
Q
4dMpx,yq

aε

U
, where r¨s denotes the ceiling. For j P t0, . . . kpεqu, we then define rxj such that

rxj P γxy and dMpx, rxjq “ jδ,

where δ “ dMpx, yq{kpεq ď aε{4. In particular rx0 “ x and rxkpεq “ y. Since γxy Ă M, the condition

(36) implies that for any i P t1, . . . , kpεq ´ 1u, there exists xi P ĂM such that dMprxi, xiq ď aε{8. We
also set x0 “ rx0 “ x and xkpεq “ rxkpεq “ y. We then have

dMpxi, xi`1q ď dMpxi, rxiq ` dMprxi, rxi`1q ` dMprxi`1, xi`1q ď aε{4 ` δ ď aε{2.

In view of (H.8), for ε ď ε0, where ε0 “ pa{p2CMqq1{ξ, we then have that

rdpxi, xi`1q ď dMpxi, xi`1q ` CMε1`ξ ď aε.

This allows to infer that for any px, yq P ĂM2, there exists a path px0 “ x, x1, ¨ ¨ ¨ , xkpεq “ yq such

that xi P ĂM and rdpxi, xi`1q ď aε for all i.
Injecting this in (34) and using the fact that

kpεq ď 4dMpx, yq
aε

` 1,

we get the result.
�

Remark 3.16. A consequence of the proof of Lemma 3.15 is that, under assumption (36) and
(H.8), since a ď rη, we have

(38) @x P ĂM, Dy P ĂM, y ‰ x such that rdpx, yq P εsupppηq,

This assumption is quite natural. It basically avoids that the non-local operator
ˇ̌
∇´
ηε
f εpx, tq

ˇ̌
8 is

trivially zero for all x P ĂM when ε is too small. In particular, as ĂM is finite, this condition imposes

that ĂM has to fill out M at least as fast as the rate at which ε goes to 0.

4. Consistency and error bounds

In this section, we present some error bounds between the solution to the local problem (P) and
the one to the non-local one (Pε). We start with a first technical lemma which will be used in the
following proofs.
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Lemma 4.1 (Test function and space and time estimations). Suppose that assumptions (H.1)-
(H.14) hold. Let f and f ε be the unique viscosity solutions to (P) and (Pε) respectively and
consider for γ ą 0 and β ą 0, the test-function

(39) Ψγ,βpx, t, y, sq “ f εpx, tq ´ fpy, sq ´ d2
M

px, yq
2γ

´ |t ´ s|2
2γ

´ βt,

defined on ĂMT ˆ MT . Then there exists a maximum point px̄, t̄, ȳ, s̄q P ĂMT ˆ MT of Ψγ,β.
Moreover, there exists a constant K ą 0 such that px̄, t̄, ȳ, s̄q satisfies

(40) dMpx̄, ȳq ď Kγ.

and

(41) |t̄´ s̄| ď Kp1 ` βqγ.

Proof. The test-function Ψγ,β is continuous (by the continuity of f and f ε) on ĂMT ˆMT which is

compact by (H.1)-(H.2). Hence it reaches a maximum at a point px̄, t̄, ȳ, s̄q P ĂMT ˆMT . We have

Ψγ,βpx̄, t̄, ȳ, s̄q ě Ψγ,βpx̄, t̄, x̄, s̄q since x̄ P ĂM Ă M by (H.2). That entails, using (22) (see Theorem
3.8), that

d2
M

px̄, ȳq
2γ

ď fpx̄, s̄q ´ fpȳ, s̄q ď KdMpx̄, ȳq,

therefore, we obtain that

dMpx̄, ȳq ď Kγ.

Similarly, we have Ψγ,βpx̄, t̄, ȳ, s̄q ě Ψγ,βpx̄, s̄, ȳ, s̄q. This implies, using (32) (see Theorem 3.14),
that

|t̄´ s̄|2
2γ

´ β|t̄´ s̄| ď f εpx̄, t̄q ´ f εpx̄, s̄q ď K|t̄´ s̄|,

thus, we get

|t̄´ s̄| ď Kp1 ` βqγ.
�

4.1. Continuous time non-local to local error bound. In this section, we provide an error
estimate between viscosity solutions to problems (Pε) and (P). This estimate will be instrumental
in deriving the remaining error bounds. For this, we need to strengthen (36) by assuming:

(H.15) There exists ν ą 0 such that maxxPM dMpx, ĂMq ď aε1`ν{8.

Theorem 4.2 (Error bound between the solutions to (P) and (Pε)). Let T ą 0 and ε Ps0, ε0s where
ε0 “ min p1, 1{p2rηq2, pa{p2CMqq1{ξq. Suppose that assumptions (H.1)-(H.15) hold, and let f and
f ε be respectively the unique viscosity solutions to (P) and (Pε). Then, there exists a constant
K ą 0, depending only on CM, }f0}L8pMq, }P }L8pMzΓq, Lf0, Lfε0 , LP , L rP , }η}L8 , Lη, Cη and cη,
such that

}f ε ´ f}
L8p ĂMˆr0,T rq ď KpT ` 1q

´
εminpν,ξ,1{2q ` }P ´ rP }

L8p ĂMzrΓq

¯
` }f ε0 ´ f0}

L8p ĂMq `KdMH pΓ, rΓq.

In particular, if dMH pΓ, rΓq “ Opεminpν,ξ,1{2qq, then

}f ε ´ f}
L8p ĂMˆr0,T rq ď KpT ` 1q

´
εminpν,ξ,1{2q ` }P ´ rP }

L8p ĂMzrΓq

¯
` }f ε0 ´ f0}

L8p ĂMq.

The fastest convergence rate in ε is then achieved when ν “ 1{2 and ξ “ 1{2 provided that

dMH pM, ĂMq “ Opε3{2q and dMH pΓ, rΓq “ Opε1{2q.
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Proof. The proof is quite similar to the one of [16, Theorem 3.2]. The difference is that in Rie-
mannian space, one is no longer able to use properties that are well-known in Euclidean space e.g.
Cauchy-Schwarz inequality, the remarkable identities, and many other properties. The main idea
is to replace the Riemannian distance between two points x and y in M with }Exp´1pyq}x defined
on the tangent space TxM. Hence, once we are on the tangent space, we can use all the properties
locally. In the following, K indicates a positive constant that can change from one line to the other
depending on the data.

Step 1. Test-function and maximum point.
According to Lemma 4.1, the test function ψγ,β defined by

Ψγ,βpx, t, y, sq “ f εpx, tq ´ fpy, sq ´ d2
M

px, yq
2γ

´ |t ´ s|2
2γ

´ βt,

attains a maximum point px̄, t̄, ȳ, s̄q P ĂMT ˆMT . Moreover, we have the following estimates

(42) dMpx̄, ȳq ď Kγ and |t̄´ s̄| ď Kp1 ` βqγ.
Step 2. Excluding interior points from the maximum.

We show that for β large enough, we have either px̄, t̄q P
´
Nα

Γ X ĂM
¯

ˆ r0, T r Y ĂMˆ t0u
or pȳ, s̄q P Nα

Γ ˆ r0, T r Y M ˆ t0u, for α “ ε1{2 so that α ą εrη for ε ď ε0. We argue

by contradiction, assuming that px̄, t̄q P p ĂMzNα
Γ qˆs0, T r and pȳ, s̄q P pMzNα

Γ qˆs0, T r. For
γ ď γ0, small enough, y ÞÑ d2

M
px̄, yq is of class C1 by assumption (H.7). Since pȳ, s̄q is a

minimum point of the function py, sq ÞÑ fpy, sq ´ ϕ1py, sq, where

ϕ1py, sq “ f εpx̄, t̄q ´ d2
M

px̄, yq
2γ

´ |t̄´ s|2
2γ

´ βt̄

which is of class C1, for γ small enough, and since f is a super-solution of (P), we get

t̄´ s̄

γ
ě ´

}gradyd2Mpx̄, ȳq}ȳ
2γ

` P pȳq.

But according to Lemma 2.14 and Proposition 2.12, we have that››››
1

2
gradyd

2
Mpx̄, ȳq

››››
ȳ

“ } ´ Exp´1
ȳ px̄q}ȳ “ dMpx̄, ȳq.

We then obtain

(43)
t̄´ s̄

γ
ě ´dMpx̄, ȳq

γ
` P pȳq.

Similarly, since t̄ is a maximum point of the function t ÞÑ f εpx̄, tq ´ ϕ2ptq, where

ϕ2ptq “ fpȳ, s̄q ` d2
M

px̄, ȳq
2γ

` |t´ s̄|2
2γ

` βt,

which is of class C1 and since f ε is a viscosity sub-solution to (Pε), we get

(44) β ` t̄´ s̄

γ
ď ´

ˇ̌
∇´
ηε
f εpx̄, t̄q

ˇ̌
8 ` rP px̄q.

On the other hand, since px̄, t̄, ȳ, s̄q is a maximizer of Ψγ,β, we have for any z P ĂM

(45) Ψγ,βpx̄, t̄, ȳ, s̄q ´ Ψγ,βpz, t̄, ȳ, s̄q “ f εpx̄, t̄q ´ f εpz, t̄q ´ d2
M

px̄, ȳq ´ d2
M

pz, ȳq
2γ

ě 0.

By (H.7) and (42), we get that ȳ R Cuttx̄u and so there exists a unique geodesic c such
that cp0q “ x̄, cp1q “ ȳ and Lpcq “ dMpx̄, ȳq. Let 0 ď r̄η ď rη such that Cη “ r̄ηηpr̄ηq.
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We define z̄ “ cpsq such that dMpx̄, z̄q “ εr̄η, for s P r0, 1s. In particular dMpx̄, ȳq “
dMpx̄, z̄q ` dMpz̄, ȳq. Define λ Ps0, 1s such that dMpx̄, z̄q “ λdMpx̄, ȳq. We then have

dMpz̄, ȳq “ p1 ´ λqdMpx̄, ȳq.

We now fix z̃ P ĂM such that dMpz̄, z̃q ď aε1`ν{8 (see (H.15)). Using (45), we then have

(46)

2γ pf εpx̄, t̄q ´ f εpz̃, t̄qq ě d2Mpx̄, ȳq ´ d2Mpz̃, ȳq
ě d2Mpx̄, ȳq ´ pdMpz̃, z̄q ` dMpz̄, ȳqq2

“ d2Mpx̄, ȳq ´ d2Mpz̄, ȳq ´ d2Mpz̄, z̃q ´ 2dMpz̄, ȳqdMpz̄, z̃q
“ d2Mpx̄, ȳq ´ p1 ´ λq2d2Mpx̄, ȳq ´ d2Mpz̄, z̃q ´ 2dMpz̄, ȳqdMpz̄, z̃q
“ 2λd2Mpx̄, ȳq ´ λ2d2Mpx̄, ȳq ´ d2Mpz̄, z̃q ´ 2dMpz̄, ȳqdMpz̄, z̃q.

It then follows that

(47)

|∇´
ηε
f εpx̄, t̄q|8 ě Jεpx̄, z̃qpf εpx̄, t̄q ´ f εpz̃, t̄qq

“ Jεpx̄, z̄qpf εpx̄, t̄q ´ f εpz̃, t̄qq ` pJεpx̄, z̃q ´ Jεpx̄, z̄qq pf εpx̄, t̄q ´ f εpz̃, t̄qq
ě γ´1λJεpx̄, z̄qd2Mpx̄, ȳqloooooooooomoooooooooon

T1

´ p2γq´1λ2d2Mpx̄, ȳqJεpx̄, z̄qlooooooooooomooooooooooon
T2

´ p2γq´1d2Mpz̄, z̃qJεpx̄, z̄qlooooooooomooooooooon
T3

´ γ´1dMpz̄, ȳqdMpz̄, z̃qJεpx̄, z̄qlooooooooooooooomooooooooooooooon
T4

` pJεpx̄, z̃q ´ Jεpx̄, z̄qq pf εpx̄, t̄q ´ f εpz̃, t̄qqlooooooooooooooooooooooooomooooooooooooooooooooooooon
T5

.

We now treat each term T1, . . . ,T5. For T1, using Cη “ max0ďtďrη tηptq “ r̄ηηpr̄ηq, we
have

(48)

T1 “ λdMpx̄, ȳqJεpx̄, z̄qdMpx̄, ȳq

“ pεCηq´1η

˜
rdpx̄, z̄q
ε

¸
dMpx̄, z̄qdMpx̄, ȳq

ě pεCηq´1

ˆ
η

ˆ
dMpx̄, z̄q

ε

˙
´ CMLηε

ξ

˙
dMpx̄, z̄qdMpx̄, ȳq

“ C´1
η ηpr̄ηqr̄ηdMpx̄, ȳq ´C´1

η r̄ηCMLηε
ξdMpx̄, ȳq

“ dMpx̄, ȳq ´Kεξγ.

Likewise, we have

(49)

T2 “ Jεpx̄, z̄qλ2d2Mpx̄, ȳq

“ pεCηq´1η

˜
rdpx̄, z̄q
ε

¸
d2Mpx̄, z̄q

ď pεCηq´1η

˜
rdpx̄, z̄q
ε

¸´
rdpx̄, z̄q ` CMε1`ξ

¯
dMpx̄, z̄q

ď dMpx̄, z̄q `KεξdMpx̄, z̄q
ď εrη `Kε1`ξ

ď Kε.
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Now we turn to bound T3. Using the definition of z̃ and the fact that η is bounded, we
have

(50)

T3 “ d2Mpz̄, z̃qJεpx̄, z̄q

ď KpεCηq´1η

˜
rdpx̄, z̄q
ε

¸
ε2`2ν

ď Kε1`2ν .

To bound T4, we have, using (42), the definition of z̃ and the fact that η is bounded,

(51)

T4 “ dMpz̄, ȳqdMpz̄, z̃qJεpx̄, z̄q
ď Kp1 ´ λqdMpx̄, ȳqε1`νε´1

ď Kγεν .

We now turn to T5. Using (37), (42), (H.12) and (H.15), we have

(52)

|T5| “ pεCηq´1

ˇ̌
ˇ̌
ˇη
˜

rdpx̄, z̃q
ε

¸
´ η

˜
rdpx̄, z̄q
ε

¸ˇ̌
ˇ̌
ˇ .|f

εpx̄, t̄q ´ f εpz̃, t̄q|

ď Kε´2|rdpx̄, z̃q ´ rdpx̄, z̄q|pdMpx̄, z̃q ` εq
ď Kε´2pdMpz̄, z̃q ` CMε1`ξqpdMpx̄, z̄q ` dMpz̄, z̃q ` εq
ď Kε´2pKε1`ν ` CMε1`ξqpεrη `Kε1`ν ` εq
ď Kεmin pν,ξq.

Injecting (48), (49), (50), (51) and (52) into (47), we arrive at

|∇´
ηεf

εpx̄, t̄q|8 ě dMpx̄, ȳq
γ

´K

ˆ
ε

γ
` εmin pν,ξq

˙
.

Injecting this bound into (44) and combining with (43), we deduce that if px̄, t̄q P p ĂMzNα
Γ qˆs0, T r

and pȳ, s̄q P pMzNα
Γ qˆs0, T r, then

β ă 2K

ˆ
εmin pν,ξq ` ε

γ

˙
` rP px̄q ´ P pȳq

ď K

ˆ
εmin pν,ξq ` ε

γ

˙
` LP dMpx̄, ȳq `

››P ´ rP
››
L8p ĂMzrΓq

ď K

ˆ
εmin pν,ξq ` ε

γ

˙
` LPKγ `

››P ´ rP
››
L8p ĂMzrΓq

ď K

ˆ
εmin pν,ξq ` ε

γ
` γ

˙
`
››P ´ rP

››
L8p ĂMzrΓq

def“ β̄,

for large enough constant K ą 0, where we used (H.3) and (H.4) in the second inequality
and estimate (42) in the third one. Then we conclude that for β ě β̄ either px̄, t̄q P
Nα

Γ ˆ r0, T r Y ĂM ˆ t0u or pȳ, s̄q P Nα
Γ ˆ r0, T r Y M ˆ t0u.
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Step 3. Conclusion.
We take β ě β̄. Assume first that pȳ, s̄q P Nα

Γ ˆ r0, T r Y M ˆ t0u. If s̄ “ 0, then

Ψγ,βpx̄, t̄, ȳ, s̄q ď f εpx̄, t̄q ´ f0pȳq
“ pf εpx̄, t̄q ´ f εpx̄, 0qq ` pf ε0 px̄q ´ f0px̄qq ` pf0px̄q ´ f0pȳqq
ď Kt̄`

››f ε0 ´ f0
››
L8p ĂMq ` Lf0dMpx̄, ȳq

ď Kpβ ` 1qγ ` }f ε0 ´ f0}
L8p ĂMq,

where, in the second inequality, we used (32) in Theorem 3.14 to get the first term, and
(H.1) and (H.5) to get the last two terms. In the last inequality, we invoked (42). In the
same way, if ȳ P Nα

Γ and s̄ ą 0, let ỹ P ProjΓ̃pȳq, i.e.,
dMpȳ, ỹq “ dMpȳ, rΓq ď dMH pΓ, rΓq ` α.

Such ỹ exists by closedness of rΓ, see (H.3). Since (36) is in force under (H.15), (37)
holds (see Theorem 3.14 and Lemma 3.15). Using this with (H.5) and (42), we obtain

(53)

Ψγ,βpx̄, t̄, ȳ, s̄q ď f εpx̄, t̄q ´ f0pȳq
“ pf εpx̄, t̄q ´ f εpỹ, t̄qq ` pf ε0 pỹq ´ f0pỹqq ` pf0pỹq ´ f0pȳqq
ď KpdMpx̄, ỹq ` εq `

››f ε0 ´ f0
››
L8p ĂMq ` Lf0dMpỹ, ȳq

ď KpdMpx̄, ȳq ` εq `
››f ε0 ´ f0

››
L8p ĂMq `KdMpȳ, ỹq ` Lf0dMpȳ, ỹq

ď Kpγ ` εq ` }f ε0 ´ f0}
L8p ĂMq `KpdMH pΓ, rΓq ` αq.

We conclude that for all pȳ, s̄q P Nα
Γ ˆ r0, T r Y M ˆ t0u, and for β ě β̄, we have

Ψγ,βpx̄, t̄, ȳ, s̄q ď Kpγ ` εq ` }f ε0 ´ f0}
L8p ĂMq `KpdMH pΓ, rΓq ` αq `Kβγ.

The same bound holds for px̄, t̄q P
´
Nα

Γ X ĂM
¯

ˆ r0, T r Y ĂM ˆ t0u when β ě β̄. Indeed,

if t̄ “ 0 then

Ψγ,βpx̄, t̄, ȳ, s̄q ď f ε0 px̄q ´ fpȳ, s̄q
“ pf ε0 px̄q ´ f0px̄qq ` pf0px̄q ´ f0pȳqq ` pfpȳ, 0q ´ fpȳ, s̄qq
ď
››f ε0 ´ f0

››
L8p ĂMq ` Lf0dMpx̄, ȳq `Ks̄

ď Kpβ ` 1qγ `
››f ε0 ´ f0

››
L8p ĂMq,

where we have now invoked (21) in Theorem 3.8. If x̄ P
´
Nα

Γ X ĂM
¯
and t̄ ą 0, choose x̂ P Γ

in the projection of x̄ on Γ. Thus, using (22) in Theorem 3.8, we arrive at

Ψγ,βpx̄, t̄, ȳ, s̄q ď f ε0 px̄q ´ fpȳ, s̄q
“ pf ε0 px̄q ´ f0px̄qq ` pf0px̄q ´ f0px̂qq ` pfpx̂, s̄q ´ fpȳ, s̄qq
ď
››f ε0 ´ f0

››
L8p ĂMq ` Lf0dMpx̄, x̂q `KdMpx̂, ȳq

ď
››f ε0 ´ f0

››
L8p ĂMq ` Lf0α`Kpα ` γq

ď Kpα` γq ` }f ε0 ´ f0}
L8p ĂMq.

Thus, taking β “ β̄ and px, tq P ĂMT we have from above that,

f εpx, tq ´ fpx, tq ´ β̄T ďΨγ,βpx̄, t̄, ȳ, s̄q
ďKpγ ` εq ` }f ε0 ´ f0}

L8p ĂMq `KpdMH pΓ, rΓq ` αq `Kβ̄γ.
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Before concluding, we look at what happens when we revert the role of f and f ε. In this
case, our reasoning remains valid with only a few changes. The main ingredient is to redefine
Ψγ,β as follows

Ψγ,βpx, t, y, sq “ fpy, sq ´ f εpx, tq ´ d2
M

px, yq
2γ

´ |t ´ s|2
2γ

´ βt.

Then all our bounds remain true and with even simpler arguments (see the proof of Theorem
4.3 which used the same kind of arguments and where we revert the role of f and f ε). We
leave the details to the reader for the sake of brevity. Overall, we have shown that

|f εpx, tq ´ fpx, tq| ď Kpγ ` εq ` }f ε0 ´ f0}
L8p ĂMq `KpdMH pΓ, rΓq ` αq `Kβ̄pγ ` T q.

With the optimal choice γ “ ε1{2, taking the supremum over px, tq and after rearrangement,

we get (recalling that α “ ε1{2)

››f ε ´ f
››
L8p ĂMˆr0,T rq ďK

´
pT ` 1qεminpν,ξ,1{2q ` ε

¯
`KpT ` ε1{2q

››P ´ rP
››
L8p ĂMzrΓq

`
››f ε0 ´ f0

››
L8p ĂMq `KpdMH pΓ, rΓq ` ε1{2q,

which implies the claimed bound.

�

4.2. Forward Euler discrete time non-local to local error bound. In this section, we con-
sider the time-discrete approximation of (Pε) using Forward Euler discretization. Then we show
an error estimate between this approximation and the viscosity solution to (P).

For a time interval r0, T r andNT P N, we use the shorthand notation B ĂMNT
“ prΓˆtt1, ¨ ¨ ¨ , tNT

uY
ĂMzrΓ ˆ t0uq. Using the Forward/Explicit Euler discretization scheme, a time-discrete counterpart
of (Pε) is given by

(PFD
ε )

#
fεpx,tq´fεpx,t´∆tq

∆t
` |∇´

ηεf
εpx, t ´ ∆tq|8 “ rP pxq, px, tq P p ĂMzrΓq ˆ tt1, . . . , tNT

u ,
f εpx, tq “ f ε0 pxq, px, tq P B ĂMNT

,

where ti “ i∆t for all i P t0, . . . , NT u.
We include in Appendix A the proof of the well-posedness of the equation (PFD

ε ). Indeed,
Lemma A.3 shows the existence and regularity properties in time and space of a discrete-time
solution of (PFD

ε ) (in the sense of Definition A.1). The comparison principle given in Lemma A.2
provides uniqueness.

We are now in a position to state the following error estimate.

Theorem 4.3 (Error bound between the solutions to (P) and (PFD
ε )). Let T ą 0 and ε Ps0, ε0s

where ε0 “ minp1, 1{p2rηq2, pa{p2CMqq1{ξq. Suppose that assumptions (H.1)–(H.15) hold, and that

dMH pΓ, rΓq “ Opεminpν,ξ,1{2qq. Let f be the unique viscosity solution to (P) and f ε be the solution to
(PFD

ε ). Assume also that

0 ă ∆t ď εCη

suptPR`
ηptq .(54)
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Then, there exists a constant K ą 0 depending only on CM, }f0}L8pMq, }P }L8pMzΓq, Lf0, Lfε0 ,
LP , L rP ,}η}L8, Lη, Cη and cη such that for any ε small enough

››f ε ´ f
››
L8p ĂMˆt0,...,tNT uq ďKpT ` 1q

ˆ
εminpν,ξ,1{2q ` ∆t1{2 ` ∆t

ε
`
››P ´ rP

››
L8p ĂMzrΓq

˙

`
››f ε0 ´ f0

››
L8p ĂMq.

In particular, if rP “ P on ĂMzrΓ and f ε0 “ f0 on ĂM, then we have

››f ε ´ f
››
L8p ĂMˆt0,...,tNT uq ďKpT ` 1q

ˆ
εminpν,ξ,1{2q ` ∆t1{2 ` ∆t

ε

˙
.

The fastest convergence rate in ε is then achieved when ∆t “ Opε3{2q, ν “ 1{2 and ξ “ 1{2 provided

that dMH pM, ĂMq “ Opε3{2q and dMH pΓ, rΓq “ Opε1{2q.

Proof. The proof of this theorem is similar to the one of Theorem 4.2. We just point out the steps
where we need to correctly process the discrete time approximation. Moreover, we revert the role
of f and f ε to complete the details provided in the proof of Theorem 4.2. Therefore, we will need
to use the Lipschitz regularity properties of f ε in time and space (see Lemma A.3). Again, K will
denote in this proof any positive constant that depends only on the data but may change from one
line to another.

Step 1. Test-function and maximum point.

For γ ą 0 and β ą 0, we consider maximizing over MT ˆ ĂMNT
the test-function

Ψγ,βpx, t, y, sq “ fpx, tq ´ f εpy, sq ´ d2
M

px, yq
2γ

´ |t ´ s|2
2γ

´ βt.

Exactly as in the proof of Lemma 4.1, the maximum is achieved at some point px̄, t̄, ȳ, t̄iq P
MT ˆ ĂMNT

and this maximum satisfies the following properties

dMpx̄, ȳq ď Kγ and |t̄ ´ t̄i| ď Kp1 ` βqγ.(55)

Step 2. Excluding interior points from the maximum.

We show that for β large enough, we have either px̄, t̄q P BMT or pȳ, t̄iq P B ĂMNT
. We

argue again by contradiction and assume that px̄, t̄q P MzΓˆs0, T r and pȳ, t̄iq P ĂMzrΓ ˆ
tt1, . . . , tNT

u. The function px, tq ÞÑ fpx, tq ´ ϕ1px, tq, where

ϕ1px, tq “ f εpȳ, t̄iq ` d2
M

px, ȳq
2γ

` |t´ t̄i|2
2γ

` βt,

reaches a maximum point at px̄, t̄q. Using that ϕ1 is C1 on a small neighborhood of px̄, t̄q, for
γ small enough, (see (55), Assumption (H.7) and Remark 2.15), the fact that f is a viscosity
sub-solution to (P) and the fact that }gradxd2Mpx̄, ȳq}x̄ “ 2dMpx̄, ȳq (see Proposition 2.12
and Lemma 2.13), we have

β ` t̄´ t̄i

γ
ď ´dMpx̄, ȳq

γ
` P px̄q.(56)

We have Ψγ,βpx̄, t̄, ȳ, t̄iq ě Ψγ,βpx̄, t̄, ȳ, t̄i ´∆tq since px̄, t̄, ȳ, t̄iq is a maximum point of Ψγ,β.
This implies that

f εpȳ, t̄iq ´ f εpȳ, t̄i ´ ∆tq
∆t

ď t̄´ t̄i

γ
` ∆t

2γ
.(57)
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Similarly, we have Ψγ,βpx̄, t̄, ȳ, t̄iq ě Ψγ,βpx̄, t̄, z, t̄iq, hence we get

f εpȳ, t̄iq ´ f εpz, t̄iq ď d2
M

px̄, zq ´ d2
M

px̄, ȳq
2γ

, @z P ĂM.

On the other hand, using that t̄i ą 0 and that f ε is a solution to (PFD
ε ), see Definition

A.1, we have

(58)
f εpȳ, t̄iq ´ f εpȳ, t̄i ´ ∆tq

∆t
“ ´

ˇ̌
∇´
ηε
f εpȳ, t̄i ´ ∆tq

ˇ̌
8 ` rP pȳq.

We now estimate the right hand side of (58)
(59)ˇ̌
∇

´
ηεf

εpȳ, t̄i ´ ∆tq
ˇ̌
8 “ max

zP ĂM, rdpȳ,zqPεsupppηq
Jεpȳ, zqpf εpȳ, t̄i ´ ∆tq ´ f εpz, t̄i ´ ∆tqq

“ max
zP ĂM, rdpȳ,zqPεsupppηq

Jεpȳ, zqpf εpȳ, t̄i ´ ∆tq ´ f εpȳ, t̄iq ` f εpȳ, t̄iq ´ f εpz, t̄iq

` f εpz, t̄iq ´ f εpz, t̄i ´ ∆tqq
ď max

zP ĂM, rdpȳ,zqPεsupppηq
Jεpȳ, zqpK∆t ` f εpȳ, t̄iq ´ f εpz, t̄iqq

ď max
zP ĂM, rdpȳ,zqPεsupppηq

Jεpȳ, zq
`
K∆t` p2γq´1

`
d2Mpx̄, zq ´ d2Mpx̄, ȳq

˘˘

ď K∆t max
zP ĂM, rdpȳ,zqPεsupppηq

Jεpȳ, zq ` p2γq´1 max
zP ĂM, rdpȳ,zqPεsupppηq

Jεpȳ, zq
`
dMpx̄, zq ´ dMpx̄, ȳq

˘`
dMpx̄, zq ´ dMpx̄, ȳq ` 2dMpx̄, ȳq

˘

ď K
∆t

ε
sup
tPR`

ηptq ` p2γq´1 max
zP ĂM, rdpȳ,zqPεsupppηq

Jεpȳ, zqdMpȳ, zq
`
dMpȳ, zq ` 2dMpx̄, ȳq

˘

ď K
∆t

ε
` dMpx̄, ȳq

γ
max

zP ĂM, rdpȳ,zqPεsupppηq
pεCηq´1

´
rdpȳ, zq `Kε1`ξ

¯
η

˜
rdpȳ, zq
ε

¸

` p2γq´1 max
zP ĂM, rdpȳ,zqPεsupppηq

pεCηq´1
´
rdpȳ, zq `Kε1`ξ

¯2

η

˜
rdpȳ, zq
ε

¸

ď K
∆t

ε
` dMpx̄, ȳq

γ

´
1 `Kεξ

¯
` p2γq´1 max

zP ĂM, rdpȳ,zqPεsupppηq

˜
rdpȳ, zq

`Kε1`ξpεCηq´1 rdpȳ, zqη
˜

rdpȳ, zq
ε

¸
`Kε2`2ξpεCηq´1η

˜
rdpȳ, zq
ε

¸¸

ď K
∆t

ε
` dMpx̄, ȳq

γ
`Kεξ ` p2γq´1

´
Kε`Kε1`ξ `Kε1`2ξ

¯

ď K

ˆ
∆t

ε
` ε

γ
` εξ

˙
` dMpx̄, ȳq

γ
.

Plugging (57) and (59) into (58) we get

t̄´ t̄i

γ
` ∆t

2γ
ě ´K

ˆ
∆t

ε
` ε

γ
` εξ

˙
´ dMpx̄, ȳq

γ
` rP pȳq.(60)

From (56) and (60), we finally obtain
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β ď K

ˆ
∆t` ε

γ
` ∆t

ε
` εξ

˙
` P px̄q ´ rP pȳq

ď K

ˆ
∆t` ε

γ
` ∆t

ε
` εξ

˙
`KdMpx̄, ȳq `

››P ´ rP
››
L8p ĂMzrΓq

ă K

ˆ
∆t` ε

γ
` γ ` ∆t

ε
` εξ

˙
`
››P ´ rP

››
L8p ĂMzrΓq

def“ β̄.

We then conclude that either px̄, t̄q P BMT or pȳ, t̄iq P B ĂMNT
, for β ě β̄. When reverting

the roles of f ε and f , only β̄ will be changed taking the additional term εminpν,ξq (see the
proof of Theorem 4.2). We finally use the regularity properties of f ε (see Lemma A.3) and
of f (see Theorem 3.8) to conclude, following Step 3. in the proof of Theorem 4.2.

�

5. Application to graph sequences

Let Gn “ pVn, En, wnq be a finite weighted graph where Vn is the set of n vertices tu1, ¨ ¨ ¨ , unu,
En Ă Vn ˆ Vn is the set of edges and wnpui, ujq is the weight of any edge pui, ujq. The latter can

be defined with a kernel function at scale εn as wnpui, ujq “ pεCηq´1η

˜
rdpui, ujq

ε

¸
.

Let Γn Ă Vn. For a time interval r0, T r and NT P N, we use the shorthand notation pVnzΓnqNT
“

pVnzΓnq ˆ tt1, . . . , tNT
u and BpVnqNT

“ pΓn ˆ tt1, . . . , tNT
uq Y Vn ˆ t0u. We now consider the fully

discretized Eikonal equation on Gn with a forward Euler time-discretization as

(PFD
Gn

)

#
fnpu,tq´fnpu,t´∆tq

∆t
` |∇´

ηεf
npu, t ´ ∆tq|8 “ rP puq, pu, tq P pVnzΓnqNT

,

fnpu, tq “ fn0 puq, pu, tq P BpVnqNT
,

where ti “ i∆t for all i P t0, . . . , NT u.
In the notation of (PFD

ε ), it is easy to identify Vn with ĂM and Γn with rΓ. We observe that by
construction, Vn and Γn are compact sets and that VnzΓn Ă MzΓ. Our aim in this section is to
establish consistency of solutions to (PFD

Gn
) as n Ñ `8 and ∆t Ñ 0.

In practice, the construction of vertices Vn in a graph is beyond our direct control. The specific
arrangement of points may not be known, or the points can be obtained by sampling through
an acquisition device (e.g., point clouds), or derived from a learning or modeling process (e.g.,
images). Consequently, it is more realistic to consider graphs Gn on random point configurations
Vn, and then conveniently estimate the probability of achieving a prescribed level of consistency as
a function of n.

To achieve this goal, we will consider a random graph model whose nodes are latent random
variables independently and identically sampled on M. This random graph model is inspired from
[5] and is quite standard. More precisely, we construct Vn and the boundary Γn as follows:

Definition 5.1 (Construction of Vn and Γn). Given a probability measure µ over M and εn ą 0 :

(1) draw the vertices in Vn as a sequence of independent and identically distributed variables
puiqni“1 taking values in M and whose common distribution is µ;

(2) set Γn “
 
ui P Vn : dMpui,Γq ď aε1`ν

n {2
(
, ν ą 0.

From now on, we assume that

(H.16) µ has a density ρ on M with respect to the volume measure, and infM ρ ą 0.
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Before stating the main result of this section, the following lemma gives a proper choice of εn
for which the construction of Definition 5.1 ensures that the key assumption (H.15) is in force
together with Γn ‰ H and dMH pΓ,Γnq “ Opε1`ν

n q with high probability. To lighten notation, we
define the event

(61) En “
 
(H.15) holds and dMH pΓ,Γnq ď aε1`ν

n {2
(
.

Before stating the next Lemma, we need to introduce the following assumption on the radius δ
of the covering of M

(H.17) The radius of the covering of M satisfies δ ă min
!
injgpMq, π?

r
, 2π

)
, where r is the

infimum of the sectional curvature of M and injg is the injectivity radius of pM, gq and
where we have set π?

r
“ `8 whenever r ď 0.

The definitions of the sectional curvature and the injectivity radius of M are given in Appendix
B. As for the examples mentioned in the introduction, they satisfy this assumption. In fact, the
Euclidean sphere Sn possesses a constant positive sectional curvature equal to 1{R2, where R is its
radius. Therefore, the infimum of its sectional curvature r is strictly positive. Thus assumption
(H.17) is satisfied. Furthermore, the hyperbolic manifold H

n has a constant negative sectional
curvature, while the sectional curvature of the torus is identically zero, ensuring the validity of the
condition on δ for this two examples.

Lemma 5.2. Let Vn and Γn generated according to Definition 5.1 where µ satisfies (H.16). Assume
that δ satisfies assumption (H.17). Then, there exist two constants K1 ą 0 and K2 ą 0 that depend
only on a, volpMq and volpBMp0qq, and for any τ ą 0 there exists npτq P N such that for n ě npτq,
taking

(62) ε1`ν
n “ K1p1 ` τq1{m˚

ˆ
log n

n

˙1{m˚

,

the event En in (61) holds with probability at least 1 ´K2n
´τ .

Proof. The proof follows a similar approach as in [16, Appendix D], with the exception that the
covering number of M is distinct here. We will use again compactness of M and a covering
argument with a finite δ-net consisting of NpM, δq points. Let Sδ “

 
x1, x2, . . . , xNpM,δq

(
be a

δ-net of M such that for all x P M, there exists xj P Sδ such that dMpx, xjq ď δ, i.e., M ĎŤ
xjPSδ

BMpxj, δq. We then have, following the same lines as in the proof of [16, Lemma 4.2] that

Pr

ˆ
max
xPM

dMpx, Vnq ą 2δ

˙
ď NpM, δq

´
1 ´ cδm

˚
volpBMp0qq

¯n
.

Using the result obtained in [25], we have that

NpM, δq ď CvolpMqδ´m˚
.

We therefore arrive at the bound

Pr

ˆ
max
xPM

dMpx, Vnq ą 2δ

˙
ď CvolpMqδ´m˚

´
1 ´ cδm

˚
volpBMp0qq

¯n

ď CvolpMqδ´m˚
e´ncδm˚

volpBM p0qq.
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Take δm
˚ “ p1`τq

cvolpBMp0qq
logn
n

, for any τ ą 0. Thus the above bound becomes

Pr

ˆ
max
xPΩ

dpx, Vnq ą 2δ

˙
ď CvolpMqvolpBMp0qqe´p1`τq logn´logp1`τq´log logn`logn

ď CvolpMqvolpBMp0qqe´τ logn

“ CvolpMqvolpBMp0qqn´τ .

Thus, taking

ε1`ν
n “ 16a´1

ˆ p1 ` τq
cvolpBMp0qq

˙1{m˚ ˆ
log n

n

˙1{m˚

,

we have aε1`ν
n {8 ě δ, and therefore (H.15) holds with probability at least 1 ´ K2n

´τ . The proof
of the estimation of the probability of the event

 
dMH pΓ,Γnq ď aε1`ν

n {2
(
aligns with that presented

in [16, Appendix D], and for brevity, we skip it. �

We are now ready to establish a quantified version of uniform convergence in probability of fn

towards f .

Theorem 5.3. Let T , ν ą 0, and Vn and Γn be constructed according to Definition 5.1 where µ
satisfies (H.16). Suppose that assumptions (H.1)-(H.15) and (H.17) hold. Let f be the unique

viscosity solution to (P) and fn be a solution to (PFD
Gn

). Take ∆t “ ε
1`ζ
n where εn is as given in

(62). Then, there exist two constants K ą 0 and K2 ą 0 that depend only on CM, a, diampMq,
}f0}L8pMq, }P }L8pMzΓq, Lf0 , Lfn0 , LP , L rP , cη, Cη, Lη, }η}L8 and ν, and for any τ ą 0, there
exists npτq P N such that for n ě npτq,

››fn ´ f
››
L8pVnˆt0,...,tNT uq ď KpT ` 1q

˜
p1 ` τq

minpν,ξ,1{2,ζq

p1`νqm˚

ˆ
log n

n

˙minpν,ξ,1{2,ζq

p1`νqm˚

`
››P ´ rP

››
L8pVnzΓnq

¸
`
››fn0 ´ f0

››
L8pVnq.

with probability at least 1´K2n
´τ . In particular, if εn is chosen with τ ą 1, rP “ P on VnzΓn and

fn0 “ f0 on Vn, then

lim
nÑ`8

››fn ´ f
››
L8pVnˆt0,...,tNT uq “ 0 almost surely.

The best convergence rate is O
´
logn
n

¯ 1

3m˚
obtained for ν “ 1{2, ξ “ 1{2 and ζ “ 1{2.

Proof. The proof of this theorem is similar to the one of [16, Theorem 4.3] and we skip it. �

Appendix A. Well-posedness and regularity properties of (PFD
ε )

We recall the notions of discrete sub- and super-solution defined in [16].

Definition A.1 (Discrete sub- and super-solution). We say that f ε is a sub-solution to (PFD
ε ) if

for all px, tq P p ĂMzrΓq ˆ tt1, . . . , tNT
u

f εpx, tq ´ f εpx, t ´ ∆tq
∆t

`
ˇ̌
∇´
ηε
f εpx, t ´ ∆tq

ˇ̌
8 ď rP pxq,

and if for all px, tq P B ĂMNT
,

f εpx, tq ď f ε0 pxq.
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In the same way, we say that f ε is a super-solution to (PFD
ε ) if for all px, tq P p ĂMzrΓqˆtt1, . . . , tNT

u
f εpx, tq ´ f εpx, t ´ ∆tq

∆t
`
ˇ̌
∇´
ηε
f εpx, t ´ ∆tq

ˇ̌
8 ě rP pxq,

and if for all px, tq P B ĂMNT
,

f εpx, tq ě f ε0 pxq.
f ε is a discrete solution to (PFD

ε ) if it is both a discrete sub-solution and super-solution.

We recall the comparison principle, proved in [16, Lemma B.2]

Lemma A.2 (Comparison principle for the scheme (PFD
ε )). Assume that (H.1)-(H.3) and (H.9)

hold, and that f ε, gε are respectively bounded sub- and super-solution to (PFD
ε ). Assume also that

the CFL condition (54) holds. Then

sup
ĂMˆt0,...,tNT u

pf ε ´ gεq ď sup
rΓˆtt1,...,tNT uY ĂMˆt0u

|f ε ´ gε|.(63)

We now establish the existence and the regularity properties of a discrete solution.

Lemma A.3 (Existence and Lipschitz regularity properties in time and space for the scheme
(PFD

ε )). Assume that assumptions (H.1)-(H.5), (H.8)-(H.11) and (H.14)–(H.15) hold. Then

there exists a discrete solution f ε to (PFD
ε ) and for all px, yq P ĂM ˆ ĂM and t P tt1, . . . , tNT

u, the
following holds

|f εpx, tq ´ f εpx, t ´ ∆tq| ď L∆t,(64)

|f εpx, tq ´ f εpy, tq| ď K pdMpx, yq ` εq ,(65)

where L “ Lfε
0

`} rP }
L8p ĂMzrΓq and K “ 4a´1max

´
pa ` CMq} rP }

L8p ĂMzrΓq, c
´1
η CηpL ` } rP }

L8p ĂMzrΓqq
¯
.

Proof. The proof is the same as the one in [16, Lemma B.3] and we skip it. �

Appendix B. Covering number of M

We will give a lower bound of the covering number of the manifold M that will be needed in
the proof of Lemma 5.2. We first recall that a δ-covering number NpM, δq of a manifold M is the
smallest number of (geodesic) balls of radius δ needed to cover M. The condition of the radius
is linked with the geometry of the manifold, including its curvature. One of the ways to describe
the curvature of Riemannian manifolds is the sectional curvature Kpσpq, which depends on a two-
dimensional linear subspace σp of the tangent space at a point p on the manifold. More precisely,
given two linearly independent tangent vectors at the same point, u and v, we can define

Kpu, vq “ xRpu, vqv, uy
xu, uyxv, vy ´ xu, vy2 .

Here R is the Riemannian curvature tensor, defined by Rpu, vqw “ ∇u∇vw ´ ∇v∇uw ´ ∇ru,vsw.
For example, the sectional curvature of a n´sphere of radius r is K “ 1{r2. As for the injectivity
radius at a point x P M, it is the supremum of all positive real numbers for which the exponential
map is a diffeomorphism when restricted to the open ball of radius r centered at x in the tangent
space TxM. Moreover, the injectivity radius of M is the infimum of the injectivity radii at all
points in M. In [25], the authors have shown that if δ satisfies assumption (H.17), then there
exists a strictly positive constant C such that

NpM, δq ď CvolpMqδ´m˚
.
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