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LIMITS OF NON-LOCAL APPROXIMATIONS TO THE EIKONAL EQUATION
ON MANIFOLDS

JALAL FADILI, NICOLAS FORCADEL, AND RITA ZANTOUT

ABSTRACT. In this paper, we consider a non-local approximation of the time-dependent Eikonal
equation defined on a Riemannian manifold. We show that the local and the non-local problems are
well-posed in the sense of viscosity solutions and we prove regularity properties of these solutions in
time and space. If the kernel is properly scaled, we then derive error bounds between the solution
to the non-local problem and the one to the local problem, both in continuous-time and Forward
Fuler discretization. Finally, we apply these results to a sequence of random weighted graphs
with n vertices. In particular, we establish that the solution to the problem on graphs converges
almost surely uniformly to the viscosity solution of the local problem as the kernel scale parameter
decreases at an appropriate rate when the number of vertices grows and the time step vanishes.
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1. INTRODUCTION

Nonlinear partial differential equations (PDEs) on graphs have found applications in a variety
of areas such as, e.g., analysis, physics, economy, probability theory, biology and data science. In
particular, a family of Hamilton-Jacobi equations on graphs called the Eikonal equation has been
considered on weighted graphs for data processing in [12, 35], for semi-supervised learning on graphs
[7, 32], and for data depth [7, 29]. They have been also used on topological networks in [8, 19].
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In [34], Hamilton-Jacobi equations on graphs were also studied to derive discrete versions of some
functional inequalities (log-Sobolev inequality and Talagrand’s transport inequality).

In this paper, we are particularly interested in the case of geometric graphs whose vertices are
points living on a compact Riemannian submanifold, which is relevant for many applications such
as data depth [28], semi-supervised learning [4] and image and mesh processing [27, 30].

In order to transpose PDEs on graph, discrete calculus have been used in recent years using
partial difference equations (PdEs) on graphs. PdEs are methods used to reformulate continuous
problems by replacing differential operators by difference operators on graphs [14, 15, 18].

The main goal of this paper is to rigorously study continuum limits, i.e. as the number of data
points tends to infinity, of the Eikonal equation defined on a weighted geometric graph embedded
in a compact Riemannian submanifold. The motivation behind considering Eikonal equations in
such a context is the ability to extend it to any discrete data that can be represented by weighted
geometric graphs. In fact, many applications in numerical data analysis and processing or machine
learning include data that can be defined on manifolds, or irregularly shaped domains, or network-
like structures, or defined as high dimensional point clouds such as collections of features vectors.
In a discrete setting, these data can be represented as weighted geometric graphs, where the vertices
are drawn from the underlying domain (a manifold) and are connected by edges if sufficiently close
in a certain ground metric. The edges are given weights (e.g., based on the distance between data
points).

1.1. Problem statement. In this paper, we will work with a Riemannian manifold (M, g) of
dimension m*, where M is a compact manifold and ¢ is a Riemannian metric (see Section 2 for
precise definitions and properties). Let G = (V,w) be a finite weighted (geometric) graph on M,
where V' < M is the set of vertices, and w : V x V — R is the weight function. A natural
Fikonal-type equation on graphs takes the form

O {maxvev Vewlu0)(f(v) = f(w)- = P(u), uweV\W,
f (u) =0, u € Vo,

where (+)_ def —min(-,0), Vp < V and Pis a given potential. This equation is an adaptation
on weighted graphs of the Eikonal equation using the framework of PdEs and provides a tool for
multiple front propagation problems on weighted graphs. This discrete form allows to handle any
data that can be represented on graphs, e.g., in machine learning, data analysis and processing on
graphs, on unstructured meshes or point clouds [7, 8, 12, 27, 32, 35].

Our goal in the paper is to study the behavior of the solution to problem (1) as the number of
vertices goes to infinity. In fact, we will consider an even more general class of equations. More
precisely, inspired by (1), we consider the non-local Eikonal equation in a time-dependent form

S0 + Vo), = Pla), () € (PF)<10, T,

(Pe) - N
fe(@,t) = f5(2), (z,t) € (I'x]0,T[) u M x {0},

where M is a subset of points of M, ' = M is the set of boundary points, Pisthe potential function,

and f§ is the boundary function. V, _is a non-local operator coined the weighted directional internal

gradient operator, introduced in [12] and studied theoretically in [16] in the Euclidean case. This

operator is defined through

Vo (1) = max J.(z,y) (5 (y, t) — f*(,1)),
yeM
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where, given a length scale € > 0, the e-scaled kernel function J; : M x M — R, is defined by

Jeto) = gonellea)) with ) = 2 (£),

U
and 7 : [0,400) — [0, +0) is a radial kernel function, and
(2) C, = sup tn(t) > 0.
t€R+

Since, from a practical point of view, computing intrinsic Riemannian distance is quite impossible
in many cases due to the unknown geometry and curvature, we will work with d which is an
approximation of the intrinsic distance function (see Assumption (H.8) below). Observe that we
can also write

3) W@F@ﬂu=m%0fm@@wﬂf@ﬂ—F@ﬁ)
ye

The problem (P.) represents an Eikonal equation on weighted graphs with n vertices when we
properly instantiate the sets M and f‘, see Section 5. Therefore, several natural questions arise
from a numerical analysis perspective: (i) given n-dependent scaling &, is there a continuum limit
(and in which sense) of the solution to (P:) on graphs (and its time-discretized version as well) as
n — 4+ (and time step goes 0)7 (ii) at which rate this convergence happens? (iii) what are the
main quantities that come into play in the error bounds? Our main contributions of this work is
to settle these questions.

Towards this, we study the time-dependent local Eikonal equation on the Riemannian manifold

M
- 2 fo.t) + lerad f (el = Pl@), - (a,t) € MITXIO.T].
f(z,t) = fo(x), (z,t) € (Ux]0,T[) U M x {0},

where I' € M is the set of boundary points, P is the potential function, and fy is the boundary
function. gradf(z,t) € T, M is the Riemannian gradient in space of f at a point x, where T, M
is the tangent space of M at x and | - |, is the norm induced by the Riemannian metric g at «
(see Section 2 for definitions).

In the rest of the paper, we will work under the standing assumptions:

(H.1) M is a differentiable manifold of class C® which is compact, and geodesically strongly
convex with C'! boundary oM.

(H.2) M is a finite subset of M.

(H.3) T © M and I' © M are closed sets with M\I" open and M\I' « M\T".

(H.4) P € Lip(M\T') and P e Llp(M\F) are non-negative potential functions.

(H.5) fo € Lip(M) and f§ € Lip(M).

(H.6) There exists ag, dy > 0 such that d(-,I") is C on the neighbourhood NPT where NV[° e
{3: eM, d(z,T) < ao}, and |grad d(z,T)|, = dp for all z € NFOT.

(H.7) There exists 6 > 0 such that for all z € M, Cut(z) n N? = &, where N? = {y €
M, dp(z,y) < 0} and Cut(x) is the cut locus of = defined in Section 2.

(H.8) There exists a constant Cp¢ and € > 0 such that max(, ,)eprx d(x,y) — dam(z,y)| <
CM€1+§.

Assumption (H.3) implies that oM < T'. In assumption (H.2), the fact that M is finite is quite

natural since the main goal of this paper is to study Kikonal equation on graphs. However, this

assumption is only required to prove the existence of a solution of the non-local problem (P.)
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(see Proposition 3.13) and is not used to show any other result. In the rest of the paper, this
assumption can be replaced by the fact that M is a compact subset of M. Assumption (H.6) is

concerned with the regularity of the distance (7(, I'). It is used to construct super-solutions that
are compatible with the boundary conditions. Furthermore, assumption (H.7) guarantees local
differentiability of the squared Riemannian distance. It means that for all y € N2, for § sufficiently

small, y ¢ Cut(z), and thus d},(z,-) is differentiable at y. Assumption (H.8) explains how d

~

approximates the Riemannian distance dpq. For example, d(z,y) could be computed using the
Euclidean distance in the &-offset ngl = {z e R™ : d(z, M) < &}, where & = 272 In this case,
Ca depends on the dimension m*. We refer to the work of Mémoli and Sapiro in [27, Theorem
5] in which they studied the approximation of the Riemannian distance and constructed extrinsic
approximation satisfying (H.8).

In the context of our study, it is important to illustrate concrete examples of manifolds that
satisfy the hypothesis listed above, showing how our framework can be applied to various types of
manifolds. Consider first the Euclidean sphere S", where n > 2. This manifold is compact and
geodesically strictly convex. Being a smooth manifold of class C®, it is also certainly of class C3.
Furthermore, our assumptions are met by the compact hyperbolic space H". For instance, these
manifolds can be constructed in various dimensions, including 3 dimensions exemplified by the
Weeks and Thurston manifolds. Moreover, we can consider the three-dimensional torus T? which
is a compact manifold and of class C®. The set I can be chosen as an arbitrary closed set of each
manifold. M can be a finite set of points, as it is always possible to select a finite subset of a
compact manifold. Similarly, I' can be chosen as a finite subset of M , and the properties of the
sets I and I are satisfied.

The length scale parameter € allows us to consider the data density. In fact, scaling n by € aims
to give significant weight to pairs of points that are far apart up to distance . In order to capture
proper interactions at scale e, n has to decay to zero at an appropriate rate. Our assumptions on
n are as follows:

(H.9) 7 is a non-negative function.
(H.10) 3 r, > 0 such that supp(n) < [0, ry].
(H.11) 3 a €]0,7,[ such that n is decreasing on [0,a] and satisfies n(a) > 0. We denote by
ey = 1(a).
(H.12) nis L,-lipschitz continuous on its support.

These assumptions on the kernel are standard, see for example [6, 16].

1.2. Contributions. First, we show that the local Eikonal equation (P) and the non-local one
(P:) are well-posed. In other terms, we prove that the solution to (P) and to (P-) exist and are
unique in the sense of viscosity solutions using Perron’s method and the comparison principle (see
Proposition 3.5 and Proposition 3.13). Then we show regularity properties of these solutions in
time and space (see Theorem 3.8 and Theorem 3.14). We then derive error bounds between the
solution to the local problem (P) and the one to the non-local problem (P;) using the regularity
properties (see Theorem 4.2). We then use the forward Euler scheme to discretize (P;) in time and
we provide a consistency result that provides an error bound between the solution of the discretized
problem (PXP) and (P) (see Theorem 4.3). Finally, we apply these results to a sequence of random
geometric graphs with n vertices (see Theorem 5.3). In particular, we establish that the solution
to the time-discretized problem (PFP) converges almost surely uniformly to the viscosity solution
to the local problem (P) as the kernel scale parameter decreases at an appropriate rate as n — +0o0
and the time step At — 0, hence answering all our questions asked above.
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1.3. Related work. This work is in the continuity of our previous one [16] where we studied limits
and consistency of non-local and graph approximations of the time-dependent Eikonal equation
defined on Euclidean spaces. We here extend this work to the case of smooth Riemannian manifolds,
which are in fact much more in line with realistic applications. This extension is far from trivial as
it raises several difficulties and necessitates several new and careful estimates.

Though several works have considered Hamilton-Jacobi type equations on graphs whose vertices
are defined on a manifold [7, 11, 12, 14, 27, 35], only a few of them have studied their continuum
limits [7, 27]. Motivated by supervised learning and data depth applications, the authors of [7]
studied the p-Eikonal equation on a random geometric graph where the vertices of the graph are
i.i.d random variables on an open, bounded and connected subset of R” with a C'! boundary and
the kernel is smooth, non-increasing and satisfies several conditions. They prove that the continuum
limit of the non-local p-Eikonal equation is a state-constrained Fikonal equation that recovers a
geodesic density weighted distance. A theoretical and computational framework was proposed for
computing intrinsic distance functions and geodesics on hypersurfaces [26] and submanifolds [27]
given by point clouds. For this, the authors proposed to replace the intrinsic Eikonal equation
on the submanifold by the corresponding extrinsic Euclidean one on an offset band and proved
that this approximation is consistent. Our work goes much beyond and tackles a more general
Eikonal equation defined on arbitrary geometric weighted graphs whose vertices live on a compact
Riemannian submanifold. We also offer a computational framework by Forward Euler discretization
in time of (P.). Our framework also allows to cover a much wider spectrum of applications which
include the previous ones as particular cases.

1.4. Outline. The paper is structured as follows. Section 2 provides prerequisites on Riemannian
manifolds that are necessary to our exposition. Section 3 is dedicated to establishing well-posedness
in the viscosity sense of problems (P) and (P.). Section 4 contains the key results of this paper.
Section 4.1 provides an error bound between the solutions to (P) and (P-) in continuous time.
Section 4.2 extends this to (P) and (PFP), where (PIP) is a forward/explicit Euler discretization
in time of (P:). Our results are finally specialized to the case of geometric weighted graphs on
submanifolds in Section 5.

2. NOTATIONS AND PREREQUISITES ON RIEMANNIAN MANIFOLDS

2.1. Preliminaries on Riemannian manifolds. The definitions and results we are about to
recall are well-known in Riemannian and differential geometry and we refer for example to [22, 23,
24, 31] for a detailed account.

Definition 2.1 (C3-smooth manifold). An m*-dimensional manifold M is of class C® at a point
x € M if there exists a chart (U,¢) around x such that U is an open set in M containing x and
¢ : U — R™ is a C3-diffeomorphism. We say that M is of class C® if it is of class C* at each
point x € M.

Definition 2.2 (Riemannian metric and norm). A Riemannian metric g on M is a family of inner
products on tangent spaces of M. In other words, for each x € M, the mapping g, : Ty MxT, M —>
R, where T, M 1is the tangent space of M at the point x, is a bilinear symmetric positive definite
form denoted by g, (u,v) = (u, v), for any vectors u,v € Ty M. This Riemannian inner product

induces a norm |||z on TyM defined by ||v] = /{v, V), for ve TyM.

A (smooth) manifold whose tangent spaces are endowed with a smoothly varying inner product
is called a Riemannian manifold. The smoothly varying inner product is called the Riemannian
metric. Strictly speaking, a Riemannian manifold is thus a couple (M, g), where M is a manifold
and ¢ is a Riemannian metric on M. Nevertheless, when the Riemannian metric is unimportant,
we simply talk about the Riemannian manifold M.
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In order to define viscosity solutions, we will need to give the definition of a differentiable function
on a manifold as well as its differential and gradient.

Definition 2.3 (Differentiable functions on M). Suppose that M satisfies assumption (H.1). A
real-valued function f : M — R is called differentiable (resp. C') at a point x € M if there exists
a chart (U, @) around = such that f o @' : o(U) € R™ — R is differentiable (resp. C) at (),
where U is an open set in M containing x and ¢ : U — R™" s q homeomorphism. The function
f is differentiable (resp. C') in M if it is differentiable (resp. C') at every point in M.

We would like to note here that the definition of differentiability does not depend on the choice
of the chart at x. Indeed, given any other chart (V,¢) around x where V is an open set in M
containing x and ¢ : V — R™" is a homeomorphism, we have

foot=(fop No(pod™):p(UnV)—R

1

is differentiable at ¢(z) since f o o~ ! is differentiable at ¢(z) and the transition map ¢ o ¢! is

differentiable at ¢(z).

Definition 2.4 (Differential and gradient of a differentiable function). Suppose that M satisfies
assumption (H.1). Let f be a scalar-valued differentiable function at © € M. The differential of f
at x is the linear map

Df(x) : TyM —R
d
v Df(@)lv] = - f(v(s))]
s s=0
where v : | — 1,1 — M is a differentiable curve in M with v(0) = = and v'(0) = v. The gradient
of f at z, denoted by gradf(z), is the unique element of T, M that satisfies
<gradf(x), U>:c = Df(l')[?}], Vv e T, M.

When f depends on several parameters and the variable with respect to which the gradient is
computed is not clear from the context, we specify it as a subscript of grad.

Remark 2.5. Observe that Df(x) is in the cotangent space T;M which is the dual space of the
tangent space TyM. Moreover, for a given tangent vector v, the directional derivative D f(x)[v] is
independent of the choice of the curve . In fact, if v1 and o are two curves such that v1(0) =
v2(0) = x, and in any coordinate chart ¢, %qﬁ 071 t=0 = %gboygh:o, then by the chain rule, f has
the same directional derivative at x along v1 and .

The gradient of a function f has the following remarkable steepest-ascent property
lgradf(z)], = max {Df(x)[v] : ve T, M,|v|, <1}.
This can also be equivalently written as

lgrad f(z)]s = max{Df(z)[v] : v e ToM, v, =1} = sup{Df(x)[v] : ve oM, [v]. <1}.

2.2. Properties of the Riemannian distance. The metric of the Riemannian manifold (M, g)
allows to define the length of a curve as follows.

Definition 2.6 (Length of a curve). The length of a piecewise smooth curve segment v : [a,b] — M
on a Riemannian manifold (M, g) is defined by

b
Liy) = f () 5,

where y(s) is the velocity vector of the curve v at s.
6



Remark 2.7. This length is independent of the parametrization. In other words, if 7 is any
reparametrization of 7y, i.e. 4 = yop, where ¢ : [¢,d] — [a,b] is a diffeomorphism, then L(5) = L(v)
(see [24, Proposition 13.25]).

We are now ready to introduce the notion of Riemannian distance between any pair of points in

M.

Definition 2.8 (Riemannian distance). The Riemannian distance between two points x and y in
M, denoted by da(x,y), is defined by

dm(z,y) = inf{L(7) : v is a piecewise smooth curve segment on M joining x and y}.
We define the closed Riemannian ball of center x and radius r > 0 as
Bum(w,r) ={ye M:dm(z,y) <7}

Since any pair of points in M can be joined by a piecewise smooth curve segment ([24, Proposition
11.33]), the above is well-defined. The Riemannian distance function turns M into a metric space
whose topology is the same as the given manifold topology; see [24, Theorem 13.29].

Geodesics generalize the notion of straight lines on curved spaces. A geodesic v on a manifold
M endowed with an affine connection is a curve with zero acceleration (i.e., constant speed).

Definition 2.9 (Exponential map). The exponential map is the mapping
Exp, : TxM — M
v (1),

where 7y is the unique geodesic such that v(0) = x and ¥(0) = v. Existence and uniqueness of the
geodesic is ensured whenever v € B(04,¢) < T, M with € small enough so that for every t € [0, 1],

Exp, (tv) = (1)

The regularity of the distance function on a manifold is a classical and well-understood subject.
For instance, the behavior of the distance function is closely related to the structure of the notion
of the cut locus of a point.

Definition 2.10 (Cut locus of a point). A pointy of M is in the cut locus of x, denoted by Cut(x),
if and only if there is a minimal geodesic joining x to y whose every extension beyond y is no longer
meinimal.

An equivalent characterization of the cut locus can be found in [37, Theorem 1].

Example 2.11. On the Euclidean sphere, the cut locus of a point x is its antipodal point. On the
surface of an infinitely long cylinder, the cut locus of a point consists of the line opposite to it.

The following proposition, proved in [1] and used in [2], provides us with some sufficient conditions
for the distance function to be locally of class C'®.

Proposition 2.12 (Local smoothness of the distance function [1, Proposition 3.9]). Let M be a
compact Riemannian manifold. Then there exists a constant r > 0 such that for every x € M, the
exponential map Exp, is defined on B(0,,r) < T, M and provides a C* diffeomorphism

def
Exp, : B(0y.7) — Ba(e,1) % Bxp, (B(0,,7)).
Moreover, the distance function is given by

dp(z,y) = [Expz  (y)|o  for ally € Bu(z,r)

and for every x € M, the distance map y € M — dpy(x,y) is of class C* on Ba(x,r)\{z}.
7



The importance of the cut locus is that the distance function on M from a point x is differentiable
except on the cut locus of z and z itself. Moreover, we have the following useful result about its
gradient given in [20].

Lemma 2.13 (Gradient of the distance function). Let x € M. For any y € M\(Cut(z) u {z}),
if v is the unique minimal geodesic from x to y, then the gradient of daq(x,.) (with respect to the
second arqument) at y is given by

grad, dm(z, y) = Y(dm(z, y)).
The squared distance function from a point y € M on a Riemannian manifold is smooth away

from the cut locus of y, for a fixed point = € M (see [37]). As a consequence of the Gauss lemma (see
[13, Lemma 3.5]), a closed form of the gradient of the squared distance function can be obtained.

Lemma 2.14 (Gradient of the squared distance [9, Lemma 4.43|). Let x € M. For any y €
M\Cut{z}, the gradient of dp(x,.)? (with respect to the second argument) at y is given by'

gradydi/l (x,y) = —2Exp;1(:p) e TyM.

Remark 2.15. Assumption (H.7) guarantees that df\,l (z,-) is continuously differentiable on N
with a gradient given by Lemma 2.14.

2.3. Other notations. We denote by |.| the Euclidean norm in R™, where the dimension m is to
be understood from the context, Lip(A) the space of Lipschitz continuous mappings on A and Ly,
the Lipschitz constant of h € Lip(A). Let X and Y be two non-empty subsets of M. We define
their Hausdorff distance as

diy'(X,Y) = max <sup dp(x,Y), sup dg (y,X)> :
rzeX yeY

If both X and Y are bounded, then djy'(X,Y) is finite. Moreover, d*(X,Y) = 0 if and only if X
and Y have the same closure.

The supremum norm on a domain A < M is denoted by H . H Lo (A)"
def def

cylinders by Mpr = M x [0,T] and oMrp = (I'x]0,T[) u M x {0}.

We denote the space-time

3. WELL-POSEDNESS AND REGULARITY RESULTS

In this section, we study the well-posedness in the viscosity sense as well as regularity properties
of the solutions to the local Eikonal equation (P) (see Section 3.1) and to the non-local Eikonal
equation (P:) (see Section 3.2). Existence can be obtained by the Perron’s method recalled in Theo-
rem 3.7 while uniqueness and continuity are based on a comparison principle, proved in Proposition
3.3 for the local problem and in Proposition 3.10 for the non-local one. Our work is based on the
theory of viscosity solutions which was introduced by Crandall and Lions [10] for solving first-order
Hamilton-Jacobi equations. We refer to [17] for a general introduction to viscosity solutions on
Riemannian manifolds.

3.1. Problem (P). In order to define viscosity solution for problem (P), we first recall the defi-
nition of upper and lower semi-continuous envelope for a locally bounded function f : My — R,
respectively given by

f*(z,t) def limsup f(y,s) and fi(x,t) 4 Jiminf f(y,s).
(y,8)—(2,t) (y,8)—(2,t)

Llof course, by symmetry, the role of  and y can be interchanged. This is the reason we did not indicate the
variable as a subscript of grad.
8



Definition 3.1 (Viscosity solution for (P)). An upper semi-continuous (usc) function f : M —
R is a wiscosity sub-solution of (P) in (M\I')x]0,T[ if for every point (xo,tg) € (M\I')x]0,T[
and every C1 function ¢ : A/(xo 1) —— R where /\/(x o) = = {(y,s) € (M\I')x]0,T[, [to—s| <
h and da(zo,y) < h} such that f — ¢ has a mazimum point at (zg,to), we have

0
gsﬁ(xo,to) + [lgradp (o, to) [z, < P(20).

The function f is a viscosity sub-solution of (P) in My if it satisfies moreover f(xz,t) < fo(x) for
all (z,t) € OMr.

A lower semi-continuous (lsc) function f : M — R is a wviscosity super-solution of (P) in
(M\I)x]0, T[ if for every point (zg,to) € (M\I)x]0,T[ and every C' function ¢ : N:co ) — R
such that f — ¢ has a minimum point at (xg,to), we have

0
g@(fco,to) + |grade(zo, to)|zg = P(zo).

The function f is a viscosity super-solution of (P) in My if it satisfies moreover f(x,t) = fo(x)
for all (x,t) € OMr.

Finally, a locally bounded function f : Mp — R is a viscosity solution of (P) in My (resp.
in (M\I)x]0,T[) if f* is a viscosity sub-solution in My (resp. in (M\I')x]0,T[) and f is a
viscosity super-solution of (P) in My (resp. in (M\I')x]0,T]).

Remark 3.2. In the definition 3.1, the test function ¢ can be extended to a regular function
defined on Mt such that

Hat) = {m,t) if (@) €N,
o(x,t)  otherwise,

where ¢ is C! on /\/{; - Moreover,

lerady(zo, o) |2y = llgrade (o, to)]zo-

We begin with a comparison principle for problem (P).

Proposition 3.3 (Comparison principle for (P)). Suppose that assumptions (H.1)-(H.5) and
(H.7) hold. Let f, an usc function, be a sub-solution of (P) and g, a lsc function, be a super-
solution of (P) in Mr. Then

f<g onMr.

The comparison principle can be proved using a variational principle as in [2, Theorem 10] which
is valid for quite general Hamilton-Jacobi equations. Nevertheless, their proof is non-constructive
and imposes other assumptions on the manifold and the Hamiltonian. For instance, the manifold
is supposed to be complete with positive convexity and injectivity radii and the Hamiltonian has
to be an intrinsically uniformly continuous function. However, they also state in [2, Remark 12]
that their proof holds in other situations. Our equation is somewhat less general which allows to
give an alternative and more transparent constructive proof.

Proof. We argue by contradiction and we suppose that there exists (x,t) € My such that

fz,t) —g(x,t) > 0.

We consider the function ¥, : (z,t) € My — f(z,t) — g(z,t) — 7 for 7 sufficiently small and
we set
M, = sup U (x,t).
(z,t)eMrp
9



This function is upper semi-continuous on My which is compact by (H.1), then the supremum is
actually a maximum and is attained at a point denoted by (x,,t;) € Mp. Moreover, ¥, (z,,t;) > 0
for 7 > 0 sufficiently small, from the positivity assumption. In order to be able to use the definition
of viscosity solutions, we duplicate the variable by considering, for v > 0, the test-function

d?v((x7y) - ‘t_SF o T
2y 2y T—t

\IleY : (x7t7y7 S) € M% - f(‘r7t) _g(yas) -

and we set

def
MT,’)/ = sSup \IIT,’Y (:Ea Yy, S)'
(Z‘,uy,S)EM%

Again by upper semi-continuity and compactness, the supremum M, , is actually a maximum
attained at some point (z~,%,,yy,sy) € M% We also have for 7 small enough

MT,'y = \IIT,’y(x'yyt'yay'ya S'y) = \1’7—7-y<$7—,t7—,£7,t7—) = \I/T(‘TT7tT) = M‘r > 07
which implies that

ity =5l | Byl )
L+ S < f(an8) = 0(00) < e aan) + gl

We then get
(4) |t“/_8“/|7 dM(x’Yvy’y) QCW,

where c is a constant depending only on | f| z(1,) and g Lo(a1,)- Using classical arguments (see,
e.g. [3, Lemma 5.2]), we deduce that there exists (Z,t) € M x [0,T[ such that

Ty, Yy — T, as v — 0,
(5) ty, Sy — 1, as vy — 0,
U, (Z,t) = M.

If t = 0, then

0 < My = f(7,0) = 9(7,0) = 7 < fol®) ~ fol@) — 75 <0

leading to a contradiction. Then ¢ > 0, which implies, by (5) that ¢, s, > 0, for v small enough.
Moreover, if T € I', then

0<M; < f(jﬂ?) - g(jvt_) = fO(j) - fO(j) =0,
which is again absurd. Thus x.,y, € M\I" for v small enough.
The mapping (z,t) € Mp — f(z,t) — p1(x,t), where

3 (x, t—s,]? T
)+ A0 —i—‘ 7l " 7
2 2y Tt

o1(x,t) = g(Yy, 8y

is smooth on a small neighborhood N& ) (since di/l(-, y) is of class C!, for v small enough, in

view of (4) and (H.7), see Remark 2.15). Since f is a viscosity sub-solution of (P) and f — ¢
reaches a maximum at (z.,t,), we deduce that

ty—sy T <d3\4 (2, yy)>
——— 4+ — < —|grad, | = + P(z).
v T2 T 2,7 . Y
Using Lemma 2.14 and Proposition 2.12, we deduce that
ty — d
(6) bty oo i) L p

v o T Y
10



Similarly, the mapping (y, s) € Mp — g(y,s) — p2(y, s), where

% (z,y) |ty — s|? T
— t MY _ _
QOQ(yaS) f(x’w ’Y) 2/7 27 T—t»f
is smooth on N, (Z/ )" Since g — o attains a local minimum at (y,, s,) and since g is a viscosity
super-solution of (P), we obtain that
ly—s d./\/l (33‘ Y )
(7) > - =5+ P(y).
B! v !
Now subtracting (6) and (7), and then using (4), we obtain

-
T2 < P(xv) — P(y,) < Lde(xV,yV) < Lpey/y.
Passing to the limit as v — 0 leads to a contradiction. O

We now turn to the existence of the solution. In order to do that, we will assume a compatibility
property between the equation and the boundary conditions in order to construct solutions to (P):

(H.13) There exists 1 € Lip(M), with ip(x) = fo(x) for all x € T', such that v, is a sub-solution
of (P) in Mrp.

Assumption (H.13) is satisfied, for instance, when fy = 0 and P > 0 in (P). This setting cor-
responds to a time-dependent Eikonal equation whose solution can be interpreted as the minimal
amount of time or distance required to travel from a point x € M to the front I', where the travel
speed is the inverse of P. For instance, it enables a fast calculation of geodesic distances using the
fast marching method [21, 33].

Remark 3.4. Assumption (H.18) entails in particular that
lgrad ¥y (z)lle < [P]Lenr),
and thus the Lipschitz constant Ly, satisfies
Ly, < |Plloar)-
We then have the following result.

Proposition 3.5 (Existence and uniqueness for (P)). Suppose that assumptions (H.1)-(H.6) and
(H.13) hold. Then, problem (P) admits a unique viscosity solution f. Moreover, there evists a
function f € Lip(Mr), with a Lipschitz constant depending on ag, do, Ly, and || P| oy, such
that

(8) by < f<f onMrp.

In order to give the proof of this proposition, we need to define the notion of barrier solutions
and then recall the Perron’s method.

Definition 3.6 (Barrier sub- and super-solution). An usc function f : My — R is a barrier
sub-solution of (P) if it is a viscosity sub-solution in (M\I')x]0,T[ and if it satisfies moreover

lim ti(y,s) = fo(x) V(x,t) el x[0,T].

Y—T,5—>

A lsc function f : M — R is a barrier super-solution of (P) if it is a viscosity super-solution in
(M\I')x]0,T'[ and if it satisfies moreover

yﬁlingﬁt fly,s) = folx) V(x,t)eT x [0,T].
11



Theorem 3.7 (Perron’s method). Assume that there exists a barrier sub-solution f and a barrier
super-solution f of (P). Then there exists a (possibly discontinuous) viscosity solution f of (P)
satisfying moreover

f<f<[ inMr.

The proof of the Perron’s method for Hamilton-Jacobi equations defined on manifolds can be
found in [17, Theorem 8.2].

Proof of Proposition 3.5. By assumption (H.13), 1 is a barrier sub-solution of (P). We then have
to construct a barrier super-solution f. Existence will then be a direct consequence of the Perron’s
method as recalled in Theorem 3.7 while uniqueness and continuity will be direct consequences of
the comparison principle shown in Proposition 3.3.
Let N
fl(:Evt) :fO(x)+K1t7 and f2(x7t) = f0($)+K2d(x7F)7 ($7t) EMT,

where K1 = ||P||oanr), and Kg > 0 is a large enough constant to be determined later. We set

(9) JF($7 t) = mln(fl (337 t)7 f2($7 t)) = Hlln(fo(ﬂj‘) + Kit, fo(l‘) + K2J($v F))
We claim that f is a barrier super-solution for K5 well-chosen.
First, observe that

L]? < max (Lflefz) < Ly, + max (HPHLOO(M\F),KQ) ,

since fjy € Lip(M) by (H.5) and LJ(. ry=lasI'#J. In particular, f is continuous.

Moreover, we have for x € I, B B
f2(x7t) = f()(x) < f1<x7t)’
Hence
(10) fx,t) = fo(z), V(x,t)el x[0,T],

which shows, via continuity that the limit property required in Definition 3.6 holds. It remains to
prove that f is a super-solution on (M\I')x]0, T for K large enough.

Observe first that by taking Ko > KT /ag, we have for all 2 € M\N° (recall that ag and Nj°
are defined in assumption (H.6)),

fo(z,t) = folz) + Kaag = fo(x) + KiT = fi(x,1),

and thus (9) becomes

— 3 r r . ao

(11) f(ﬂ?,t) _ IEllIl(fl(‘Tat)afé(‘T,t)) lf (a;,t) ENF ><a£()7T]7
fi(z, ) if (x,t) e M\NL® x [0,T7].

Following Definition 3.1, consider ¢ € (M\I'x]0,T[) such that f — ¢ reaches a local minimum at

some point (xg,tg) € (M\I')x]0, T[ and such that ¢ € C! on a small neighborhood of (zg,%p). This
is equivalent to

(12) f(y7 8) - (10(2% 8) = f(:EOv t()) - (10(3307 t0)7
for all (y,s) € (M\I')x]0, T'[ sufficiently close to (zg,ty). We now distinguish two cases.
Case 1 zp e M\N[. In this case, since (M\N?) < (M\I'), it follows from (11) and (12) that

fl(yv S) - Sp(yv S) = f(y7 8) - (10(3% 8) = ﬁ(:EOvtO) - (10(3307150)7
for all (y,s) € (M\I')x]0, T[ sufficiently close to (xq,tp). As ]0,T[ is open, we take y = xq
and s = tg + h €]0,T[ for h > 0 sufficiently small, which gives us

(13) @(z0,to + h) — @(x0,to) < fi(zo,to + h) — fi(zo,to) = Kih.
12



(16)

(17)

Dividing by h and passing to the limit as h — 07, we get

01& (xo,to) Kl.

Embarking from (13) where we replace h by —h yields
0
< to) = K1,
E t‘ﬁ(iﬂo, 0) 1

and thus

t K.
at (:EOv 0) 1
We then deduce that

0
5 #(@0, o) + llgrade(zo, to)| — P(z0) > K1 = Pwo) > K1 — |Plre(ar) =0,

which shows the desired inequality in this case.

Case 2z € N{°\I'. Let I def {z e {1,2}: f(zo,to) = fi(xo,to)}. Thus, for any ig € Iy, we have

(18)

(19)

from (12) that

fio(y,8) = @(y,8) = f(y,5) = (y,5) = f(wo,t0) — @(20,t0) = fio (20, to) — (0, to)
for all y € NJ°\T" close enough to xg. If 1 € Iy we argue as in Case 1 to get a contradiction.

It remains to consider the case where Iy = {2}. Embarking from (18) with iy = 2, arguing

as we have done for fi in Case 1 to show (16), and using that fs is actually t-independent,
we get in this case that

01& (x(), to) O

On the other hand, let v € T, M where |v|y, < 1 and let v be a differentiable curve in
M such that y(0) = zo and 4(0) = v. Since N°\I' is open by (H.3) and (H.6), we can
choose h small enough so that y(h) € NF°\I' and [¥(s)[s) < 1 for all s € [0,h]. This is
obtained by the continuity of ¢ — |¥(¢)|| and having that ||¥(0)|z, < 1. Thus, inequality
(18) with ig = 2, s = tg and y = 7y(h) becomes

(¢, t0) — Kad(-,T))(7(h) — (', t0) — Kad(-,T))(x0) - Joy(h)) = fo(wo)
h = h
< Lidm((0),7(h))

h h
1 "
<3 Ln [ Fi)hwds
0

< LfO’

Passing to the limit as h — 0" and taking the maximum over v, we get

lgradep(xo, to) — Kagrad d(zo, )|z, < Ly,.
Combining this inequality with (19) and (H.6), we get

D] »

—tsD(!L"o’to) + [grade(xo, to) |20 — P(z0)

Ks|grad c?(mo,F)HIO — |grade(zg, to) — Kagrad J(mo,F)HIO — P(x9)
Kady — Ly, — | P|Leanry =0,
for Ko = (L, + | Pl pe )/ do-

=
=
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In summary, taking Ko > max ((Lg, + | P =nry)/do, K1T /ag), inequalities (17) and (20) hold
in each respective case, and thus the desired super-solution inequality is satisfied in all cases. We
then conclude that f is a barrier super-solution. The existence of f and the bound (8) are then
direct consequences of Perron’s method.

O

We will now provide regularity results for the solution of (P). For the space regularity, we will
need to use the regularity of the Riemannian distance.

Theorem 3.8 (Regularity of the solution of (P)). Suppose that assumptions (H.1)-(H.7) and
(H.13) hold. Then the viscosity solution to the problem (P) satisfies the following regularity prop-
erties

(21) f(x, ) € Lip([o, T[) with Lf(x,') < Lfo + HPHLOO(M\F),Vx e M.
For all x, y such that da(x,y) < (with 0 defined in assumption (H.7)), we have
(22) [f(z,t) = [y, 0)| < Kdpm(w,y) with K = Ly, + 2| P[ 1Ay, VE € [0,T7,

Proof. If z € T', (21) obviously holds. We then consider the case (z,t) € (M\I') x]0, T'[, and we first
show that for any ¢ € [0, T,

(23) |f(l‘,t) - f($,0)| < Lt7

where L = |P|roanr) + Ly, We define for (z,t) € Mr,

fi(z,t) = fo(z) — Lt and fay(x,t) = fo(x) + Lt.
We claim that f; (resp. f2) is a sub-solution (resp. super-solution) of (P). We have f; < fo
on OMyp. Now define ¢ € (M\I')x]0,T[ such that f; — ¢ reaches a local maximum at some
(z0,t0) € (M\I')x]0, T[ and such that ¢ € C! on a small neighborhood of (z¢, to). This is equivalent
to
(24) p(xo,to) — @(x,t) < fi(wo, to) — fi(z, 1)
for all (z,t) € (M\I')x]0, T sufficiently close to (zg,tp). Since |0, 7| is open, we take x = xy and
t =to— h €0, T for h > 0 sufficiently small, and we get
(25) p(xo,t0) — ¢(z0,to — h) < fi(xo, to) — fi(zo,to —h) = —Lh

Dividing by h and passing to the limit, we get

0
(26) 590(:1707“)) < —L.

On the other hand, let v € T;;;, M with |v|z, < 1 and let y :] =1, 1[— M be a differentiable curve
in M such that v(0) = x¢ and "y(O) = v. Since M\I' is open, we can choose h small enough so that
y(=h) € M\T and [¥(s)|lys) < 1 for all s € [~h,0]. This is obtained thanks to the continuity of
t — |¥(t)|| and having that ||7( )z < 1. By (24), taking t = ¢y and = = y(—h), we have

©(7(0),t0) — @(v(—=h),to) _ fo(wo) — fo(y(—h))

<
h h
An(3(0),7(=h))
< LfO h
1 0
<ilo | 1G)hwds
—h
< Ly,



Passing to the limit as h — 0 and taking the maximum over v, we get

|grade(zo, to) |2y < Ly,-
We then deduce that
0
3 #(@0,t0) + [grady(z0, t0) |zg — P(z0) < =L + Ly, — P(o)
(27) < =L+ Lgy + [P zoavr)-
=0.

Therefore, this shows our claim on f;. Arguing in the same way, we can prove that f5 is a
super-solution of (P). Applying the comparison principle Proposition 3.3 twice yields that for any
(z, 1) € M > [0,T],

Jo(z) = Lt < f(=,t) < fo(x) + Lt,
which shows (23). For h > 0 sufficiently small, we then consider the function I(z,t) = f(x,t + h)
for all (x,t) € Mp. Then it is easy to verify that [ satisfies (). This implies that f(x,t) and
f(z,t + h) are solutions of the same equation (P), with initial conditions respectively fo(x) and
f(z,h). Applying again the comparison result (see Proposition 3.3) and using (23), we obtain for
any (z,t) € M x [0,T], that

|f(l‘,t + h) - f($7t)| < |f(l‘,h) - f($70)|
< Lh.

Passing to the limit as h — 0 shows the time regularity claim.

(28)

We now turn to the space regularity bound (22) and adapt the argument of [3, Theorem 8.2].
Let 0’ < 0 and x,y € M such that dpy(z,y) < §'. We introduce the test-function

v <x7tvy) e'A/(T x M '_)f<x7t)_f(y7t)_KdM<x7y)a

and we aim to show that this function is non-positive for every K > |P| xanry + L. We argue
by contradiction and assume that
sup U(z,t,y) > 0.
(z,t,y)eMrp x M
Since ¥ is continuous over Mp x M which is compact, the supremum is actually a maximum
attained at some point (Z,¢,7) € Mp x M with T # § (otherwise ¥(Z,¢,7) = 0). In order to use
viscosity solutions arguments, we introduce the function, for a > 0,
|t — s

\Ila:($7t7y78)EM%'_’f($7t)_f(y78)_KdM($7y)_ 20 .
Since f is continuous and M is compact, the supremum of ¥, is actually a maximum attained
at some point (Za, ta; Ya, Sa) € M2. In particular, we have

(29) Vo (Tastas Yo, Sa) = Vaol(Z,t,7,t) = U(z,1,7) > 0.

Observe also that for « sufficiently small, we cannot have z, = y, as otherwise ¥, (2Zq,tas Yo, Sa)
would be negative, hence contradicting (29).

If 2, € T, then f(x4,ta) = fo(za) = Yp(za). Moreover by Proposition 3.5, ¥p(va) < f(Ya, Sa)-
It then follows that

Vo Tarta, Yo, Sa) <Up(Ta) = f(Yas Sa) — Kdpm(a, Ya)
<Up(Ta) — Yb(Ya) — Kdpm(Tas Ya)
<(wa - K)d/\/l (5Eaaya)
<(|Pllzeermry — K)dm(zas yYa)
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where we used Remark 3.4. Since K > |P|ponnr) We get a contradiction with the positivity of
q’a('z'ou tOC? yaa Sa)'

Consider in the rest the case x, € M\I'. Classical arguments (see, e.g., [3, Lemma 5.2]) show
that ©, — = and y, — y. Since daq(z,y) < &', we can assume that dy(Za,ya) < 0, for a small
enough. Therefore, (H.7) implies that z, ¢ Cut(y,). Moreover, x, # Yo, and it follows that the
function (z,t) — f(Ya, Sa) + Kdpm(z,ya) + % is smooth at (z4,ts). Since f is a sub-solution
we have
ta — Sa

(30)

+ K < P(za),

where we used Lemma 2.13 to assert that |grad,dm (T, Ya) |y, = 1-

On the other hand, since (x4, ta, Yo, So) 18 @ maximum point of 1),, we have for any t € [0, 7]
2 2

t—s to, — S

f(@a,t) - lé= 5o 2@“' < f@asta) = lfe = sof 2@“' :

Choosing t such that t, — s, and t, — t are of the same sign, and using (21), we get

Lt —to| 2f(Tarta) — [(Ta,t)

>|ta — 5a® _ |t = sal?

=

2a 200

now using the polarization identit X2+ [[Y]? = 2X.Y = |X — Y||?), we obtain
g p y )
[t — to|?

2a
Dividing by |t — to| and taking ¢ — t,, we get

t, —
Lt —to| = — +|t—ta|¥.

[ta = sa| < L.
(0]

Injecting this estimate in (30), we arrive to

Since K > | P| oy + L, we get again a contradiction of the positivity of W (2a;ta,Ya, Sa) 0N
MA\I'. The above proof shows then that

f(:Evt) - f(yvt) _Kd./\/l(x7y) <0

for all (x,y,t) € M? x [0,T] and every K > 2| Pl ary + Lo, i€, f(:,t) is globally Lipschitz
continuous uniformly in ¢, hence providing the bound (22) for da(z,y) < ¢§'. Taking &' — ¢ and

K — 2|P| o) + Ly, we get the desired result.
U

3.2. Problem (P.). We begin by the definition of viscosity solution to problem (P;)

Definition 3.9 (Viscosity solution for (P:)). An usc function f¢ : ./\771 —> R is a viscosity
sub-solution to (P.) in (M\L')x]0,T[ if for every C' function ¢ :]0,T[—> R and every point
(xo,t0) € (M\I')x]0, T such that f¢(xo,.) — ¢ has a local mazimum point at ty €]0,T[, we have
0 B ~
gSD(to) + |V 2 (o, to)| , < P(x).
The function f€ is a viscosity sub-solution to (Pg) in Moy if it satisfies moreover fé(z,t) < f§5(2)

for all (z,t) € OMr.
16



A lsc function f¢: My —> R is a viscosity super-solution to (P.) in (M\I')x]0,T[ if for every
C! function ¢ )0, T[— R and every point (xq,tq) € (M\I)x]0,T[ such that f¢(zo,.) — ¢ has a
local minimum point at tg, we have

5P (to) + V.. £¥ (w0, to)| , = Plxo).
The function f€ is a viscosity super-solution to (P.) in ./\7T if it satisfies moreover f¢(x,t) = f§(z)
for all (x,t) € OMr.

Finally, a locally bounded function f€: Mp — R is a viscosity solution to (P;) in My (resp. in
(M\D)x]0,T[) if (f¢)* is a viscosity sub-solution and (f¢)s is a viscosity super-solution to (Pg) in

~

My (resp. in (M\I)x]0, T][).

Proposition 3.10 (Comparison principle for (P.)). Suppose that assumptions (H.1)-(H.3) and
(H.9) hold. Assume that f€ is a bounded viscosity sub-solution to (P:) and ¢° is a viscosity super-
solution to (Pz). Then

fF<g  in My
Proof. Since problem (P.) doesn’t see the space differential of the solution, the proof is the same

as the one of [16, Theorem 2.10] and we skip it.
U

In the same vein as for problem (P), the following assumption is intended to impose compatibil-
ity properties between (P.) and the boundary conditions on dMq:

(H.14) There exists ¢, € Lip(M), with ¢ (z) = f5(z) forall z € I, such that ¢ is a sub-solution
of (P:) in Mr.

Remark 3.11. Likewise, assumption (H.14) entails that the Lipschitz constant L D satisfies

Lib < HPHLOO(/{}{\f\)-

Remark 3.12. Referring to Remark 3.4, we can find a discussion concerning thﬁs assumption,
which is similar to the one made in the local case. Specifically, when f§ =0 and P >0, (H.14)
holds. This example, when applied to weighted graphs (see Section 5), corresponds to the computa-

tion of distances on data that can be represented as a weighted graph such that point clouds, discrete
images and meshes. For further details, please refer to [11, 36] and references therein.

We are now ready to provide an existence result. As for the local case, the proof is based on
Perron’s method and the construction of barriers.

Proposition 3.13 (Existence result for (P.)). Suppose that assumptions (H.1)-(H.5), (H.9)-
(H.11) and (H.14) hold. Then, problem (P:) admits a unique viscosity solution f¢ (which is in

fact continuous). Moreover, there exists a function f° € Lip(./\?l/) such that
(31) Dy < < FE in My

Proof. The proof is the same as the one of [16, Proposition 2.12] and we skip it.
O

Theorem 3.14 (Time and space regularity properties for (P.)). Suppose that assumptions (H.1)-
(H.5), (H.8)-(H.12) and (H.14) hold. Let f¢ be the bounded continuous viscosity solution to
(P-). Then
(32) fe(x,.) e Lip([0,T[) with Lz y <L, VreM,
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where N
L= Lfg + HPHLOO(/{Z\f‘)

Moreover, for all (x,y) € M? and t e [0,T[ such that c?(m,y) < ag, where a is defined in (H.11),
we have

(83) 15wt — £ (. t)] < max (@ + CaOIPl e gy € OnlE + 1P] ey )

Assume also that for (z,y) € MQ, there exists k(c) € N and a path (v1 = x,22, -+, Tpc) = y) with

~

d(zi,xi11) <ae,i=1,...,k(e) — 1. Then for all t € [0,T[, we have
(39 17wt — 0] < max (@ + Ca0lPl o gy 5 Coll+ 1Pl o ) E)

Proof. The proof of (32) is the same as the proof of the first part of [16, Theorem 2.15]. We begin
by the proof of the space regularity estimate (33). Let (x,t) € Mp. If x € oMy, then

() = £y, 1) < du(e) — Dy (y)
Ly dm(z,y)
Hﬁ)HLoo(ﬂ\f)(g(xay) + CM51+£)

< (a4 Cr)el Pl oo 1,y

/

IN

IN

and (33) holds. Assume now that (z,t) € (/ﬂ/\f‘) x 0, T is such that f€ is differentiable in time at
(x,t). For such points, we have from (P.) and (32) that

(35) [V 2@, 0], < L4 1P o oy
Let y € M be such that d(z,y) < ae. We then have, recalling (H.11) and (H.12), that

en(Cy) M5 t) = £, 1) <(C) M (M> (5 0) = F (1)

<[V, (1)
<L+ [P o o

Exchanging the roles of z and y, we get that for all (z,y) € M? and t € [0, T[ such that f¢(z,.) is
differentiable in time

5@, t) = S5, 0)] < max (@ + Cadl Pl ooy & CnlL + 1Pl o i) ) 2
If f4(x,.) is not differentiable at ¢, then since f¢(z,.) is differentiable almost everywhere, we can

deduce that there exists a sequence (t,)nen such that ¢, converges to t and f¢(z,.) is differentiable
at t,, for all n. By continuity of f¢(z,.) in time, we get the result for all (x,%) € M? and ¢ € [0,T].

The global estimate is now a direct consequence of (33). Indeed, we have
k(e)—1
o t) = foy, Dl < D) 1f 5 (@inn,t) = fo(i, )]
i=1
k(e)—1
<max (@ + Cu)IPl o ingys e ColL + 1Pl i) D
)

[y

< max <(a + ) & C(L+ | P e ))k £)e.

HPHLOO(M\f‘)7
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O

Lemma 3.15. Suppose that assumptions (H.1)-(H.14) hold. Let f¢ be the bounded continuous
viscosity solution to (P;). Assume also that

(36) max d(z, M) < ag/8.
reM
Then, there exists eg > 0 such that for all £ € (0,e0] and for all (x,y) € M2 and t € [0,T[, the
following holds
(37) /(@) = [ (y, )] < K(dpm(z,y) +¢),
where K = 4a~! max ((a + CM)H]SHLoo(M\f)vcﬁlcn(L + HJBHLOO(M\T“)))'

Proof. Let (x,y) € M?2 and denoted by vz, the geodesic in M joining = and y. We then set
k(e) = [MMTSWW, where -] denotes the ceiling. For j € {0,...k(¢)}, we then define Z; such that

Tj €y and dym(x,Tj) = jo,

where § = dpy(2,y)/k(e) < ag/4. In particular Ty = x and Ty = y. Since v,y < M, the condition
(36) implies that for any i € {1,...,k(¢) — 1}, there exists a; € M such that da(%;, z;) < ac/8. We
also set zg = Z9 = x and xy() = Tp() = y. We then have

dp (i, wip1) < dpg(xi, ;) + dm (T4, Tig1) + A (T, Tiv1) < ag/d + 0 < ag/2.
In view of (H.8), for & < ey, where g9 = (a/(2C))"*, we then have that
c?(xi,a;Hl) < dM(xi,a:Hl) + CM€1+§ < ae.

This allows to infer that for any (x,y) € ./\72, there exists a path (zo = z,21, -+ ,75) = y) such

that z; € M and J(IEi,IEiJrl) < ae for all i.
Injecting this in (34) and using the fact that

ae

+1,

we get the result.
O

Remark 3.16. A consequence of the proof of Lemma 3.15 is that, under assumption (36) and
(H.8), since a < ry, we have

(38) Vx e ./\7, dy e ./\7, y # x such that J(a:, y) € esupp(n),

This assumption is quite natural. It basically avoids that the non-local operator |V;E fe (m,t)|OO i

trivially zero for all x € M when ¢ is too small. In particular, as M is finite, this condition imposes
that M has to fill out M at least as fast as the rate at which € goes to 0.

4. CONSISTENCY AND ERROR BOUNDS

In this section, we present some error bounds between the solution to the local problem (P) and
the one to the non-local one (P.). We start with a first technical lemma which will be used in the
following proofs.
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Lemma 4.1 (Test function and space and time estimations). Suppose that assumptions (H.1)-
(H.14) hold. Let f and f¢ be the unique viscosity solutions to (P) and (P.) respectively and
consider for v > 0 and 8 > 0, the test-function

d?\/{(:nvy) o |t_3|2 o
2y 2y

defined on My x Mp. Then there exists a mazimum point (Z,t,y,5) € Mr x My of U, 5.
Moreover, there exists a constant K > 0 such that (T,t,7,3) satisfies

(39) \Il%ﬁ(xvt?y? S) = f8<x7t) - f<y7 S) - Bta

(40) dm(Z,y) < K.
and
(41) |t — 5] < K(1+ 5)y.

Proof. The test-function W, g is continuous (by the continuity of f and f¢) on ./\7T x M which is
compact by (H.1)-(H.2). Hence it reaches a maximum at a point (Z,¢,7, §) € Mp x Mp. We have
v, 5(z,t,9,5) = ¥, 3(z,t,7,5) since € M < M by (H.2). That entails, using (22) (see Theorem
3.8), that

A2, (Z,7 o o _

WD < ja5) - 1(5:5) < Kd(@.D),
therefore, we obtain that

(7, 7) < K.

Similarly, we have ¥, 3(Z,t,9,5) = ¥, 3(Z, 5,
that

y,5). This implies, using (32) (see Theorem 3.14),
‘£_§‘2 T = € (= E(= = ¥ _ =
T _/B‘t_s‘ < f (‘Tat_) _f (I‘,S) < K‘t—8|,
Y
thus, we get
[t — 3| < K(1+ 8)y.
O
4.1. Continuous time non-local to local error bound. In this section, we provide an error

estimate between viscosity solutions to problems (P.) and (P). This estimate will be instrumental
in deriving the remaining error bounds. For this, we need to strengthen (36) by assuming:

(H.15) There exists v > 0 such that maxze dM(a:,M) < ag'tv/8.

Theorem 4.2 (Error bound between the solutions to (P) and (P.)). Let T > 0 and ¢ €]0, 0] where
g0 = min (1,1/(2r,)2, (a/(2Cm))"¢). Suppose that assumptions (H.1)-(H.15) hold, and let f and
1€ be respectively the unique viscosity solutions to (P) and (P.). Then, there exists a constant
K >0, depending only on Cpm, | fol Loy, IPleenrys Lsos Lyss Lp, L, [0loe, Ly, Cy and cy,
such that

er - fHLOO(/(/lVX[O,T[) < K(T + 1) <Emin(u,§,1/2) + HP - ﬁH[,oo(ﬂ\f)) + Hfg - fOHLoo(MV) + de}}/l(r7f)
In particular, if diY' (I, T) = O(emn(&1/2))  then,
er _ fHLCO(MX[O,TD < K(T + 1) <Emin(l/,€,1/2) + HP — ﬁHLOO(M\f‘)) + HfoE — fo”L°®(/\7)'

The fastest convergence rate in e is then achieved when v = 1/2 and & = 1/2 provided that
A (M, M) = O(%2) and df (T, T) = O(/?).
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Proof. The proof is quite similar to the one of [16, Theorem 3.2]. The difference is that in Rie-
mannian space, one is no longer able to use properties that are well-known in Euclidean space e.g.
Cauchy-Schwarz inequality, the remarkable identities, and many other properties. The main idea
is to replace the Riemannian distance between two points # and y in M with |Exp~!(y)|, defined
on the tangent space T, M. Hence, once we are on the tangent space, we can use all the properties
locally. In the following, K indicates a positive constant that can change from one line to the other
depending on the data.

Step 1. Test-function and mazximum point.

According to Lemma 4.1, the test function ¢, g defined by

(‘Tay) o |t — S|2 _

27y 2y
attains a maximum point (Z,¢,7, 5) € MT x Mp. Moreover, we have the following estimates

(42) dm(Z,9) < Ky and |t —35| < K(1+ B8)y.

Step 2. Ezcluding interior points from the mazimum.

We show that for 8 large enough, we have either (7,1) € (./\/}X N ./\/l) x [0, T u M x {0}
or (7,5) € N2 x [0,T[ U M x {0}, for @ = €'/2 50 that a > er, for ¢ < 5. We argue
by contradiction, assuming that (z,t) € (M\N)x]0,T[ and (7,5) € (M\N)x]0,T[. For
~v < 79, small enough, y — dfw(:i,y) is of class C'! by assumption (H.7). Since (7, 5) is a
minimum point of the function (y,s) — f(y,s) — ¢*(y, s), where

dy(zy) lt-s

1 £ M\
— f) — - — Bt
o (y,s) = f(z,1) 2 % B

which is of class O, for v small enough, and since f is a super-solution of (P), we get

p,

2
W oty s) = f(at) — fly.s) — M

i-s__leradyd(@.0)ly
¥ 2y
But according to Lemma 2.14 and Proposition 2.12, we have that

+ P(g).

= | = Expg ' ()7 = dm(@, 9).
7

1
H §gradyd3\,l (Z,79)

We then obtain

t—3s dm(z, g
(43) Sy ml0) L peg)
Y Y
Similarly, since # is a maximum point of the function ¢ — f&(Z,t) — ©?(t), where

_ d?\/t(jvg) |t_‘§|2

which is of class C'! and since f¢ is a viscosity sub-solution to (P.), we get

(44) 5+t_§

+ ft,

0 (t) =

< - |V, i@ b+ P(x).

On the other hand, since (z,t,y,5) is a maximizer of ¥, g, we have for any z € M

_ &2 (%,9) — d2, (2,7

1.5) = W 5(a.00.8) = [0 — (e, 1) - DB I

By (H.7) and (42), we get that y ¢ Cut{z} and so there exists a unique geodesic ¢ such

that ¢(0) = z, ¢(1) = y and L(c) = dm(Z,7). Let 0 < 7, < 1y, such that C, = 7,n(7y).
21
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We define z = c(s) such that dy(z,2) = ery, for s € [0,1]. In particular dy(Z,7) =
dm(Z,2) + dpm(z,9). Define X €]0,1] such that da(z, 2) = Adam(Z, y). We then have

dr(z,9) = (1 = Ndm(z, 7).
We now fix Z € M such that dm(Z,2) < ae'tV /8 (see (H.15)). Using (45), we then have
2 (F(3,0) - £ (5. D) > Bu(5,7) — B3 D)
> d3y(2,9) — (dm(Z,2) + dpu(2,9))°
(46) = d}(7,9) — dA(2,9) — (2, 2) = 2dm(2,9)dm(z, 2)
= B (#,9) — (1= N2 d(7,7) — Bu(Z,2) — 20p(%, ) (2. )
= 2Xd}(7,9) — Nd3 (7, §) — d3u (2, 2) — 2dm(Z,§)dum(Z, 2).
It then follows that
Vo F5(E Do = Je(7,2)(f5(2,1) — (2, 1))
= J:(z,2)(f(x,1) — [7(2,1)) + (Je(7, 2) — Je(7,2)) (f* (2, 1) — [°(2,1))
=97 >\Je($,Z)VdM($7y) — (29) 7" Ay (i"}Z)J =(Z,2)
T, Ty
y)d

(47)
— (297 d(2,2)J:(2,2) =7 du(Z §)dm(z,2) (2, 2)
Ts Ty
+ (Je(7,2) — Jo(2, 5)) (f*(z,1) — [°(%,1)).
Ts
We now treat each term Ti,...,T5. For Ty, using C; = maxo<i<r, tn(t) = 7yn(7,), we
have
Tl = AdM(.Z',g)JE<.’f,5)dM(f,g)
o (dz.z )
= (eCy) 177( <E )> dm(Z,2)dm(Z, )
48 T,z
o > 0y~ (o (D) - 0, e i(2.5)
= C; () Fydm(2,9) — O Ty CamLiyedp (,)
= dm(z,9) — Key.
Likewise, we have
Ty = J.(7, 2)\2d3/(Z, )
o, (dz,z
= (O ( o )) Bl ?)
o, (dz2) [~ o
(49) < (60,7) 177 (%) < (z,2) + C’M€1+£> dpm(z, 2)
<dm(z,2) + Kebdy(z, 2)
<ery + Keltt
< Ke.
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Now we turn to bound Tj3. Using the definition of Z and the fact that n is bounded, we
have

T3 = day (%, 2)J-(%, 2)
(50) < K(Ecn)iln (d(i, 2)> €2+2V

< K€1+2V.

To bound Ty, we have, using (42), the definition of Z and the fact that 7 is bounded,

Ty = d./\/l (27 g)d./\/l (27 Z)JE(jv 2)
(51) < K(1—Ndm(z,g)e e
< Kre”.

We now turn to T5. Using (37), (42), (H.12) and (H.15), we have

7 (d(ijg)> o <@> ‘ Af5(@, 1) = f7(2,0)]

< Ke 2|d(z, 2) — d(z, 2)|(dpm (T, 2) + €)

< Ke 2(dm(Z,2) + Cpe ™) (dm(Z, 2) + dp(Z, 2) + €)
Ke 2(Ke'™ + Cue' o) (ery + Ke'™ + ¢)

K emin (1)

| Ts] = (Cy) 7!

N

IN

Injecting (48), (49), (50), (51) and (52) into (47), we arrive at

Vi f5(@ D)0 = M K <% + Emin(u,o) _

Injecting this bound into (44) and combining with (43), we deduce that if (Z,t) € (./\7\/\/19‘ )%]0,

and (7, 5) € (M\WZ)x]0,T], then
B <2K (amin &) 4 %) + P(z) - P(y)
<K <emin(”vf) + %) + Lpdm(z,9) + |P — ISHLOO(M\f)
<K <emi“(“§) + %) +LpKy+|P - 13||Loo</\7\f>

min (v, € ) def 7
<K <g 942 +’y> 1P = Pl A
for large enough constant K > 0, where we used (H.3) and (H.4) in the second inequality
and estimate (42) in the third one. Then we conclude that for 8 > f either (Z,f) €

N& x [0,T[ U M x {0} or (,5) e N& x [0,T[ U M x {0}.
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Step 3. Conclusion.

We take 3 > (. Assume first that (7,5) € N2 x [0,T] u M x {0}. If 5§ = 0, then

U, 5(2,t,9,5) < f°(2,t) — fo(9)
= (f*(z,1) = f°(2,0)) + (f5(2) — fo(2)) + (fo(Z) — fo(¥))
< Kt+|f5 = fol oo oy + Lo dm(7,9)
<K(B+1)7+Hf0 fOHLOO(M\')y
where, in the second inequality, we used (32) in Theorem 3.14 to get the first term, and
(H.1) and (H.5) to get the last two terms. In the last inequality, we invoked (42). In the
same way, if € N and § > 0, let g € Projf(gj) ie.,

Such 7 exists by closedness of T, see (H3) Since (36) is in force under (H.15), (37)
holds (see Theorem 3.14 and Lemma 3.15). Using this with (H.5) and (42), we obtain

\Il%ﬁ(jvﬂgv _) fe(i‘ 7E) _f(](_)
= (f*(@, 1) = £, 1) + (f5(9) — fo(@)) + (fo(@) — fo(¥))

< K(dm(z,9) +€) + [ f5 = fol o opy + Lrodra (3,9)
<K(dM(i‘,Zj)+€)+Hf0 fOHLoo +KdM(y7 )+Lf()d./\/l(g7g)
S K(v+e)+ If5 = foll oo gy + K(d%(P,P) +a).

We conclude that for all (,5) € N& x [0,T[ u M x {0}, and for 8 > j3, we have
W@ 8,5,5) < K+ )+ 15 — foll g + K@) + ) + K.
The same bound holds for (Z,t) € <./\/'f? N M) % [0,T[ U M x {0} when 3 > 3. Indeed,
if t = 0 then
\Ij%ﬂ(fa t_a ga g) < €<j) f(ga 7)
= (f5(@) = fo(@)) + (fo() — fo(¥)) + (f(¥,0) — f(¥,5))

< ”fo — fo”LOO(,/W) + LdeM(i,g) + K5
KG + 1 + 155 — foll g

/
=)

where we have now invoked (21) in Theorem 3.8. If T € (./\/'f? N ./\7) and t > 0, choose € T

in the projection of Z on I'. Thus, using (22) in Theorem 3.8, we arrive at
Vo 5(2, 1,9, 5) < f5(2) — f(1,5)
= (f5(z) = fo(@)) + (fo(Z) — fo(2)) + (f(&,5) — f(¥,5))
Hfo fOHLOO ~|—LdeM(:17 )+ Kdm(z,79)
115 = foll oo ory + Loer + K (e +7)
< Ko 2)+ U~ folo
Thus, taking 8 = 3 and (z,t) € ./\7T we have from above that,
fo(x,t) = f(z,t) — BT <V, 4(Z,1,7,5)
<K (7 +€) + 1§ = foll o (sgy + K (' (0, T) + @) + KB,
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Before concluding, we look at what happens when we revert the role of f and f€. In this
case, our reasoning remains valid with only a few changes. The main ingredient is to redefine
U, 3 as follows

d3 2
5w, t,y,8) = fy,8) = [(x,t) — M;jjy) -t 2fyS| — pt.

Then all our bounds remain true and with even simpler arguments (see the proof of Theorem
4.3 which used the same kind of arguments and where we revert the role of f and f¢). We
leave the details to the reader for the sake of brevity. Overall, we have shown that

2@, t) = fla )| < K(v+ )+ If5 = fol ooy + K (@ (T, T) + @) + KB(y +T).

With the optimal choice y = £!/2

we get (recalling that o = ¢'/2)

, taking the supremum over (x,t) and after rearrangement,

|2 = Floomixporp <K <(T + 1)emnslD 4 5) + K(T + )P - ﬁ’”m(/@t’\f)

+ /6 = foll o iy + K (@D T) +172),

which implies the claimed bound.

0

4.2. Forward Euler discrete time non-local to local error bound. In this section, we con-
sider the time-discrete approximation of (P.) using Forward Euler discretization. Then we show
an error estimate between this approximation and the viscosity solution to (P).

For a time interval [0, 7| and N7 € N, we use the shorthand notation 0./\7NT = (Tx{ty, -, tnp}u
M\L x {0}). Using the Forward/Explicit Euler discretization scheme, a time-discrete counterpart
of (P:) is given by

(D) PN Jlo8 190 (@t — At = Plz), (2,8) € (M\D) x {t1,... tny
: fé(z,t) = f§(x), (x,t) € OMn,,

where t; = iAt for all i € {0,..., Nr}.

We include in Appendix A the proof of the well-posedness of the equation (PIP). Indeed,
Lemma A.3 shows the existence and regularity properties in time and space of a discrete-time
solution of (PYP) (in the sense of Definition A.1). The comparison principle given in Lemma A.2
provides uniqueness.

We are now in a position to state the following error estimate.

Theorem 4.3 (Error bound between the solutions to (P) and (PYP)). Let T > 0 and € €]0, ]
where g9 = min(1,1/(2ry)?, (a/(2Cm))"¢). Suppose that assumptions (H.1)-(H.15) hold, and that
dY (D, T) = O(e™n&1/2)) | Let f be the unique viscosity solution to (P) and f¢ be the solution to
(PYP). Assume also that

eCy,

Supeg, N(t)
2

(54) 0 <At <



Then, there exists a constant K > 0 depending only on Ca, |follreay, [Plreary, Lror Lys,
Lp, Lg,|nlre, Ly, Cy and ¢, such that for any e small enough

min(v At D
T f{‘Lw<MX{O,---7tNT}) <K(T +1) <a (E1/2) | A$V/2 4 —+ |P - P{Lm(ﬂ\f)>
45 = fol = (ay:

In particular, z'f]3 =P on ﬂ\f and f§5 = fo on ./\7, then we have

- At
e N min(v,£,1/2) 1/2 | =
”f fHLOO(Mx{O,...,tNT}) <K(T + 1) <€ + At/ + - > .
The fastest convergence rate in e is then achieved when At = O(e3/?), v = 1/2 and € = 1/2 provided
that dfy'(M, M) = O(*?) and d/(T,T) = O(c'/?).

Proof. The proof of this theorem is similar to the one of Theorem 4.2. We just point out the steps
where we need to correctly process the discrete time approximation. Moreover, we revert the role
of f and f¢ to complete the details provided in the proof of Theorem 4.2. Therefore, we will need
to use the Lipschitz regularity properties of f¢ in time and space (see Lemma A.3). Again, K will
denote in this proof any positive constant that depends only on the data but may change from one
line to another.

Step 1. Test-function and maximum point.

For v > 0 and B > 0, we consider maximizing over My x M Ny the test-function

_ d?v((x7y) _ ‘t_SF _
2y 2y

Exactly as in the proof of Lemma 4.1, the maximum is achieved at some point (Z,t,7,t;) €
M x My, and this maximum satisfies the following properties

(55) dpm(Z,7) < Ky and |t — 6] < K(1+ 8)y.

U, sz, t,y,8) = flo,t) — f(y,5) At.

Step 2. FEzxcluding interior points from the mazimum.
We show that for 8 large enough, we have either (Z,t) € oMy or (,t;) € 8/WNT. We
argue again by contradiction and assume that (z,7) € M\I'x]0,7T[ and (7,%;) € M\I' x
{t1,...,tny}. The function (z,t) — f(z,t) — ¢'(x,t), where

d?\/{(l"g) ‘t_ziF
t
e A

oz, t) = fo(,4) +

reaches a maximum point at (7,#). Using that ¢! is C'! on a small neighborhood of (7, %), for
~ small enough, (see (55), Assumption (H.7) and Remark 2.15), the fact that f is a viscosity
sub-solution to (P) and the fact that |grad,d3(Z,7)|z = 2dm(Z, ) (see Proposition 2.12
and Lemma 2.13), we have




Similarly, we have U, g(z,t,7,t;) = U, 5(Z,1,2,1;), hence we get

F.5) - fo(o ) < M 2)27%(””’”), vz e R

On the other hand, using that #; > 0 and that f° is a solution to (P¥P), see Definition
A.1, we have

- 5 _ 57
(58) N V.. 5,8 — At)| . + P(7)
We now estimate the right hand side of (58)
(59)
Vo [t — At)| = max Je(, 2)(f(9: 1 — At) — f(2,1; — At))
zeM,d(y,z)eesupp(n)
= NNHlaX Je(g7z)(fa(gvfl_At) fa( E)_‘_fa(gvfl)_fa(zvi)
zeM,d(,z)€esupp(n)
+ fo(z,t;) — [ (2,1 — At))
< max Je(9, 2) (KAt + (g, t;) — [ (2, 1))
zeM,d(y,z)eesupp(n)
< _max Je(5,2) (KAt + (29) 7" (d34(@, 2) — d34(7,9)))
zeM,d(y,z)eesupp(n)
< KAt max Jo(§,2) + (29)""  _  max Je(y, 2)
zeM,d(7,z)eesupp(n) zeM,d(Y,z)ecsupp(n)
(drm (@, 2) = dpm(@,9)) (dm(, 2) — dm(, §) + 2dm(z, 7))
At
< K— sup () + (29) 7 max Je(§, 2)dm(F, 2) (dm(F, 2) + 2dm(7, 7))
€ teRy zeM ,d(,2)eesupp(n)
<K§+M __max (eCy)™ (N( z) + K1+5) ( 2)
€ Y zeM,d(,z)eesupp(n)
+(29)7" | max (cCy) 2 (J(y ) + Ka”f
zeM,d(g,z)eesupp(n)
<Kg+w<l+Kas)+(2’y) ! max
€ Y zeM d(y z)eesupp(n
+ K€1+§(€Cn)71g(§,z)n (d(i’ Z)) + Ke 2+2§(€C ) ( 6’ )) >
< K% + M + K&t + (29)7! <Ks + K64 Ks”2§>
A _
<K<_t+£+€§>+w.
€ Y Y
Plugging (57) and (59) into (58) we get
P—f, At At dn(®,9) 5
(60) +—=>-K <—+£+sf> —MJFP(y)
Y 2y~ e 7

From (56) and (60), we finally obtain
27



At At ~
B < K( 7+€+?+55>+P(:z~)—P(g)

At +e At P
< K ( i af> + K@ 9) + [P = Pl gy

At + At N v
K( €+fy+?+55>+HP—PLOO(M\f)d_fﬁ.

We then conclude that either (Z,t) € oMy or (7,t;) € 8/\7NT, for B > B. When reverting
the roles of f¢ and f, only 8 will be changed taking the additional term g™n(:£) (see the
proof of Theorem 4.2). We finally use the regularity properties of f¢ (see Lemma A.3) and
of f (see Theorem 3.8) to conclude, following Step 3. in the proof of Theorem 4.2.

0

5. APPLICATION TO GRAPH SEQUENCES

Let Gy, = (Vi Ep, wy) be a finite weighted graph where V,, is the set of n vertices {uy, - ,up},
E, <V, x V,, is the set of edges and wy,(u;, u;) is the weight of any edge (u;,u;). The latter can

e

Let I'y, € V},. For a time interval [0, 7| and N7 € N, we use the shorthand notation (V,\I'y)n, =
(Vo\I') x {t1,...,tn,} and 0(Vi) Ny = (T X {t1, ...ty }) U Vi x {0}. We now consider the fully
discretized Eikonal equation on G, with a forward FEuler time-discretization as

PO GUEE0 4 [Vo (b = Ab)]o = P(u), (u,8) € (Va\Dn)wy.
fn(uv t) = f(?(“’)? (u7 t) € a(‘/n)NT?
where t; = iAt for all i € {0,..., Nr}.
In the notation of (PIP), it is easy to identify V,, with M and T',, with I'. We observe that by

construction, V,, and I'), are compact sets and that V,\I';, € M\I'. Our aim in this section is to
establish consistency of solutions to (P(F;E) as n — +00 and At — 0.

be defined with a kernel function at scale &, as wy,(u;,u;) = (Cy)"In

(Pé)

In practice, the construction of vertices V,, in a graph is beyond our direct control. The specific
arrangement of points may not be known, or the points can be obtained by sampling through
an acquisition device (e.g., point clouds), or derived from a learning or modeling process (e.g.,
images). Consequently, it is more realistic to consider graphs G,, on random point configurations
V., and then conveniently estimate the probability of achieving a prescribed level of consistency as
a function of n.

To achieve this goal, we will consider a random graph model whose nodes are latent random
variables independently and identically sampled on M. This random graph model is inspired from
[5] and is quite standard. More precisely, we construct V;, and the boundary T',, as follows:

Definition 5.1 (Construction of V,, and I',). Given a probability measure p over M and £, > 0 :

(1) draw the vertices in 'V, as a sequence of independent and identically distributed variables
(ui)i_, taking values in M and whose common distribution is p;
(2) set Ty ={uj€ Vy : dp(wi,T') < aeptV/2}, v > 0.

From now on, we assume that

(H.16) p has a density p on M with respect to the volume measure, and inf p > 0.
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Before stating the main result of this section, the following lemma gives a proper choice of ¢,
for which the construction of Definition 5.1 ensures that the key assumption (H.15) is in force
together with I';, # ¢ and dHM (I,T,,) = O(g:*") with high probability. To lighten notation, we
define the event

n = .15) holds an ) <ae .
61 & H.15) hold d a(r,T v 9

Before stating the next Lemma, we need to introduce the following assumption on the radius
of the covering of M

(H.17) The radius of the covering of M satisfies § < min {injg(./\/(), %,277}, where r is the

infimum of the sectional curvature of M and inj, is the injectivity radius of (M, g) and
where we have set % = 400 whenever r < 0.

The definitions of the sectional curvature and the injectivity radius of M are given in Appendix
B. As for the examples mentioned in the introduction, they satisfy this assumption. In fact, the
Euclidean sphere S™ possesses a constant positive sectional curvature equal to 1/R?, where R is its
radius. Therefore, the infimum of its sectional curvature r is strictly positive. Thus assumption
(H.17) is satisfied. Furthermore, the hyperbolic manifold H" has a constant negative sectional
curvature, while the sectional curvature of the torus is identically zero, ensuring the validity of the
condition on § for this two examples.

Lemma 5.2. LetV,, and T, generated according to Definition 5.1 where u satisfies (H.16). Assume
that ¢ satisfies assumption (H.17). Then, there exist two constants K1 > 0 and Ky > 0 that depend
only on a, vol(M) and vol(Bag(0)), and for any T > 0 there exists n(7) € N such that for n = n(r),
taking

n

1/m*
(62) el = Ki(1+ 7)™ (kﬂ> ’

the event &, in (61) holds with probability at least 1 — Kon™ 7.

Proof. The proof follows a similar approach as in [16, Appendix D], with the exception that the
covering number of M is distinct here. We will use again compactness of M and a covering
argument with a finite d-net consisting of N(M,4) points. Let S5 = {z1,22,... ,:EN(M@} be a
d-net of M such that for all x € M, there exists z; € Ss such that day(z,z;) < 6, i.e., M <
ije 55 Bam(xj,0). We then have, following the same lines as in the proof of [16, Lemma 4.2] that

Pr (gé%(dM(x,Vn) > 25) < N(M,9) <1 - cém*vol(BM(O))>n.

Using the result obtained in [25], we have that
N(M,d) < Cvol(M)s~™".

We therefore arrive at the bound

n

Pr <m%< dp(z,Vy) > 25) < Cvol(M)s—™" (1 — 6™ vol(B (0)))
TE

< Cvol(M)§— " g ned™ vol(Bar (0)
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Take 0™" = %hﬁ", for any 7 > 0. Thus the above bound becomes

Pr <maé( d(m, Vn) ~ 25) < CVOl(M)VOl(BM (O))ef(lJrT) log n—log(1+7)—log log n+logn
x€
< Cvol(M)vol(Bay(0))e " loen

= Cvol(M)vol(Bapm(0))n™ 7.

€1+V B 16&_1 (1 + T) 1/m* logn l/m*
no evol(Ba(0)) n ’

we have ac:t¥/8 > §, and therefore (H.15) holds with probability at least 1 — Kon~7. The proof
of the estimation of the probability of the event {dﬁ/‘ (T',T,) < ag;, " /2} aligns with that presented
in [16, Appendix D], and for brevity, we skip it. O

Thus, taking

We are now ready to establish a quantified version of uniform convergence in probability of [
towards f.

Theorem 5.3. Let T', v > 0, and V,, and ', be constructed according to Definition 5.1 where p
satisfies (H.16). Suppose that assumptions (H.1)-(H.15) and (H.17) hold. Let f be the unique
viscosity solution to (P) and f™ be a solution to (Pg]n)) Take At = 5™ where &, is as given in
(62). Then, there exist two constants K > 0 and Ky > 0 that depend only on Cpq, a, diam(M),
HfoHLoo(M), HPHLOO(M\F), Ly,, Lyn, Lp, L, cy, Cy, Ly, |n|re and v, and for any T > 0, there
exists n(1) € N such that for n = n(r),

min(v,£,1/2,¢)

min(v,£,1/2,¢) l()g n (1+v)m*
n J— v 77l*
Hf fHLOO(%Lx{O,...,tNT}) < K(T+1) ((1 +7) O+ < - >

+P— 13|Lw(vn\pn)> + [1£8 = fol ooy

with probability at least 1 — Kon™". In particular, if €, is chosen with T > 1, P=Pon Vo\I'y, and
1o = fo on Vy,, then

lim Hf”

i - f||L°O(an{07...,tNT}) =0 almost surely.

1
The best convergence rate is O <10%> S obtained for v = 1/2, £ =1/2 and { = 1/2.

Proof. The proof of this theorem is similar to the one of [16, Theorem 4.3] and we skip it. O

APPENDIX A. WELL-POSEDNESS AND REGULARITY PROPERTIES OF (PIP)
We recall the notions of discrete sub- and super-solution defined in [16].

Definition A.1 (Discrete sub- and super-solution). We say that f¢ is a sub-solution to (PYP) if
for all (x,t) e (M\I') x {t1,...,tn,}
fe(z,t) — fo(x,t — At
At

) + |V, ozt — At)]_ < P(a),

and if for all (z,t) € (9./\7NT;
fo(z,t) < f5(2).
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In the same way, we say that f< is a super-solution to (PXP) if for all (z,t) € (M\D) x {t, . .. N}
fe(z,t) — fo(z,t — At
At

) |95 fo et — A, > Pla),

and if for all (x,t) € 6/WNT,
[ (@, t) = fo(x).
f¢ is a discrete solution to (PXP) if it is both a discrete sub-solution and super-solution.

We recall the comparison principle, proved in [16, Lemma B.2]

Lemma A.2 (Comparison principle for the scheme (PYP)). Assume that (H.1)-(H.3) and (H.9)
hold, and that f€,g° are respectively bounded sub- and super-solution to (PXP). Assume also that
the CFL condition (54) holds. Then

(63) _osup (fT-g7) < sup - |fF =47
MX{O,...JNT} FX{tl,...,tNT}UMX{O}

We now establish the existence and the regularity properties of a discrete solution.

Lemma A.3 (Existence and Lipschitz regularity properties in time and space for the scheme
(PEPY)). Assume that assumptions (H.1)-(H.5), (H.8)-(H.11) and (H.14)-(H.15) hold. Then
there exists a discrete solution f€ to (PYP) and for all (v,y) e M x M and t € {t1,...,tn,}, the
following holds

(64) |5 (@,t) — f(2,t — At)]|
(65) [f () = [ (y,1)]

) and K = 4a~! max <(a + Crm)|

LA,

<
< K (dm(z,y) +¢),

where L= Lgs + P o i 1Bl gty € Cn(E + 1Pl o ai))-

Proof. The proof is the same as the one in [16, Lemma B.3| and we skip it. O

APPENDIX B. COVERING NUMBER OF M

We will give a lower bound of the covering number of the manifold M that will be needed in
the proof of Lemma 5.2. We first recall that a d-covering number N (M, d) of a manifold M is the
smallest number of (geodesic) balls of radius § needed to cover M. The condition of the radius
is linked with the geometry of the manifold, including its curvature. One of the ways to describe
the curvature of Riemannian manifolds is the sectional curvature K (o), which depends on a two-
dimensional linear subspace o0, of the tangent space at a point p on the manifold. More precisely,
given two linearly independent tangent vectors at the same point, u and v, we can define

K(u,v) = (R(u,v)v,u) '

uy uylv, vy — (u, v)?
Here R is the Riemannian curvature tensor, defined by R(u,v)w = V,V,w — V,V,w — V[, ,jw.
For example, the sectional curvature of a n—sphere of radius r is K = 1/r2. As for the injectivity
radius at a point z € M, it is the supremum of all positive real numbers for which the exponential
map is a diffeomorphism when restricted to the open ball of radius r centered at z in the tangent
space T, M. Moreover, the injectivity radius of M is the infimum of the injectivity radii at all
points in M. In [25], the authors have shown that if § satisfies assumption (H.17), then there
exists a strictly positive constant C' such that

N(M, ) < Cvol(M)§~™".
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