
HAL Id: hal-04702180
https://hal.science/hal-04702180v1

Submitted on 11 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-platform and open source development tool for
automation

David Delfieu, Maurice Comlan, Narcisse Assogba

To cite this version:
David Delfieu, Maurice Comlan, Narcisse Assogba. Multi-platform and open source development tool
for automation. International Journal of Advanced Mechatronic Systems, 2024, 11 (2), pp.63-72.
�10.1504/IJAMECHS.2024.139172�. �hal-04702180�

https://hal.science/hal-04702180v1
https://hal.archives-ouvertes.fr

1

Multi-Platform and Open Source Development
Tool for Automation

David Delfieu
Laboratoire des Sciences du Numérique de Nantes,
Nantes University, France
E-mail: delfieu-d@univ-nantes.fr

Maurice Comlan
Ecole Nationale d’Economie Appliqueé et de Management,
Université d’Abomey-Calavi, Cotonou, Bénin
E-mail: maurice.comlan@uac.bj

Narcisse Assogba

Erlab-Noroit,
Bouaye, France
E-mail: assogbanarcisse@yahoo.fr

Abstract: This paper presents an open source tool allowing to embed a grafcet onto a
micro-controller board. This tool assists the user throughout the entire process, starting
from the design of the grafcet, defining and assigning inputs and outputs, generating the
code, and finally facilitating its download onto a microcontroller board. The graphical part
of this software use a Java based package JGrafchart for the definition of the interface,
and regarding the code generation, the semantics rules of evolution are precisely presented.
An application case illustrates the use of the software from modeling to electronic assembly.
Temporal data relevant to the application is provided, discussing the limitations stemming
from input-output constraints. All of this information helps delineate the domain and
scope of applications suitable for this approach.

Keywords: Grafcet ; Arduino ; Programmable Logic Controller ; Code Generation.

1 Introduction

This article is a revised and expanded version of a
paper entitled Edit and Upload grafcet on an Arduino
Boards presented at the International Conference on
Electrical, Computer, Communications and Mechatronics
Engineering (ICECCME) in 2021 [2]. Compared to
the previous work, the major evolution, within the
code, is the algorithm - which is presented in Section
3.2 - that computes the evolution rule. It has
been improved and optimized (see the Algorithm 1).
Additionally, instructions operating on outputs have
been added to calculate the Cycle Time. As suggested
by the Figure 1, this paper endeavors to present an
advanced software approach for editing, compiling, and
uploading grafcetdiagrams onto Arduino boards, catering
particularly to small-scale or educational applications
with cost-efficiency as a priority.

The specification language GRAFCET [3] intricately
describes the control aspects of automated systems in
an unambiguous and intelligible manner. It employs a
graphic representation that readily conveys concepts like
parallel and sequential evolution, as well as emergency

stop functionalities, making it easily comprehensible
and accessible. Comparable approaches and tools
in the domain, such as Petri nets [6, 10] share
similarities with GRAFCET but diverge in their
formalisms and semantics. Petri nets offer a mathematical
foundation for modeling control systems, including
conflicts, synchronization, concurrency, and resource
sharing, often incorporating rigorous semantics to define
properties and formal reasoning.

However, despite GRAFCET’s derivation from safe
and non-autonomous Petri nets [5, 12], distinctions in
the associated semantics of evolution rules exist, leading
to potential instabilities in certain conflict situations.
Practical design rules have been enacted to navigate these
issues, emphasizing the importance of ensuring exclusivity
in transition conditions. In industrial environments,
Programmable Logic Computers (PLCs) [8, 15] serve as
the physical apparatus for real-time control in automated
systems where grafcet diagrams find deployment. While
PLCs offer robustness and connectivity, their cost and
complexity can be substantial. Alternatively, smaller-scale
applications can benefit from the use of microcontrollers
like Arduino boards, providing cost-efficiency and relative

©

2 author

Figure 1: Embedding Grafcet on Arduino

reliability for specific contexts such as laboratory exercises
or prototypes. The major software packages on the PLC
market, such as PL7Pro or Unity pro [14], do not offer
solutions for embedding on small 8-bit microcontrollers.
This is to be expected, as they focus on solutions that
ensure safety, security and maintenance. Only Codesys,
offers solutions based on microcontrollers. However, these
are solutions based on powerful 32-bit ARM-type cores
or 64-bit processors which are not really cheap.

Our contribution focuses on presenting a software
chain tailored for small, low-cost applications where high
availability and security are not paramount. Specifically,
we propose an approach for editing, compiling, and
uploading GRAFCET diagrams onto Arduino boards,
catering to scenarios requiring cost-effectiveness over
extensive reliability and availability.

In Section 2 we present some basics concept
(programmable logic controller, Sequential Function
Chart) and give a definition of the semantic of the
evolution in aGRAFCET. Then, in Section 3, we present
the interface and the use of tool JGrafcetToArduino.
Finally, in Section 4.2, a case study is proposed. This
example implements a fire detection system based on
brightness and temperature threshold detection.

2 Basics definition

2.1 Programmable Logic Controller

A PLC is a device for controlling an industrial process
(manufacturing system, production line,. . .) consisting of
a power supply, inputs/outputs and a link for interfacing
with a PC. A programmable logic controller (PLC)
controls the manufacturing processes for integrated
production lines and equipment. PLCs were designed to
replace the need for a large bank of relays or timers in
facilities with numerous inputs and outputs. Due to their
durability and ability to automate multiple processes,
PLCs have become a staple in modern manufacturing.
In this section, we will review the basic architecture of

programmable logic controllers [1]. The main components
of a PLC are: (i) Power Supply: Inputs and outputs are
generally isolated (galvanic isolation). Inputs support a
voltage of 24v while outputs offer different standardized
voltages. (ii) Central Processing Unit: it is usually made
up of a micro-controller and its role is to continuously
perform cycles. Each cycle is composed of the reading
of the inputs, the evolution of the system control and
the assignment of the outputs. (iii) I/OModules: They
allow to connect the micro-controller to the physical
process under control. They prevent the use of relay
providing several normalized voltage: 24v, 48v, 110v
or 220v. (iv) Programming Device: A PLC requires
a programming interface and a software chain. The
programming device can be a handheld device, a desktop
console, or a computer. The software chain is used for
the edition, the monitoring of the I/O, and the download
or the upload of the program.

2.2 The GRAFCET and Sequential Function
Chart

The “Association Française pour la Cybernétique
Economique” (AFCET) proposes in 1977, a sequential
function chart called GRAFCET and in 1987 an
international norm, IEC-60848 is defined. This norm
defines the following components:

• Situation: Defines the actives steps of the grafcet.

• Steps: A step can be active or inactive. A step
represent a state of the sequential part of the
system.

• Transitions: A transition is associated to a
transition condition and indicates a possible
evolution between input steps and output steps.

• Evolution: An evolution is the clearing of one
transition moving the system from one situation to
another. A transient transition leads to the clearing
of several successive transitions on the occurrence
of a single input event.

Multi-Platform and Open Source Development Tool for Automation 3

• Directed link: Connect steps to transitions or
transitions to steps.

• Transition condition (receptivity) : Evaluation of
a grafcet boolean expression. A grafcet boolean
expression is a boolean epxressions where terms
can be boolean variables, input events or internal
events.

• Input event: Rising edge or falling edge of events,
boolean variables, internal events or grafcet boolean
expressions.

• Action: Activity associated to a step or affectation
of output variables.

• Internal event: Event associated to the current state
of the grafcet.

In the Figure 2, illustrates links, transitions, and
receptivities. Step 100 and 1 participates in the initial
situation. The or divergence, is associated to two
antagonist receptivities. If code is true the control passes 0
to state 11 else to state 21. Concerning the last receptivity,
an And convergence, the control passes in state 1 as soon
as the control is simultaneously in state 21 and 100.

1 100

11 21

code code

1

Figure 2: Cash Dispenser

Moreover abstract components such as macro-steps,
encapsulating steps, parallelism and synchronization
elements (divergence/convergence) improve expressive
power. IEC-60848 defines five evolution rules. These rules
describe the principle of sequential evolution between
situations. A situation (a marking in term of Petri nets)
if formally defined as the set of active steps for a given
time.

R1 Initial situation: The initial situation defines the
set of actives steps at the initial time.

R2 Clearing a transition:

• Enabled transition: A transition is said
enabled if every previous steps (linked to this
transition) are active.

• Clearing a transition: The clearing of a
transition occurs when the transition is
enabled and when its receptivity is true;

A clearable transition is immediately cleared.

R3 Evolution of active steps: The clearing of a
transition provokes simultaneously the activation
of all the immediate succeeding steps and the
deactivation of all the immediate preceding steps;

R4 Transient evolutions: If several transitions can be
cleared simultaneously they are simultaneously
cleared;

R5 Activation of a step: If a step is included in the
preceding situation and in the following one, it
remains active. Moreover, if during an evolution,
an active step is simultaneously activated and
deactivated, it remains active.

An evolution from a situation may lead to a transient
or stable situation. A situation is called transient if at
least one transition may be cleared from it without any
new change in transition-condition.

2.2.1 Semantics

IEC-61131-3 standard includes languages (Ladder,
Instruction List,. . .) and graphical language (Sequential
Function Charts) for programmable logic controllers.
Among theses approaches two kinds of semantics
coexists: The event-driven and a time-driven semantics.
GRAFCET is defined with an event-driven approach. If
we consider a simple sequence where several consecutive
transition-condition are true, the evolution rule R4,
enforces that from a stable situation it evolves to transient
situations until it reach a stable situation. On an other
way, Ladder language or Instruction List, are based on the
fact that the clearing time is short but null. In practice
an input scanning cycle allows to define stable situation.
The algorithm defined in Section 3.2, is based on the
definition of an input scanning cycle allowing to only
consider stable situations.

2.3 Arduino boards

Arduino is an open-source project which allows to
implement code simply and quickly on micro-controller.
Arduino refers as well to a hardware architecture,
an IDE (Integrated Development Environment) and a
programming language. Arduino boards are generally
built around Microchip micro-controller (ATMega328,
ATMega2560,. . .), and peripheral chips that ease
programming and interfacing. Each board have digital
input-output, pwm ouptuts, analogic inputs, ceramic
resonator, USB connection, sram, flash and eeprom
memories. The IDE allows to edit, to compile, to select
the core, the board and the serial port, upload the byte
code to the board. The programming language is based
on C++ and can be compiled with avr-g++ .

4 author

3 JGrafcetToArduino

3.1 Editor

JGrafcetToArduino is a tool [4] freely available
to https://github.com/maurice-comlan/Grafcet-To-
Arduino. It requires fisrt the installation of NetBeans,
JDK and Arduino. This tool is inspired of the
JGrafchart , Automgen 8 and Unity Pro XL
interfaces, in particular form for some elements of the
graphical interface. The main window (see Figure 3)
includes the following components:

• Menu: File, Edit, View, Execute, Automaton, Help.

• Action: Actions related to file (new, open, change
directory), component edition (cut, paste, delete),
actions related to software (compile, upload),. . . .

• Side palette: Step, transition, parallel split, parallel
join, macro steps,. . . .

• Editing box : Panel where the grafcet is drawn.
From side palette, components can be added by a
double click. A right click in the panel brings up a
contextual menu.

• Error area: At the bottom of the main window
a message line display message issued from the
execution of an action or errors.

Figure 3: Editor main interface

The JGrafchart interface was used as a model and
specifications for the implementation of our software.
JGrafchart is a freeware developed in the Automation
Department of Lund University in Sweden [16]. This

software was developed in Java with the Swing library [7],
which makes it compatible with every operating systems.
Some unnecessary features for our application have been
removed while others have been added:

• Misc: Has been disabled. This item controlled the
application’s interconnection to a computer network
via a server on which files are shared using the
Devices Profile for Web Services protocol.

• Control module by PID : Has been disabled. It was
in used to command servomotors. [13].

• Side palette: Some components, related to disabled
modules, have been removed.

• Automaton: Has been created. It manages the
interactions with the Arduino board. Allows to:

– Edit grafcet variables (see figure 8);

– Define the type of card and the COM port to
which it is connected;

– Generate the source code;

– Upload the code.

• Variable management has been redesigned to be
similar to Unity pro or PL7. Three types of
variables are now available: Standard variable,
function block, and transition session.

• Edit box has been modified to include modification
on step and transitions.

• File has been enriched with “Open recent files”

• An Upload icon has been added to the quick action
bar.

The edition phase produces several XML files that encode
the structure of the grafcet. In the code generation phase,
theses files will be parsed to extract a set of essential
objects structuring the grafcet.

3.2 Code generation

Concerning the code generation phase, a pseudo
interpretation code (Algorithm 1) is presented below.
This algorithm computes the evolution rule of a grafcet.
The essential rule is M2 = M1 →t which compute the
marking M2 after the firing of the transition t from the
marking M1.

The inputs of the algorithm are M0 (the initial
marking), initial steps the set of initial step(s) of the
grafcet and receptivities[] the set of boolean expressions
associated to each transition. Theses sets have been
parsed from the structural definition after the edition
phase from XML intermediate files (see Section 3.1).

Moreover, Enabled = enabled(M) is the the set of
enabled transitions for a marking M . receptivities[t] is
the receptivity associated to the transition t.

The outer while implements the input scanning cycle
evoked in section 2.2.1.

Multi-Platform and Open Source Development Tool for Automation 5

Algorithm 1: Evolution Step

Input: M0, initial steps, receptivities[]

Activate Initial steps;
foreach istep ∈ initial steps do

activation of actions associated to istep

M1 ⇐ M0;
Enabled ⇐ enabled(M1);
while (true) do

transient ⇐ true ;
while (transient == true) do

nbfired ⇐ 0;
read(receptivities);
foreach t ∈ Enabled do

if (receptivities[t] == true) then
M2 ⇐ M1 →t;
nbfired ⇐ nbfired+ 1;
transient ⇐ true;
foreach istep1 ∈ M1 and
istep2 ∈ M2 do

activation and deactivation of
actions associated to istep1 or
istep2 ;

M1 ⇐ M2 ;
Enabled ⇐ enabled(M1);

if (nbfired ==0) then
transient ⇐ false;

4 Case Studies

4.1 Cash Dispenser

The first case study refers back to Figure 2. This grafcet
refers to a simplified version of a cash dispenser. Step 1
models an initial state where the code has not yet been
entered. If the code is entered successfully, the system
transitions to Step 11; otherwise, it goes to Step 21,
where Step 100 allows the user another code attempt. As
there is no loop connecting Step 21 to Step 100, there is
only one additional attempt.

The implementation with JGrafcetToArduino
give the following screenshot (figure 4) :

After the edition phase, the code generation and
the code uploading, the system can be tested with the
following (figure ??) montage diagram:

Montage diagram : . A green led is connected to D6 to
indicate that the code has been validated, either a red
led indicates that the code has not been validated.

4.2 Fire Detection System

Our case study focuses on a fire detection system based
on a dual detection system (see the Figure 6). Three bi-
colour leds define a situation. A temperature sensor and a
photo-resistor monitor the system. If the temperature is

Figure 4: Cash dispenser to JGrafcetToArduino

Arduino
Uno

D1

D2

D3

D4

D5

D6

D9

D10 GND

D0

A0

VCC

220Ω

220Ω

Vcc

code

1kΩ

Vcc

Figure 5: Electric Diagram

normal, the first led is green. It becomes red if the sensor
detects that the temperature exceeds a certain limit. The
second led is green or red upon the value return by the
photo-resistor. The last led assets that temperature and
brightness limits have been exceeded. A switch button
allows to start or to stop the detection. The figure 7
presents the grafcet modelling the application case:

After the edition, variables are edited in order to
connect the grafcet to its environment. The figure 8
illustrates that the outputs buzzer, tempR, lightR,
firedetected,lightR have been affected to Q5,Q6, Q7,
Q8, Q9 and Q10 while inputs light? and fire detection

have been affected to I2 and I3. temp is an analogic input

6 author

Temperature exceeds limit

Light exceeds limit

Fire is detected

Figure 6: Application case

1

2

3

4

5

6

tempG

tempR lightR

Buzzer

fire detection = 1

temp = 1 light? = 1

1

fire detection = 0

lightG

fire detected

Figure 7: Grafcet of fire detection system

connected to the temperature sensor (LM35) associated
to the adress A0

Figure 8: Variables of the grafcet

The design of the grafcet and the use of several
functionalities of the tool has allowed to check the
following aspects:

• Analogic and digital outputs;

• Steps without action or with multiple actions;

• Simple and complex transition-conditions;

• Forced transition;

• Parallel evolution and synchronization;

• Serial port selection, code generation, compilation
and uploading into an Arduino board.

Montage diagram : . Figure 9 shows the component
layout that was used for the validation of the example.
The temperature sensor (LM35) is wired on the analogic
input A0, while the buzzer is wired on a PWM output.
An anti-bounce filter is bounded to the switch S1. Finally,
the test was carried out with a source of temperature.
It has allowed to validate the expected evolution of the
grafcet.

Buzzer

Arduino
Uno

D1

D2

D3

D4

D5

D6

PWM(D9)

D10 GND

D0

A0

VCC

220Ω

220Ω

220Ω

220Ω

220Ω

220Ω

S1

1kΩ

Vcc

10kΩ

LM35

VsVout

Gnd

Vcc

Vcc

Vcc

1kΩ

Figure 9: Electric Diagram

5 Analyses and discussions

For the grafcet edition, we heavily relied on the
performance. JGrafchart is an open implementation
of Grafchart written in Java. It is a language allowing to
describe sequences constituted of steps, transitions with
parallel or alternative paths. This language made it easier
the implementation of this software. We have restrained
our work to a subset of classes, and consequently, we have
lost the checking of the consistency of actions associated
with steps and conditions associated with transitions.
Moreover, we migrated from the JGrafchart to C++

especially for compilation and downloading to Arduino
boards. The grafcet panel is interpreted as an xml file,
we have therefore integrated an XML parser, and a code
generator into our editor to obtain this functionality. This
change had also an impact on the simulation mode, which
strongly depends on the syntactic and semantic analyzer
to calculate the value of the variables and to interpret
the actions.

Multi-Platform and Open Source Development Tool for Automation 7

For this first version, some GRAFCET functionalities
have not been taken into account: Structuring by forcing
the situation of a partial grafcet and structuring by
encapsulation [3].

5.1 Testing

This application case has allowed the testing of all the
interface sub-menus and item, with the different kinds of
receptivities, action triggers, divergences, convergences,
and sequential or parallel executions as well as the
downloading of code to the Arduino board.

Moreover, the tests carried out on the Arduino
Uno boards were conclusive. In the application case,
actions associated with steps were performed in the
expected order. Steps have been indeed activated
and deactivated while transitions have been sensitized.
Further implementation (in progress) will allow the use
of new types of Arduino boards (Nano , ATMega, . . .).

The installation of this software in a Windows
environment requires the installation of the program
nmake, in addition to the C++ compiler, to take into
account the makefile which is not supported by default
on Windows. This software has been tested successfully
in a MacOS environment 1.

5.2 Metrics

The complexity of the algorithm (see Section 3.2) can be
estimated to a polynomial order because of the imbricated
loops. So the Cycle Time of input scanning cycle is
proportional to the product of the number of places (|P |)
and the number of receptivities (|R|).

With an ATMega2560 clocked at 16 MHz, the Table
1 gives the Cycle Time (CT) and the memory amount
of the embedded grafcet corresponding to the example
for a grafcet containing |P | places and |P | transitions.
. The first line of the table corresponds to the initial
grafcet presented in section 4.2 while the following lines
correspond to examples of growing complexity. Third
column give execution times of the Cycle Time. Memory
amounts are given by the compilation phase. Memory
amount increase linearly, without surprise, with the size
of the matrices which contains the structure of the grafcet
(proportionally to the size of |P |+ |R|). Whereas, the
execution time grows more significantly: As expected,
the execution time increases in a polynomial order of
|P | ∗ |R|. For the last test, 24 places and 20 receptivities,
the Cycle Time rises to 2.5 ms, it corresponds near to the
maximum number of input/output of the ATMega2560.

6 Conclusion

The objective of this paper was to present a tool which
allows the design of a grafcet editor, the simulation,
compilation and code generation, a serial port selection
and the downloading to an Arduino board. The main
idea was to make available an open source, multi-platform

Table 1 Cycle Time, memory ammount for various-sized
grafcet

Num. of Pl. and Recepts. CT Mem. Amount

|P | = 6 |R| = 5 150 µs 592 bytes
|P | = 12 |R| = 10 180 µs 1.2 kbytes
|P | = 18 |R| = 15 840 µs 2.1 kbytes
|P | = 24 |R| = 20 2.5 ms 3.3 kbytes

automation workshop which provides practical industrial
automation designed around Arduino micro-controller
boards.

In view of the objective set, the following modules
have been developed:

• grafcet editor: This software integrates the basic
concepts defined of IEC-60848 and IEC-61131-3
standards;

• Code Generator: It includes a module for
interpreting grafcet and translating it into source
code for an Arduino board;

• Compilation, Serial configuration, and Uploading
module: It includes the possibility to compile, to
select an Arduino board, and to upload it.

Moreover an application test case was developed to
test the most important features and validate the work
that was done. It is a fire detection system based on a dual
captures system. A flame sensor that triggers a first light
signal initially captures excessive light at the fire scene.
The abnormal temperature increase is then captured by
a temperature sensor, which triggers a second light signal.
These two conditions trigger a third light signal followed
by an audible signal. The action of an operator on a
button stops the different light and sound signals.

The scalability of this type of application offered by
the JGrafchart package is a major asset, as it will
allow the editor’s functionality to be improved by adding,
for example, the languages defined in the IEC-61131-3
standard to the list of languages used to edit actions
related to a step or define instructions for block functions.
In the perspective of this work, it would be interesting
to add to the editor the other formalisms such as Ladder
and also to extend the possibilities of automata to other
micro-controller boards.

The limitations that have been discussed in the Section
5.2 on this approach are related to the number of physical
inputs and outputs on the chip. However, one could
imagine an approach that would multiplex the inputs
and outputs using an external component.

The edition rules edited in IEC-61131-3 can bring
to problematic situations. Conflict transition combined
to rule R4 (Section 2.2) and loop can lead to unstable
situation, moreover some structure can lead to non safe
graph [11] and this implementation could allow to test
alternative semantic rules.

8 author

References

[1] Ephrem Ryan Alphonsus and Mohammad Omar
Abdullah. A review on the applications of
programmable logic controllers (plcs). Renewable
and Sustainable Energy Reviews, 60:1185–1205, 2016.

[2] Maurice Comlan, David Delfieu, and Narcisse
Assogba. Grafcet to Arduino: Edit and Upload
Grafcets on an Arduino Boards. In The
International Conference on Electrical, Computer,
Communications and Mechatronics Engineering
(ICECCME), 2021 International Conference
on Electrical, Computer, Communications and
Mechatronics Engineering (ICECCME), Mauritius,
Mauritius, October 2021. IEEE.

[3] International Electrotechnical Commission. Iec
60848 ed. 2: Specification language grafcet for
sequential function charts, 1999.

[4] M. Comlan D. Delfieu. Download grafcettoarduino.
https://github.com/maurice-comlan/

Grafcet-To-Arduino. Updated on : 2023-11-24.

[5] R. David and H. Alla. Du Grafcet aux réseaux de
Petri. Série automatique. Hermès, 2 edition, 1992.

[6] Michel Diaz. Les Réseaux De Petri - Modèles
Fondamentaux. Ic2 Traité Informatique Et Systèmes
D’information. Hermès, 2001.

[7] Robert Eckstein, Marc Loy, Dave Wood, and Mike
Loukides. Java swing. O’reilly Cambridge, MA,
1998.

[8] Felipe Fronchetti, Nico Ritschel, Reid Holmes,
Linxi Li, Mauricio Soto, Raoul Jetley, Igor Wiese,
and David Shepherd. Language impact on
productivity for industrial end users: A case study
from programmable logic controllers. Journal of
Computer Languages, 69:101087, 2022.

[9] Microsoft. Makefiles (Windows), 2017.

[10] Carl Adam Petri. Communication with automata.
PhD thesis, PhD thesis, Institut fuer Instrumentelle
Mathematik, 1962.

[11] Valette R. Grafcet une introduction. http:

//valetterobert.free.fr/enseignement.d/

grafcet.pdf. Updated on 2022-02-15.

[12] Valette R. Etude comparative de deux outils de
representation: Grafcet et reseau de petri. NOUV.
AUTOMATISME; FRA; DA. 1978; VOL. 23; NO
12; PP. 377-382; BIBL. 7 REF., 1978.

[13] Daniel Ross, Etienne Deguine, and Mickaël Camus.
Asservissement par pid. rose. eu. org, 3, 2010.

[14] Schneider Electric. Logiciel Unity Pro -
EcoStruxure™ Control Expert | Schneider Electric,
2017.

[15] Martin A. Sehr, Marten Lohstroh, Matthew Weber,
Ines Ugalde, Martin Witte, Joerg Neidig, Stephan
Hoeme, Mehrdad Niknami, and Edward A. Lee.
Programmable logic controllers in the context of
industry 4.0. IEEE Transactions on Industrial
Informatics, 17(5):3523–3533, 2021.

[16] Årzén, Karl-Erik. JGrafchart: Sequence
Control and Procedure Handling in Java. In
Proceedings of Reglermötet 2002. Reglerteknik och
kommunikationssystem, Linköpings Universitet,
2002.

https://github.com/maurice-comlan/Grafcet-To-Arduino
https://github.com/maurice-comlan/Grafcet-To-Arduino
http://valetterobert.free.fr/enseignement.d/grafcet.pdf
http://valetterobert.free.fr/enseignement.d/grafcet.pdf
http://valetterobert.free.fr/enseignement.d/grafcet.pdf

	Introduction
	Basics definition
	Programmable Logic Controller
	The GRAFCET and Sequential Function Chart
	Semantics

	Arduino boards

	JGrafcetToArduino
	Editor
	Code generation

	Case Studies
	Cash Dispenser
	Fire Detection System

	Analyses and discussions
	Testing
	Metrics

	Conclusion

