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3 Abstract 20 

This study reports A. platensis capacity to capture and convert CO2 into biomass. The 21 

cyanobacterium was cultivated under controlled conditions with a 5% v/v CO₂-enriched 22 

atmosphere at different photoperiods (light/dark): 12h/12h, 20h/4h, and 24h (continuous light). 23 

The photoperiod influence on biomass growth and its effect on CO₂ uptake was evaluated by 24 

analyzing the supernatant dissolved inorganic carbon and nitrate concentration. The 25 

experimental dissolved inorganic carbon values were compared with numerical computations 26 

obtained from an established model. While the control without biomass stabilized at 36 ± 1.07 27 

mgC/L of dissolved inorganic carbon, the A. platensis cultures stabilized at 675 ± 44.5 mgC/L on 28 

average. These results suggest that the alkalinity induced by photosynthesis and nitrate bio-29 

assimilation enhances CO₂ dissolution in the culture medium. The photoperiod increase from 30 

12h/12h to 24h proved to boost the biomass productivity and CO₂ fixation rate from 0.05 to 0.13 31 

g/L/d and 71.92 to 216.84 mgCO₂/L/d, respectively. 32 

4 Keywords 33 

Arthrospira platensis, CO₂ bio-mitigation, photoperiods, Dissolved Inorganic Carbon 34 

Abbreviations 35 

AVR: Average  36 

CCM: Carbon Concentrating Mechanism 37 

CFZM: Carbonate-Free Zarrouk Medium 38 

DIC: Dissolved Inorganic Carbon (mgC/Lmedim) 39 

TC: Total Carbon (gC/gbiomass) 40 

PAR: Photosynthetic Active Radiation (µmolphoton/m²/s) 41 

%RSD: Relative Standard Deviation (%) 42 
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5 Introduction 43 

As pointed out by the Intergovernmental Panel on Climate Change (IPCC) for several decades, 44 

anthropic greenhouse gases and especially CO2 are responsible for global warming that will 45 

have a strong impact on the organization of our societies during the upcoming century. A 46 

profusion of technologies (Ghiat and Al-Ansari, 2021) have been developed to mitigate CO2 to 47 

limit or even stop the increase of CO2 concentration within the Earth’s atmosphere. 48 

Cyanobacteria, formerly called blue-green algae, are known to be at the origin of the global 49 

change of the atmosphere from a CO2-rich to an O2-rich atmosphere nowadays on Earth (Blank 50 

and Sánchez-Baracaldo, 2010). This atmospheric change by photosynthesis, in which simple 51 

mineral carbon molecules are converted by solar energy into complex organic molecules, is 52 

known to have started about 2.4 billion years ago and has been amplified with the multiplication 53 

of the photosynthetic species that became more complex and numerous (Lyons et al., 2014). 54 

The O2 concentration then stabilized around 20% of the Earth's atmosphere, whereas the 55 

atmospheric CO₂ decreased to values in the range below 400 ppm during the last million years 56 

(Schlesinger and Bernhardt, 2020). Among the available options to convert atmospheric CO2 57 

into useful products, cyanobacteria photosynthesis, therefore, seems attractive. Among 58 

cyanobacteria, Arthrospira platensis also commonly called Spirulina, is up to now the most 59 

cultivated one as human food, dietary supplement, natural blue dye, and bioactive molecule 60 

source for diverse applications (García et al., 2017; Wan et al., 2016). Its current commercial 61 

success is linked to its GRAS (“Generally Recognized as Safe”) and similar agreements 62 

obtained within the different food and safety agencies worldwide. Its human consumption is 63 

known to date at least from the 16th century in America as part of the Aztec diet (Farrar, 1966). 64 

It is also consumed traditionally in Africa in the vicinity of Lake Chad as a food named “Dihé” 65 

by the locals (Léonard, 1966). Whereas this traditional harvest within natural alkaline lakes is 66 

old, its domestication started in the early ’60s with the determination of a suitable culture 67 

medium at the “Institut Français du Pétrole” in 1966 (Zarrouk, 1966). Nowadays, its culture is 68 
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well-spread worldwide, using NaHCO3 as the main carbon source needed for its autotrophic 69 

growth (Binaghi et al., 2003). It is known that the physicochemical parameters of the culture 70 

such as temperature, light intensity, nutrient concentration, and pH have an impact on biomass 71 

growth and composition as pointed out by (Yang et al., 2022) and (Oliveira et al., 1999). The 72 

success of spirulina as a commercial crop is also associated with its optimal growth temperature 73 

of 37°C and high alkalinity medium, which reduce the number of potential contaminants in 74 

open ponds commonly used for its cultivation. Its filamentous nature also facilitates harvesting 75 

and rinsing steps then leading to a decrease in the cost of the final biomass (Rossi et al., 2005). 76 

Cyanobacteria have been positioned as strong candidates for CO₂ mitigation technologies 77 

according to (Skjånes et al., 2007), having a CO₂ removal efficiency that is 10 times greater than 78 

that of land plants. Furthermore, previous studies have evaluated the carbon fixation rate of A. 79 

platensis cultivated in a medium containing carbonated salts such as NaHCO3 and Na2CO3 80 

(Binaghi et al., 2003) (Kim and Lee, 2018). Some of the evaluated parameters on the carbon 81 

fixation of this microorganism have been the nitrogen concentration in the medium and 82 

irradiation intensity (Chen et al., 2013), the phosphorus concentration in the medium (Zhu et al., 83 

2020), and the CO₂ concentration in the gas phase (de Morais and Costa, 2007). Little 84 

information is available concerning the carbon dissolution mechanisms in an alkaline medium 85 

such as the one needed for A. platensis culture and the photoperiod effect on carbon 86 

sequestration during biomass growth. 87 

This study aims to assess the potential of A. platensis culture as a CO₂ mitigation technique by 88 

the evaluation of CO₂ dissolution mechanisms in the culture medium, and the impact of the 89 

photoperiod on the CO₂ fixation rate and corresponding biomass growth kinetics. The use of a 90 

numerical tool to complement the experimental CO₂ fixation results provides an insight into the 91 

complex mechanisms that involve carbon capture by a photosynthetic microorganism that grows 92 

in an alkaline liquid medium at relatively high temperatures. 93 
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6 Materials and Methods 94 

6.1 Microorganism and culture medium 95 

The cyanobacterial strain used in this study was A. platensis SAG 21.99 (Markou et al., 2016), 96 

obtained from The University of Göttingen, Germany culture collection. Except during the 97 

maintenance of the inoculum phase, the microorganism was cultivated in a modified Zarrouk 98 

medium (Zarrouk, 1966), called CFZM for “Carbonate-Free Zarrouk Medium” in the rest of the 99 

document. The usual carbon source (NaHCO3) was omitted from its composition. The mineral 100 

carbon of the medium was obtained by the dissolution of the CO₂ from the enriched atmosphere 101 

at 5% v/v. The CFZM has then the following composition: NaNO3: 2.5 g/L, K2HPO4: 0.5 g/L, 102 

K2SO4: 1 g/L, NaCl: 1 g/L, MgSO4·7H2O: 0.2 g/L, CaCl2·2H2O: 0.04 g/L, FeSO4·7H2O: 0.01 103 

g/L, EDTA: 0.08 g/L and 1mL/L of micronutrient solution for trace elements (Hutner et al., 104 

1950). To increase the dissolution of the mineral carbon, the pH of the CFZM is initially set at 105 

9.2 by the addition of 10 mL of NaOH 1M per liter of medium.  106 

6.2 Maintenance and preparation of the inoculum 107 

Routinely maintained in classical Zarrouk medium, the studied strain was gently centrifuged 108 

(Coulter Beckman, Model Allegra X-12, rotor model: SX4750A, Brea, CA, USA) at 4500 RPM 109 

for 5 minutes at 4°C, then rinsed and transferred to the CFZM 72h before the start of each 110 

experiment. On the first day of the experiment, 30 mg of biomass were gently separated by 111 

centrifugation, from the supernatant and resuspended in 100 mL of the medium for the assays. 112 

6.3 Cultivation conditions  113 

The assays were conducted for 8 days in sterile conditions. Three photoperiod conditions 114 

(light/dark) were tested: 12h/12h, 20h/04h, and 24h (continuous light). The cultures were 115 

conducted in batch mode in an incubator (INFORS Multitron, Bottmingen, Switzerland) in the 116 

following conditions: temperature: 35 °C, PAR: 100 µmolphoton/m²/s measured by a light meter 117 

(WALZ, Model ULM-500 equipped with a cosine corrected mini quantum sensor MQS-B, 118 
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Effeltrich, Germany), light source: fluorescent light tube (OSRAM, Model Fluora L36W/77, 119 

Munich, Germany), %CO₂ v/v: 5%, Agitation: 130 RPM, initial pH: 9.2, Culture volume: 100 120 

ml in a 250 ml conical flask. Each assay was performed in triplicate, and a flask of CFZM 121 

without inoculum (control with neat cultivation medium) was systematically included.   122 

6.4 Sampling for Analytical determinations 123 

A culture sample was taken every working day right after the end of the photoperiod light time. 124 

The sample was centrifuged (Coulter Beckman, Model Allegra X-12, rotor model: SX4750A, 125 

Brea, CA, USA) at 4500 RPM for 5 minutes at 4°C. The supernatant was separated and filtered 126 

by a membrane with a pore diameter of 0.22 µm, while the pellet was washed twice with 127 

deionized water to remove the salts of the medium. The cell's integrity after the rinsing step was 128 

checked visually and under an optical microscope and no cell disruption by osmotic shock was 129 

observed. 130 

The pH, Dissolved Inorganic Carbon (DIC), and nitrate concentration were measured from the 131 

supernatant, whereas the pellet was used to determine Total Carbon (TC) and biomass dry 132 

weight. 133 

6.5 Supernatant analysis 134 

The pH was measured with a pH meter (Hannah instruments, HI-2020-02, Limena, Italy) 135 

calibrated to pH 4, 7, and 10 before each measurement. The DIC was determined with a TOC-136 

LCSH system (SHIMADZU, Japan) equipped with an 8-channel OCT-L autosampler. Briefly, 137 

after a reaction at low pH (<3) in H3PO4 25% (obtained by dilution of the commercial solution 138 

695017 of Sigma-Aldrich, Saint Louis, USA) the carrier gas (Alphagaz Air 1 provided by Air 139 

Liquide, Paris, France), is dried and driven to the infrared detection (NDIR) at 65°C. The flow 140 

is set at 150 mLn/min. The signal was then compared with the corresponding DIC standards 141 

(laboratory-made mix of Na2CO3 and NaHCO3, provided by SIGMA-Aldrich, Saint-Louis, 142 



7 
 

USA, of respective references S7795 and S5761) in the range of 0-100 mgC/L. A dilution was 143 

applied to each sample to stay in this calibration range.  144 

The nitrate concentration was measured with an ion chromatography (Metrohm, 145 

940 Professional IC Vario, Herisau, Switzerland) equipped with conductivity detection with 146 

Metrohm Suppressor Module (MSM) and a Metrosep A Supp 7 column (dimensions: 250 × 4.0 147 

mm, 5.0 µm particle size). The flow rate of the elution solution (Na2CO3 3.6 mM) was set at 0.7 148 

ml/min. and the run time was 35 min. The standard curve was made with a nitrate standard (ref. 149 

74246 provided by Sigma-Aldrich, Buchs, Switzerland) in the range of 1-40 mg/L. Each sample 150 

was diluted with deionized water to stay in the calibration range. 151 

6.6 Biomass analysis 152 

To measure the dry weight, the rinsed pellet was resuspended in deionized water and put in a 153 

pre-weighed aluminum cup. The sample in the aluminum cup was put into a ventilated oven at 154 

105°C for 12 hours to evaporate the water from the sample. The aluminum cup with the dry 155 

sample was weighed once the sample was cooled down to room temperature. The dry weight of 156 

the biomass was then estimated by the weight difference. 157 

To evaluate the total carbon (TC) in the biomass, around 50 mg of dry biomass were sampled in 158 

the liquid culture, centrifuged, and washed as described in the previous paragraph. The obtained 159 

pellet was freeze-dried, and the dry pellet was manually ground with a mortar, to homogenize 160 

the particle size. The dry biomass was then suspended in 50 ml of deionized water to be 161 

analyzed by the catalytic oxidation method for the total carbon of the instrument (TOC-LCSH 162 

SHIMADZU, Kyoto, Japan)). Briefly, the sample was brought in a combustion chamber 163 

maintained at 720°C and the carrier gas (Alphagaz Air 1 provided by Air Liquide, Paris, France) 164 

led the produced CO2 to a dryer and then the infrared detector (NDIR) at 65°C. The flow was 165 

set at 150mln/min. The standard curve was prepared with potassium hydrogen phthalate (ref. 166 

P1088 from Sigma-Aldrich, Saint-Louis, USA) in the range of 0-100 mg/L. 167 



8 
 

6.7 Kinetic parameters and CO₂ fixation rate: 168 

The biomass productivity Pbiomass (gbiomass/L/d) was estimated as follows: 169 

Pbiomass =
∆X

∆t
   

(1) 

Where: 170 

ΔX: dry weight biomass concentration variation from the beginning to the end of the culture 171 

(g/L) 172 

Δt: Culture duration (days) 173 

The CO₂ fixation rate 𝐹𝐶𝑂2
 (𝑚𝑔𝐶𝑂2

/𝐿/𝑑) is defined as: 174 

𝐹𝐶𝑂2
= Pbiomass   𝑇𝐶 (

M(CO2)

M(C)
) 

(2) 

Where: 175 

TC: Total Carbon content in the biomass (g carbon/ g biomass) 176 

M(CO2): CO₂ molar mass (g/mol) 177 

M(C): Carbon molar mass (g/mol) 178 

6.8 Statistical Analysis 179 

The values were expressed as the mean ± standard deviation. Error bars in the figures are 180 

standard deviations of triplicate measurements. The data were analyzed by one-way ANOVA. A 181 

value of p < 0.05 was considered to denote a statistically significant difference. The analyzed 182 

variables were the pH, dissolved inorganic carbon (DIC), nitrate uptake, biomass density, and 183 

the carbon content in the biomass. 184 
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6.9 Theory of carbon equilibrium in water and numerical applications 185 

As proposed by (Brune and Novak, 1981), it is possible to correlate pH, temperature, salinity, 186 

and CO2 partial pressure (𝜌𝐶𝑂2) to estimate the carbon speciation and the DIC concentration in 187 

a culture medium for a well-mixed culture.  188 

To emphasize the advantages and drawbacks of the culture conditions of A. platensis as a 189 

carbon capture technique, a comparison between the DIC species promoted in pure water at 190 

20°C and in CFZM medium of A. platensis at 35°C can be made. The temperature, salinity, and 191 

CO2 partial pressure considered for these comparisons are the conditions described for the A. 192 

platensis culture.  193 

To theoretically estimate the CO₂ uptake in the medium, it was assumed that the cultures were 194 

well-mixed and in equilibrium with the incubator atmosphere. The CO₂ dissolution in water is 195 

considered a complex mechanism (Stumm and Morgan, 2012). This mechanism involves the 196 

three concurrent reversible reactions described in equations (3) to (5) below: 197 

𝐻2𝑂 + 𝐶𝑂2(𝑎𝑞)

𝐾0
↔ 𝐻2𝐶𝑂3 (3) 

𝐻2𝐶𝑂3

𝐾1
↔ 𝐻+ + 𝐻𝐶𝑂3

− 
(4) 

𝐻𝐶𝑂3
−

𝐾2
↔ 𝐻+ + 𝐶𝑂3

2− (5) 

In all the above reactions the equilibrium constants 𝐾0,  𝐾1  and 𝐾2 are typically functions of the 198 

temperature and salinity of the medium. The salt concentration in the medium negatively affects 199 

the CO₂ solubility because of the ion complex formation between the carbonic ions and the salt 200 

ions (Dickson and Millero, 1987). Thus, the ionization constant of the carbon fractions must be 201 

considered. The equations reported by (Dickson and Millero, 1987) were taken as references for 202 

the estimation of pK0, pK1, and pK2, in the cases of pure water at 20°C and CFZM at 35°C 203 

(which is close to the usual optimal growth temperature of A. platensis). The considered 204 
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salinities were 3.54 g of salt per kg of water for the CFZM and 0 g of salt per kg of water for the 205 

pure water. To determine the value of each equilibrium constant, equation (6) was applied: 206 

𝐾𝑖 =  10−𝑝𝐾𝑖 for 𝑖 ∈ [0,1,2] (6) 

By the application of equation (6) to the values of pK0, pK1, and pK2 given in (Dickson and 207 

Millero, 1987) the equilibrium constants can be estimated as a function of the temperature and 208 

salinity. 209 

Table 1 Equilibrium constants estimated by the equations proposed by (Dickson and Millero, 1987) at temperature 210 
and salinity of 20°C and 0 g/kg for pure water and 35°C and 3.54 g/kg for CFZM 211 

 𝐾0 (mol/L/atm) 𝐾1(mol/L/atm) 𝐾2 (mol/L/atm) 

Pure water at 20°C 0.3916 4.29 x10-7 4.29 x10-11 

CFZM at 35°C 0.0456 1.23x10-6 5.76x10-10 

 212 

The CO₂ solubility [𝐻2𝐶𝑂3] (mol/L) in the aqueous phase is well described as a function of the 213 

CO₂ partial pressure 𝜌𝐶𝑂2 (atm) in the atmosphere and Henry’s constant 𝐾0(atm L/mol): 214 

[𝐻2𝐶𝑂3] =
[𝐻𝐶𝑂3

−][H+]

[𝐾1]
 (7) 

[𝐻𝐶𝑂3
−] =

[𝐶𝑂3
2−][H+]

[𝐾2]
 (8) 

[H+] = 10−𝑝𝐻  (9) 

𝜌𝐶𝑂2 =  𝐾0 [𝐻2𝐶𝑂3] (10) 

Knowing the CO₂ partial pressure in the atmosphere of the incubator (𝜌𝐶𝑂2=0.05 Atm) and the 215 

equilibrium constants, the equations (7) to (10) represent a set of 4 equations and 5 unknown 216 

variables. A solution is nevertheless possible if the pH of the studied solution is fixed. This 217 

condition is experimentally realized through pH measurement. At a given pH and CO2 partial 218 
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pressure, the model calculates the concentration of the different carbon species. The total 219 

inorganic carbon in the medium phase, DIC (mgC/L), is estimated as follows:  220 

𝐷𝐼𝐶 = [𝐻2𝐶𝑂3] + [𝐻𝐶𝑂3
−] + [𝐶𝑂3

2−] (11) 

The equations system was solved using the Matlab R2022a with the Symbolic Math toolbox. 221 

7 Results and discussion 222 

7.1 Effect of culture’s physicochemical parameters on CO₂ dissolution 223 

The three tested photoperiods and the control (without biomass) started at an initial pH of 9.2. 224 

According to (Richmond et al., 1990), a pH of around 9 is suitable for A. platensis culture. After 225 

2 days of the experiment, the pH of the three conditions with active A. platensis cultures 226 

decreased and stabilized at a pH of 8.2 ± 0.06. There were no significant differences between 227 

the photoperiods in terms of pH equilibrium (p > 0.05). The results shown in Figure 1 are 228 

consistent with those of (Kim and Lee, 2018) and (Park et al., 2013), who studied A. platensis in 229 

modified Zarrouk medium and municipal wastewater. On the contrary, the pH of the non-230 

inoculated control dropped to 6.7 ±0.1 from the second day and remained stable during the 231 

entire experiment. 232 
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 233 

Figure 1 Evolution of the pH of A. platensis cultures and control neat culture medium during the 234 

growth kinetics for the three studied photoperiods (■) Control experiment without biomass, (▲) 235 

Continuous illumination 24h photoperiod, (●) 20h/04h photoperiod, (×) 12h/12h photoperiod 236 

As plotted in Figure 2, a higher pH in the active A. platensis cultures was associated with an 237 

increase in DIC for the three photoperiod conditions, these results are in line with (Huijun et al., 238 

2019) with Spirulina maxima grown using flue gas as a carbon source for the medium. 239 

Furthermore, the availability of DIC species has a strong influence on biomass development 240 

(Kuo et al., 2018). A significant increase in the CO₂ fixation rate was reported between 360-241 

1200 mgC/L (Bao et al., 2012) and (Zhu et al., 2020) in large-scale open raceway ponds with 242 

CO₂ supplementation. Similarly, in this study, the DIC reached an equilibrium concentration at 243 

675 ±44.5 mgC/L by the end of the batch for the flasks with live biomass inoculum in the three 244 

photoperiod conditions. Even if DIC concentration was higher in 20h/04h than in the other 245 

photoperiods, no significant differences were assessed between the three studied conditions (p > 246 
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0.05). In contrast, the control without live biomass reached an equilibrium concentration at 36 247 

±1.07 mgC/L.  248 

 249 

Figure 2- DIC evolution with and without inoculum of A. platensis for the three chosen photoperiods (■) Control 250 
experiment without biomass, (▲) Continuous illumination 24h photoperiod, (●) 20h/04h photoperiod, (×) 12h/12h 251 

photoperiod 252 

  253 
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 254 

Light irradiance intensity and photoperiod are important factors for cell growth and CO₂ bio-255 

mitigation (Shareefdeen et al., 2023). Previous efforts have been done to evaluate irradiance 256 

intensity impact on carbon capture mechanisms of A. platensis (Chunzhuk et al., 2023). 257 

However, the photoperiod role in CO₂ bio-mitigation by A. platensis has not been well defined 258 

yet. The results obtained in this study show that, although the samples with 20h/4h (day/night) 259 

photoperiod appeared with a DIC slightly higher than the other photoperiods, no significant 260 

differences were assessed between photoperiods. As for the pH, biological activity seems to be 261 

the main factor affecting DIC and its corresponding CO₂ uptake in the culture medium. The 262 

study of (Otero and Vincenzini, 2003) with Nostoc cultivated in BG-11 medium stated that the 263 

NO3
- reduction reactions play a significant role in pH increase, as the NO3

- uptake is balanced 264 

by OH-  release, which leads to pH and alkalinity increase. In the present study, as the incubator 265 

atmosphere was enriched with CO2, the release of alkalinity was compensated by the increase in 266 

CO2 absorption. As indicated in equations (3) to (5), the dissolution of each absorbed CO2 267 

molecule releases one or two H+, this counter-mechanism leads to pH stability together with a 268 

slight increase in DIC. This mechanism is well described for instance by (Brewer and Goldman, 269 

1976), (Rubio et al., 1999) and (Eriksen et al., 2007). The Figure 3 plot of nitrates consumption 270 

makes possible the calculation of mean nitrate consumption. Nitrate uptake in 12h/12h and 271 

20h/04h batches presented slight differences, being 0.37 ±0.04 and 0.35 ±0.02 g/L respectively, 272 

whereas the nitrate uptake during the 24h condition was 0.45 ±0.01 g/L. The nitrate 273 

consumption differed significantly between photoperiods (p < 0.05). As discussed by (Eriksen 274 

et al., 2007) and (Yuvraj and Padmanabhan, 2017) in the case of Chlorophyceae there is a link 275 

between biomass composition, O2 production, CO2 uptake, and nitrogen consumption in the 276 

culture. If nitrate uptake was only correlated with biomass production, we would have expected 277 

to observe an increase in nitrogen consumption in parallel with the photoperiod increase. It is 278 

possible that in this study, the photoperiods also have slightly influenced the biomass 279 
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composition and therefore decreased the nitrogen uptake of the biomass for the 20h/04h 280 

photoperiod. This hypothesis is confirmed by the measurement of carbon content in the biomass 281 

that is slightly higher for 20h/04h photoperiod (0.48 ±0.03 gC/gbiomass) compared to 12h/12h and 282 

24h/0h (0.43 ±0.01 and 0.45 ±0.04 gC/gbiomass respectively). 283 

 284 

Figure 3 Nitrate consumption kinetics for the three chosen photoperiods (▲) Continuous illumination 24h 285 
photoperiod, (●) 20h/04h photoperiod, (×) 12h/12h photoperiod 286 

 287 

To plot the DIC variation according to the pH, equations (6) to (11) were applied following the 288 

resolution steps proposed. This plot is compared in Figure 4 with the experimental 289 

measurements obtained with the different photoperiods. 290 
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 291 

Figure 4 Dissolved Inorganic Carbon (DIC) estimated by the application of the model compared to the experimental 292 
data obtained during the A.platensis growth kinetics for the three chosen photoperiods. (*) Model data, (△) 293 

Continuous illumination 24h photoperiod, (○) 20h/04h photoperiod, and (×) 12h/12h photoperiod 294 

 295 

A good match is found between the experimental data and the numerical application of the 296 

theory, meaning that the kinetics of the carbon absorption by A. platensis is slow enough to 297 

respect the thermodynamic equilibrium of CO2 dissolution from the atmosphere. Moreover, the 298 

observed DIC values indicate that the carbon source was not a limiting factor for the culture 299 

development: (Pruvost et al., 2016) indicate that the DIC limit concentration for Cyanophyceae 300 

is approximately 360-480 mgC/L. 301 

By the application of the equilibrium equations to the DIC concentration values, it was possible 302 

to estimate that 𝐻𝐶𝑂3
− was the predominating carbon form in the culture medium, as illustrated 303 

in Figure 5. The 𝐻𝐶𝑂3
− is known to be the accumulated carbon specie during the CCM 304 

(Moroney and Somanchi, 1999), serving cyanobacteria as a substrate for the carboxysome 305 
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center to increase the CO₂ concentrations around Rubisco and enhance the carbon uptake by 306 

photosynthesis (Badger and Price, 2003). 307 

 308 

Figure 5 Carbon forms in an aqueous phase as a pH function. Plotted using Stumm and Morgan model. Solid lines 309 
for carbonate-free Zarrouk medium at 35°C and dashed lines for the pure water at 20° C, Solid line: ( □ ) H2CO3, 310 

(◇) HCO-
3, (△) CO3

-2, Dashed line: (○) H2CO3, (+) HCO-
3 and (*) CO3

-2 311 

  312 
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 313 

It was confirmed that the temperature and salinity of the culture play a role in carbon speciation. 314 

A reduction in bicarbonate ion proportion was observed in CFZM compared with the one 315 

observed in the pure water at 20°C for a pH greater than 8. The culture of a photosynthetic 316 

organism growing optimally at lower temperatures, lower salinity, and higher pH could also be 317 

as well an attractive option for the CO₂ bio-sequestration. 318 

7.2 Photoperiod effect on the CO₂ bio-mitigation by the A. platensis biomass 319 

A difference in biomass growth kinetics was assessed for the different tested photoperiods. The 320 

continuous exposition of the cultures to the light proved to enhance the growth parameters of 321 

the cultures. As displayed in Figure 6, the biomass density reached respectively on the 8th day 322 

0.9 ±0.03, 1.74 ±0.03, and 1.98 ±0.03 g/L for 12h/12h, 20h/04h, and 24h photoperiod 323 

conditions.   324 

 325 
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Figure 6 Biomass growth kinetics for the three chosen photoperiods (▲) Continuous illumination 24h photoperiod, 326 
(●) 20h/04h photoperiod, (×) 12h/12h photoperiod 327 

The highest biomass density observed with the continuous light does not correspond with the 328 

highest measured DIC, confirming that the dissolved carbon concentration is higher than the 329 

need of A. platensis. This is in coherency with the results reported by (Rosa et al., 2015) for the 330 

Spirulina sp. culture in a carbonate-free Zarrouk medium. The biomass density measured for the 331 

20h/04h and 24h photoperiods showed only slight differences and no sign of photoinhibition 332 

was observed in any of the conditions of this study, in line with (Xie et al., 2015) results with A. 333 

platensis. However, studies on other photosynthetic microorganisms state that photoperiods 334 

higher than 18 h could cause an inhibitory effect on biomass growth, such as the one reported 335 

by (Serrano-Bermúdez et al., 2020) and (Maroneze et al., 2016) with Scenedesmus obliquus and 336 

Nannochloropsis sp., respectively.  The carbon content in the biomass did not differ 337 

significantly (p > 0.05) for the three tested conditions and is measured to be 0.43 ±0.01, 0.48 338 

±0.03, and 0.45 ±0.04 gC/gbiomass for respectively the 12h/12h, 20h/04h, and 24h/0h day/night 339 

conditions. Nevertheless, the slight carbon content variations at the different conditions may be 340 

a response to the photoperiod modifications, provoking an impact on the circadian rhythm and 341 

metabolism of the cyanobacteria as reported by (Iwasaki and Kondo, 2000) and (Prates et al., 342 

2018). 343 

The photoperiods also affected the biomass productivity and CO₂ fixation rate, as displayed in 344 

Table 2. Although the 20h/04h and continuous illumination photoperiods displayed similar 345 

performances in terms of biomass productivity and CO₂ fixation rate, the continuous light 346 

photoperiod (24h) exhibited the best performances. However, to define the best photoperiod 347 

conditions it would be necessary to evaluate the biomass quality in terms of high-value 348 

molecules content, together with the energy input needed to increase the photoperiod with 349 

artificial lighting. 350 

 351 
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Table 2 Average (AVR) and standard deviation (SD) biomass productivity and CO2 fixation rate as a function of the 352 
photoperiod 353 

Photoperiod 

12h/12h 20h/04h 24h 

AVR %RSD  AVR %RSD AVR %RSD 

Biomass productivity 

(g/L/d) 

0.05 5.29 0.09 4.75 0.13 2.39 

FCO2 

(𝐦𝐠𝐂𝐎₂/𝐋/𝐝) 

71.92 3.61 153.95 8.93 216.84 5.38 

 354 

The highest biomass productivity and CO₂ fixation rate observed during this study are in line 355 

with the ones reported by (Chen et al., 2013), who reported biomass productivity of 0.07 ±0.01 356 

g/L/d and a CO₂ fixation rate of 120 ±0.01 mgCO₂/L/d for S. platensis cultivated with CO₂ 357 

concentration of 2.5% v/v. 358 

It is important to note that one of the objectives of this work was to bring to light the roles and 359 

interconnections of different abiotic factors (temperature, photoperiod duration, salinity of the 360 

medium, availability of dissolved inorganic carbon) and their impact on the biomass growth 361 

parameters and CO₂ fixation rates. The aim was to provide information that serves a better 362 

understanding of the complex dynamics that occur in a photobioreactor to enhance the CO₂ bio-363 

sequestration. 364 

8 Conclusions 365 

To assess the culture of A. platensis as a CO₂ bio-sequestration technique, the DIC 366 

concentration in the supernatant, the biomass growth parameters, and the CO₂ fixation rate 367 

were evaluated at three different photoperiods. It is well known that the CO₂ dissolution 368 

reactions are functions of the physicochemical parameters of the aqueous medium. The DIC 369 

concentration did not show significant differences in the three studied photoperiods, as the 370 

mean concentration remained at 675 ± 44.5 mgC/L and pH 8.2 ± 0.06 after the first two days 371 

of culture growth. The biochemical reactions involved in the A. platensis growth metabolism 372 

proved to affect the DIC concentration and the carbon species equilibrium in the supernatant, 373 
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as DIC concentration in the control without biomass remained constantly lower at 36 ± 1.07 374 

mgC/L and pH of 6.7 ±0.1. The transfer of atmospheric CO₂ into the growth medium seems 375 

to be enhanced by the alkalization linked with nitrate and CO2 bio-assimilation. An increase 376 

in biomass productivity and CO₂ fixation rate was achieved through increased exposure to 377 

light during the photoperiod. The higher biomass productivity and CO₂ fixation rates were 378 

assessed during the continuous light photoperiod being respectively 0.13 g/L/d and 379 

216.84mgCO₂/L/d. A. platensis culture has proved to be an interesting CO₂ bio-sequestration 380 

technique under the studied conditions. In any case, a screening of the high-value molecule 381 

content in the biomass, together with the evaluation of the energy consumption linked to the 382 

increase of photoperiod duration, are required to determine the interest in prioritizing the 383 

continuous light photoperiod from the other options. In addition, the alkalinity of its medium 384 

promotes the CO₂ dissolution and is a strong advantage, whereas the high optimal growing 385 

temperature and low growth rate of A. platensis compared with other microorganisms are 386 

clear drawbacks. Nevertheless, its current market as a natural blue food dye and nutritional 387 

supplement, its filamentous structure that facilitates harvesting, and its ability to grow in 388 

relatively harsh conditions (pH and temperature) make A. platensis culture an interesting 389 

CO₂ bio-mitigation technique. 390 

  391 
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9 Artwork and Tables with Captions 392 
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